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Abstract 

Antiviral software systems (AVSs) have problems in detecting polymorphic 

variants of viruses without specific signatures for such variants. Previous 

alignment-based approaches for automatic signature extraction have shown 

how signatures can be generated from consensuses found in polymorphic va-

riant code. Such sequence alignment approaches required variable length vir-

al code to be extended through gap insertions into much longer equal length 

code for signature extraction through data mining of consensuses. Non-nested 

generalized exemplars (NNge) are used in this paper in an attempt to further 

improve the automatic detection of polymorphic variants. The important 

contribution of this paper is to compare a variable length data mining tech-

nique using viral source code to the previously used equal length data mining 

technique obtained through sequence alignment. This comparison was achieved 

by conducting three different experiments (i.e. Experiments I-III). Although 

Experiments I and II generated unique and effective syntactic signatures, Ex-

periment III generated the most effective signatures with an average detection 

rate of over 93%. The implications are that future, syntactic-based smart 

AVSs may be able to generate effective signatures automatically from mal-

ware code by adopting data mining and alignment techniques to cover for 

both known and unknown polymorphic variants and without the need for 

semantic (run-time) analysis. 
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1. Introduction 

Computer worms and viruses continue to grow despite improved intrusion de-
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tection, firewall and antivirus software systems (AVSs). For a malware detection 

system such as an AVS, the primary issue is to detect a worm or virus variant 

that is not stored in its signature database. Modern detection methods are fre-

quently unable to detect new malware variants until they make an appearance 

even when a signature of one variant of that particular malware is known [1] [2] 

[3] [4], because of polymorphism. Such polymorphism usually leaves the payl-

oad instructions alone but changes the structure of the malware through mod-

ification in the encryption and decryption engines or through reordering of in-

structions [1] [5] [6] [7] [8] [9]. Polymorphism is typically built into the mal-

ware so that the same malware has both a structural (code sequence) and seman-

tic (execution path) difference when propagating. Even if a signature is found for 

one variant of the malware through syntactic or semantic analysis, there is no 

guarantee that the same signature will work for other variants of the same mal-

ware. 

Current signature extraction is by manual assessment using semantic infor-

mation, by string-based syntactic approaches (see [10] [11] [12] [13] for more 

detail), or by a learning system that is, as yet, unknown. It has been recom-

mended that learning sophisticated language classes, such as context-free or reg-

ular grammars, is not preferable from only positive inputs [14]. It is not known 

what an optimal negative class of virus should be (e.g. viral code with the payl-

oad taken out, non-viral programs, arbitrary code, etc.). AVSs have just about 

kept pace with new variants because of speedy and effective manual extraction of 

signatures from execution traces. But polymorphic variants, so far, have exhi-

bited low levels of complexity, and growing sophistication of malware writers may 

soon make this semantic and post-event approach infeasible [8] [9]. In the worst 

possible case, a different signature may be required for every variant, leading to 

constant updating of AVS signature libraries and increased time required to scan 

incoming packets. For these reasons, a “smart” approach to automatic signature 

generation based on a purely syntactic approach to learning (i.e. an approach 

that does not require execution traces) is attractive. 

A data mining algorithm (i.e. rule induction algorithm) is adopted in this pa-

per to search and extract meaningful and smart information from malware 

source code in the form of rules which represent patterns (code sequence signa-

tures) in malware data. In particular, a nearest neighbor rule induction algo-

rithm such as NNge (details provided later) may work better in noisy domains 

such as malware code where there may be obfuscation and deliberate introduc-

tion of redundancy. If it is possible to generate a rule-based signature automati-

cally from known polymorphic variants, it may also be possible to automatically 

create signatures that can detect entirely new variants that have not previously 

been encountered. If this is the case, future smart AVSs can be “pre-emptive” in 

that they already know, to some extent, what future variants of a virus may look 

like based on encountering known variants of that virus. The aim of this paper is 

to explore this possibility in more detail. 
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One of the issues in applying data mining algorithms to malware data directly 

is the problem of variable length strings [15], since most data mining algorithms 

assume equal length strings. There is surprisingly little work on the application 

of data mining algorithms to automatic malware signature generation, mainly 

due to the issue of dealing with variable length strings to detect the critical seg-

ments of the malware from which to obtain signatures [16] [17]. The little work 

that exists in data mining focuses on unusual behavior detection [18] [19] [20] 

based on semantics. The variable length of malware execution traces makes the 

application of most data mining algorithms difficult because of the default as-

sumption that strings to be mined are of equal length. On the syntactic front, 

previous work [16] demonstrated how variable length malware source code 

could be converted into (much longer) equal length code through insertion and 

deletion of gaps by performing sequence alignment. However, no attempt was 

made to input these equal length sequences directly into a data mining algo-

rithm. 

The significance of this paper is to continue a purely syntactic exploration of 

the possibility of generating signatures automatically from malware source code 

without the need for semantic analysis. Syntactic techniques for signature ex-

traction based on structural detection of malware are relatively unexplored in 

comparison to semantic techniques (i.e. techniques based on analyzing the ex-

ecution behavior of malware). The primary benefit with a syntactic or structural 

technique is that new and previously unknown variants can be generated from 

the extracted syntactic or structural rules of existing variants (see [13] for more 

detail). For a semantic approach, an actual variant instance is required so that it 

can be run to create an execution trace. This execution trace can be compared 

with other execution traces from previous instances to determine whether a new 

signature is required and, if so, how effective that signature is in detecting the 

family of which this instance is a variant. For a syntactic approach, on the other 

hand, the set of actual instances so far found is a subset of possible instances of 

the language derivable using a grammar. Effectiveness of signatures can be de-

termined by generating numerous possible instances even if they have not oc-

curred. 

Previous work used sequence alignment to extract consensuses (calculated 

order of the most frequent symbols found in each position) from malware code 

variants for the purpose of generating the minimum possible number of signa-

tures for detecting those variants and previously unseen variants. But there was 

no attempt made to make the most of a by-product of the alignment for data 

mining purposes, which is the output of equal length malware code of variants. 

Our task in this paper is to compare signatures produced from the outcomes of 

data mining the variable length malware code before alignment with the out-

comes of data mining the equal length malware code after alignment to deter-

mine which method produces better signatures automatically. 

Malware is typically a script or program written first in a high-level language 

https://doi.org/10.4236/jis.2018.94019


V. Naidu et al. 

 

 

DOI: 10.4236/jis.2018.94019 268 Journal of Information Security 

 

(e.g. C, Java) and then compiled into hex code. The source code will contain in-

structions for the infector part (how to spread), the payload part (what action to 

take) and methods for encryption/decryption to hide the malware intent. The 

infector part also usually contains instructions on how to change the code so 

that new variants are produced on infection. This leads to many “variants” of the 

same family where the infector and payload are the same but differently coded. 

The run-time behavior of the variant is used by human experts to generate sig-

natures (short strings of hex code) for storage in libraries of AVSs to scan in-

coming packets and the contents of memory to detect the variant and its family. 

One of the main problems for AVSs is that polymorphic techniques that change 

the order of the malware code can evade signatures that assume a constant 

left-to-right ordering in malware code variants. As will be seen below, some very 

old and well-known viruses still evade modern AVSs because their variants 

adopt simple code sequence changes that cannot be detected by the latest signa-

tures. 

The task of a syntactic learning system for signature generation of polymor-

phic malware using hex code only (i.e. no execution traces) is specified below 

(see Figure 1): 

a) From the code of a set of seen variants Ps, automatically generate signatures 

to identify and detect unseen variants Pu, where Ps and Pu form currently known 

variants Pk. 

b) From the code of a set of known variants Pk, automatically generate signa-

tures to identify and detect unknown variants Px for cross-validation. In this 

case, Px are code variants that have not been seen before for either training or 

testing purposes. 

The learning task is to maximize true positive rates, and minimize false positive  

 

 

Figure 1. Our method comprising of eight steps. 

Unknown Polymorphic Variants PX

Known Polymorphic Variants PK

Unseen Polymorphic 

Variants PU

Seen 

Polymorphic 

Variants PS
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and false negative rates in both cases above. As will be seen below, previous work 

has addressed a) through sequence alignment techniques that use insertion op-

erations as well as substitution matrices for matching malware code. It is cur-

rently not known whether matching techniques that work well for a) will con-

tinue to work well for b), or whether data mining techniques that look for pat-

terns in underlying structure are required to allow generalization to unknown 

variants. 

Roadmap: Section 2 and Section 3 discuss the background and limitations of 

previous work. Section 4 discusses previous related work relevant to this paper. 

Section 5 and Section 6 discuss the data mining technique and sequence repre-

sentations adopted in this paper. In Section 7, we describe our systems and me-

thods. Section 8 summarizes the key features and steps by comparing the three 

different sets of experiments conducted in Section 7. Section 9 discusses the re-

sults. That is Section 9-1) compares the data mining results obtained from three 

different sets of experiments against other related work and Section 9-2) eva-

luates signatures generated through the three different sets of experiments 

against state of the art AVS products, and on the detection of JS.Cassandra po-

lymorphic virus and its known and unknown variants. Section 10 and Section 11 

contain the discussions and conclusions. The paper concludes with references 

and Appendix section. Appendix Sections A1-A3 explain the three different 

sets of experiments (Experiments I-III) that were individually performed with 

these methods. 

2. Background 

A key development in syntactic approaches has been adoption of string-based 

algorithms in bioinformatics for identifying structural matches in malware code. 

Such algorithms do not just look for the presence or absence of characters in 

specific positions but also manipulate the strings to allow for insertion of cha-

racters to expand the number of matching characters. Importantly, the results of 

such string manipulation are a set of equal length strings from an initial set of 

variable length strings. Earlier work [21] has demonstrated that string matching 

and sequence alignment algorithms taken from bioinformatics perform best with 

biologically represented strings (DNA or protein) rather than non-biological cha-

racter sets, possibly due to being optimized for chemistry-based mutations be-

tween characters. We follow previous approaches in transforming malware code 

to an appropriate biological string representation before sequence alignment, 

with transformation of consensuses (i.e., those parts of the malware strings that 

are common) back to hexadecimal (hex) code for signature generation (see [21] 

for more detail). 

A sequence-based method to signature extraction was previously proposed 

and illustrated utilizing the Smith-Waterman algorithm (SWA) without gap pe-

nalties [10]. The method adopted in [10] was further fine-tuned [11] by selecting 

SWA with six different substitution matrices. Results demonstrated that it was 
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possible to extract signatures for pairs of malware strings and meta-signatures 

for a family of malware after implementing data mining rule-extraction methods 

(PRISM [22]) to the extracted signatures. That is, underlying patterns were 

mined after two rounds of matching: the first round dealt with pairwise match-

ing of variable length malware variants to produce level 1 consensuses, where 

each consensus was of different length to other consensuses; the second round 

dealt with multisequence alignment of these variable length level 1 consensuses 

to produce level 2 equal length consensuses, or signatures. The two-stage align-

ment process (pairwise followed by multiple) was required because of the com-

putational difficulty in running multiple sequence alignment directly on strings 

of vastly different lengths, as malware variants of a family tend to be. The initial 

pairwise alignment allowed pairwise recurring similarities to be first identified in 

consensuses before these consensuses were themselves multiply aligned to pro-

duce level 2 consensuses (signatures). These level 2 consensuses of equal length 

were then mined using PRISM to find underlying patterns, resulting in me-

ta-signatures. Another relevant enhancement in syntactic methods was also re-

cently published [12]. Two different dynamic programming techniques, namely, 

Needleman-Wunsch and SWA, were explored for matching purposes, and it was 

found that SWA gave the best results with 100% of unseen Pu variants in the test 

set Pk being detected. Recent work [13] adopted ten different combinations of 

gap open and gap extend penalties in conjunction with dynamic programming. 

It was found that changes in these parameters helped to generate effective sig-

natures for detecting unseen Pu (test set Pk) polymorphic variants. 

3. Limitations of Previous Work 

Previous work using a sequence alignment approach [10] [11] [12] [13] had two 

limitations. First, the string matching search using the SWA found only the most 

optimally-conserved meta-signatures using left-to-right matching techniques. It 

was not known how successful these meta-signatures would be when used against 

unknown Px variants where code has been moved and restructured (i.e. case b) 

above), thereby reducing the number of left-to-right matches. A rule-based or 

top-down approach that tries to find underlying patterns may overcome the li-

mitation of signatures generated in left to right order, thereby reducing or nulli-

fying the false positive and false negative rates [23] [24]. Rule-based signatures 

obtained in this way might potentially capture knowledge which makes the iden-

tification and detection of unknown Px variants possible. Thus, the rule-based 

NNge approach (more details in Section 5) is explored in this research and de-

tailed in this paper. 

A second limitation, as noted above, was that the alignment using SWA was 

“pairwise” and only allowed alignment of two viral sequences at a time in the 

first round of alignment. Multiple sequence alignment was then used on all pair-

wise consensuses to generate equal length sequences for rule-based data mining 

using PRISM. However, in the first round, only those regions of similarity in the 
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pairwise alignment were extracted rather than regions of similarity across all vir-

al sequences. It was not known how much “family” information was lost through 

pairwise comparison of variants. A rule-based data mining approach, on the 

other hand, allows all sequences to be used to extract signatures should take into 

account all the information in all the sequences at the same time, including both 

family generic and variant specific information. This should then lead to more 

effective signatures. 

4. Related Work 

The main body of research over the last fifteen years has concentrated on mal-

ware detection adopting semantic-based approaches and only a few adopting 

syntactic-based approaches. A list of approaches to automatic signature genera-

tion is presented in Table 1. Practically all previous approaches deal with only a 

restricted set of variants belonging to the same malware family and it is currently 

not known how generalizable these approaches are for detecting other variants 

of the same family, either unseen (Pu) or unknown (Px). In our approach, new Pu 

and previously unknown Px structural variants belonging to the JS.Cassandra 

polymorphic viral family are provided by one of the most respected grey hat 

hackers. 

Some other related and selected previous work that primarily focuses on mal-

ware detection using data mining and bioinformatics approaches are shown in 

Table 2. Very little research has been undertaken using data mining and bioin-

formatics approaches for the detection of polymorphic virus and its unseen Pu  

 

Table 1. Related research to the automatic signature generation in malware detection. 

Researchers/Application Type of Malware Type of Approach Description 

Wespi et al. [25] Intrusions Semantic 

Variable length patterns from training data consisting of system call 

traces of commands under normal execution were analyzed by a  

sequence-based algorithm called Teiresias for intrusion detection. 

Honeycomb [26], Autograph 

[27] and Early Bird [28] 
Worms Syntactic 

Generate signatures that constitute individual adjoining byte strings 

(tokens). 

Polygraph [29] 
Polymorphic 

worms 
Syntactic 

Generates an array of tokens, a subsequence of tokens and Bayes  

signatures based on probabilistic methods to detect polymorphic worms. 

Nemean [30] Worms Semantic Focus on generating signatures that defend against worms. 

PAYL [31] Worms Semantic 
Produces subsequence signature tokens that associate ingress/egress 

payload notifications to detect the initial replication of worms. 

Hamsa [32] 
Polymorphic 

worms 
Semantic 

Produces a set of signature tokens that can deal with polymorphic 

worms by investigating their invariant activity. 

ShieldGen [33] Worms Semantic 
Generates network signatures for unseen vulnerabilities (worms) that 

are based on protocol-aware for instance. 

AutoRE [34] Botnets Semantic 
Produces a spam signature creation architecture from spam emails that 

use botnets to detect them. 

Coull and Szymanski [35] Masquerade Semantic 

Sequence alignment was used to identify masquerade detection by 

comparing “audit data” with legitimate user signatures extracted from 

their actual command line entries. 
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Continued 

Scheirer et al. [36] 
Polymorphic 

worms 

Syntactic and 

Semantic 

Detection of many polymorphic worms and uses intrusion detection 

techniques such as sliding window schemes and instruction semantics. 

Wurzinger et al. [37] Botnets Semantic 

Detects botnets that are under the influence of botmaster (malicious 

body) using network signatures by examining the response from a  

compromised host to a received command and by generating detection 

models. 

Botzilla [38] 
Malware 

binaries 
Semantic 

Produces signatures for the malicious activities (traffic) created by a 

malware binary executed several times within a controlled domain. 

Zhao et al. [39] 

General 

malware 

datasets 

Semantic 

Generates signatures through an inverse transcoding method by  

converting the malware sequential information, such as system call  

sequences, propagation dataflow, etc. into amino acid sequences and 

then aligning them using multiple sequence alignment tool. 

ProVex [40] Botnets Semantic 

Generates signatures to detect botnets that use encrypted command and 

control (C & C) systems after being given the keys and decryption  

routine employed by the malware be derived using binary code reuse 

strategy. 

FIRMA [41] Botnets Semantic Detects C & C systems but does not produce signatures for those. 

Ki et al. [42] 
Worms, Trojans, 

etc. 
Semantic 

Generates sequences that are typical API call sequence motifs of  

malicious activities belonging to several malware samples and employed 

multiple sequence alignment tool to align those malware samples to 

extract signatures. 

MalGene [43] 
Evasive malware 

samples 
Semantic 

Uses sequence alignment techniques on two sequences of system call 

events belonging to two different analysis environments: one  

environment in which the malware evades the AVS, and the other in 

which it exhibits the malicious activities. These events are used to  

construct an “evasion signature” using sequence alignment. 

 

Table 2. Some related and selected previous work in malware detection using data mining and bioinformatics approaches. 

Researchers Data Mining Data Set Type of Malware Type of Approach 

Chen et al. 

[16] 

Data Mining Classifiers  

Algorithms i.e. ANNs (Artificial 

Neural Networks) i.e. 

JavaNNS and Symbolic Rule  

Extraction i.e. J48 classifier 

60 malicious files, 30  

belonging to virus group and 

30 belonging to worm group. 

One family, with a total of 

60 malicious samples, 30 

each for virus and worm 

categories. 

Extraction of hex sequences from 

viral and worm malicious files.  

Multiple sequence alignment using 

T-Coffee was applied on the extracted 

hex sequences for data mining 

process. 

Kumar et al. 

[44] 

Data Mining Classifier  

Algorithms i.e. IBK (k-nearest 

neighbours classifier) 

Existing dataset: 323  

malicious files with a  

combination of viruses and 

worms. 

New upcoming dataset: 323 

malicious files with a  

combination of viruses and 

worms. 

Virus and Worm. 

Extraction of hex sequences from 

viral files and conversion of hex  

sequences into ASCII sequences.  

Multiple sequence alignment was 

applied on the converted ASCII  

sequences for data mining process. 

Prabha et al. 

[45] 

Data Mining Classifier  

Algorithms i.e. J48, KNN 

(K-Nearest Neighbours), Naïve 

Bayes. 

100 binaries out of which 90 

were benign and 10 were 

malware binaries. 

15 subfamilies, with a total 

of 1056 malicious  

viral samples. 

Extraction of hex dumps/Extraction 

of byte sequences in terms of n-grams 

of different sizes. 
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Continued 

Srakaew et al. 

[18] 

Data Mining Classifier  

Algorithm i.e. J48 by generating 

decision trees. 

Reference Data Set: 1200 files 

in total out of which 900 are 

malicious and 300 are 

non-malicious. 

Application Data Set: 3251 

files in total out of which 

2951 are malicious and 300 

are non-malicious. 

Reference Data Set: 

Allapple, Podhuha and 

Virut viral families each 

containing 300 malicious 

samples. 

Application Data Set: 

Allapple, Podhuha and 

Virut viral families with 

890, 8 and 2,053 malicious 

samples, respectively. 

Statistical Features Approach: 

Conversion of malicious and 

non-malicious files into hex  

sequences for extracting statistical 

aspects using n-grams of bytes. 

Abstract Assembly Approach: 

Conversion of malicious and 

non-malicious files into assembly 

instructions for extracting selected 

instructions using n-grams of  

interesting opcodes. 

 

variants, let alone its unknown Px variants. The syntactic approach most closely 

related [44] adds nothing new to what was published by Chen et al. in 2012 [16], 

and replicates the structural sequence alignment and data mining approaches 

adopted in that paper and subsequently refined by [10] [11] [12] [13]. 

Previous use of sequence alignment and data mining has for the most part 

been semantic in nature, depending on system behavior patterns or using n-grams 

of bytes instead of code or structural patterns for the detection of malware. Also, 

because of their semantic nature, the generalizability of the results to new Pu va-

riants generated through polymorphism is unknown. A purely syntactic-oriented 

approach, on the other hand, is based on the intuition that most new Pu (poly-

morphic) variants are simple syntactic variations of existing versions. The com-

plicating aspect is variable length variations. The “expressive power” of signa-

tures can be estimated by detecting how well these signatures generalize to un-

seen Pu and unknown Px variants of the same family, all obtained through poly-

morphic (structural) alterations to the code. The benefit of a syntactic approach 

is that no semantics is needed. More importantly, as will be shown below, the 

number of malware training instances required to extract signatures for use 

against unseen Pu test instances is exceptionally small given the sequence align-

ment and data mining approaches adopted in the experiments. 

5. Data Mining 

Previous work [11] used PRISM on the consensuses derived after two rounds of 

alignment to generate rule-based signatures by performing several train/test 

(Ps/Pu) iterations with an overall accuracy of 62%. Although PRISM and NNge 

are both rule induction algorithms, the theoretical advantages of choosing NNge 

over PRISM are due to its potential for improved accuracy and production of 

extensive or verbose rules. Optimizing rules to produce minimal redundancy is 

counter-productive in malware signature generation, especially when trying to 

deal with Px instances and to keep false positive and negative rates low. Moreo-

ver, in NNge, frequent removal of data instances and restoration of the training 

dataset are not required unlike in PRISM. These steps are overcome in NNge by 

joining the instances to its nearest neighbour (more details below). 

As an instance of a polymorphic string-based technique, consider the structu-
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rally-related set of sentences [11]: 

The cat saw the mouse (Class 1) 

The mouse was seen by the cat (Class 2) 

We see that the cat saw the mouse (Class 1) 

We see that the mouse was seen by the cat (Class 2) 

PRISM and NNge were applied on the four structurally-related set of se-

quences by categorizing them into two classes, namely: Class 1—cat saw the 

mouse and Class 2—mouse was seen by the cat. The variable length strings were 

converted into equal length strings by expanding the shorter strings to have a 

length equal to the longest string by adding the letter “x” at the end of each short 

string. 

PRISM gave the following rules with 75% accuracy after four iterations (“pos” 

= position): 

If pos1 = the, pos2 = cat, pos3 = saw, pos4 = the, pos5 = cat, pos7 = the, pos8= 

mouse, pos9 = x and pos10 = x then Class 1 

If pos2 = mouse, pos3 = was, pos4 = seen, pos6 = was, pos7 = seen, pos8 = by, 

pos9 = the, pos9 = x and pos10 = x then Class 2 

NNge gave the following rules with 100% accuracy (“^” = conjunction; “{}” 

signifies disjunctive options): 

Class 1 IF: pos1 in {the, we} ^ pos2 in {cat, see} ^ pos3 in {saw, that} ^ pos4 in 

{the} ^ pos5 in {cat, mouse} ^ pos6 in {saw, x} ^ pos7 in {the, x} ^ pos8 in 

{mouse, x} ^ pos9 in {x} ^ pos10 in {x} 

Class 2 IF: pos1 in {the, we} ^ pos2 in {mouse, see} ^ pos3 in {was, that} ^ 

pos4 in {the, seen} ^ pos5 in {mouse, by} ^ pos6 in {the, was} ^ pos7 in {cat, 

seen} ^ pos8 in {by, x} ^ pos9 in {the, x} ^ pos10 in {cat, x} 

The strings were extracted from the above-mentioned PRISM and NNge rules 

and are shown as follows in their corresponding classes: 

PRISM: 

Class 1: the cat saw the cat the mouse  

Class 2: mouse was seen was seen by the 

NNge: 

Class 1: the we cat see saw that the cat mouse saw the mouse 

Class 2: the we mouse see was that the seen mouse by the was cat seen by the 

cat 

The results on this example string set show that NNge can generate rules with 

100% accuracy over PRISM, which generated rules with 75% accuracy. One of 

the aims of this paper is to determine whether this result is generalizable to 

many more instances of strings (variants) belonging to different classes (fami-

lies). 

NNge, first introduced by Martin (1995), is a nearest neighbor algorithm and 

an expansion of Nge [46], which generalizes by merging exemplars [47] and 

forming hyperrectangles in feature space that represent conjunction rules 

(if-then rules) with internal disjunction. The learning is incremental; each ex-
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ample is first classified and then generalized by joining the example to its nearest 

neighbor, either a single instance or a hyperrectangle, in the same class. Each 

hyperrectangle is converted into a production rule. When a hyperrectangle cov-

ers just one instance it is regarded to be non-generalized exemplar [48]. An in-

stance of a hyperrectangle is shown below [49]: 

class B if p1 = (2 or 4 or 6) AND 

p2 = (22) AND 

(p3 ≥ 9 AND p3 ≤ 32) AND 

p4 = (b or c) 

This hyperrectangle covers strings “42210b” and “62231c” but not “3118b”, 

for instance. Within the NNge algorithm [49] (see below), creating the collection 

of hyperrectangles starting from the training collection is an accumulative pro-

cedure where, for every instance In, the subsequent three stages are consecutively 

enforced, i.e. classification, model adjustment and generalization. The classifica-

tion stage locates the hyperrectangle Gb which is nearest to In. The model ad-

justment stage divides the hyperrectangle Gb if it covers an inconsistent instance. 

The generalization stage extends Gb in sequence to cover In at most if the genera-

lized instance does not overlap/cover an inconsistent instance/hyperrectangle 

[48]. 

NNge Algorithm: 

For each instance In in the training collection do: 

Locate the hyperrectangle Gb which is nearest to In /*Classification Stage*/ 

IF D (Gb, In) = 0 THEN 

IF class (In) ≠ class (Gb) THEN Divide/Split (Gb, In) /*Adjustment Stage*/ 

ELSE G’: = Extend (Gb, In) /*Generalization Stage*/ 

IF G’ overlaps with inconsistent hyperrectangles  

THEN add In as a non-generalized exemplar 

ELSE Gb: = G’ 

The classification stage is formulated based on the distance D(I, G) between 

an instance I = (I1, I2, …, In) and a hyperrectangle G as shown in Equation (1) 

(Classification Stage). 

( ) ( ) 2

max min
1

,
,

n
k k

k

k k k

d I G
D I G w

I I=

 
= 

 −



∑                  (1) 

In Equation (1), min

k
I  and max

k
I  indicate the set of numerical values across 

the training collection which correspond to attribute k. For categorical (i.e. 

nominal) attributes, the length of this set is constantly 1. Gk is the interval 

[ min

k
G , max

k
G ] if Ik is a quantitative attribute, and is a list of values if Ik is a ca-

tegorical attribute. The distance between the corresponding hyperrectangle i.e. 

the “side”, and the attribute values is formulated based on the type of the 

attribute, as illustrated in Equation (2) (Distance between the Corresponding 

Hyperrectangle). 
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               (2) 

The constant wk signifies weights corresponding to attributes and can be re-

gulated throughout the training procedure [46] or can be assigned to mutual in-

formation [48] [50]. 

The adjustment stage is implemented when a previously created hyperrectan-

gle covers an instance associated with a different class. To circumvent the crea-

tion of nested hyperrectangles NNge regulates the current hyperrectangle so that the 

inconsistent instance is eliminated. This is accomplished by splitting the hyper-

rectangle into two or more hyperrectangles and potentially into a few isolated 

variants/instances. The generalization stage comprises modifying the “border” of 

the nearest hyperrectangle possessing the same class as the training case in order 

to cover it. The extension is obtained only when the newly split hyperrectangle 

does not overlap with hyperrectangles possessing a separate class. If the overlap 

is detected the training case is included in the model as a non-generalized exem-

plar [48]. 

6. Sequence Representations 

In the experiments that follow, two different types of code representation are 

tested for data mining using NNge. The first type uses the hex representation 

and the second uses a DNA version of the hex representation, using the conver-

sion rules as follows: 

Conversion of hexadecimal into binary code was accomplished employing the 

subsequent rules: “1” → “0001”; “2” → “0010”; “3” → “0011”; “4” → “0100”; “5” → 

“0101”; “6” → “0110”; “7” → “0111”; “8” → “1000”; “9” → “1001”; “0” → “0000”; 

“a” → “1010”; “b” → “1011”; “c” → “1100”; “d” → “1101”; “e” → “1110”; and “f” → 

“1111”. Successive conversion of the binary code into DNA sequences was ac-

complished employing the subsequent rules: “00” → “A”; “11” → “T”; “10” → 

“G”; and “01” → “C”. 

So, for instance, the hex string “1234567890abcdef” becomes  

“0001001000110100010101100111100010010000101010111100110111101111” (binary 

code) and then becomes “ACAGATCACCCGCTGAGCAAGGGTTATCTGTT” 

(DNA sequence). 

The experiments are intended to check whether data mining using DNA code 

produces better results than using hex code. Once viral code is converted to 

DNA code, sequence alignment using publicly validated and provably tested 

alignment software becomes possible. 

Also, in the experiments below, “padding” was required to convert variable 

length viral strings into equal length strings for two of the experiments (Experi-

ments I and II). For example, given hex strings “13ad3” and “245335623f”, pad-
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ding produces “13ad3xxxxxx” to make both strings of equal length. 

7. Systems and Methods 

Methods Overview (Experiments I-III): The method in Experiment I consists of 

six steps, summarized as follows. Step-1 deals with virus code variant generation 

Pk and separating the training set Ps from the test set Pu. Step-2 deals with the 

process of variable length data mining on a small percentage of the training Ps 

and test Pu sets using NNge classifier to generate rules for string extraction. 

Step-3 deals with the extraction of common training sequences (i.e. strings, or 

first-level rule-based consensuses) using the NNge rules. Step-4 deals with con-

verting the hex code of the training Ps and test Pu sets (obtained from Step-1) as 

well as first-level consensuses (obtained from Step-3) into a form (in this case, 

DNA) acceptable for sequence alignment. Step-5a deals with the process of 

pairwise (local) sequence alignment between the first-level consensuses and 

some variants of the training set Ps (both obtained from Step-4) using the SWA 

to produce equal length sequences (i.e. second-level consensuses). Step-5b deals 

with the extraction of meta-signatures, or common substrings, from these 

second-level consensuses. Step-6 deals with the conversion of meta-signatures 

back into viral hex code for the purpose of signature testing against Pk and Px 

viral sets. More details concerning each step are supplied in Figure A1 in the 

Appendix section. 

The method in Experiment II consists of six steps. The same procedure as Ex-

periment I was used along with the same training Ps and test Pu sets, with the 

only difference being that some variants of the training set Ps were converted in-

to DNA format prior to the process of variable length data mining. More details 

concerning each step are supplied in Figure A2 in the Appendix section. 

The method in Experiment III consists of seven steps. The same procedure as 

Experiments I and II was adopted and the same training Ps and test Pu sets were 

used, with the only difference being an additional step of multiple sequence 

alignment on the training set Ps to produce equal length sequences prior to the 

process of equal length data mining. More details concerning each step are sup-

plied in Figure A3 in the Appendix section. 

8. Comparison of Three Sets of Experiments in Detail 

Experiment I consist of taking 22 viral strings in hex (11 malicious (set M) and 

11 non-malicious (set NM)), applying NNge to MHEX and NMHEX, and convert-

ing the NNge results into two variable length strings (N1HEX, N2HEX), as shown in 

the “cat mouse” examples previously. The hex strings are then converted to 

DNA for pairwise sequence alignment between N1DNA and Ps on the one hand 

and N2DNA and Ps on the other. This produces consensuses C1DNA (between 

N1DNA and Ps) and C2DNA (N2DNA and Ps), and these consensus C1DNA and C2DNA 

become the meta-signatures for use against Pk and Px after converting back into 

hex (i.e. C1HEX and C2HEX). Therefore, the viral code remains in hex format until 
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just before pairwise sequence alignment. Set NM in this paper is defined as 

malware that is generated by eliminating their key polymorphic functions and 

are partially functional with no payload properties. 

Experiment II consists of taking 22 viral strings in hex (11 malicious (set M) 

and 11 non-malicious (set NM)). MHEX and NMHEX are then converted to DNA 

before applying NNge to MDNA and NMDNA, and converting the NNge results in-

to two variable length strings (N1DNA, N2DNA). The N1DNA and N2DNA are then 

pairwise sequenced against Ps. This produces C1DNA (between N1DNA and Ps) and 

C2DNA (N2DNA and Ps), and C1DNA and C2DNA become the meta-signatures for use 

against Pk and Px after converting back into hex (i.e. C1HEX and C2HEX). The dif-

ference between Experiment I and Experiment II is that the viral strings are 

converted to DNA first before NNge is applied. 

Experiment III consists of taking 22 viral strings in hex (11 malicious (set M) 

and 11 non-malicious (set NM)). MHEX and NMHEX are then converted to DNA. 

Multiple sequence alignment is then applied on MDNA and NMDNA to produce 

equal length sequences ME and NME. Then NNge is applied to ME and NME to 

produce variable length strings N1DNA and N2DNA. N1DNA and N2DNA are then 

pairwise sequenced against Ps. This produces C1DNA (between N1DNA and Ps) and 

C2DNA (N2DNA and Ps), and C1DNA and C2DNA become the meta-signatures for use 

against Pk and Px after converting back into hex (i.e. C1HEX and C2HEX). The dif-

ference between Experiment II and Experiment III is that the viral strings are 

multiply aligned first to produce equal length strings before NNge is applied. 

Table 3 summarizes the key features and steps by comparing the three sets of 

experiments (Experiments I-III) performed in this paper. Variable length data 

mining techniques produced ten unique and 13 common meta-signatures (C1HEX 

and C2HEX). Experiment I generated five unique and four common meta-signatures 

(C1HEX and C2HEX). Experiment II generated 5 unique and nine common me-

ta-signatures (C1HEX and C2HEX). Equal length data mining technique (Experi-

ment III) produced 43 unique and five common meta-signatures (C1HEX and 

C2HEX). As can be seen from Table 3, the length of sequences, and therefore the 

number of attributes where each position in a sequence represents an attribute 

value, varies from over 20,000 to over 90,000, making both sequence alignment 

and data mining heavy computational and memory-intensive tasks. 

9. Results  

1) Comparison of the Data Mining Results Obtained from Three Sets of 

Experiments as Well as from Other Related and Selected Previous Work 

Table 4 presents the results of Experiments I-III and compares those results 

with the virus detection results presented in previously published works (see Ta-

ble 2). In the case of the work by Chen et al. [16] only the percentages of cor-

rectly detected and incorrectly detected instances were reported (as for J48 me-

thod) and in the case of Prabha et al. [45] no performance metrics were re-

ported. In the case of Srakaew et al. [18] other overall performance metrics such  
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Table 3. Comparison of three sets of experiments. 

Features/Steps 
Variable length data mining Equal length data mining 

Experiment I Experiment II Experiment III 

Hex to DNA conversion 
For the process of pairwise 

sequence alignment only. 

For the processes of data  

mining and pairwise sequence 

alignment. 

For the processes of multiple sequence  

alignment, data mining and pairwise sequence 

alignment. 

Multiple sequence alignment for 

the process of data mining 
No No Yes 

Conversion of variable length 

sequences into equal length 

sequences 

By adding the letter “x”  

towards the end of each  

sequence until all the variable 

length sequences were of equal 

lengths. 

By adding the letter “X”  

towards the end of each  

sequence until all the variable 

length sequences were of equal 

lengths. 

By the process of multiple sequence  

alignment. All the gaps introduced by the 

process of alignment were substituted by “X”. 

Total number of attributes for the 

process of data mining 
24,565 49,129 93,438 

Total number of labels for the 

process of data mining 
17 (hex labels: a - f, 0 - 9 and x) 

Five (DNA labels: A, T, G, C 

and X) 
Five (DNA labels: A, T, G, C and X) 

File size of the ARFF file 2.49 MB 3.87 MB 7.38 MB 

Total time taken to generate NNge 

results by Weka 
2 minutes and 32 seconds 6 minutes and 13 seconds 32 minutes and 28 seconds 

Time taken to build model 0.62 second 0.73 second 1.23 seconds 

Correctly classified instances  

(%)—Accuracy 
22/22 (100.00%) 0/22 (0.00%) 22/22 (100.00%) 

Incorrectly classified instances  

(%)—Inaccuracy 
0/22 (0.00%) 22/22 (100.00%) 0/22 (0.00%) 

Kappa statistic 1 −1 1 

Mean absolute error 0 1 0 

Root mean squared error 0 1 0 

Relative absolute error (%) 0.00% 200.00% 0.00% 

Root relative squared error (%) 0.00% 200.00% 0.00% 

Total number of instances 22 22 22 

Total number of rules generated 

Two (one for malicious  

class and one  

for non-malicious class) 

Two (one for malicious  

class and one for  

non-malicious class) 

Three (one for malicious class  

and two for non-malicious class) 

Sequence lengths of extracted 

hex/DNA data (first-level 

consensuses) from NNge rules 

Malicious (hex): 123,338 

Non-Malicious (hex): 37,249 

Malicious (DNA): 132,103 

Non-Malicious (DNA): 41,670 

Malicious (DNA): 161,495 

Non-Malicious 1 (DNA): 59,740 

Non-Malicious 2 (DNA): 11,860 

Total number of pairwise 

alignments performed 

Six (three each for malicious 

and non-malicious classes) 

Six (three each for malicious 

and non-malicious classes) 

Nine (three each for malicious, non-malicious 

1 and non-malicious 2 classes) 

Total number of meta-signatures 

(C1HEX, C2HEX) generated 

Nine (Four for malicious class 

and five for non-malicious 

class) 

14 (Nine for malicious class 

and five for non-malicious 

class) 

48 (31 for malicious class, nine for 

non-malicious class 1 and eight for 

non-malicious class 2) 

Total number of unique 

meta-signatures (C1HEX, C2HEX) 
Five Five 43 

Total number of common 

meta-signatures (C1HEX, C2HEX) 
Four Nine Five 
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Table 4. Comparison of the results of Experiments I-III with those reported previously for data mining approaches to malware 

detection reported in the related work section (see Table 2). 

Data Mining based 

Techniques 

Correctly  

Classified  

Instances (%) 

Incorrectly 

Classified  

Instances (%) 

TP (True 

Positive) 

Rate 

FP (False 

Positive) 

Rate 

Precision Recall F1 Score 

Experiment I (Variable length) 100.00% 0.00% 1 0 1 1 1 

Experiment II (Variable length) 0.00% 100.00% 0 1 0 0 0 

Experiment III (Equal length) 100.00% 0.00% 1 0 1 1 1 

Chen et al. [16]—J48 

before alignment 

Training 85.00% 15.00% - - - - - 

5-fold cross validation 60.00% 40.00% - - - - - 

10-fold cross validation 63.33% 36.67% - - - - - 

15-fold cross validation 68.33% 31.67% - - - - - 

20-fold cross validation 60.00% 40.00% - - - - - 

Chen et al. [16]—J48 

after double alignment 

Training 96.67% 3.33% - - - - - 

5-fold cross validation 78.33% 21.67% - - - - - 

10-fold cross validation 66.67% 33.33% - - - - - 

15-fold cross validation 70.00% 30.00% - - - - - 

20-fold cross validation 63.33% 36.67% - - - - - 

Kumar et al. [44] 
Existing (known)dataset (Average) 95.9752% 4.0248% 0.96 0.094 0.962 0.96 0.959 

New (unknown)dataset (Average) 86.6873% 13.3127% 0.867 0.275 0.872 0.867 0.858 

Prabha et al. [45] - - - - - - - - 

Statistical method by 

Srakaew et al. [18] 

Reference Set 98.9167% 1.0833% - - - - - 

Application Set 95.0477% 4.9523% - - - - - 

10-fold cross validation 95.333% 4.667% - - - - - 

Abstract assembly 

method by Srakaew et 

al. [18] 

Reference Set 99.75% 0.25% - - - - - 

Application Set 98.39% 1.661% - - - - - 

10-fold cross validation 99.5% 0.5% - - - - - 

 

as true positive rate, false positive rate, precision, recall and F1 score were not 

reported. These results are not presented here. 

Experiments I and III gave results which outperformed those previously re-

ported achieving 100% correctly classified instances and thus 0% incorrectly 

classified instances (see Table 4). Although Experiment II achieved 100% incor-

rectly classified instances and thus 0% correctly classified instances, the me-

ta-signatures (C1HEX and C2HEX) extracted in this experiment successfully de-

tected the JS.Cassandra variants (known Pk and unknown Px). Meta-signatures 

(C1HEX and C2HEX) extracted in Experiment III were the most effective (~62%) of 

all followed by the meta-signatures (C1HEX and C2HEX) extracted in Experiments I 

(~55%) and II (43%) (see Section 9-2). The fact that the meta-signatures (C1HEX 

and C2HEX) in DNA format performed better if the DNA sequences were aligned 

prior to rule mining (Experiment III vs. Experiment II) and extraction is also re-
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flected in the results of the work reported by Chen et al. [16], where improved 

classification was observed if J48 classification was performed after a double 

alignment process. 

2) An Evaluation of the State of the Art AVS Products and Meta-Signatures 

(C1HEX and C2HEX) on the Detection of JS.Cassandra Virus and Its Known Pk 

and Unknown Px Variants 

Table 5 presents the detection ratio obtained using the meta-signatures 

(C1HEX and C2HEX) generated in Experiments I to III and five current state of the 

art AVSs. The malicious meta-signatures C1HEX4 (I), C1HEX9 (II), and C1HEX26 (III)  

 

Table 5. Detection ratio using five state of the art AVSs and the 14 most effective malicious and 8 non-malicious meta-signatures 

(C1HEX and C2HEX) from Experiments I to III with Clamscan scanner. 

Files 

Scanned 
Metrics 

Virus Detection Method 

AVG AntiVir ClamAV ESET F-Prot 

352 known 

(Pk) 

JS.Cassandra 

Malicious 

Variants 

Detection Ratio 

(Accuracy) 
312/352 (88.64%) 25/352 (7.10%) 340/352 (96.59%) 296/352 (84.09%) 4/352 (1.14%) 

Sensitivity/Recall 88.64% 7.10% 96.59% 84.09% 1.14% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100% 100% 100% 100% 100% 

F1 Score 93.97% 13.26% 98.26% 91.36% 2.25% 

43 

JS.Cassandra 

Non-Malicio

us (Pu)  

Variants 

Detection Ratio 

(Accuracy) 
0/43 (0.00%) 1/43 (2.32%) 0/43 (0.00%) 0/43 (0.00%) 0/43 (0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 97.67% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

352 Random 

JavaScript 

Files 

Detection Ratio 

(Accuracy) 
0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 100% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

Files 

Scanned 
Metrics 

Malicious C1HEX1 (I), 

C1HEX3 (II), 

non-malicious C2HEX41 

(III) and C2HEX43 (III) 

Malicious C1HEX3 

(I) and 

C1HEX6 (II) 

Malicious 

C1HEX7 (II) 

Malicious C1HEX4 (I), 

C1HEX9 (II), 

non-malicious C2HEX37 

(III) 

Malicious C1HEX5 

(III) 

352 known 

(Pk) 

JS.Cassandra 

Malicious 

Variants 

Detection Ratio 

(Accuracy) 
340/352 (96.59%) 85/352 (24.15%) 325/352 (92.33%) 352/352 (100%) 340/352 (96.59%) 

Sensitivity/Recall 96.59% 24.15% 92.33% 100% 96.59% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100% 100% 100% 100% 100% 

F1 Score 98.26% 38.90% 96.01% 100% 98.26% 
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Continued 

43 

JS.Cassandra 

Non-Malicio

us (Pu)  

Variants 

Detection Ratio 

(Accuracy) 
6/43 (13.95%) 1/43 (2.32%) 20/43 (46.51%) 43/43 (100%) 8/43 (18.60%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 86.05% 97.67% 53.49% 0.00% 81.39% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

352 Random 

JavaScript 

Files 

Detection Ratio 

(Accuracy) 
0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 100% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

Files 

Scanned 
Metrics Malicious C1HEX9 (III) 

Malicious C1HEX15 

(III) 

Malicious 

C1HEX20 (III) 
Malicious C1HEX24 (III) 

Malicious C1HEX26 

(III) 

352 known 

(Pk) 

JS.Cassandra 

Malicious 

Variants 

Detection Ratio 

(Accuracy) 
329/352 (93.46%) 344/352 (97.73%) 191/352 (54.26%) 202/352 (57.39%) 352/352 (100%) 

Sensitivity/Recall 93.46% 97.73% 54.26% 57.39% 100% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100% 100% 100% 100% 100% 

F1 Score 96.62% 98.85% 70.35% 72.93% 100% 

43 

JS.Cassandra 

Non-Malicio

us (Pu)  

Variants 

Detection Ratio 

(Accuracy) 
1/43 (2.32%) 29/43 (67.44%) 9/43 (20.93%) 14/43 (32.56%) 43/43 (100%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 97.67% 32.56% 79.07% 67.44% 0.00% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

352 Random 

JavaScript 

Files 

Detection Ratio 

(Accuracy) 
0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 100% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

Files 

Scanned 
Metrics Malicious C1HEX27 (III) 

Non-malicious 

C2HEX7 (I), C2HEX11 

(II) 

Non-malicious 

C2HEX8 (I) 

Non-malicious C2HEX12 

(II) 

Non-malicious 

C2HEX35 (III) 

352 known 

(Pk) 

JS.Cassandra 

Malicious 

Variants 

Detection Ratio 

(Accuracy) 
140/352 (39.77%) 339/352 (96.31%) 140/352 (39.77%) 325/352 (92.33%) 352/352 (100%) 

Sensitivity/Recall 39.77% 96.31% 39.77% 92.33% 100% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100% 100% 100% 100% 100% 

F1 Score 56.91% 98.12% 56.91% 96.01% 100% 
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Continued 

43 

JS.Cassandra 

Non-Malicio

us (Pu)  

Variants 

Detection Ratio 

(Accuracy) 
3/43 (6.98%) 37/43 (86.04%) 16/43 (37.21%) 20/43 (46.51%) 43/43 (100%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 93.02% 13.95% 62.79% 53.49% 0.00% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

352 Random 

JavaScript 

Files 

Detection Ratio 

(Accuracy) 
0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 100% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

 

and the non-malicious meta-signatures C2HEX35 (III) and C2HEX37 (III) successful-

ly detected all 352 known (Pk) malicious variants of the JS.Cassandra polymor-

phic virus, where (I), (II) and (III) represent the meta-signatures (C1HEX and 

C2HEX) generated from Experiments I, II and III. None of the five state of the art 

AVSs fully detected all known (Pk) JS.Cassandra variants. Scan results for AVG, 

AntiVir and F-Prot AVS products were obtained from an open source online 

website known as “Gary’s Hood” [51]. We used “Gary’s Hood” online tool [51] 

as it allows multiple files to be scanned at the same time adopting the four exist-

ing AVS products/scanners (i.e. AVG, AntiVir, ClamAV and F-Prot). ESET AVS 

product was installed on a private machine with Windows based operating sys-

tem and Clamscan antivirus scanner was installed on a private machine with 

Linux based (Linux Mint) [52] operating system using their own ClamAV data-

base and using the own generated (.ndb) databases [10] containing the corres-

ponding malicious or non-malicious meta-signature (C1HEX and C2HEX). The da-

tabases of all the AVS products were up-to-date with the latest updates. 

In total, 71 meta-signatures (9 meta-signatures from Experiment I, 14 me-

ta-signatures from Experiment II and 48 meta-signatures from Experiment III) 

were generated from malicious and non-malicious sequences. All the 71 me-

ta-signatures (C1HEX and C2HEX) were scanned/tested against the 352 known (Pk) 

JS.Cassandra malicious variants, 43 JS.Cassandra non-malicious (Pu) variants 

and 352 random JavaScript files individually by placing these meta-signatures 

inside their own generated (.ndb) database [10]. The testing process was con-

ducted using Clamscan antivirus scanner. None of the scans took longer than a 

second. 

Table 5 shows the scan results of some of the effective meta-signatures tested 

against the malicious, non-malicious and random datasets. Non-malicious 

C2HEX7 (I) and C2HEX11 (II) detected 339 out of the 352 (with 96.31% accuracy) 

JS.Cassandra malicious (Pk) variants, whereas non-malicious C2HEX41 (III) and 

C2HEX43 (III) detected 340 out of the 352 (with 96.59% accuracy) JS.Cassandra 
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malicious (Pk) variants. Malicious C1HEX1 (I) and C1HEX3 (II) (i.e. meta-signature 

number 1 and meta-signature number 3 of the 71 meta-signatures for the mali-

cious class C1) detected 340 out of the 352 (with 96.59% accuracy) JS.Cassandra 

malicious (Pk) variants, whereas malicious C1HEX15 (III) detected 344 out of the 

352 (with 97.73% accuracy) JS.Cassandra malicious (Pk) variants. The reason 

non-malicious meta-signatures (C2HEX) detect malicious variants and malicious 

meta-signatures (C1HEX) detect non-malicious variants is that the malicious and 

non-malicious variants both contain common functions which lead to the gen-

eration of common meta-signatures between the two classes C1HEX and C2HEX 

(see Table 3 for total number of common meta-signatures). 

Malicious C1HEX4 (I), C1HEX9 (II), C1HEX26 (III) along with non-malicious 

C2HEX35 (III) and C2HEX37 (III) were the only five meta-signatures (C1HEX and 

C2HEX) that fully detected all 43 non-malicious (Pu) JS.Cassandra variants. These 

meta-signatures (C1HEX and C2HEX) not only detected 352 malicious (Pk) variants 

successfully but also detected 43 non-malicious (Pu) variants. As noted in Figure 

A1, non-malicious (Pu) variants still had some polymorphic functions intact in-

side. All 43 non-malicious (Pu) variants were still executable. The results pre-

sented in Table 5 shows that none of the existing AVSs fully detected these 

non-malicious (Pu) variants as malicious. 

The same batch of 71 meta-signatures (C1HEX and C2HEX) was once again 

tested against the 100 unknown (Px) JS.Cassandra malicious variants by using 

the own generated (.ndb) database [10]. The testing process was conducted us-

ing Clamscan antivirus scanner. The uniqueness of these 100 new (Px) malware 

variants was cross-checked by generating a CRC32b hash value for each variant, 

and no duplicates were found. Table 6 gives the detection ratio obtained by 

testing the 71 meta-signatures (C1HEX and C2HEX) generated in Experiments I to 

III and two current state of the art AVSs (ClamAV and Bitdefender Total Secu-

rity 2017) against the 100 new (Px) JS.Cassandra variants. ClamAV and Bitde-

fender Total Security 2017 AVSs had overall accuracies of 85% and 0%, respec-

tively, and meta-signatures (C1HEX and C2HEX) from Experiments I-III using  

 

Table 6. Detection ratio using two state of the art AVSs and the 71 meta-signatures (C1HEX and C2HEX) obtained from Experiments 

I to III with Clamscan antivirus scanner. 

Files Scanned Metrics 

Virus Detection Method 

ClamAV 

Bitdefender 

Total Security 

2017 

Nine 

Meta-Signatures 

(Experiment I) 

14 

Meta-Signatures 

(Experiment II) 

48 

Meta-Signatures 

(Experiment III) 

100 unknown (Px) 

JS.Cassandra  

Malicious 

Variants 

Detection Ratio  

(Accuracy) 
85/100 (85.00%) 0/100 (0.00%) 100/100 (100.00%) 100/100 (100.00%) 100/100 (100.00%) 

Sensitivity/Recall 85.00% 0.00% 100.00% 100.00% 100.00% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100.00% 100.00% 100.00% 100.00% 100.00% 

F1 Score 91.89% 0.00% 100.00% 100.00% 100.00% 
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Clamscan had overall accuracies of 100%, across all three experiments (see Table 

6). Table 6 shows that all 100 (accuracy of 100%) JS.Cassandra unknown (Px) 

variants were successfully detected by the Clamscan using the .ndb database 

augmented with our meta-signatures. 

The 71 meta-signatures (C1HEX and C2HEX) were tested for false positives. First, 

any duplicate meta-signatures (C1HEX and C2HEX) along with meta-signatures 

(C1HEX and C2HEX) that were six characters or below were removed. In total, 26 

meta-signatures (i.e. 16 malicious C1HEX and 10 non-malicious C2HEX) were re-

moved from the generated (.ndb) database [10]. The remaining 45 me-

ta-signatures (C1HEX and C2HEX) were tested against the 352 known (Pk) variants, 

43 non-malicious (Pu) variants, 100 new (Px) variants and 18,123 clean files. The 

clean files contained a combination of 9000 PDF files, 500 Microsoft document 

files, 96 Linux files, 100 JAR files, 108 PDF files with embedded 3D videos, 200 

RTF files and 8119 Microsoft Windows files. These files were obtained from a 

BlogSpot called “contagio” [53]. 

Figures 2(a)-(c) are the screenshots of the scan results indicating that 352 of 

the 352 known (Pk) malicious variants, 43 of the 43 non-malicious (Pu) variants 

and 100 of the 100 unknown (Px) malicious variants were successfully identified 

as infected by the Clamscan antivirus scanner using the 45 meta-signatures 

(C1HEX and C2HEX). Figure 2(d) shows that only 29 of the 18,123 clean files were  

 

 

 

Figure 2. Screenshot of the scan results obtained from Clamscan antivirus scanner for JS.Cassandra variants and clean files 

using the 45 meta-signatures (C1HEX and C2HEX). 
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detected as false positives (0.159% false positive rate) using the 45 meta-signatures 

(C1HEX and C2HEX), thereby satisfying the false positive rate requisite of 0.1%. 

10. Discussions 

It was found from the experiments conducted in this paper that Experiment III 

(equal length data mining technique) gave the highest number of successful me-

ta-signatures (C1HEX and C2HEX) in comparison to Experiments I and II (variable 

length data mining technique). Experiment II gave the lowest number of suc-

cessful meta-signatures (C1HEX and C2HEX). Not only did Experiment III gave the 

highest number of meta-signatures (C1HEX and C2HEX), but it also gave the high-

est number of effective meta-signatures (C1HEX and C2HEX). Moreover, Experi-

ment III generated meta-signatures (C1HEX and C2HEX) that were not generated 

in Experiments I and II. The importance of multiple sequence alignment prior to 

data mining significantly improved both the quality and quantity of me-

ta-signatures (C1HEX and C2HEX) in comparison to Experiments I and II. In com-

parison to previous reported work (see Section 4 and Section 5), the syntactic 

approach to automatic signature generation using NNge successfully has ad-

dressed the limitations of previous work by generating signatures in the quick-

est, simplest and most accurate manner. 

In total, 45 out of the 71 overall meta-signatures (C1HEX and C2HEX) i.e. around 

63.38% (33.80% malicious (24/71) and 29.58% non-malicious (21/71)) were ef-

fective i.e. detected seen (Ps) and unseen (Pu) variants from the two different types 

of groups (i.e. malicious and non-malicious). Specifically, six out of the nine 

meta-signatures (C1HEX and C2HEX) generated from Experiment I (i.e. around 66.66% 

meta-signatures—44.44% malicious (4/9) and 22.22% non-malicious (2/9)) detected 

seen (Ps) and unseen (Pu) variants belonging to malicious and non-malicious 

groups (see Table 5). And seven out of the 14 meta-signatures (C1HEX and 

C2HEX) generated from Experiment II (i.e. 50% meta-signatures—28.57% mali-

cious (4/14) and 21.43% non-malicious (3/14)) detected seen (Ps) and unseen (Pu) 

variants belonging to malicious and non-malicious groups (see Table 5). Addi-

tionally, 32 out of the 48 meta-signatures (C1HEX and C2HEX) generated from Ex-

periment III (i.e. 66.66% meta-signatures—35.41% malicious (17/48) and 31.25% 

non-malicious (15/48)) detected seen (Ps) and unseen (Pu) variants belonging to 

malicious and non-malicious groups (see Table 5). Only 11 out of the 30 effec-

tive meta-signatures (C1HEX and C2HEX) obtained from Experiment III are shown 

in Table 5. 

As Experiments I and II were performed using two different representational 

approaches (i.e. hex/DNA) along with Experiment III containing aligned DNA 

sequences, all with the same (unchanged) instances each time, some of the me-

ta-signatures (C1HEX and C2HEX) obtained from the three sets were identical to 

each other. Malicious C1HEX1 (I), C1HEX3 (II), non-malicious C2HEX41 (III) and 

C2HEX43 (III) share identical meta-signature. On the other hand, malicious C1HEX4 

(I), C1HEX9 (II) and non-malicious C2HEX37 (III) share identical meta-signature. 
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Although Experiment II generated rules with 100% inaccuracy, the overall com-

bined percentage of effective meta-signatures (C1HEX and C2HEX) generated from 

all three sets of experiments was 57.75%. On the other hand, the overall com-

bined percentage of non-effective meta-signatures (C1HEX and C2HEX) generated 

from all three sets of experiments was 42.25%. 

The key differences between previous related work [10] [11] [12] [13] and the 

work presented here are as follows: 

1) Previous work adopted left-to-right string matching techniques to find the 

most optimally-conserved meta-signatures. The work presented in this paper 

adopts a rule-based or top-down approach that attempts to find underlying pat-

terns. 

2) Previous work generated equal length consensuses using sequence align-

ment techniques, whereas the current work generates variable length consensus-

es adopting a variable length data mining technique (NNge). 

3) Previous work adopted pairwise alignment techniques for extracting signa-

tures which only allowed alignment of two viral sequences at a time taking into 

account only the information available in the sequence pair. This work allows all 

sequences to be used to extract signatures and so takes into account all the in-

formation in all the sequences at the same time, including both family generic 

and variant specific information. 

11. Conclusions 

In this paper, some of the limitations (discussed in Section 3) of previous work 

[10] [11] [12] [13] were addressed. The learning task of maximizing true positive 

rates and minimizing false positive and false negative rates was satisfied. A syntac-

tic approach was investigated and three sets of experiments were conducted which 

involved various approaches to automatic signature generation using the NNge 

classifier to generate rules that distinguish between malicious and non-malicious 

files. The results show that this string-based syntactic approach using an NNge 

rule generation and subsequent extraction and sequence alignment using SWA 

can successfully generate signatures (C1HEX and C2HEX) which are capable of de-

tecting the known (Pk) (i.e. seen and unseen) as well as unknown (Px) polymor-

phic variants of the JS.Cassandra virus (see Table 5, Table 6 and Figure 2). Re-

markably, this research demonstrated that it is possible to detect seen (Ps) (train-

ing set), unseen (Pu) (test set) as well as unknown (Px) variants using the training 

signatures obtained from a very small proportion (typically 3% and below) of 

training variants of that test family. A minimal number of training variants was 

deliberately chosen because the need to detect large numbers of test variants 

from a minimal number of training variants accurately represents the syntactic 

malware signature generation approach in the real world. 

The use of newly generated novel (Px) variants differentiates our approach 

from all previous research that adopts existing malware samples from an online 

repository. In comparison to the semantic-based approaches as shown in Table 
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1, we explored a purely syntactic approach which produces variable length syn-

tactic viral signatures (C1HEX and C2HEX) that detect known (Pk) and unknown 

(Px) variants belonging to a polymorphic viral family (JS.Cassandra virus), inde-

pendently of execution traces, and without needing numerous infections. 

In conclusion, the contributions of this paper are listed as follows: 

1) Adopting a data mining algorithm, NNge, to generate rule-based signatures 

automatically from real malware data. 

2) Comparing variable length data mining algorithm to equal length data 

mining algorithm using NNge on malware source code by conducting three dif-

ferent experiments (Experiments I-III). 

3) Distinguishing malicious variants from non-malicious with the help of 

rules generated using the data mining algorithm, NNge. 

4) Testing the derived rule-based signatures against real malware data and 

comparing the results to other commercial AVSs. 

5) Comparing the overall performance metrics such as true positive rate, false 

positive rate, precision, recall, etc. with other related work on malware detection 

using data mining algorithms. 

6) Detecting known Pk (i.e. Ps and Pu) and unknown Px variants of a poly-

morphic malware family using rule-based signatures (see Figure 1 for the dis-

tribution of polymorphic malware variants). 

More work is required to apply the current rule-based approach to more in-

tricate polymorphic as well as metamorphic viruses. 
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Appendix 

A1. Experiment I 

More details referring to the steps involved in this experiment can be found in 

the previous work [13] and Figure A1. Our method for Experiment I consists of 

six steps (see Figure A1). 

Hex dump extraction (Step-1) and testing (Step-6) were undertaken on a 

stand-alone system to prevent possible unintended infection of other systems. 

Downloading of polymorphic malware (and seen Ps as well as unseen Pu variants) 

was performed using “Oracle VM VirtualBox” [54] (an x86 software package 

with virtualization capability) with a pre-installed Linux-based (Linux Mint) [52] 

operating system image. Due to possible security sensitivity, some of the me-

thods below (Step-1 and Step-6) are not described in detail, especially details 

concerning generating hex dumps from polymorphic malware. Interested read-

ers are requested to contact the corresponding author, using their academic 

email addresses, for further information. 

23 withheld variants (Ps and Pu) were selected for Experiment I. A CRC32b 

hash value was generated for each of these 23 withheld variants and no dupli-

cates were found, indicating that they were unique. The percentage of training to  

 

 

Figure A1. Our method for Experiment I comprising of six steps. 
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test ratio (Ps to Pu) in Pk for malicious JS.Cassandra virus is 3.125% (11:352). A 

severely reduced proportion of training to test samples was used to reflect the 

current difficulty in detecting signatures that generalize from a small, previously 

encountered set of known (Pk) variants to a potentially infinite set of new (Px) 

variants. 

All 23 withheld variants (Ps and Pu) were checked using the “VirusTotal” 

[60] (a free online scanner for malware) website to confirm and validate 

that malicious functionality was maintained in the 11 malicious variants 

i.e. set M (along with the original JS.Cassandra virus) and eliminated in the 11 

non-malicious/non-payload variants (set NM). “VirusTotal” [60] employs 56 

well-known AVSs and so provides good assurance that our manual code altera-

tions for non-malicious variants were effective. The scan results of the 23 va-

riants obtained from “VirusTotal” website indicated that on average 35.06% and 

71.43% of the 56 AVS products successfully detected the 11 malicious variants 

(set M) and original JS.Cassandra virus, respectively. On average, 0.00% and 

0.714% of the 56 AVS products successfully detected the 11 non-malicious va-

riants (set NM). Only four out of the 56 AVSs detected a few of the non-malicious 

variant files as malicious, as some of the non-malicious variant files still had 

their polymorphic functions in place. 

For the process of data mining using NNge (Step-2), the variable length hex 

sequences were converted into equal length sequences by constraining the 

shorter sequences to have a length equal to the longest sequence by adding the 

letter “x” at the end of each short sequence. Lower case “x” was added as the hex 

sequences were represented in lower cases. An ARFF (Attribute-Relation File 

Format) file was created which contained the hex dump sequences (MHEX and 

NMHEX) for the 22 JS.Cassandra variants. The 23rd variant was not included in 

the ARFF file since it will only be used in Step-4 and Step-5 for the process of 

pairwise sequence alignment. 

In total, the ARFF file consisted of 24,565 attributes (one attribute per posi-

tion) and two classes (malicious and non-malicious). The NNge classifier was 

trained on the full dataset. Two NNge rules (one for each class) were generated 

with a data fitting accuracy of 100%. A partial segment of two NNge (hex) rules 

obtained in this step for the malicious (m), and 11 non-malicious (nm) hex se-

quences are shown below: 

Malicious (m)—class m IF: pos1 in {2, 6} ^ pos2 in {0, 3} ^ pos3 in {6, 7} ^ 

pos4 in {a, b, 1, 2, 3, 7, 9} ^ pos5 in {6, 7} ^ pos6 in {a, e, 1, 2, 3, 5, 6, 7, 9} ^ pos7 

in {6, 7} ... and so on. 

Non-Malicious (nm)—class nm IF: pos1 in {2, 6, 7} ^ pos2 in {f, 6} ^ pos3 in 

{2, 6, 7} ^ pos4 in {f, 1, 5} ^ pos5 in {2, 6, 7} ^ pos6 in {e, 0, 2} ^ pos7 in {2, 6, 

7} ... and so on. 

The best instance to represent the process of rule extraction (Step-3) us-

ing the above-mentioned rule is, for (m) the first substring at pos 1 be-

comes the first substring in the new NNge rule extracted string, and so on: 
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“260367ab1237967ae123567967...”. The length of the malicious string (N1HEX) 

was 123,338 hex characters, whereas, the length of the non-malicious string 

(N2HEX) was 37,249 hex characters. Only hex data (by excluding the letter “x”) 

from the two NNge rules were extracted. 

After conversion (Step-4), six discrete pairwise alignments (Step-5a) were first 

conducted (sequence 1 with sequence 2, sequence 3 with sequence 4, etc.). The 

equal combination of gap open (i.e. 10) and gap extend (i.e. 1) penalty (as used 

in [10] [11] [12] [13]) was used during the processes of pairwise sequence 

alignment. Step-5b resulted in nine common substrings (C1DNA and C2DNA) from 

the six pairwise local alignments. One of the nine meta-signatures, with a se-

quence length 50, generated from one of the six pairwise alignments, is shown 

below in nucleic acid representation: 

CAATCAAGGCGCGCTCCCGTGCGATCTCACGGCCGTTCGTGAGAAC

GATC 

In Step-6a and Step-6b, the nine DNA meta-signatures were first converted 

into hex (C1HEX and C2HEX) and then later tested against the JS.Cassandra viral 

variants (Pk and Px) using clamscan scanner. One of the nine hex meta-signatures, 

with a sequence length 25, is shown below in hex representation: 

4342999d5b98dd1a5bdb8818d 

A2. Experiment II 

The same procedure as Experiment I was used along with the same JS.Cassandra 

(training) variants, with the only difference being that the variants (MHEX and 

NMHEX) were converted into DNA format (MDNA and NMDNA) prior to NNge 

rule generation. The conversion to DNA format was undertaken as normal using 

the DNA representational method as detailed in Section 6. Our method for Ex-

periment II consists of six steps (see Figure A2). 

In this step (Step-3), as for Experiment I, equal length sequences were created 

by adding the letter “X” at the end of each sequence to the length of the longest 

variant. Upper case “X” was added as the DNA sequences were represented in 

upper cases. In total, the resultant ARFF file contained 49,129 attributes and two 

class labels (malicious and non-malicious). The final and error-free version of 

ARFF file was loaded into Weka and NNge classification undertaken using all 

the data as the training set. After the first iteration, two NNge rules (one for each 

class) were generated in under seven minutes. Partial segments of the two NNge 

(DNA) rules are shown below: 

Malicious (M)—class M IF: pos1 in {A, C} ^ pos2 in {G} ^ pos3 in {A} ^ pos4 

in {A, T} ^ pos5 in {C} ^ pos6 in {T, G} ^ pos7 in {A, G, C} ^ pos8 in {T, G, C} ... 

and so on. 

Non-Malicious (NM)—class NM IF: pos1 in {A, C} ^ pos2 in {T, G} ^ pos3 

in {T, C} ^ pos4 in {T, G} ^ pos5 in {A, C} ^ pos6 in {T, G} ^ pos7 in {A, T, C} ^ 

pos8 in {T, C} ... and so on. 

In this step (Step-4), two strings (first-level consensuses—N1DNA and N2DNA)  
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Figure A2. Our method for Experiment II comprising of six steps. 

 

in DNA format were extracted in the same way as for Experiment I from these 

two NNge rules and the substrings in each position were concatenated as illu-

strated here for the Malicious class: “ACGAATCTGAGCTGC...”. 

The sequence length of the malicious NNge DNA string (N1DNA) was 132,103 

bases, whereas the sequence length of non-malicious NNge DNA string (N2DNA) 

was 41,670 bases. In this step (Step-5a), pairwise local alignment was then per-

formed using SWA and the ID matrix with same gap penalties in a process simi-

lar to that described for Experiment I (Step-5a). In total, as in Experiment I, six 

pairwise alignments were performed in this step (Step-5a). 

Overall, 14 common substrings (i.e. meta-signatures—C1DNA and C2DNA) were 

obtained in this step (Step-5b) from the six pairwise local alignments. One of the 

14 meta-signatures, with a sequence length 59, generated from one of the six 

pairwise alignments, is shown below in nucleic acid representation: 

ACAGGAAGGCCTTCAATCAAGGCGCGCTCCCGTGCGATCTCACGGC

CGTTCGTGAGAAC 

In Step-6a and Step-6b, the 14 DNA meta-signatures were first converted into 

hex (C1HEX and C2HEX) and then later tested against the JS.Cassandra viral va-

Step-4: Extraction of first-level consensuses from NNge rules

Step-5a: Pairwise (Local) Sequence Alignment using SWA

Step-6a: Converting sequences back into viral hex code

Step-1a: Acquiring virus code variants

Step-3: Variable length data mining using NNge Classifier

Step-6b: Meta-signature testing

Step-1b: Separation of training set Ps from test set Pu

Step-1c: Hex dump extraction

Step-5b: Extraction of meta-signatures from second-level consensuses

Step-2: Converting viral code into a form acceptable for sequence alignment
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riants (Pk and Px) using clamscan scanner. One of the 14 hex meta-signatures, 

with a sequence length 28, is shown below in hex representation: 

28297d0d0a66756e6374696f6e20 

A3. Experiment III 

This experiment takes a different approach from Experiments I and II to dealing 

with the need for equal length sequences in order to generate rules using an 

equal length data mining approach. Multiple sequence alignment is undertaken 

prior to NNge rule generation to convert the variable length sequences (MDNA 

and NMDNA) into equal length sequences (ME and NME) by inserting gaps 

(Figure A3). In Step-3, a multiple sequence alignment using MAFFT [61] [62] 

[63] was conducted on the 22 variable length DNA sequences (MDNA and 

NMDNA). The final alignment file had overall sequence identity and similarity 

percentages of 38.35% and 65.13%, respectively. All the gaps introduced at this 

stage were substituted by the letter “X”. Upper case “X” was added as the DNA 

sequences were represented in upper cases. 

 

 

Figure A3. Our method for Experiment III comprising of seven steps. 

Step-5: Extraction of first-level consensuses from NNge rules

Step-6a: Pairwise (Local) Sequence Alignment using SWA

Step-7a: Converting sequences back into viral hex code

Step-1a: Acquiring virus code variants

Step-4: Variable length data mining using NNge Classifier

Step-7b: Meta-signature testing

Step-1b: Separation of training set Ps from test set Pu

Step-1c: Hex dump extraction

Step-6b: Extraction of meta-signatures from second-level consensuses

Step-2: Converting viral code into a form acceptable for sequence alignment

Step-3: Multiple sequence alignment using MAFFT
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In Step-4, the same NNge classification was undertaken using Weka. The data 

was converted into Weka’s ARFF file format and consisted of 93,438 attributes 

and two classes malicious and non-malicious. Three NNge rules (one for the 

malicious class and two for the non-malicious class) were generated with an ac-

curacy of 100% in under 33 minutes. A partial segment of each of these NNge 

rules are shown below: 

Malicious (M)—class M IF: pos1 in {A, X} ^ pos2 in {G, X} ^ pos3 in {A, X} 

^ pos4 in {A, X} ^ pos5 in {C, X} ^ pos6 in {T, G, X} ^ pos7 in {A, G, X} ^ pos8 

in {T, G, C, X} ^ pos9 in {C, X} ^ pos10 in {T, G, X} ... and so on. 

Non-Malicious 1 (NM1)—class NM IF: pos1 in {X} ^ pos2 in {X}… ^ pos96 

in {T, X} ^ pos97 in {A, X} ^ pos98 in {G, X} ^ pos99 in {A, X} ^ pos100 in {A, X} 

^ pos101 in {C, X} ^ pos102 in {T, G, X} ^ pos103 in {G, C, X} ... and so on. 

Non-Malicious 2 (NM2)—class NM IF: pos1 in {X} ^ pos2 in {X} … ^ 

pos1294 in {X} ^ pos1295 in {C} ^ pos1296 in {A} ^ pos1297 in {G} ^ pos1298 in 

{T} ^ pos1299 in {C} ^ pos1300 in {A} ^ pos1301 in {T} ... and so on. 

In Step-5, three strings (first-level consensuses—N1DNA and N2DNA) in DNA 

format were constructed based on each of these NNge rules. The process of ex-

traction of strings from the rules is the same as detailed in Experiments I and II 

and any “X” string extension characters were ignored. An example of this string 

extract process from the rules for NM1 is: “TAGAACTGGC...”. The sequence 

length of the resultant malicious DNA string (N1DNA) was 161,495 bases, whereas, 

the sequence lengths of the non-malicious DNA strings (N2DNA) were 59,740 

bases (NM1) and 11,860 bases (NM2). 

Next, in Step-6a, local pairwise sequence alignment between these DNA se-

quences (first-level consensuses—N1DNA and N2DNA) extracted from each of the 

NNge rules and the three malicious JS.Cassandra variants (Ps) in DNA format 

was performed one by one using SWA and the ID matrix, as per Experiments I 

and II. In this step (Step-6b), common substrings that are the meta-signatures 

(C1DNA and C2DNA) for JS.Cassandra were extracted from the nine second-level 

consensuses generated from the process of nine pairwise local alignments. In to-

tal, 48 meta-signatures (C1DNA and C2DNA) were obtained. The meta-signature of 

sequence length 88 obtained from one of the nine pairwise alignments is shown 

below in its nucleic acid representation: 

GGAAGTGCTAGCGTTCTCCCGTGCGCAAGGACATCCGACCTCACGG

AAGTGCTAGCGACCGTGCGCACGTTCGTCAGGAAGGCAGGGA 

In Step-7a and Step-7b, the 48 DNA meta-signatures were first converted into 

hex (C1HEX and C2HEX) and then later tested against the JS.Cassandra viral va-

riants (Pk and Px) using clamscan scanner. One of the 48 hex meta-signatures, 

with a sequence length 22, is shown below in hex representation: 

292c283538322f36292c28 
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