
Workshop track - ICLR 2016

GENERATING SENTENCES

FROM A CONTINUOUS SPACE

Samuel R. Bowman∗

NLP Group and Department of Linguistics
Stanford University
sbowman@stanford.edu

Luke Vilnis∗

College of Information and Computer Sciences
University of Massachusetts Amherst
luke@cs.umass.edu

Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz & Samy Bengio
Google Brain
{vinyals, adai, rafalj, bengio}@google.com

ABSTRACT

The standard unsupervised recurrent neural network language model (RNNLM)
generates sentences one word at a time and does not work from an explicit global
distributed sentence representation. In this work, we present an RNN-based vari-
ational autoencoder language model that incorporates distributed latent represen-
tations of entire sentences. This factorization allows it to explicitly model holis-
tic properties of sentences such as style, topic, and high-level syntactic features.
Samples from the prior over these sentence representations remarkably produce
diverse and well-formed sentences through simple deterministic decoding. By ex-
amining paths through this latent space, we are able to generate coherent novel
sentences that interpolate between known sentences. We present techniques for
solving the difficult learning problem presented by this model, demonstrate strong
performance in the imputation of missing tokens, and explore many interesting
properties of the latent sentence space.

1 INTRODUCTION

Recurrent neural network language models (RNNLMs, Mikolov et al., 2011) represent the state of
the art in unsupervised generative modeling for natural language sentences. In supervised settings,
RNNLM decoders conditioned on task-specific features have yielded the state of the art in tasks like
machine translation (Sutskever et al., 2014; Bahdanau et al., 2015) and image captioning (Vinyals
et al., 2015; Mao et al., 2015; Donahue et al., 2015). The RNNLM generates sentences word-by-word
based on an evolving distributed state representation, which makes it a probabilistic model with
no significant independence assumptions, and makes it capable of modeling complex distributions
over sequences, including those with long-term dependencies. However, by breaking the model
structure down into a series of next-step predictions, the RNNLM does not expose an interpretable
representation of global features like style, topic, and high-level syntactic properties.

We propose an extension of the RNNLM that is designed to explicitly capture such global features
in a continuous latent variable. Naively, maximum likelihood learning in such a model presents an
intractable inference problem over the latent variable. Drawing inspiration from recent successes in
modeling images (Gregor et al., 2015), handwriting, and natural speech (Chung et al., 2015), our
model circumvents these difficulties using the architecture of a variational autoencoder and takes
advantage of recent advances in variational inference (Kingma & Welling, 2015; Rezende et al.,
2014) that introduce a practical training technique for powerful neural network generative models
with latent variables.

Our contributions are as follows: We propose a variational autoencoder language model and discuss
some of the obstacles to training it as well as our proposed solutions. We find that on standard
next-step language modeling tasks where a global variable is not explicitly needed, inclusion of the

∗First two authors contributed equally. Work was done when all authors were at Google, Inc.

1

Workshop track - ICLR 2016

global variable yields similar performance to existing RNNLMs. We also evaluate our model using a
larger corpus on the task of imputing missing words. For this task, we introduce a novel evaluation
strategy using an adversarial classifier, sidestepping the issue of intractable likelihood computations
by drawing inspiration from work on non-parametric two-sample tests and adversarial training. In
this setting, our model’s global latent variable allows it to substantially outperform RNNLMs. We
finally introduce several qualitative techniques for analyzing the ability of our model to learn high
level features of sentences. We find that they can produce diverse and coherent sentences through
purely deterministic decoding and that they can interpolate smoothly between sentences.

2 PRIOR WORK

2.1 UNSUPERVISED MODELS FOR WHOLE-SENTENCE ENCODING

A standard RNN language model predicts each word of a sentence conditioned on the previous
word and an evolving hidden state. While effective, it does not learn a vector representation of the
entire sentence. In order to incorporate a continuous global latent sentence representation, we first
need a method to map between sentences and distributed representations that can be trained in an
unsupervised setting. While no strong generative model is available for this problem, three non-
generative techniques have shown promise: sequence autoencoders, skip-thought, and paragraph
vector.

Sequence autoencoders have seen some success in pre-training sequence models for supervised
downstream tasks (Dai & Le, 2015) and in generating complete documents (Li et al., 2015a). An au-
toencoder consists of an encoder function ϕenc and a probabilistic decoder model p(x|~z = ϕenc(x)),
and maximizes the likelihood of a data case x conditioned on ~z, the learned code for x. In the case of
a sequence autoencoder, both encoder and decoder are RNNs and data cases are sequences of tokens.

There are serious problems with using standard autoencoders to learn feature extractors for global
sentence features. In Table 1, we present the results of computing a path or homotopy between the
encodings for two sentences and decoding each intermediate code. The intermediate sentences are
generally ungrammatical and do not transition smoothly from one to the other. This suggests that
these models do not generally learn a smooth, interpretable feature system for sentence encoding. In
addition, since these models do not incorporate a prior over ~z, there is no practical way to use them
in a generative setting to assign probabilities to sentences or to sample novel sentences.

i went to the store to buy some groceries .
i store to buy some groceries .
i were to buy any groceries .
horses are to buy any groceries .
horses are to buy any animal .
horses the favorite any animal .
horses the favorite favorite animal .
horses are my favorite animal .

Table 1: Sentences produced by greedily decoding from points between two sentence encodings
with a conventional autoencoder. The intermediate sentences are not plausible English.

Two other models have shown promise in learning sentence encodings, but cannot be used in a
generative setting: Skip-thought models (Kiros et al., 2015) are unsupervised learning models that
take the same model structure as a sequence autoencoder, but are trained to predict the words in
a sentence given an encoded neighboring sentence from the same text, instead of given the target
sentence itself. Finally, paragraph vector models (Le & Mikolov, 2014) are non-recurrent sentence
representation models. In a paragraph vector model, the encoding of a sentence is obtained by
performing gradient-based inference on a prospective encoding vector with the goal of using it to
predict the words in the sentence.

2

Workshop track - ICLR 2016

linear

linear
z

µ

σ

Encoding
LSTM
Cell

Encoding
LSTM
Cell

Decoding
LSTM
Cell

Decoding
LSTM
Cell

Decoding
LSTM
Cell

Figure 1: The structure of our variational autoencoder language model. Words are represented using
a learned dictionary of embedding vectors.

2.2 THE VARIATIONAL AUTOENCODER

The variational autoencoder (VAE, Kingma & Welling, 2015; Rezende et al., 2014) is a generative
model that is based on a regularized version of the standard autoencoder. This model imposes a
prior distribution on the hidden codes ~z which enforces a regular geometry over codes and makes it
possible to draw proper samples from the model using ancestral sampling.

The VAE modifies the autoencoder architecture by replacing the deterministic function ϕenc with
a learned posterior recognition model, q(~z|x). This model parametrizes an approximate posterior
distribution over ~z (usually a diagonal Gaussian) with a neural network conditioned on x. Intuitively,
the VAE learns codes not as single points, but as soft ellipsoidal regions in latent space, forcing the
codes to fill the space rather than memorizing the training data as isolated codes.

If the VAE were trained with a standard autoencoder’s reconstruction objective, it would learn to
encode its inputs deterministically by making the posterior variances in q(~z|x) vanishingly small
(Raiko et al., 2015). Instead, the VAE uses a specialized objective which encourages the model to

keep its posterior distributions close to a prior p(~z), generally a standard Gaussian (µ = ~0, σ = ~1).
Additionally, this objective is a valid lower bound on the true log likelihood of the data, making the
VAE a generative model. This objective takes the following form:

L(θ;x) = −KL(qθ(~z|x)||p(~z)) + Eqθ(~z|x)[log pθ(x|~z)] ≤ log p(x) . (1)

This forces the model to be able to decode plausible sentences from every point in the latent space
that has a reasonable probability under the prior.

In the experiments presented below using VAE models, we use diagonal Gaussians for the prior and
posterior distributions p(~z) and q(~z|x), using the Gaussian reparameterization trick of Kingma &
Welling (2015). We train our models with stochastic gradient descent, and at each gradient step we
estimate the reconstruction cost using a single sample from q(~z|x), but compute the KL divergence
term of the cost function in closed form, again following Kingma & Welling (2015).

3 THE VARIATIONAL AUTOENCODER LANGUAGE MODEL

We adapt the variational autoencoder to text by using single-layer LSTM RNNs (Hochreiter &
Schmidhuber, 1997) for both the encoder and the decoder, essentially forming a sequence autoen-
coder with the Gaussian prior acting as a regularizer on the hidden code. The decoder serves as a
special RNN language model that is conditioned on this hidden code, and in the degenerate setting
where the hidden code incorporates no useful information, this model is effectively equivalent to an
RNNLM. The model is depicted in Figure 1, and is used in all of the experiments discussed below.

We explored several variations on this architecture, including concatenating the sampled ~z to the
decoder input at every time step, using a softplus parametrization for the variance, and using deep
feedforward networks between the encoder and latent variable and the decoder and latent variable.
We noticed little difference in the model’s performance when using any of these variations. How-
ever, when including feedforward networks between the encoder and decoder we found that it is
necessary to use highway network layers (Srivastava et al., 2015) for the model to learn. We discuss
hyperparameter tuning in the appendix.

We also experimented with more sophisticated recognition models q(~z|x), including a multistep
sampling model styled after DRAW (Gregor et al., 2015), and a posterior approximation using nor-

3

Workshop track - ICLR 2016

malizing flows (Rezende & Mohamed, 2015). However, we were unable to reap significant gains
over our plain VAE.

While the strongest results with VAEs to date have been on continuous domains like images, there
has been some limited work on discrete sequences: a technique for doing this using RNN encoders
and decoders, which shares the same high-level architecture as our model, was proposed under
the name Variational Recurrent Autoencoder (VRAE) for the modeling of music in Fabius & van
Amersfoort (2014). While there has been other work on including continuous latent variables in
RNN-style models for modeling speech, handwriting, and music (Bayer & Osendorfer, 2015; Chung
et al., 2015), these models include separate latent variables per timestep and are unsuitable for our
goal of modeling global features.

3.1 OPTIMIZATION CHALLENGES

Our model aims to learn global latent representations of sentence content. We can quantify the de-
gree to which our model learns global features by looking at the variational lower bound objective
(1). The bound breaks into two terms: the data likelihood under the posterior (expressed as cross
entropy), and the KL divergence of the posterior from the prior. A model that encodes useful infor-
mation in the latent variable ~z will have a non-zero KL divergence term and a relatively small cross
entropy term. Straightforward implementations of our VAE fail to learn this behavior: except in
vanishingly rare cases, most training runs with most hyperparameters yield models that consistently
set q(~z|x) equal to the prior p(~z), bringing the KL divergence term of the cost function to zero.

This is perhaps understandable. In this regime, the model is essentially behaving as an RNNLM.
Because of this, it is able to express arbitrary distributions over the output sentences (albeit with a
potentially awkward left-to-right factorization) and can thereby achieve likelihood values that may
come close to capturing the true degree of variation in the data. Previous work on VAEs for image
modeling (Kingma & Welling, 2015) used a much weaker independent pixel decoder model p(x|~z),
forcing the model to use the global latent variable to achieve good likelihoods. In a related result,
recent approaches to image generation that use LSTM decoders are able to do well without VAE-style
global latent variables (Theis & Bethge, 2015).

This problematic tendency in learning is compounded by the LSTM decoder’s sensitivity to subtle
variation in the hidden states, such as that introduced by the posterior sampling process. This causes
the model to initially learn to ignore ~z and go after the ‘low hanging fruit’, explaining the data with
the powerful and more easily optimized LSTM language model. Once this has happened, the decoder
ignores the encoder, little to no gradient signal passes between the two, and the encoder can thus
easily fail to capture any useful features, yielding a stable equilibrium with the KL cost term at zero.

KL cost annealing In this simple approach to this problem, we add a variable weight to the KL

term in the cost function at training time. At the start of training, we set that weight to zero, so that
the model learns to encode as much information in ~z as it can. Then, as training progresses, we
gradually increase this weight, forcing the model to smooth out its encodings and pack them into
the prior. We increase this weight until it reaches 1, at which point the weighted cost function is
equivalent to the true variational lower bound. In this setting, we do not optimize the proper lower
bound on the training data likelihood during the early stages of training, but we nonetheless see
improvements on the value of that bound at convergence. This can be thought of as annealing from
a vanilla autoencoder to a VAE. The rate of this increase is tuned as a hyperparameter.

Figure 2 shows the behavior of the KL cost term during the first 50k steps of training on Penn
Treebank (Marcus et al., 1993) language modeling with KL cost annealing in place. This example
reflects a pattern that we observed often: KL spikes early in training while the model can encode
information in ~z cheaply, then drops substantially once it begins paying the full KL divergence
penalty, and finally slowly rises again before converging as the model learns to condense more
information into ~z efficiently.

Word dropout and decoding without history In addition to weakening the penalty term on the
encodings, we also experiment with weakening the decoder. As in RNNLMs and sequence autoen-
coders, during learning our decoder predicts each word conditioned on the ground-truth previous
word. A natural way to weaken the decoder is to remove some or all of this conditioning informa-

4

Workshop track - ICLR 2016

701 0.002389 5251 0.891682

801 0.003047 6001 0.820286

901 0.003884 6751 0.880547

1001 0.004951 7501 0.887476

1101 0.006309 8251 0.922485

1201 0.008036 9001 0.874522

1301 0.010231 9751 0.969236

1401 0.013018 10501 0.986424

1501 0.016551 11251 0.942297

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0%

20%

40%

60%

80%

100%

0 10000 20000 30000 40000 50000

K
L

 t
e

rm
 v

a
lu

e

K
L

 t
e

rm
 w

e
ig

h
t

Step

KL term weight

KL term value

Figure 2: The weight of the KL divergence term of variational lower bound according to a typical
sigmoid annealing schedule plotted alongside the (unweighted) value of the KL divergence term for
our VAE on the Penn Treebank.

Model Standard Inputless Decoder
Train NLL Train PPL Test NLL Test PPL Train NLL Train PPL Test NLL Test PPL

RNNLM 100 – 95 100 – 116 135 – 600 135 – > 600

VAE 98 (2) 100 101 (2) 119 120 (15) 300 125 (15) 380

Table 2: Penn Treebank language modeling results, reported as negative log likelihoods and as
perplexities. Lower is better for both metrics. For the VAE, the KL term of the likelihood is shown
in parentheses alongside the total likelihood.

tion during learning. We do this by randomly replacing some fraction of the conditioned-on word
tokens with the generic unknown word token UNK. This forces the model to rely on the latent vari-
able ~z to make good predictions. This technique is a variant of word dropout (Iyyer et al., 2015;
Kumar et al., 2015), applied not to a feature extractor but to a decoder. We also experimented with
standard dropout (Srivastava et al., 2014) applied to the input word embeddings in the decoder, but
this did not help the model learn to use the latent variable.

This technique is parameterized by a keep rate k ∈ [0, 1]. We tune this parameter both for our VAE

and for our baseline RNNLM. Taken to the extreme of k = 0, the decoder sees no input, and is thus
able to condition only on the number of words produced so far, yielding a model that is extremely
limited in the kinds of distributions it can model without using ~z.

4 RESULTS: LANGUAGE MODELING

In this section, we report on language modeling experiments on the Penn Treebank in an effort
to discover whether the inclusion of a global latent variable is helpful for this standard task. For
this reason, we restrict our VAE hyperparameter search to those models which encode a non-trivial
amount in the latent variable, as measured by the KL divergence term of the variational lower bound.

Results We used the standard train–test split for the corpus, and report test set results in Table 2.
The results shown reflect the training and test set performance of each model at the training step
at which the model performs best on the development set. Our reported figures for the VAE reflect
the variational lower bound on the test likelihood, while for the RNNLMs, which can be evaluated
exactly, we report the true test likelihood. This discrepancy puts the VAE at a potential disadvantage.

In the standard setting, the VAE performs slightly worse than the RNNLM baseline, though it does
succeed in using the latent space to a limited extent: it has a reconstruction cost (99) better than that
of the baseline RNNLM, but makes up for this with a KL divergence cost of 2. Training a VAE in
the standard setting without both word dropout and cost annealing reliably results in models with
equivalent performance to the baseline RNNLM, and zero KL divergence.

To demonstrate the ability of the latent variable to encode the full content of sentences in addition
to more abstract global features, we also provide numbers for an inputless decoder that does not
condition on previous tokens, corresponding to a word dropout keep rate of 0. In this regime we can

5

Workshop track - ICLR 2016

see that the variational lower bound contains a significantly larger KL term and shows a substantial
improvement over the RNNLM, which is essentially limited to using unigram statistics in this setting.
While it is weaker than a standard decoder, the inputless decoder has the interesting property that
its sentence generating process is fully differentiable. Advances in generative models of this kind
could be promising as a means of generating text while using adversarial training methods, which
require differentiable generators. In this setting then, the VAE has a large advantage.

Even with the techniques described in the previous section, including the inputless decoder, we
were unable to train models for which the KL divergence term of the cost function dominates the
reconstruction term. This suggests that it is still substantially easier to learn to factor the data distri-
bution using simple local statistics, as in the RNNLM, such that an encoder will only learn to encode
information in ~z when that information cannot be described by these local statistics.

5 RESULTS: IMPUTING MISSING WORDS

We claim that the global features that our VAE uses make it especially well suited to the task of
imputing missing words in otherwise known sentences. In this section, we present a technique for
imputation and a novel evaluation strategy inspired by adversarial training. Qualitatively, we find
that the VAE yields more diverse and plausible imputations for the same amount of computation (see
the examples given in Table 3), but quantitative comparison requires a novel evaluation strategy,
which we propose below.

but now , as they parked out front and owen stepped out of the car , he could see
True: that the transition was complete . RNNLM: it , ” i said . VAE: through the driver ’s door .

you kill him and his
True: men . RNNLM: . ” VAE: brother .

not surprising , the mothers dont exactly see eye to eye with me
True: on this matter . RNNLM: , i said . VAE: , right now .

outside the cover , quiet
True: fell . RNNLM: . ” VAE: time .

she punched the cell
True: too . RNNLM: again . VAE: phone .

Table 3: Examples of using beam search to impute missing words within sentences. Since we
decode from right to left, note the stereotypical completions given by the RNNLM, compared to the
VAE completions that often use topic data and more varied vocabulary.

While the standard RNNLM is a powerful generative model, the sequential nature of likelihood com-
putation and decoding makes it unsuitable for performing inference over unknown words given some
known words (the task of imputation). Except in the special case where the unknown words all ap-
pear at the end of the decoding sequence, sampling from the posterior over the missing variables is
intractable for all but the smallest vocabularies. For a vocabulary of size V , it requires O(V) runs
of full RNN inference per step of Gibbs sampling or iterated conditional modes. Worse, because of
the unidirectional nature of the graphical model given by an RNNLM, many steps of sampling could
be required to propagate information between unknown variables and the known downstream vari-
ables. The VAE, while it suffers from the same intractability problems when sampling or computing
MAP imputations, can more easily propagate information between all variables, by virtue of having
a global latent variable and a tractable recognition model.

For this experiment and subsequent analysis, we train our models on the Books Corpus introduced
in Kiros et al. (2015). This is a collection of text from 12k e-books, mostly fiction. The dataset,
after pruning, contains approximately 80m sentences. We find that this much larger amount of data
produces more subjectively interesting generative models than smaller standard language modeling
datasets. We use a fixed word dropout rate of 75% when training this model and all subsequent mod-
els unless otherwise specified. Our models (the VAE and RNNLM) are trained as language models,
decoding right-to-left to shorten the dependencies during learning for the VAE. We use a model with
512 hidden units for these and subsequent experiments.

6

Workshop track - ICLR 2016

Model Adversarial Error (%) Negative Log Likelihood
Unigram LSTM RNNLM

RNNLM (15 beams) 28.32 38.92 46.01
VAE (3x5 beams) 22.39 35.59 46.14

Table 4: Results for adversarial evaluation of imputations. Unigram and LSTM numbers are the
adversarial error (see text) and RNNLM numbers are the negative log-likelihood given to entire
generated sentence by the language model, a measure of sentence typicality. Lower is better on both
metrics. The VAE is able to generate imputations that are significantly more difficult to distinguish
from the true sentences.

Inference method To generate imputations from the two language models, we use beam search
with beam size 15 for the RNNLM and approximate iterated conditional modes (Besag, 1986) with
3 steps of a beam size 5 search for the VAE. This allows us to compare the same amount of compu-
tation for both models. We find that breaking decoding for the VAE into several sequential steps is
necessary to propagate information among the variables. Iterated conditional modes is a technique
for finding the maximum joint assignment of a set of variables by alternately maximizing conditional
distributions, and is a generalization of “hard-EM” algorithms like k-means (Kearns et al., 1998). For
approximate iterated conditional modes, we first initialize the unknown words to the UNK token. We
then alternate assigning the latent variable to its mode from the recognition model, and performing
constrained beam search to assign the unknown words. Both of our generative models are trained to
decode sentences from right-to-left to shorten the dependencies during learning, and we impute the
final 20% of each sentence. This lets us demonstrate the advantages of the global latent variable in
the regime where the RNNLM suffers the most from its inductive bias.

Adversarial evaluation Drawing inspiration from adversarial training methods for generative
models as well as non-parametric two-sample tests (Goodfellow et al., 2014; Li et al., 2015b; Den-
ton et al., 2015; Gretton et al., 2012), we evaluate the imputed sentence completions by examining
their distinguishability from the true sentence endings. While the non-differentiability of the dis-
crete RNN decoding phase prevents us from easily applying the adversarial criterion at train time,
we can define a very flexible test time evaluation by training a discriminant function to separate the
generated and true sentences, which defines an adversarial error.

We train two classifiers – the first a bag-of-unigrams logistic regression classifier, and the second
an LSTM logistic regression classifier that reads the input sentence and produces a binary prediction
after seeing the final EOS token. We train these classifiers using early stopping on a 80/10/10
train/dev/test split of 320k sentences, constructing a dataset of 50% complete sentences from the
corpus (positive examples) and 50% sentences with imputed completions (negative examples). We
define the adversarial error as the gap between the ideal accuracy of the discriminator (50%, i.e.
indistinguishable samples), and the actual accuracy attained.

Results As an obvious consequence of this experimental setup, the RNNLM cannot choose any-
thing outside of the top 15 tokens given by the RNN’s initial unigram language model P (x1|Null)
when producing the final token of the sentence, since it has not yet generated anything to condition
on, and has a beam size of 15. As demonstrated in Table 4, this weakness makes the RNNLM pro-
duce far less diverse samples than the VAE and suffer accordingly versus the adversarial classifier.
Additionally, we include the score given to the entire sentence with the imputed completion given a
separate independently trained language model. The likelihood results are comparable, though the
RNNLMs favoring of cliched but high-probability endings such as “he said,” gives it a slightly lower
negative log-likelihood. Measuring the RNNLM likelihood of sentences themselves produced by an
RNNLM is not a good measure of the power of the model, but demonstrates that the RNNLM can pro-
duce what it sees as high-quality imputations by favoring typical local statistics, even though their
repetitive nature produces easy failure modes for the adversarial classifier. Accordingly, under the
adversarial evaluation our model substantially outperforms the baseline since it is able to efficiently
propagate information bidirectionally through the latent variable.

7

Workshop track - ICLR 2016

0

10

20

30

40

50

60

100% 90% 75% 50% 0%

Keep rate

KL divergence

Cross entropy

Figure 3: The values of the two terms of the cost function as word dropout increases.

6 ANALYZING VARIATIONAL MODELS

We now turn to more qualitative analysis of the model. Since our decoder model p(x|~z) is a sophis-
ticated RNNLM, simply sampling from the directed graphical model (first p(~z) then p(x|~z)) would
not tell us much about how much of the data is being explained by each of the latent space and the
decoder. Instead, for this part of the evaluation, we sample from the Gaussian prior, but use a greedy
deterministic decoder for p(x|~z), the RNNLM conditioned on ~z. This allows us to get a sense of how
much of the variance in the data distribution is being captured by the distributed vector ~z as opposed
to the language model. Interestingly, these results qualitatively demonstrate that large amounts of
variation in generated language can be achieved by following this procedure. A related appendix
provides some results on small text classification tasks.

6.1 ANALYZING THE IMPACT OF WORD DROPOUT

For this experiment, we train on the Books Corpus and test on a held out 10k sentence test set from
that corpus. We find that train and test set performance are very similar. In Figure 3, we examine the
impact of word dropout on the variational lower bound, broken down into KL divergence and cross
entropy components. We drop out words with the specified keep rate at training time, but supply all
words as inputs at test time except in the 0% setting.

We do not re-tune the hyperparameters for each run, which results in the model with no dropout
encoding very little information in ~z (i.e., the KL component is small). We can see that as we lower
the keep rate for word dropout, the amount of information stored in the latent variable increases, and
the overall likelihood of the model degrades somewhat. Note that, as demonstrated in the previous
section, a model with no latent variable would degrade in performance significantly more in the
presence of heavy word dropout.

We also qualitatively evaluate samples, to demonstrate that the increased KL allows meaningful
sentences to be generated purely from continuous sampling. Since our decoder model p(x|~z) is a
sophisticated RNNLM, simply sampling from the directed graphical model (first p(~z) then p(x|~z))
would not tell us about how much of the data is being explained by the learned vector vs. the lan-
guage model. Instead, for this part of the qualitative evaluation, we sample from the Gaussian prior,
but use a greedy deterministic decoder for x, taking each token xt = argmaxxt

p(xt|x0,...,t−1, ~z).
This allows us to get a sense of how much of the variance in the data distribution is being captured
by the distributed vector ~z as opposed to by local language model dependencies.

These results, shown in Table 5, qualitatively demonstrate that large amounts of variation in gen-
erated language can be achieved by following this procedure. At the low end, where very little of
the variance is explained by ~z, we see that greedy decoding applied to a Gaussian sample does not
produce diverse sentences. As we increase the amount of word dropout and force ~z to encode more
information, we see the sentences become more varied, but past a certain point they begin to repeat
words or show other signs of ungrammaticality. Even in the case of a fully dropped-out decoder, the
model is able to capture higher-order statistics not present in the unigram distribution.

Additionally, in Table 6 we examine the effect of using lower-probability samples from the latent
Gaussian space for a model with a 75% word keep rate. We find lower-probability samples by
applying an approximately volume-preserving transformation to the Gaussian samples that stretches
some eigenspaces by up to a factor of 4. This has the effect of creating samples that are not too
improbable under the prior, but still reach into the tails of the distribution. We use a random linear

8

Workshop track - ICLR 2016

100% word keep 75% word keep

“ no , ” he said . why would i want you to look at me like this ?
“ no , ” he said . “ love you , too . ”
“ thank you , ” he said . she put her hand on his shoulder and followed him

to the door .

50% word keep 0% word keep

all this time , i could n’t stay in the room . not , did n’t be , for the time he was out in
“ maybe two or two . ” i i hear some of of of
she laughed again , once again , once again , and
thought about it for a moment in long silence .

i was noticed that she was holding the in in of the
the in

Table 5: Samples from a model trained with varying amounts of word dropout. We sample a vector
from the Gaussian prior and apply greedy decoding to the result. Note that diverse samples can be
achieved using a purely deterministic decoding procedure. Once we use reach a purely inputless
decoder in the 0% setting, however, the samples cease to be plausible English sentences.

he had been unable to conceal the fact that there was a logical explanation for his inability to
alter the fact that they were supposed to be on the other side of the house .

with a variety of pots strewn scattered across the vast expanse of the high ceiling , a vase of
colorful flowers adorned the tops of the rose petals littered the floor and littered the floor .

atop the circular dais perched atop the gleaming marble columns began to emerge from atop the
stone dais, perched atop the dais .

Table 6: Greedily decoded sentences from a model with 75% word keep probability, sampling from
lower-likelihood areas of the latent space. Note the consistent topics and vocabulary usage.

transformation, with matrix elements drawn from a uniform distribution from [−c, c], with c chosen
to give the desired properties (0.1 in our experiments). Here we see that the sentences are far less
typical, but for the most part are grammatical and contain interesting topic information, indicating
that the latent variable is capturing a rich variety of global features even for rare sentences.

6.2 SAMPLING FROM THE POSTERIOR

In addition to generating unconditional samples, we can also examine the sentences decoded from
the posterior vectors p(z|x) for various sentences x. Because the model is regularized to produce
distributions rather than deterministic codes, it does not exactly memorize and round-trip the input.
Instead, we can see what the model considers to be similar sentences by examining the posterior
samples. In Table 7, observe that the model stores information about the number of tokens and parts
of speech for each token, as well as apparent topic information. As the sentences get longer, the
fidelity of the round-tripped sentences decreases.

6.3 HOMOTOPIES

The use of a variational autoencoder allows us to generate sentences using greedy decoding on
continuous samples from the space of codes. Additionally, the volume-filling and smooth nature of
the code space allows us to examine for the first time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy between two codes ~z1 and ~z2 is the set of points
on the line between them, inclusive, ~z(t) = ~z1 ∗ (1 − t) + ~z2 ∗ t for t ∈ [0, 1]. Similarly, the
homotopy between two sentences decoded (greedily) from codes ~z1 and ~z2 is the set of sentences
decoded from the codes on the line. Examining these homotopies allows us to get a sense of what
neighborhoods in code space look like – how the autoencoder organizes information and what it
regards as a continuous deformation between two sentences.

While a standard non-variational RNNLM does not have a way to perform these homotopies, a vanilla
sequence autoencoder can do so. As mentioned earlier in the paper, if we examine the homotopies

9

Workshop track - ICLR 2016

INPUT we looked out at the setting sun . i went to the kitchen . how are you doing ?

MEAN they were laughing at the same time . i went to the kitchen . what are you doing ?
SAMP. 1 ill see you in the early morning . i went to my apartment . “ are you sure ?
SAMP. 2 i looked up at the blue sky . i looked around the room . what are you doing ?
SAMP. 3 it was down on the dance floor . i turned back to the table . what are you doing ?

Table 7: Three sentences which were used as inputs to the VAE, presented with greedy decodes
from the mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”
“i want to be with you . ”
“i do n’t want to be with you . ”
i do n’t want to be with you .
she did n’t want to be with him .

it made me want to cry .
no one had seen him since .
it made me feel uneasy .
no one had seen him .
the thought made me smile .
the pain was unbearable .
the crowd was silent .
the man called out .
the old man said .
the man asked .

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .
it was dark and cold .
there was a pause .
it was my turn .

Table 8: Paths between pairs of random points in VAE space: Note that intermediate sentences are
grammatical, and that topic and syntactic structure are often locally consistent between neighbors.

created by the sequence autoencoder in Table 1, though, we can see that the transition between
sentences is sharp, and results in ungrammatical intermediate sentences. This gives evidence for our
intuition that the VAE learns representations that are smooth and “fill up” the space.

In Tables 8 and 10 (in the appendix) we can see that the codes mostly contain syntactic information,
such as the number of words and the parts of speech of tokens, and that all intermediate sentences
are grammatical. Some topic information also remains consistent in neighborhoods along the path.
Additionally, sentences with similar syntax and topic but flipped sentiment valence, e.g. “the pain
was unbearable” vs. “the thought made me smile”, can have similar embeddings, a phenomenon
which has been observed with single-word embeddings (for example the vectors for “bad” and
“good” are often very similar due to their similar distributional characteristics).

7 CONCLUSION

This paper introduces the use of a variational autoencoder for unsupervised generative language
modeling. We present novel techniques that allow us to train our model successfully, and find that
it can substantially outperform an RNNLM baseline in the imputation of missing words. We analyze
the latent space learned by our model, and find that it is able to generate coherent and diverse
sentences through purely continuous sampling and provides interpretable homotopies that smoothly
interpolate between sentences.

We hope in future work to investigate factorization of the latent variable into separate style and
content components, to generate sentences conditioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language understanding tasks like textual entailment, and
to go beyond adversarial evaluation to a fully adversarial training objective.

ACKNOWLEDGMENTS

We thank the Google Brain team, Alireza Makhzani, Laurent Dinh, Jon Gauthier, and the Stanford
NLP Group for their helpful contributions and feedback.

10

Workshop track - ICLR 2016

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR, 2015.

Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks. arXiv preprint
arXiv:1411.7610, 2015.

Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society.
Series B (Methodological), 1986.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. In Proc. NIPS, 2015.

Andrew M. Dai and Quoc V. Le. Semi-supervised sequence learning. In Proc. NIPS, 2015.

Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep generative image models
using a laplacian pyramid of adversarial networks. In Proc. NIPS, 2015.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Proceedings of the 20th international conference
on Computational Linguistics, pp. 350. Association for Computational Linguistics, 2004.

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In Proc. CVPR, 2015.

Otto Fabius and Joost R. van Amersfoort. Variational recurrent auto-encoders. arXiv preprint
arXiv:1412.6581, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proc. NIPS, 2014.

Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. DRAW: A recurrent neural network
for image generation. In Proc. ICML, 2015.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. JMLR, 13(1), 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8),
1997.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep unordered compo-
sition rivals syntactic methods for text classification. In Proc. ACL, 2015.

Michael Kearns, Yishay Mansour, and Andrew Y Ng. An information-theoretic analysis of hard and
soft assignment methods for clustering. In Learning in graphical models. Springer, 1998.

Yoon Kim. Convolutional neural networks for sentence classification. EMNLP, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Proc. ICLR, 2015.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. Skip-thought vectors. arXiv preprint arXiv:1506.06726, 2015.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter On-
druska, Ishaan Gulrajani, and Richard Socher. Ask me anything: Dynamic memory networks for
natural language processing. arXiv preprint arXiv:1506.07285, 2015.

Quoc V. Le and Tomáš Mikolov. Distributed representations of sentences and documents. In Proc.
ICML, 2014.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A hierarchical neural autoencoder for paragraphs
and documents. In Proc. ACL, 2015a.

11

Workshop track - ICLR 2016

Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th international confer-
ence on Computational linguistics-Volume 1, pp. 1–7. Association for Computational Linguistics,
2002.

Yujia Li, Kevin Swersky, and Richard Zemel. Generative moment matching networks. In Proc.
ICML, 2015b.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille. Deep captioning with
multimodal recurrent neural networks (m-RNN). In Proc. ICLR, 2015.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of English: The Penn Treebank. Computational linguistics, 19(2), 1993.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Honza Černockỳ, and Sanjeev Khudanpur.
Extensions of recurrent neural network language model. In Proc. ICASSP, 2011.

Tapani Raiko, Mathias Berglund, Guillaume Alain, and Laurent Dinh. Techniques for learning
binary stochastic feedforward neural networks. In Proc. ICLR, 2015.

Danilo J. Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Proc.
ICML, 2015.

Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. In Proc. ICML, 2014.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Proc. NIPS, 2012.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christopher D Manning, and Andrew Y Ng. Dy-
namic pooling and unfolding recursive autoencoders for paraphrase detection. In Advances in
Neural Information Processing Systems, pp. 801–809, 2011.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15(1), 2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In
Proc. NIPS, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In Proc. NIPS, 2014.

Lucas Theis and Matthias Bethge. Generative image modeling using spatial LSTMs. In Proc. NIPS,
2015.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image
caption generator. In Proc. CVPR, 2015.

Han Zhao, Zhengdong Lu, and Pascal Poupart. Self-adaptive hierarchical sentence model. IJCAI,
2015.

APPENDIX: HYPERPARAMETER TUNING

We extensively tune the hyperparameters of each model using an automatic Bayesian hyperparame-
ter tuning algorithm (based on Snoek et al., 2012) over development set data. We run the model with
each set of hyperpameters for 10 hours, operating 12 experiments in parallel, and choose the best
set of hyperparameters after 200 runs. Results for our language modeling experiments are reported
in Table 9.

12

Workshop track - ICLR 2016

Standard Inputless Decoder
RNNLM VAE RNNLM VAE

Embedding dim. 464 353 305 499
LSTM state dim. 337 191 68 350
z dim. – 13 – 111
Word dropout keep rate 0.66 0.62 – –

Table 9: Automatically selected hyperparameter values used for the models discussed in Section 4.

APPENDIX: ADDITIONAL HOMOTOPIES

Table 10 shows additional homotopies of the kind discussed in Section 6.3. We observe that interme-
diate sentences are almost always grammatical, and often contain consistent topic, vocabulary and
syntactic information in local neighborhoods as they interpolate between the endpoint sentences.
Because the model is trained on fiction, including romance novels, the topics are often rather dra-
matic.

amazing , is n’t it ?
so , what is it ?
it hurts , isnt it ?
why would you do that ?
“ you can do it .
“ i can do it .
i ca n’t do it .
“ i can do it .
“ do n’t do it .
“ i can do it .
i could n’t do it .

no .
he said .
“ no , ” he said .
“ no , ” i said .
“ i know , ” she said .
“ thank you , ” she said .
“ come with me , ” she said .
“ talk to me , ” she said .
“ do n’t worry about it , ” she said .

i dont like it , he said .
i waited for what had happened .
it was almost thirty years ago .
it was over thirty years ago .
that was six years ago .
he had died two years ago .
ten , thirty years ago .
“ it ’s all right here .
“ everything is all right here .
“ it ’s all right here .
it ’s all right here .
we are all right here .
come here in five minutes .

this was the only way .
it was the only way .
it was her turn to blink .
it was hard to tell .
it was time to move on .
he had to do it again .
they all looked at each other .
they all turned to look back .
they both turned to face him .
they both turned and walked away .

there is no one else in the world .
there is no one else in sight .
they were the only ones who mattered .
they were the only ones left .
he had to be with me .
she had to be with him .
i had to do this .
i wanted to kill him .
i started to cry .
i turned to him .

im fine .
youre right .
“ all right .
you ’re right .
okay , fine .
“ okay , fine .
yes , right here .
no , not right now .
“ no , not right now .
“ talk to me right now .
please talk to me right now .
i ’ll talk to you right now .
“ i ’ll talk to you right now .
“ you need to talk to me now .
“ but you need to talk to me now .

Table 10: Selected homotopies between pairs of random points in the latent VAE space.

13

Workshop track - ICLR 2016

Method Accuracy F1

Feats 73.2 –
RAE+DP 72.6 –
RAE+feats 74.2 –
RAE+DP+feats 76.8 83.6

ST 73.0 81.9
Bi-ST 71.2 81.2
Combine-ST 73.0 82.0

VAE 72.9 81.4
VAE+feats 75.0 82.4
VAE+combine-ST 74.8 82.3
Feats+combine-ST 75.8 83.0
VAE+combine-ST+feats 76.9 83.8

Table 11: Results for the MSR Paraphrase Corpus.

APPENDIX: TEXT CLASSIFICATION

In order to further examine the the structure of the representations discovered by the VAE language
model, we conduct classification experiments on paraphrase detection and question type classifica-
tion. We train a VAE with a hidden state size of 1200 hidden units on the Books Corpus, and use the
posterior mean of the model as the extracted sentence vector. We train classifiers on these means
using the same experimental protocol as Kiros et al. (2015).

Paraphrase detection For the task of paraphrase detection, we use the Microsoft Research Para-
phrase Corpus (Dolan et al., 2004). We compute features from the sentence vectors of sentence
pairs in the same way as Kiros et al. (2015), concatenating the elementwise products and the ab-
solute value of the elementwise differences of the two vectors. We train an ℓ2-regularized logistic
regression classifier and tune the regularization strength using cross-validation.

We present results in Table 11 and compare to several previous models for this task. Feats is the
lexicalized baseline from Socher et al. (2011). RAE uses the recursive autoencoder from that work,
and DP adds their dynamic pooling step to calculate pairwise features. ST uses features from the
unidirectional skip-thought model, bi-ST uses bidirectional skip-thought, and combine-ST uses the
concatenation of those features. We also experimented with concatenating lexical features and the
two types of distributed features.

We found that our features performed slightly worse than skip-thought features by themselves and
slightly better than recursive autoencoder features, and were complementary and yielded strong
performance when simply concatenated with the skip-thought features.

Method Accuracy

ST 91.4
Bi-ST 89.4
Combine-ST 92.2
AE 84.2
VAE 87.0
CBOW 87.3
VAE, combine-ST 92.0

RNN 90.2
CNN 93.6

Table 12: Results for TREC Question Classification.

Question classification We also conduct experiments on the TREC Question Classification dataset
of Li & Roth (2002). Following Kiros et al. (2015), we train an ℓ2-regularized softmax classifier

14

Workshop track - ICLR 2016

with 10-fold cross-validation to set the regularization. Note that using a linear classifier like this one
may disadvantage our representations here, since the Gaussian distribution over hidden codes in a
VAE is likely to discourage linear separability.

We present results in Table 12. Here, AE is a plain sequence autoencoder. We compare with results
from a bag of word vectors (CBOW, Zhao et al., 2015) and skip-thought (ST). We also compare
with an RNN classifier (Zhao et al., 2015) and a CNN classifier (Kim, 2014) both of which, unlike
our model, are optimized end-to-end. We were not able to make the VAE codes perform better
than CBOW in this case, but they did outperform features from the sequence autoencoder. Skip-
thought performed quite well, possibly because the skip-thought training objective of next sentence
prediction is well aligned to this task: it essentially trains the model to generate sentences that
address implicit open questions from the narrative of the book. Combining the two representations
did not give any additional performance gain over the base skip-thought model.

15

	Introduction
	Prior work
	Unsupervised models for whole-sentence encoding
	The variational autoencoder

	The variational autoencoder language model
	Optimization challenges

	Results: Language modeling
	Results: Imputing missing words
	Analyzing variational models
	Analyzing the impact of word dropout
	Sampling from the posterior
	Homotopies

	Conclusion

