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Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitte

M. Dakna, T. Anhut, T. Opatrny´,* L. Knöll, and D.-G. Welsch
Friedrich-Schiller-Universita¨t Jena, Theoretisch-Physikalisches Institut, Max-Wien-Platz 1, D-07743 Jena, Germany

~Received 2 December 1996!

A scheme for generating Schro¨dinger-cat-like states of a single-mode optical field by means of conditional
measurement is proposed. Feeding a squeezed vacuum into a beam splitter and counting the photons in one of
the output channels, the conditional states in the other output channel exhibit a number of properties that are
very similar to those of superpositions of two coherent states with opposite phases. We present analytical and
numerical results for the photon-number and quadrature-component distributions of the conditional states and
their Wigner and Husimi functions. Further, we discuss the effect of realistic photocounting on the states.
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I. INTRODUCTION

It is well known that according to the basic-theoretic
principles of quantum-mechanics, the superposition of m
roscopically distinguishable quantum states can give ris
quantum interferences such that the resulting states
highly nonclassical. Schro¨dinger@1# illustrated this phenom-
enon by a gedankenexperiment to get a cat into a superp
tion of a live and a dead cat. A number of systems have b
studied with the aim of the realization of Schro¨dinger-cat-
like states, where the ‘‘cat’’ is typically a mesoscopic syste
that has both microscopic and macroscopic~i.e., classically
distinguishable! properties.

In harmonic oscillators, typical examples of Schro¨dinger-
cat-like states are superpositions of two coherent~i.e., most
classical! states with opposite phases@2#. The superposition
states exhibit some properties similar to those of simple
tistical mixtures, but they also reveal typical interference f
tures. Measuring the quadrature-component distribution,
observes two peaks that change their mutual distance in
pendence on the phase of the quadrature component
they eventually overlap. In this particular case the differen
between a coherent superposition and a statistical mixtu
the most distinct. Whereas in the former case quantum in
ferences are observed which give rise to an oscillatory
havior of the quadrature-component distribution, in the la
case a single peak without interference structure is obser
The creation of such states in realistic experiments is
trivial. Proposals for preparing vibrations in molecules
crystals in Schro¨dinger-cat-like states have been made@3,4#.
Recently, it has been proposed that Schro¨dinger-cat-like
states of a single harmonically bound~trapped! atom can be
produced by appropriately driving the atom@5#, and experi-
ments have successfully been performed@6#. The possibility
of preparing a harmonically bound atom in a superposition
two coherent squeezed states with opposite phases has
been studied@7#.

Several proposals have been made to prepare a sin
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mode radiation field~which also corresponds to a harmon
oscillator! in a Schro¨dinger-cat-like state~see, e.g.,@8# and
references therein!. In particular, it has been proposed th
conditional measurements may be used advantageous
realize such states. It is well known that if a quantity of
subsystem of a correlated two-part system prepared in s
entangled state is measured, the state of the other subsy
‘‘collapses’’ to a particular state. To produce condition
states of the type of Schro¨dinger-cat-like states, the use of
scheme for optical back-action-evading measurement in n
linear media@9# was suggested@10#. The calculations show
that when the photon number of the readout mode is m
sured, then a superposition of macroscopically distingui
able quantum states is generated in the signal mode@10#. To
improve the scheme, it was proposed that a squee
vacuum at the signal frequency is injected instead of am
fying the signal after back-action-evading measurement@11#.
Recently, a modification of this scheme was studied, w
special emphasis on the experimental feasibilities with c
rent technologies@12,13#.

In this paper we show that Schro¨dinger-cat-like states can
already be obtained using a simple beam-splitter scheme
a conditional measurement of the type considered recent
@14,15#. The calculations show that when a squeezed vacu
is injected in one of the input channels~the second input
channel being unused! and the photon number of the mode
one of the output channels is measured, then the mode in
other output channel is prepared in a conditional state
has the typical features of a Schro¨dinger-cat-like state. In
particular, the conditional states can be regarded as supe
sitions of two quantum states that are well localized in
phase space and bear a strong resemblance to squeeze
herent states. To demonstrate this, we analyze the stat
terms of the photon-number and quadrature-component
tributions and the Wigner and Husimi functions. We furth
discuss possible modifications of the states in realistic m
tichannel photon detection.

The paper is organized as follows. In Sec. II the con
tional states are derived, and in Sec. III their properties
discussed. Section IV is devoted to a realistic detect
scheme. Finally, a summary and some concluding rema
are given in Sec. V.
3184 © 1997 The American Physical Society
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II. BASIS EQUATIONS

Let us consider a lossless beam splitter and assume
the input fields can be regarded as being effectively sin
mode fields, with photon destruction and creation opera
âk andâk

† , respectively (k51,2). The photon destruction an

creation operators of the output modesb̂k and b̂k
† , respec-

tively, can then be obtained using the well-known inp
output relations

b̂k5 (
k851

2

Tk,k8âk8, ~1!

where

~Tk,k8!5eiw0S cosueiwT sinueiwR

2sinue2 iwR cosue2 iwTD ~2!

is a SU~2! matrix whose elements are given by the comp
transmittances and reflectances of the beam splitter from
two sides. Equation~1! corresponds to a unitary transform
tion of the operators in the Heisenberg picture,b̂k5V̂âkV̂

†

(k51,2). Equivalently, the Schro¨dinger picture can be used
in which the photonic operators are left unchanged and
density operator is transformed such that the output-s
density operator%̂out is obtained from the input-state densi
operator%̂ in as

%̂out5V̂†%̂ inV̂. ~3!

The operatorV̂ can be given by@16,17#

V̂5e2 i ~wT2wR!L̂3e22iuL̂2e2 i ~wT1wR!L̂3, ~4!

where

L̂25
1

2i
~ â1

†â22â2
†â1!, L̂35

1

2
~ â1

†â12â2
†â2!, ~5!

andw050 ~note thatw0 is a global phase factor that may b
omitted without loss of generality!.

Now, let us assume that the mode in the first input ch
nel is prepared in a state described by a density oper
%̂ in1 and the second channel is unused, so that the input-
density operator reads as

%̂ in5%̂ in1^ uvac2&^vac2u. ~6!

Using Eqs.~4! and ~6!, the output-state density operator~3!
can be given by@14,15#

%̂out5 (
n250

`

(
m250

` H e2 i ~m22n2!wR

Am2!n2!
~21!m21n2U RT U

m21n2

3eiwTâ1
†â1â1

m2uTu â1
†â1%̂ in1uTu â1

†â1~ â1
†!n2

3e2 iwTâ1
†â1^ um2&^n2uJ , ~7!

whereuTu5cosu and uRu5sinu, andunk& are the eigenstate
of the photon-number operatorsâk

†âk . From Eq.~7! we see
that the output modes are, in general, highly correlat
at
le
rs

-

x
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e
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-
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ate

d.

When the photon number of the mode in the second ou
channel is measured andm2 photons are detected, then th
mode in the first output channel is prepared in a quant
state whose density operator%̂out1 reads as

%̂out1~m2!5
^m2u%̂outum2&

Tr1~^m2u%̂outum2&!
. ~8!

The probability of such an event is given by

P~m2!5Tr1~^m2u%̂outum2&!

5 (
n15m2

` S n1m2
D ~12uTu2!m2uTu2~n12m2!^n1u%̂ in1un1&.

~9!

In particular, if the first input mode is prepared in
squeezed vacuum state, we may write

%̂ in15Ŝ~j!uvac1&^vac1uŜ†~j!, ~10!

where

Ŝ~j!uvac1&5exp$2 1
2 @j~ â1

†!22j* â1
2#%uvac1&

5~12uku2!1/4 (
n150

`
@~2n1!! #

1/2

2n1n1!
kn1u2n1&, ~11!

j5ujueiwj, k5eiwj tanhuju. Combining Eqs.~7! and ~8! and
using Eqs.~6!, ~10!, and~11!, we derive that

%̂out1~m2!5uCm2
&^Cm2

u, ~12!

where

uCm2
&5uCm2

~a!&5
1

ANm2

(
n150

`

cm2 ,n1
~a!un1&, ~13!

cm2 ,n1
~a!5

~n11m2!!

G@ 1
2 ~n11m2!11#An1!

3 1
2 @11~21!n11m2#~ 1

2 a!~n11m2!/2, ~14!

a5uaueiwa, with uau5uTu2uku andwa52wT1wj . In what
follows we will restrict attention to real values ofa
(21<a<1), i.e.,wa50,p, since from Eqs.~13! and ~14!
the effect of other phaseswa is simply a rotation in phase
space. Applying the relations~A2!, ~A3!, and~A6! in Appen-
dix A, the normalization constant

Nm2
5 (

n150

`

ucm2 ,n1
~a!u2 ~15!

can be given by
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Nm2
5

1

A12a2 F a2

~12a2!G
m2

3 (
k50

[m2/2] ~m2! !
2

~m222k!! ~k! !2~2a!2k
, ~16!

where the symbol@x# in the summation upper limit denote
the integral part ofx. Similarly, using Eqs.~6!, ~10!, and~11!
and applying the relations~A2!, ~A3!, and ~A6!, Eq. ~9!
yields

P~m2!5A12k2

12a2 Fa2~12uTu2!
uTu2~12a2!G

m2

3 (
k50

[m2/2] m2!

~m222k!! ~k! !2~2a!2k
. ~17!

From Eqs.~13! and ~14! we easily see that when the d
tected number of photons in one output channel,m2, is even
~odd!, then the mode in the other output channel is prepa
in a quantum stateuCm2

& that contains only contribution
from photon-number states with even~odd! numbers of pho-
tons. This property, which gives rise to oscillations in t
photon-number distribution of the output stateuCm2

&, obvi-
ously reflects the fact that the squeezed vacuum that is fe
consists of pairs of photons. In particular, when the num
of detected photons,m2, is zero, then the output state is aga
a squeezed vacuum, but with the parametera in place of
k.

III. PROPERTIES OF THE CONDITIONAL STATES

To study the properties of the conditional stat
uCm&5uCm(a)& in more detail, we will calculate the
photon-number and quadrature-component distributions
the Wigner and Husimi functions. Further, we will show th
the statesuCm& can be represented as superpositions of
macroscopically distinguishable ‘‘quasicoherent’’ squeez
states. For notational convenience we will omit the su
scripts 1 and 2 introduced above to distinguish between
two output channels.

A. Photon-number distribution

Recalling Eq.~13!, the photon-number distribution

P~num!5 z^nuCm& z2 ~18!

of a stateuCm& reads as

P~num!5Nm
21ucm,n~a!u2, ~19!

wherecm,n(a) andNm are given in Eqs.~14! and ~15!, re-
spectively. In particular, the mean photon number

^n̂&5Nm
21(

n50

`

nucm,n~a!u2 ~20!

can be given by
d

in
r

nd
t
o
d
-
e

^n̂&5a
]

]a
lnFNm

amG
5

a2

12a2 1m
11a2

12a2 22 (
k50

[m/2]

kak,mF (
k50

[m/2]

ak,mG21

,

~21!

where ak,m5(2a)22k/@(m22k)!(k!) 2#. Examples are
shown in Fig. 1~a!. We see that the number of photons tha
can be found inuCm& increases withm. This is simply a
consequence of the beam-splitter transformation. Since o
of the input channels is unused, the mean numbers of ph

FIG. 1. ~a! Mean photon number̂n̂& of the conditional state
uCm& as a function ofa for various numbersm of measured pho-
tons.~b! Dependence ona of the MandelQ parameter for the same
values ofm as in ~a!.
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tons in the two output channels are proportional to e
other, the ratio being given byuT/Ru2. Note that when no
photons are detected,m50, then ^n̂& reduces to the mea
number of photons of a squeezed vacuum,^n̂&
5a2/(12a2).

A measure of the deviation of the photon-number dis
bution from a Poissonian is the MandelQ parameter@18#,

Q5
^n̂2&2^n̂&2

^n̂&
21, ~22!

which can be given by

Q5
a2

^n̂&

]2

]a2lnFNm

amG5
a

^n̂&

]

]a
^n̂&21. ~23!

The dependence ona andm of Q is shown in Fig. 1~b!. In
particular, for evenm we find thatQ.0 for all values of
a, which means that the photon-number statistics ofuCm& is
super-Poissonian. For oddm and small values ofuau the
statistics becomes sub-Poissonian (Q,0). Note that the be-
havior is typical for Schro¨dinger-cat-like states@8#.

B. Quadrature distributions

In order to calculate the conditional quadratur
component distribution~i.e., the phase-parametrized fiel
strength distribution!

p~x,wum!5 z^x,wuCm& z2, ~24!

which can be measured in balanced homodyne detection
first expand the eigenvectorsux,w& of the quadrature compo
nent

x̂~w!522 1/2~e2 iwâ1eiwâ†! ~25!

in the photon-number basis as@19#

ux,w&5~p!2 1/4exp~2 1
2 x

2! (
n50

`
einw

A2nn!
Hn~x!un& ~26!

~H n is the Hermite polynomial!. Using Eqs.~13! and ~26!
and applying the relations~A3! and ~A6!, the conditional
quadrature-component distribution~24! reads

p~x,wum!5
uaum

NmApDm112m
expS 2

12a2

D
x2D

3uHm@A~aei2w2a2!/D x#u2, ~27!

where the abbreviation

D511a222acos~2w! ~28!

has been used.
From Fig. 2 we see that forw nearp/2 the quadrature-

component distributionp(x,wum) (m.0) exhibits two sepa-
rated peaks, whereas forw close to 0 orp an interference
pattern is observed. It should be noted that although
quadrature-component distribution~27! bears a strong re
semblance to that obtained in Ref.@11#, a more detailed com
h

-

-

we

e

parison shows that they are different. Clearly, the bea
splitter transformation, Eqs.~3!–~5!, cannot be identified, in
general, with the transformation in the back-action-evad
scheme considered in Ref.@11#.

C. Wigner function

Using Eqs.~13! and~26! together with the relations~A3!
and ~A6!, the Wigner functionW(x,pum) of the state
uCm&,

W~x,pum!5
1

pE2`

1`

dye2ipy^x2yuCm&^Cmux1y&, ~29!

can be calculated in a straightforward way. We obtain

W~x,pum!5
2ame2lx2

p3/2Nm@2~a11!#m11

3E
2`

1`

dyH e2ly212ipyHmF iA a

11a
~y2x!G

3HmF iA a

11a
~x1y!G J , ~30!

l5
12a

11a
, ~31!

which after calculation of the integral@20# can be given by

W~x,pum!5
1

pN1m
expS 2lx22

p2

l D (
k50

m
~22uau!k

k! @~m2k!! #2

3UHm2kF iAalS x1 i
p

l D GU2, ~32!

where

N1m5 (
k50

[m/2]
~2uau!m22k

~m22k!! ~k! !2
. ~33!

Equation~32! reveals that when no photons are detect
m50, then the Wigner function exhibits a single peak a
simply corresponds to a squeezed-vacuum Gaussian, a
ready mentioned in Sec. II. Examples ofW(x,pum)
(m.0) are shown in Fig. 3. From the plots, two separa
peaks and an oscillatory regime between them can
seen—a shape that is typical of Schro¨dinger-cat-like states
The separation of the two peaks is seen to increase with
numberm of detected photons. Since with increasingm the
number of photons in the conditional stateuCm& also in-
creases, which is a consequence of the beam-splitter tr
formation, the behavior is quite similar to that of a superp
sition of two coherent states.

D. Husimi function

The Husimi functionQ(x,pum) of the stateuCm& is de-
fined by
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FIG. 2. Quadrature distributionp(x,wum) of the conditional stateuCm& for a50.6 and various numbersm of measured photons@~a!
m51, ~b! m52, ~c! m53, ~d! m54#.
u-
b
o

e

,
ce
ce
f the

su-
um
Q~x,pum!5
1

2p
z^buCm& z2, ~34!

where ub& is a coherent state andb5221/2(x1 ip). It is
worth noting that, contrary to the Wigner function, the H
simi function is a phase-space function that can directly
measured in multiport balanced homodyning using six-p
@21,22# or eight-port schemes@23,24#. Expandingub& in the
Fock basis,

ub&5e2ubu2/2(
n50

`
bn

An!
un&, ~35!

and recalling Eq.~13! and the relations~A3! and ~A7!, the
scalar product̂buCm& can easily be calculated. After som
algebra we find thatQ(x,pum) can be written as

Q~x,pum!5
uaum

pNm2
m11 UHmF12 iAa~x1 ip !GU2

3exp$2 1
2 @~12a!x21~11a!p2#%. ~36!
e
rt

As expected, form50 the Husimi function is Gaussian
whereas form.0 a two-peak structure is observed. Sin
the Husimi function is always non-negative, the interferen
properties of the state are not so apparent as in the case o
Wigner function.

E. Component states

Schrödinger-cat-like states are commonly defined as
perpositions of two macroscopically distinguishable quant
states. From Eqs.~13! and ~14! it is seen thatuCm& can be
regarded as a superposition of statesuCm

(1)& and uCm
(2)& as

follows:

uCm&5A~ uCm
~1 !&1uCm

~2 !&), ~37!

where

uCm
~6 !&5

1

AN m
~6 ! (n50

`

cm,n
~6 !~a!un&, ~38!

with
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FIG. 3. Wigner functionW(x,pum) of the conditional stateuCm& for a50.6 and various numbersm of measured photons@~a! m51, ~b!
m52, ~c! m53, ~d! m54#.
on

tes

t

the
g-
e
on-
cm,n
~6 !~a!5

~n1m!!

G@~n1m!/211#An!
S 6A1

2
a D n1m

. ~39!

The normalization factorN m
(6) is calculated to be@see Eqs.

~B3! and ~B11!#

N m
~6 !52Nm2

m! 2~2uau!m

Ap2mG~m13/2!

3F@ 1
2 ~m11!, 12 ~m11!, 12 ~2m13!,12a2#,

~40!

Nm being given in Eq.~16!. In Eq. ~40!, F(a,b,g,z)
is the hypergeometric function, and the normalization c
 -

stantA in Eq. ~37! is simply given byA5 1
2(N m

(6)/Nm)
1/2.

Note thatN m
(6)'2Nm , i.e.,A'1/A2 for largerm ~the ap-

proximation is very good form.4).
Plots of the Wigner function of the statesuCm

(1)&
are given in Fig. 4. The behavior of the statesuCm

(2)&
is quite similar. From the figure we see that the sta
uCm

(1)& ~and also the statesuCm
(2)&) are very close to

squeezed coherent states. For chosena the squeezing effec
decreases with increasingm. The small deviation from
Gaussian states is indicated by the negative values of
Wigner function~which in our case are of the order of ma
nitude of21025). To illustrate the difference between th
statesuCm

(6)& and the squeezed coherent states, let us c
sider the Husimi functionQ(6)(x,pum) of uCm

(6)&. Accord-
ing to Eq.~B13! we obtain
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Q~6 !~x,pum!5
am~m! !2

p2Nm
~6 ! e

2ubu2exp@ 1
4 a~b21b* 2!#

3uD2m21~6Aab!u2, ~41!

whereb5(x1 ip)/A2, andDm(z) is the parabolic cylinder
function ~which indicates the deviation from a Gaussian!.
Recalling the asymptotic behavior of theD2m21(z) for large
values ofm @26#, we find that

Q~6 !~x,pum!}exp@2ubu26Aam~b1b* !2uAamu2#
~42!

FIG. 4. Wigner functionW(1)(x,pum) of the stateuCm
(1)& for

a50.6 and various numbersm of measured photons@~a! m51, ~b!
m53#.
(m→`), which corresponds to the scalar productz^bug& z2

between the coherent statesub& and ug&, with g56Aam.
Thus for sufficiently large numbers of detected photons,m,
the component statesuCm

(6)& approach coherent states. Th
kind of behavior has also been found in Ref.@11# for the
states studied therein.

IV. REALISTIC PHOTON COUNTING

In order to produce the conditional statesuCm&, highly
efficient and precise photocounting is needed. Unfortunat
there have been no highly efficient photodetectors availa
which precisely distinguish betweenm andm11 photons.
Recently the proposal has been made to measure the ph
number statistics using photon chopping@25#. The mode to
be detected is used as an input of an optical 2N-port, the
other input ports being unused. To each of the output por
highly efficient avalanche photodiode is connected wh
can distinguish between photons being present or absent.
photon-number statistics of the input mode can then be
tained from the recorded output coincident-event statistic

In particular, ifm photons are present in the input, th
probability of recordingk coincident events is given by@25#

P̃N~kum!5
1

Nm SNk D(
l50

k

~21! l S kl D ~k2 l !m ~43!

for k<m, and P̃N(kum)50 for k.m. Note that
P̃N(kum)→dk,m for N→`. In Eq. ~43! perfect detection is
assumed. The effect of nonperfect detection corresponds
random process such that photons are excluded from de
tion with probability 12h, h being the efficiency of the
photodiodes (0,h<1). The probability of recordingk co-
incident events then modifies to

P̃N,h~kum!5(
l
P̃N~ku l !Ml ,m~h!, ~44!

where the matrixMl ,m(h) is given by

Ml ,m~h!5Sml Dh l~12h!m2 l ~45!

for l<m, andMl ,m(h)50 for l.m.
Since detection ofk coincident events can result from

various numbersm of photons, the conditional state is i
general a statistical mixture. Therefore in place of Eq.~12!
we now have

%̂out~k!5(
m

PN,h~muk!uCm&^Cmu, ~46!

whereuCm& is given in Eq.~13!, andPN,h(muk) is the prob-
ability of m photons being present under the condition th
k coincidences are recorded. The conditional probabi
PN,h(muk) can be obtained using the Bayes rule as

PN,h~muk!5
1

P̃N,h~k!
P̃N,h~kum!P~m!. ~47!
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FIG. 5. Wigner function of the conditional state with realistic photodetection (N510, h50.8) for k50.75, uTu250.8 (a50.6), and
various numbersk of coincident events@~a! k51, P̃N,h(k)510.99%;~b! k52, P̃N,h(k)52.95%; ~c! k53, P̃N,h(k)50.69%; ~d! k54,
P̃N,h(k)50.16%#, the probabilitiesP̃N,h(k) of the coincidences being calculated according to Eq.~ 48!.
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HereP(m) is the prior probability~17! of m photons being
present, and accordingly,P̃N,h(k) is the prior probability of
recordingk coincident events,

P̃N,h~k!5(
m

P̃N,h~kum!P~m!. ~48!

Examples of the Wigner function and the quadratu
component distributions of the conditional~mixed! states
~46! are plotted in Figs. 5 and 6, respectively. We see that
quantum interferences can still be preserved also for real
values of the number of photodiodes and their efficienc
such asN510 andh580%. As expected, the probabilitie
of observing the conditional states,P̃N,h(k), Eq. ~48!, de-
crease with increasingk ~from about 11% fork 5 1 to
-

e
tic
s,

0.16% fork 5 4 in the case whenuTu2 5 0.8). Neverthe-
less, with a sufficiently high repetition frequency of the inp
states the method could assure a comparatively effic
source of the catlike states. The interference structure is~for
chosenN and h) more and more smeared with increasi
k. Clearly, a larger number of detected coincidences imp
~for chosenN andh) a larger probability of ‘‘losing’’ some
of the photons. Any lost photon switches the parity of t
conditional state~from even to odd and vice versa! and there-
fore destroys the interference pattern.

V. CONCLUSION

We have shown that Schro¨dinger-cat-like states can b
generated by conditional measurements using a simple b
splitter scheme. When a squeezed vacuum and an ordi
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vacuum are mixed by a beam splitter and the number o
photons is measured in one of the output channels , then t
conditional quantum state in the other output channel revea
all the properties of a Schro¨dinger-cat-like state.

To demonstrate this, we have analyzed the conditiona
states in terms of the photon-number and quadratur
component distributions and the Wigner and Husimi func
tions and have presented both analytical and numerical r
sults. We have studied the component states and shown th
they are very close to squeezed coherent states and appro
coherent states for sufficiently large numbers of detecte
photons. We have found that the basic features o
Schrödinger-cat-like states, such as the appearance of tw
separated peaks and the interference pattern, become m
pronounced for larger values of the transmittance of th
beam splitter, the squeezing parameter of the input state, a
the number of detected photons. On the other hand, increa

FIG. 6. Quadrature distribution of the conditional state with re-
alistic photodetection (N510, h50.8) for the phase parameters
w50 ~full line! and w5p/2 ~broken line!, various numbersk of
coincident events@~a! k52, ~b! k53#, and k50.75, uTu250.8
(a50.6).
f
he
ls

l
e-
-
e-
at
ach
d
f
o
ore
e
nd
s-

ing transmittance implies a decrease of the probability
photons being present, so that the ‘‘better’’ Schro¨dinger-cat-
like states appear more rarely.

We have also discussed the problem of producing
Schrödinger-cat-like states under the conditions of realis
photocounting. For this purpose we have assumed m
channel detection using highly efficient avalanche pho
diodes. As expected, the measurement smears the inte
ence structure. However, for properly chosen parameters
interference structure can still be found even for a realis
arrangement of detectors.
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APPENDIX A: SUM RULES

Using the expansion in the Fock basis ofuCm&, Eq. ~13!,
various photon-number summations must be performed
the further calculations, which can be done advantageo
by means of Hermite polynomials. For this purpose we
write the coefficientscm2 ,n1

(a), Eq. ~14!, as

cm2 ,n1
~a!5

@2~n1k1d!#!

~n1k1d!!A~2n1d!!
~ 1
2 a!n1k1d, ~A1!

where d50 for n152n and m252k, and d51 if
n152n11 andm252k11. Note thatcm2 ,n1

(a)50 other-
wise. Recalling the relation

H2n~0!5~21!n~2n!!/n!, ~A2!

we see that

cm2 ,n1
~a!5

1

A~2n1d!!
H2~n1k1d!~0!~2 1

2 a!n1k1d.

~A3!

This enables us to apply standard summation rules, suc
Mehler’s formula@26#

(
k50

`
1

k!
Hk~x!Hk~y!~ 1

2 z!k5
1

A12z2

3expF2xyz2~x21y2!z2

12z2 G .
~A4!

Taking thel th and j th derivatives with respect tox and y,
respectively, of both sides of this equation and using
relation

dj

dxj
Hk~x!52 j

k!

~k2 j !!
Hk2 j~x!, ~A5!

we derive that
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(
k50

`
1

k!
Hk1 l~x!Hk1 j~y!~ 1

2 z!k

5
1

~12z2!~ l1 j11!/2 expF2xyz2~x21y2!z2

12z2 G
3 (

k50

min~ l , j ! S lkD S jkD ~2z!kk!H l2kS x2zy

A12z2
DHj2kS y2zx

A12z2
D .

~A6!

Another useful sum rule is

(
k50

`
1

k!
Hk1 j~x!~ 1

2 z!k5exp~xz2 1
4 z

2!Hk1 j~x2 1
2 z!,

~A7!

which may be derived by taking thej th derivative of the
generating function of the Hermite polynomials,

(
k50

`

Hk~x!
zk

k!
5exp~2xz2z2!. ~A8!

APPENDIX B: DERIVATION OF THE RELATIONS
„40… AND „41…

From Eqs.~13!, ~14!, and~37!–~39! we see that

cm,n~a!5
1

2
@cm,n

~1 !~a!1cm,n
~2 !~a!#, ~B1!

and hence

(
n50

`

ucm,n~a!u25
1

4H (
n50

`

ucm,n
~1 !~a!u21 (

n50

`

ucm,n
~2 !~a!u2

12ReF (
n50

`

cm,n
~1 !~a!cm,n

~2 !~a!G J . ~B2!

Thus,

N m
~6 !5 (

n50

`

ucm,n
~6 !~a!u252Nm2Im , ~B3!

whereNm is given in Eq.~16!, and

Im5 (
n50

`

~21!n1mucm,n
~6 !~a!u2. ~B4!

Combining Eqs.~B4! and ~39! yields

Im5 (
n50

`
G2~m1n11!

G2@~m1n12!/2#n!
~2 1

2 uau!n1m. ~B5!

Using the relation

G~2n!

G~n11/2!
5

4n

2Ap
G~n!, ~B6!
from Eq. ~B5! we obtain

Im5
1

p (
n50

`

G2@ 1
2 ~m1n11!#

~22uau!n1m

n!
. ~B7!

Substituting in Eq.~B7! for theG function the integral rep-
resentation, we may write

Im5
~22uau!m

p E
0

`

dt1E
0

`

dt2Fe2t1e2t2~ t1t2!
~m21!/2

3 (
n50

`
~22uauAt1t2 !n

n! G , ~B8!

which reduces to

Im5
~22uau!m

p E
0

`

dt1Fe2t1~ t1!
~m21!/2

3E
0

`

dt2e
2t2~ t2!

~m21!/2e22uauAt1t2G . ~B9!

We first calculate thet2 integral @26# to obtain

Im5
m! ~2A2uau!m

p
3E

0

`

dt12
2~12a2t1/2!t1~ t1!

~m21!/2

3D2m21~A2a2t1!. ~B10!

Calculating the resultingt1 integral @26#, we eventually ob-
tain

Im5
m! 2~2uau!m

Ap2mG~m13/2!

3F@ 1
2 ~m11!, 12 ~m11!,m1 3

2 ,12a2#, ~B11!

whereF(a,b,g,z) is the hypergeometric function.
The calculation of̂ Cm

(6)ub& can be performed in a simi
lar way. Using Eqs.~13!, ~14!, ~35!, and~B6!, we have

^Cm
~6 !ub&5~61!mA~2a!m

pNm
~6 ! e

2ubu2/2

3 (
n50

`
~6A2ab!n

n!
G@ 1

2 ~n1m11!#.

~B12!

Substituting in Eq.~B12! the integral representation for th
G function again, we arrive at an integral of the type of t
t2 integral in Eq.~B9!, which may be calculated using stan
dard formulas@26#. We then obtain

^Cm
~6 !ub&5~61!mm!A 2am

pNm
~6 !

3e2ubu2/21b2a/4D2m21~6Aab!, ~B13!

whereDm(z) is the parabolic cylinder function.
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