
Generating Semantically Precise Scene Graphs from Textual Descriptions
for Improved Image Retrieval

Sebastian Schuster, Ranjay Krishna, Angel Chang,

Li Fei-Fei, and Christopher D. Manning

Stanford University, Stanford, CA 94305

{sebschu,rak248,angelx,feifeili,manning}@stanford.edu

Abstract

Semantically complex queries which in-

clude attributes of objects and relations

between objects still pose a major chal-

lenge to image retrieval systems. Re-

cent work in computer vision has shown

that a graph-based semantic representation

called a scene graph is an effective repre-

sentation for very detailed image descrip-

tions and for complex queries for retrieval.

In this paper, we show that scene graphs

can be effectively created automatically

from a natural language scene description.

We present a rule-based and a classifier-

based scene graph parser whose output can

be used for image retrieval. We show that

including relations and attributes in the

query graph outperforms a model that only

considers objects and that using the output

of our parsers is almost as effective as us-

ing human-constructed scene graphs (Re-

call@10 of 27.1% vs. 33.4%). Addition-

ally, we demonstrate the general useful-

ness of parsing to scene graphs by showing

that the output can also be used to generate

3D scenes.

1 Introduction

One of the big remaining challenges in image re-

trieval is to be able to search for very specific im-

ages. The continuously growing number of im-

ages that are available on the web gives users ac-

cess to almost any picture they can imagine, but in

order to find these images users have to be able to

express what they are looking for in a detailed and

efficient way. For example, if a user wants to find

an image of a boy wearing a t-shirt with a plane

on it, an image retrieval system has to understand

that the image should contain a boy who is wear-

ing a shirt and that on that shirt is a picture of a

plane.

Figure 1: Actual results using a popular image

search engine (top row) and ideal results (bottom

row) for the query a boy wearing a t-shirt with a

plane on it.

Keyword-based image retrieval systems are

clearly unable to deal with the rich semantics of

such a query (Liu et al., 2007). They might be

able to retrieve images that contain a boy, a t-shirt

and a plane but they are unable to interpret the re-

lationships and attributes of these objects which is

crucial for retrieving the correct images. As shown

in Figure 1, a possible but incorrect combination

of these objects is that a boy is wearing a t-shirt

and playing with a toy plane.

One proposed solution to these issues is the

mapping of image descriptions to multi-modal

embeddings of sentences and images and using

these embeddings to retrieve images (Plummer et

al., 2015; Karpathy et al., 2014; Kiros et al., 2015;

Mao et al., 2015; Chrupala et al., 2015). How-

ever, one problem of these models is that they are

trained on single-sentence captions which are typ-

ically unable to capture the rich content of visual

scenes in their entirety. Further, the coverage of

the description highly depends on the subjectiv-

ity of human perception (Rui et al., 1999). Cer-

tain details such as whether there is a plane on the

boy’s shirt or not might seem irrelevant to the per-



son who writes the caption, but for another user

this difference might determine whether a result is

useful or not.

Johnson et al. (2015) try to solve these prob-

lems by annotating images with a graph-based se-

mantic representation called a scene graph which

explicitly captures the objects in an image, their

attributes and the relations between objects. They

plausibly argue that paragraph-long image de-

scriptions written in natural language are currently

too complex to be mapped automatically to im-

ages and instead they show that very detailed im-

age descriptions in the form of scene graphs can

be obtained via crowdsourcing. They also show

that they can perform semantic image retrieval on

unannotated images using partial scene graphs.

However, one big shortcoming of their model

is that it requires the user to enter a query in the

form of a scene graph instead of an image descrip-

tion in natural language which is unlikely to find

widespread adoption among potential users. To

address this problem, we propose a new task of

parsing image descriptions to scene graphs which

can then be used as a query for image retrieval.

While our main goal is to show the effective-

ness of parsing image descriptions for image re-

trieval, we believe that scene graphs can be a use-

ful intermediate representation for many applica-

tions that involve text and images. One great ad-

vantage of such an intermediate representation is

the resulting modularity which allows independent

development, improvement and reuse of NLP, vi-

sion and graphics subsystems. For example, we

can reuse a scene graph parser for systems that

generate 2D-scenes (Zitnick et al., 2013) or 3D-

scenes (Chang et al., 2014) which require input in

the form of similar graph-based representations to

which a scene graph can be easily converted.

In this paper, we introduce the task of parsing

image descriptions to scene graphs. We build and

evaluate a rule-based and a classifier-based scene

graph parser which map from dependency syn-

tax representations to scene graphs. We use these

parsers in a pipeline which first parses an image

description to a scene graph and then uses this

scene graph as input to a retrieval system. We

show that such a pipeline outperforms a system

which only considers objects in the description

and we show that the output of both of our parsers

is almost as effective as human-constructed scene

graphs in retrieving images. Lastly, we demon-

strate the more general applicability of our parsers

by generating 3D scenes from their output.

We make our parsers and models available

at http://nlp.stanford.edu/software/scenegraph-

parser.shtml.

2 Task Description

Our overall task is retrieving images from image

descriptions which we split into two sub-tasks:

Parsing the description to scene graphs and retriev-

ing images with scene graphs. In this paper, we

focus exclusively on the first task. For the latter,

we use a reimplementation of the system by John-

son et al. (2015) which we briefly describe in the

next section.

2.1 Image Retrieval System

The image retrieval system by Johnson et al.

(2015) is based on a conditional random field

(CRF) (Lafferty et al., 2001) model which – unlike

the typical CRFs in NLP – is not a chain model

but instead capturing image region proximity. This

model ranks images based on how likely it is that a

given scene graph is grounded to them. The model

first identifies potential object regions in the image

and then computes the most likely assignment of

objects to regions considering the classes of the

objects, their attributes and their relations. The

likelihood of a scene graph being grounded to an

image is then approximated as the likelihood of

the most likely assignment of objects to regions.

2.2 Parsing to Scene Graphs

The task of parsing image descriptions to scene

graphs is defined as following. Given a set of ob-

ject classes C, a set of relation types R, a set of at-

tribute types A, and a sentence S we want to parse

S to a scene graph G = (O,E). O = {o1, ..., on}
is a set of objects mentioned in S and each oi is a

pair (ci, Ai) where ci ∈ C is the class of oi and

Ai ⊆ A are the attributes of oi. E ⊆ O × R × O

is the set of relations between two objects in the

graph. For example, given the sentence S =
“A man is looking at his black watch” we want

to extract the two objects o1 = (man, ∅) and

o2 = (watch, {black}), and the relations e1 =
(o1, look at, o2) and e2 = (o1, have, o2). The sets

C, R and A consist of all the classes and types

which are present in the training data.



2.3 Data

We reuse a dataset which we collected for a differ-

ent task using Amazon Mechanical Turk (AMT)

in a similar manner as Johnson et al. (2015)

and Plummer et al. (2015). We originally anno-

tated 4,999 images from the intersection of the

YFCC100m (Thomee et al., 2015) and Microsoft

COCO (Lin et al., 2014b). However, unlike pre-

vious work, we split the process into two separate

passes with the goal of increasing the number of

objects and relations per image.

In the first pass, AMT workers were shown an

image and asked to write a one sentence descrip-

tion of the entire image or any part of it. To get

diverse descriptions, workers were shown the pre-

vious descriptions written by other workers for the

same image and were asked to describe something

about the image which had not been described by

anyone else. We ensured diversity in sentence de-

scriptions by a real-time BLEU score (Papineni et

al., 2002) threshold between a new sentence and

all the previous ones.

In the second pass, workers were presented

again with an image and with one of its sentences.

They were asked to draw bounding boxes around

all the objects in the image which were mentioned

in the sentence and to describe their attributes and

the relations between them. This step was repeated

for each sentence of an image and finally the par-

tial scene graphs are combined to one large scene

graph for each image. While the main purpose of

the two-pass data collection was to increase the

number of objects and relations per image, it also

provides as a byproduct a mapping between sen-

tences and partial scene graphs which gives us a

corpus of sentence-scene graph pairs that we can

use to train a parser.

2.3.1 Preprocessing

The AMT workers were allowed to use any la-

bel for objects, relations and attributes and con-

sequently there is a lot of variation in the data. We

perform several preprocessing steps to canonical-

ize the data. First, we remove leading and trailing

articles from all labels. Then we replace all the

words in the labels with their lemmata and finally

we split all attributes with a conjunction such as

red and green into two individual attributes.

We also follow Johnson et al. (2015) and discard

all objects, relations and attributes whose class or

type appears less than 30 times in the entire dataset

Raw Processed Filtered

Images 4,999 4,999 4,524
Sentences 88,188 88,188 50,448
Sentences per image 17.6 17.6 11.2

Object classes 18,515 15,734 798
Attribute types 7,348 6,442 277
Relation types 9,274 7,507 131

Objects per image 21.2 21.2 14.6
Attributes per image 16.2 16.4 10.7
Relations per image 18.6 18.6 10.3

Attributes per sent. 0.92 0.93 0.93
Relations per sent. 1.06 1.06 0.96

Table 1: Aggregate statistics of the raw, canoni-

calized (processed) and filtered datasets.

for the following two reasons. First and foremost,

computer vision systems require multiple training

examples for each class and type to be able to learn

useful generalizations, and second, rare classes

and types are often a result of AMT workers mak-

ing mistakes or not understanding the task prop-

erly. As we make the assumption that the scene

graph of one sentence is complete, i.e., that it cap-

tures all the information of the sentence, we have

to apply a more aggressive filtering which discards

the entire scene graph of a sentence in case one of

its objects, attributes or relations is discarded due

to the threshold. In case we discard all sentences

of an image, we discard the entire image from our

data. Despite the aggressive filtering, the average

number of objects, relations and attributes per im-

age only drops by 30-45% and we only discard

around 9% of the images (see Table 1).

3 Scene Graph Parsers

We implement two parsers: a rule-based parser

and a classifier-based parser. Both of our parsers

operate on a linguistic representation which we re-

fer to as a semantic graph. We obtain semantic

graphs by parsing the image descriptions to de-

pendency trees followed by several tree transfor-

mations. In this section, we first describe these

tree transformations and then explain how our two

parsers translate the semantic graph to a scene

graph.

3.1 Semantic Graphs

A Universal Dependencies (de Marneffe et al.,

2014) parse is in many ways close to a shallow se-

mantic representation and therefore a good start-

ing point for parsing image descriptions to scene



ROOT Both of the men are riding their horses

nmod

nsubj

dobj
nmod:poss

ROOT Both of the

man

are

riding horse

man’ riding’ horse’

det:qmod

mwe

nsubj dobj

nmod:poss

dobjnsubj

det:qmod

nmod:poss

Figure 2: Dependency tree and final semantic graph of a sentence. men is promoted to be the subject;

men, riding, and horses are duplicated; and their is deleted following coreference resolution.

graphs. Basic dependency trees, however, tend

to follow the linguistic structure of sentences too

closely which requires some post-processing of

the parses to make them more useful for a se-

mantic task. We start with the enhanced depen-

dency representation output by the Stanford Parser

v3.5.2 (Klein and Manning, 2003)1 and then per-

form three additional processing steps to deal with

complex quantificational modifiers, to resolve pro-

nouns and to handle plural nouns.

3.1.1 Quantificational modifiers

Several common expressions with light nouns

such as a lot of or a dozen of semantically act like

quantificational determiners (Simone and Masini,

2014). From a syntactic point of view, however,

these expressions are the head of the following

noun phrase. While one of the principles of the

Universal Dependencies representation is the pri-

macy of content words (de Marneffe et al., 2014),

light nouns are treated like any other noun. To

make our dependency trees better suited for se-

mantic tasks, we change the structure of all light

noun expressions from a manually compiled list.

We make the first word the head of all the other

words in the expression and then make this new

multi-word expression a dependent of the follow-

ing noun phrase. This step guarantees that the se-

mantic graph for both cars and for both of the cars

have similar structures in which the semantically

salient word cars is the head.

3.1.2 Pronoun resolution

Some image descriptions such as “a bed with a

pillow on it” contain personal pronouns. To re-

1We augment the parser’s training data with the Brown
corpus (Marcus et al., 1993) to improve its performance on
image descriptions which are often very different from sen-
tences found in newswire corpora.

cover all the relations between objects in this sen-

tence it is crucial to know that it refers to the ob-

ject a bed and therefore we try to resolve all pro-

nouns. We found in practice that document-level

coreference systems (e.g. Lee et al. (2013)) were

too conservative in resolving pronouns and hence

we implement an intrasential pronoun resolver in-

spired by the first three rules of the Hobbs algo-

rithm (Hobbs, 1978) which we modified to oper-

ate on dependency trees instead of constituency

trees. We evaluate this method using 200 ran-

domly selected image descriptions containing pro-

nouns. Our pronoun resolver has an accuracy of

88.5% which is significantly higher than the accu-

racy of 52.8% achieved by the coreference system

of Lee et al. (2013).

3.1.3 Plural nouns

Plural nouns are known to be a major challenge

in semantics in general (Nouwen, 2015), and also

in our task. One particular theoretical issue is

the collective-distributive ambiguity of sentences

with multiple plural nouns. For example, to obtain

the intended distributive reading of “three men

are wearing jeans” we have to extract three man

objects and three jeans objects and we have to

connect each man object to a different jeans ob-

ject. On the other hand, to get the correct parse

of “three men are carrying a piano” we probably

want to consider the collective reading and extract

only one piano object. A perfect model thus re-

quires a lot of world knowledge. In practice, how-

ever, the distributive reading seems to be far more

common so we only consider this case.

To make the dependency graph more similar

to scene graphs, we copy individual nodes of the

graph according to the value of their numeric mod-

ifier. We limit the number of copies per node to 20



as our data only contains scene graphs with less

than 20 objects of the same class. In case a plural

noun lacks such a modifier we make exactly one

copy of the node.

Figure 2 shows the original dependency tree and

the final semantic graph for the sentence “Both of

the men are riding their horses”.

3.2 Rule-Based Parser

Our rule-based parser extracts objects, relations

and attributes directly from the semantic graph.

We define in total nine dependency patterns using

Semgrex2 expressions. These patterns capture the

following constructions and phenomena:

• Adjectival modifiers

• Subject-predicate-object constructions and

subject-predicate constructions without an

object

• Copular constructions

• Prepositional phrases

• Possessive constructions

• Passive constructions

• Clausal modifiers of nouns

With the exception of possessives for which

we manually add a have relation, all objects,

relations and attributes are words from the se-

mantic graph. For example, for the semantic

graph in Figure 2, the subject-predicate-object

pattern matches man
nsubj
←−−− riding

dobj
−−→ horse

and man′
nsubj
←−−− riding′

dobj
−−→ horse′. From

these matches we extract two man and two

horse objects and add ride relations to the

two man-horse pairs. Further, the poss-

esive pattern matches man
nmod:poss
←−−−−−− horse and

man′
nmod:poss
←−−−−−− horse′ and we add have rela-

tions to the two man-horse pairs.

3.3 Classifier-Based Parser

Our classifier-based parser consists of two com-

ponents. First, we extract all candidate objects

and attributes, and second we predict relations be-

tween objects and the attributes of all objects.

2http://nlp.stanford.edu/software/tregex.shtml

3.3.1 Object and Attribute Extraction

We use the semantic graph to extract all object

and attribute candidates. In a first step we extract

all nouns, all adjectives and all intransitive verbs

from the semantic graph. As this does not guaran-

tee that the extracted objects and attributes belong

to known object classes or attribute types and as

our image retrieval model can only make use of

known classes and types, we predict for each noun

the most likely object class and for each adjec-

tive and intransitive verb the most likely attribute

type. To predict classes and types, we use an

L2-regularized maximum entropy classifier which

uses the original word, the lemma and the 100-

dimensional GloVe word vector (Pennington et al.,

2014) as features.

3.3.2 Relation Prediction

The last step of the parsing pipeline is to determine

the attributes of each object and the relations be-

tween objects. We consider both of these tasks as a

pairwise classification task. For each pair (x1, x2)
where x1 is an object and x2 is an object or an

attribute we predict the relation y which can be

any relation seen in the training data, or one of

the two special relations IS and NONE which in-

dicate that x2 is an attribute of x1 or no relation

exists, respectively. We noticed that for most pairs

for which a relation exists, x1 and x2 are in the

same constituent, i.e. their lowest common ances-

tor is either one of the two objects or a word in

between them. We therefore consider only pairs

which satisfy this constraint to improve precision

and to limit the number of predictions.

For the predictions, we use again an L2-

regularized maximum entropy classifier with the

following features:

Object features The original word and lemma,

and the predicted class or type of x1 and x2.

Lexicalized features The word and lemma of

each token between x1 and x2. If x1 or x2 ap-

pear more than once in the sentence because they

replace a pronoun, we only consider the words in

between the closest mentions of x1 and x2.

Syntactic features The concatenated labels

(i.e., syntactic relation names) of the edges in the

shortest path from x1 to x2 in the semantic graph.

We only include objects in the scene graph

which have at least one attribute or which are in-

volved in at least one relation. The idea behind



that is to prevent very abstract nouns such as set-

ting or right to be part of the scene graph which

are typically not part of relations. However, we

observed for around 30% of the sentences in the

development set that the parser did not extract any

relations or attributes from a sentence which re-

sulted in an empty scene graph. In these cases, we

therefore include all candidate objects in the scene

graph.

3.3.3 Training

As the scene graph’s objects and attributes are not

aligned to the sentence, we have to align them in

an unsupervised manner. For each sentence, we

extract object and attribute candidates from the

semantic graph. For each object-relation-object

triple or object-attribute pair in the scene graph

we try to align all objects and attributes to a can-

didate by first checking for exact string match of

the word or the lemma, then by looking for can-

didates within an edit distance of two, and finally

by mapping the object or attribute and all the can-

didates to 100-dimensional GloVe word vectors

and picking the candidate with the smallest eu-

clidean distance. To limit the number of false

alignments caused by annotators including objects

in the scene graph that are not present in the corre-

sponding sentence, we also compute the euclidean

distances to all the other words in the sentence and

if the closest match is not in the candidate set we

discard the training example.

We use this data to train both of our classifiers.

For the object and attribute classifier we only con-

sider the alignments between words in the descrip-

tion and objects or attributes in the graph.

For the relation predictor, we consider the com-

plete object-relation-object and object-is-attribute

triples. All the aligned triples constitute our pos-

itive training examples for a sentence. For all the

object-object and object-attribute pairs without a

relation in a sentence, we generate negative exam-

ples by assigning them a special NONE relation.

We sample from the set of NONE triples to have

the same number of positive and negative training

examples.

4 Experiments

For our experiments, we split the data into train-

ing, development and held-out test sets of size

3,614, 454, and 456 images, respectively. Table 2

shows the aggregated statistics of our training and

test sets. We compare our two parsers against the

following two baselines.

Nearest neighbor Our first baseline computes a

term-frequency vector for an input sentence and

returns the scene graph of the nearest neighbor in

the training data.

Object only Our second baseline is a parser that

only outputs objects but no attributes or relation-

ships. It uses the first two components of the

classifier-based final parser, namely the semantic

graph processor and the object extractor, and then

simply outputs all candidate objects.

We use the downstream performance on the

image retrieval task as our main evaluation met-

ric. We train our reimplementation of the model

by Johnson et al. (2015) on our training set with

human-constructed scene graphs. For each sen-

tence we use the parser’s output as a query and

rank all images in the test set. For evaluation,

we consider the human-constructed scene graph

Gh of the sentence and construct a set of images

I = i1, ..., in such that Gh is a subgraph of the im-

age’s complete scene graph. We compute the rank

of each image in I and compute recall at 5 and 10

based on these ranks3. We also compute the me-

dian rank of the first correct result. We compare

these numbers against an oracle system which uses

the human-constructed scene graphs as queries in-

stead of the scene graphs generated by the parser.

One drawback of evaluating on a downstream

task is that evaluation is typically slower compared

to using an intrinsic metric. We therefore also

compare the parsed scene graphs to the human-

constructed scene graphs. As scene graphs consist

of object instances, attributes, and relations and

are therefore similar to Abstract Meaning Repre-

sentation (AMR) (Banarescu et al., 2013) graphs,

we use Smatch F1 (Cai and Knight, 2013) as an

additional intrinsic metric.

5 Results and Discussion

Table 3 shows the performance of our baselines

and our two final parsers on the development and

held-out test set.

3As in Johnson et al. (2015), we observed that the results
for recall at 1 were very unstable so we only report recall at 5
and 10 which are typically also more relevant for real-world
systems that return multiple results.



Development set Test set

Smatch R@5 R@10 Med. rank Smatch R@5 R@10 Med. rank

Nearest neighbor 32% 1.2% 2.3% 206 32% 1.1% 2.3% 205
Object only 48% 15.0% 29.3% 20 48% 12.6% 24.8% 25
Rule 43% 16.4% 31.6% 17 44% 13.5% 27.1% 20
Classifier 47% 16.7% 32.9% 16 47% 13.8% 27.1% 20

Oracle - 19.4% 39.8% 13 - 16.6% 33.4% 15

Table 3: Intrinsic (Smatch F1) and extrinsic (recall at 5 and 10, and median rank) performance of our

two baselines, our rule-based and our classifier-based parser.

Train Dev Test

Images 3,614 454 456
Sentences 40,315 4,953 5,180
Relation instances 38,617 4,826 4,963
Attribute instances 37,580 4,644 4,588

Table 2: Aggregate statistics of the training, de-

velopment (dev) and test sets.

R@5 R@10 Med. rank

Johnson et al. (2015) 30.3% 47.9% 11
Our implementation 27.6% 45.6% 12

Table 4: Comparison of the results of the original

implementation by Johnson et al. (2015) and our

implementation. Both systems were trained and

tested on the data sets of the original authors.

Oracle results Compared to the results of John-

son et al. (2015), the results of our oracle systems

are significantly worse. To verify the correctness

of our implementation, the original authors pro-

vided us with their training and test set. Table 4

shows that our reimplementation performs almost

as well as their original implementation. We hy-

pothesize that there are two main reasons for the

drop in performance when we train and evaluate

our system on our dataset. First, our dataset is a

lot more diverse and contains many more object

classes and relation and attribute types. Second,

the original authors only use the most common

queries for which there exist at least five results to

retrieve images while we evaluate on all queries.

Effectiveness of Smatch F1 As mentioned in

the previous section, having an intrinsic evalua-

tion metric can reduce the length of development

cycles compared to using only an extrinsic evalua-

tion. We hoped that Smatch F1 would be an appro-

priate metric for our task but our results indicate

that there is no strong correlation between Smatch

F1 and the performance of the downstream task.

Comparison of rule-based and classifier-based

system In terms of image retrieval performance,

there does not seem to be a significant dif-

ference between our rule-based system and our

classifier-based system. On the development set

the classifier-based system slightly outperforms

the rule-based system but on the test set both seem

to work equally well. Nevertheless, their results

differ in some cases. One strength of the classifier-

based system is that it learns that some adjectival

modifiers like several should not be attributes. It

is also able to learn some basic implications such

as the shirt looks dirty implies in the context of an

image that the shirt is dirty. On the other hand, the

rule-based system tends to be more stable in terms

of extracting relations while the classifier-based

system more often only extracts objects from a

sentence.

Comparison to baselines As shown in Table 3,

both of our parsers outperform all our baselines

in terms of recall at 5 and 10, and the median

rank. This difference is particularly significant

compared to the nearest neighbor baseline which

confirms the complexity of our dataset and shows

that it is not sufficient to simply memorize the

training data.

The object only baseline is a lot stronger but still

consistently performs worse than our two parsers.

To understand in what ways our parsers are supe-

rior to the object only baseline, we performed a

qualitative analysis. A comparison of the results

reveals that the image retrieval model is able to

make use of the extracted relations and attributes.

Figure 3 shows the top 5 results of our classifier-

based parser and the object only baseline for the

query “The white plane has one blue stripe and

one red stripe”. While the object only model

seems to be mainly concerned with finding good



Figure 3: Top 5 results of the object only baseline (top row) and our classifier-based parser (bottom row)

for the query “The white plane has one blue stripe and one red stripe”. The object only system seems

to be mainly concerned with finding images that contain two stripe objects at the expense of finding an

actual plane. Our classifier-based parser also outputs the relation between the stripes and the plane and

the colors of the stripes which helps the image retrieval system to return the correct results.

Figure 4: 3D scenes for the sentences “There is a

wooden desk with a red and green lamp on it” and

“There is a desk with a notepad on it”.

matches for the two stripe objects, the output of

our parser successfully captures the relation be-

tween the plane and the stripes and correctly ranks

the two planes with the blue and red stripes as the

top results.

Error analysis The performance of both of

our parsers comes close to the performance of

the oracle system but nevertheless there still

remains a consistent gap. One of the rea-

sons for the lower performance is that some

human-constructed scene graphs contain informa-

tion which is not present in the description. The

human annotators saw both the description and the

image and could therefore generate scene graphs

with additional information.

Apart from that, we find that many errors oc-

cur with sentences which require some external

knowledge. For example, our parser is not able to

infer that “a woman in black” means that a woman

is wearing black clothes. Likewise it is not able

to infer that “a jockey is wearing a green shirt

and matching helmet” implies that he is wearing

a green helmet.

Other errors occur in some sentences which talk

about textures. For example, our parsers assume

that “a dress with polka dots” implies that there is

a relation between one dress object and multiple

polka dot objects instead of inferring that there is

one dress object with the attribute polka-dotted.

One further source of errors are wrong depen-

dency parses. Both of our parsers heavily rely on

correct dependency parses and while making the

parser’s training data more diverse did improve re-

sults, we still observe some cases where sentences

are parsed incorrectly leading to incorrect scene

graphs.

6 Other Tasks

As mentioned before, one appeal of parsing sen-

tences to an intermediate representation is that we

can also use our parser for other tasks that make

use of similar representations. One of these tasks

is generating 3D scenes from textual descriptions

(Chang et al., 2014). Without performing any fur-

ther modifications, we replaced their parser with

our classifier-based parser and used the resulting

system to generate 3D scenes from several indoor

scene descriptions. Two of these generated scenes

are shown in Figure 4. Our impression is that the

system performs roughly equally well using this

parser compared to the one used in the original

work.



7 Related Work

Image retrieval Image retrieval is one of the

most active areas in computer vision research.

Very early work mainly focused on retrieving im-

ages based on textual descriptions, while later

work focused more on content-based image re-

trieval system which perform retrieval directly

based on image features. Rui et al. (1999), Liu

et al. (2007), and Siddiquie et al. (2011) provide

overviews of the developments of this field over

the last twenty years. Most of this work focused

on retrieving images from keywords which are not

able to capture capture many semantic phenomena

as well as natural language or our scene graph rep-

resentation can.

Multi-modal embeddings Recently, multi-

modal embeddings of natural language and

images got a lot of attention (Socher et al., 2014;

Karpathy et al., 2014; Plummer et al., 2015; Kiros

et al., 2015; Mao et al., 2015; Chrupala et al.,

2015). These embeddings can be used to retrieve

images from captions and generating captions

from images. As mentioned in the introduction,

these models are trained on single-sentence image

descriptions which typically cannot capture all

the details of a visual scene. Further, unlike

our modular system, they cannot be used for

other tasks that require an interpretable semantic

representation.

Parsing to graph-based representations Rep-

resenting semantic information with graphs has re-

cently experienced a resurgence caused by the de-

velopment of the Abstract Meaning Representa-

tion (AMR) (Banarescu et al., 2013) which was

followed by several works on parsing natural lan-

guage sentences to AMR (Flanigan et al., 2014;

Wang et al., 2015; Werling et al., 2015). Con-

sidering that AMR graphs are, like dependency

trees, very similar to scene graphs, we could have

also used this representation and transformed it

to scene graphs. However, the performance of

AMR parsers is still not competitive with the per-

formance of dependency parsers which makes de-

pendency trees are more stable starting point.

There also exists some prior work on parsing

scene descriptions to semantic representations. As

mentioned above, Chang et al. (2014) present a

rule-based system to parse natural language de-

scriptions to scene templates, a similar graph-

based semantic representation. Elliott et al. (2014)

parse image descriptions to a dependency gram-

mar representation which they also use for im-

age retrieval. Lin et al. (2014a) also use rules to

transform dependency trees into semantic graphs

which they use for video search. All of this work,

however, only consider a limited set of relations

while our approach can learn an arbitrary number

of relations. Further, they all exclusively use very

specific rule-based systems whereas we also in-

troduced a more general purposed classifier-based

parser.

8 Conclusion

We presented two parsers which can translate im-

age descriptions to scene graphs. We showed that

their output is almost as effective for retrieving im-

ages as human-generated scene graphs and that in-

cluding relations and attributes in queries outper-

forms a model which only considers objects. We

also demonstrated that our parser is well suited for

other tasks which require a semantic representa-

tion of a visual scene.
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