
Generating SIMD Vectorized Permutations

Franz Franchetti and Markus Püschel�

Electrical and Computer Engineering,
Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213
{franzf,pueschel}@ece.cmu.edu

http://www.spiral.net

Abstract. This paper introduces a method to generate efficient vector-
ized implementations of small stride permutations using only vector load
and vector shuffle instructions. These permutations are crucial for high-
performance numerical kernels including the fast Fourier transform. Our
generator takes as input only the specification of the target platform’s
SIMD vector ISA and the desired permutation. The basic idea underlying
our generator is to model vector instructions as matrices and sequences
of vector instructions as matrix formulas using the Kronecker product
formalism. We design a rewriting system and a search mechanism that
applies matrix identities to generate those matrix formulas that have
vector structure and minimize a cost measure that we define. The for-
mula is then translated into the actual vector program for the specified
permutation. For three important classes of permutations, we show that
our method yields a solution with the minimal number of vector shuffles.
Inserting into a fast Fourier transform yields a significant speedup.

1 Introduction

Most current instruction set architectures (ISAs) or ISA extensions contain single
instruction multiple data (SIMD) vector instructions. These instructions operate
in parallel on subwords of a large vector register (typically 64-bit or 128-bit
wide). Typically SIMD vector ISA extensions support 2-way–16-way vectors of
floating-point or integer type. The most prominent example is Intel’s SSE family.

From a software development point of view the most challenging difference
across vector extensions is their widely varying capability in reorganizing data
with in-register shuffle instructions. To obtain highest performance it is crucial
to limit memory accesses to transfers of entire vectors and to perform any data
reordering within the register file, ideally using the minimal number of shuffle
instructions. Unfortunately, the optimal solution is difficult to find and depends
on the target architecture.

The above optimizations are most relevant for highly optimized numerical
kernels where the slowdown suffered from “useless” instructions can be punish-
ing. For instance, on a Core2 Duo loading an aligned unit-stride 16-way vector of
� This work was supported by NSF through awards 0234293, 0325687, and by DARPA

through the Department of Interior grant NBCH1050009.

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 116–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Generating SIMD Vectorized Permutations 117

8-bit elements costs one vector load, while gathering the same data at a stride
costs at least 24 instructions, some of them particularly expensive. However,
finding a short instruction sequence that reorganizes data in-register in a de-
sired way is akin to solving puzzles.

Contribution. In this paper we automatically generate vector programs for an
important class of permutations called stride permutations or matrix transpo-
sitions, given only the specification of the permutation and the specification of
the target vector instruction set architecture (ISA).

rewriting + search
vector ISA

vector
program

permutation

The basic idea is that we model both instructions and permutations as matri-
ces, and instruction sequences as matrix formulas using the Kronecker product
formalism [1]. We design a rewriting system that applies matrix identities to
generate, using a dynamic programming backtracking search, vectorized ma-
trix formulas that minimize a cost measure that we define. The formula is then
translated into the actual vector program implementing the specified permuta-
tion. For 3 important classes of permutations, we show that our method yields a
solution with the minimal number of vector shuffles. We also demonstrate a sig-
nificant speedup when inserting the generated permutation into small unrolled
fast Fourier transform (FFT) kernels generated by Spiral [2].

Related Work. The motivation of this work arose from generating optimized
programs for the discrete Fourier transform (DFT) in Spiral [2]. Spiral automates
the entire code generation and optimization process, including vectorization [3,4],
but, for FFTs, relies on three classes of in-register permutations [3]. These had
to be implemented by hand for each vector extension. This paper closes the loop
by generating these basic blocks for complete automatic porting across vector
extensions. While our method is domain specific, it could in principle be applied
to optimize vectorization of strided data access in a general purpose compiler,
in an application similar to the approach in [5].

Reference [6] served as inspiration for our approach. Reference [7] derives
the number of block transfers and [8] an optimal algorithm for transpositions on
multi-level memories. Both index computation time and I/O time are considered
in [9], and [10] optimizes matrix transpositions using a combination of analytical
and empirical approaches. In contrast to prior work, we generate vectorized
programs for small stride permutations that are optimized specifically for the
peculiarities of current SIMD extensions.

General compiler vectorization techniques such as loop vectorization [11] or
extraction of instruction-level parallelism and data reorganization optimiza-
tion [12,5] operate on input programs while we generate programs for a very
specific functionality using a declarative language and rewriting.



118 F. Franchetti and M. Püschel

2 Background

We briefly overview SIMD vector instructions and introduce our mathematical
framework to describe, manipulate, and vectorize stride permutations.

2.1 Vector SIMD Extensions

Most current general purpose and DSP architectures include short vector SIMD
(single instruction, multiple data) extensions. For instance, Intel and AMD de-
fined over the years MMX, Wireless MMX, SSE, SSE2, SSE3, SSSE, SSE4, SSE5,
3DNow!, Extended 3DNow!, and 3DNow! Professional as x86 SIMD vector ex-
tensions. On the PowerPC side AltiVec, VMX, the Cell SPU, and BlueGene/L’s
custom floating-point unit define vector extensions. Additional extensions are
defined by PA-RISC, MIPS, Itanium, XScale, and many VLIW DSP processors.

Common to all vector extensions are stringent memory transfer restrictions.
Only naturally aligned vectors can be loaded and stored with highest efficiency.
Accessing unaligned or strided data can be extremely costly. For performance
this requires that data be reordered (shuffled) inside the register file, using vec-
tor shuffle instructions. However, the available vector shuffle instructions vastly
differ across SIMD extensions.

We mainly base our discussion on Intel’s SSE2 extension, which defines six
128-bit modes: 4-way single-precision and 2-way double-precision vectors, and
2-way 64-bit, 4-way 32-bit, 8-way 16-bit, and 16-way 8-bit integer vectors. We
denote the vector length of a SIMD extension mode with ν.

C intrinsic interface. Compilers extend the C language with vector data types
and intrinsic functions for vector instructions. This way, the programmer can
perform vectorization and instruction selection while register allocation and in-
struction scheduling are left to the C compiler. We use the C extension defined
by the Intel C++ compiler (also supported by Microsoft Visual Studio and the
GNU C compiler).

SSE2 vector shuffle instructions. Intel’s SSE2 extension provides one of the
richest sets of vector shuffle instructions among the currently available SIMD
extensions. Table 1 summarizes the instructions native to SSE2’s 6 modes.

For example, _mm_shuffle_pd is a parameterized binary shuffle instruction
for the 2-way 64-bit floating-point mode. It shuffles the entries of its two operand
vectors according to a compile time constant (a 2-bit integer). _mm_unpacklo_ps
is a 4-way 32-bit floating-point shuffle instruction that interleaves the lower
halves of its two operands.

We observe some intricacies of the SSE2 instruction set that considerably com-
plicate its usability in general and the vectorization of permutations in particular:
1) The floating-point modes of SSE2 extend SSE while the integer modes extend
MMX. This leads to inconsistencies among the available operations and naming
conventions. 2) The parameterized shuffle instructions like _mm_shuffle_ps are
not as general as in AltiVec. 3) Integer vector instructions for coarser granularity



Generating SIMD Vectorized Permutations 119

Table 1. SSE2 shuffle instructions. {...} denotes a vector value. a and b are vectors,
a.i and b.i vector elements. <...> denotes an integer compile time parameter derived
from the constants inside <>. 0 ≤ j, k, m, n < 4 ≤ t, u, v, w < 8, and 0 ≤ r, s < 2.

2-way 64-bit floating-point
_mm_unpacklo_pd(a, b) → {a.0, b.0}
_mm_unpackhi_pd(a, b}) → {a.1, b.1}
_mm_shuffle_pd(a, b, <r, s>) → {a.r, b.s}

4-way 32-bit floating-point
_mm_unpacklo_ps(a, b) → {a.0, b.0, a.1, b.1}
_mm_unpackhi_ps(a, b) → {a.2, b.2, a.3, b.3}
_mm_shuffle_ps(a, b, <j, k, m, n>), → {a.j, a.k, b.m, b.n}

2-way 64-bit integer
_mm_unpacklo_epi64(a, b) → {a.0, b.0}
_mm_unpackhi_epi64(a, b) → {a.1, b.1}

4-way 32-bit integer
_mm_unpacklo_epi32(a, b) → {a.0, b.0, a.1, b.1}
_mm_unpackhi_epi32(a, b) → {a.2, b.2, a.3, b.3}
_mm_shuffle_epi32(a, <j, k, m, n>)→ {a.j, a.k, a.m, a.n}

8-way 16-bit integer
_mm_unpacklo_epi16(a, b) → {a.0, b.0, a.1, b.1, a.2, b.2, a.3, b.3}
_mm_unpackhi_epi16(a, b) → {a.4, b.4, a.5, b.5, a.6, b.6, a.7, b.7}
_mm_shufflelo_epi16(a, <j,k,m,n>) → {a.j,a.k,a.m,a.n,a.4,a.5,a.6,a.7}
_mm_shufflehi_epi16(a, <t,u,v,w>) → {a.0,a.1,a.2,a.3,a.t,a.u,a.v,a.w}

16-way 8-bit integer
_mm_unpacklo_epi8(a, b) → {a.0, b.0, a.1, b.1,...,a.7, b.7}
_mm_unpackhi_epi8(a, b) → {a.8, b.8, a.9, b.9,...,a.15, b.15}

(for instance, 4-way 32-bit) can be used with vectors of finer granularity (for in-
stance, 8-way 16-bit and 16-way 8-bit).

Gather vs. vectorized permutation. Data permutations can be implemented
in two ways:

– using vector shuffle instructions, or
– using gather/scatter operations that load/store ν scalars from/to non-

contiguous memory locations.

The goal of this paper is to generate fast implementations of the former and
evaluate against the latter. We focus on small permutations where no cache ef-
fects are visible. Vector shuffle operations increase the instruction count without
doing “useful” computation and may be executed on the same execution units as
vector arithmetic operations. However, once loaded, data stays in the register file
provided no spilling is necessary. Conversely, implementing vector gathers and
scatters can become costly: On SSE2, 2, 7, 16, and 24 instructions are needed
per gather/scatter for 2-way, 4-way, 8-way, and 16-way vectors, respectively. On
the Cell SPU it is even more costly, even though scalar loads are supported.



120 F. Franchetti and M. Püschel

2.2 Mathematical Background

We introduce the mathematical formalism used in this paper. For more details,
we refer the reader to [1,2,6]. All vectors in this paper are column vectors.

Direct sum of vectors. The direct sum x ⊕ y ∈ R
m+n of two vectors x ∈ R

m

and y ∈ R
n is the concatenation of their elements.

Permutations and permutation matrices. The goal of this paper is to gen-
erate vectorized data permutations. We represent permutations as permutation
matrices P ∈ R

n×n.
We define two basic permutation matrices: the n × n identity matrix In and

the stride permutation matrix Lmn
m , which permutes an input vector x of length

mn as in+ j �→ jm+ i, 0 ≤ i < m, 0 ≤ j < n. For example (“·” represents “0”),

L6
2

⎛
⎜⎜⎝

x0
x1
x2
x3
x4
x5

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x0
x2
x4
x1
x3
x5

⎞
⎟⎟⎠ , with L6

2 =

⎛
⎜⎜⎜⎝

1 · · · · ·
· · 1 · · ·
· · · · 1 ·
· 1 · · · ·
· · · 1 · ·
· · · · · 1

⎞
⎟⎟⎟⎠ .

If x is viewed as an n×m matrix, stored in row-major order, then Lmn
m performs

a transposition of this matrix.
Matrix operators. Weneed threematrix operators.Thematrix productC = AB
is defined as usual. The tensor (or Kronecker) product of matrices is defined by

A ⊗ B = (ai,jB)i,j with A = (ai,j)i,j .

In particular,

In ⊗A =

⎛
⎝

A
. . .

A

⎞
⎠ .

Finally, the stacking of two matrices A and B is defined in the obvious way:

C =
(

A
B

)
.

Permutation matrix identities. Our approach uses factorization properties
of stride permutation matrices. We summarize those that we use throughout this
paper. Intuitively, these identities express performing a matrix transposition by
two passes instead of using a single pass. They are including blocked matrix
transposition.

Identity matrices can be split into tensor products of identity matrices if their
sizes are composite numbers, Imn = Im ⊗ In. Further, we use four factorizations
of stride permutations:

Lkmn
n =

(
Lkn

n ⊗ Im
)(

Ik ⊗ Lmn
n

)
(1)

Lkmn
n = Lkmn

kn Lkmn
mn (2)

Lkmn
km =

(
Ik ⊗ Lmn

m

)(
Lkn

k ⊗ Im
)

(3)

Lkmn
km = Lkmn

k Lkmn
m . (4)



Generating SIMD Vectorized Permutations 121

Table 2. Translating matrix formulas into Matlab style code. x denotes the input and
y the output vector. The subscript of A and B specifies the size of the matrix. x[b:s:e]
denotes the subvector of x starting at b, ending at e and extracted at stride s.

Matrix formula Code

y = (AnBn)x t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1];)

y = (Im ⊗An)x for (i=0;i<m;i++)
y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x for (i=0;i<m;i++)
y[i:n:i+m-1] = A(x[i:n:i+m-1]);

y = Lmn
m x for (i=0;i<m;i++)

for (j=0;j<n;j++)
y[i+m*j]=x[n*i+j];

y =
(

Am×k

Bn×k

)
x

y[0:1:m-1] = A(x[0:1:k-1]);
y[m:1:m+n-1] = B(x[0:1:k-1]);

Translating matrix expressions into programs. Matrix formulas, con-
structed using the above formalism, can be recursively translated into standard
scalar programs by applying the translation rules in Table 2 [13].

3 Vector Programs and Matrix Expressions

In this section we explain how we model vector instructions as matrices, se-
quences of vector instructions as matrix expressions, and how these are trans-
lated into programs.

3.1 Modeling Vector Shuffle Instructions as Matrices

We consider only unary and binary vector shuffle instructions. (AltiVec’s
vec_perm is a three-operand instruction but the third operand is a param-
eter.) The basic idea is to view each such instruction, when applied to its
input vector(s), as a matrix-vector product. The matrix becomes a declara-
tive representation of the instruction. As an example, consider the instruction
_mm_unpacklo_ps, which performs the operation (see Table 1).

_mm_unpacklo_ps(a, b) -> {a.0, b.0, a.1, b.1}

Setting x0 = (a0, a1, a2, a3)T and x1 = (b0, b1, b2, b3)T , this shuffle becomes the
the matrix-vector product

y = M4
mm unpacklo ps(x0 ⊕ x1), with M4

mm unpacklo ps =

⎛
⎜⎝

1 · · · · · · ·
· · · · 1 · · ·
· 1 · · · · · ·
· · · · · 1 · ·

⎞
⎟⎠ .



122 F. Franchetti and M. Püschel

Hence, the instruction _mm_unpacklo_ps is represented by the matrix
M4

mm unpacklo ps. The subscript indicates the instruction and the superscript the
vector length ν.

Unary and binary instructions. In general, for a ν-way mode, unary instruc-
tions are represented as ν×ν matrices and binary instructions as ν×2ν matrices.
Further, each binary instruction induces a unary instruction by setting both of
its inputs to the same value. The exact form of these matrices follow directly
from Table 1.

Polymorphic instructions. Some instructions can be used with multiple data
types, which produces different associated matrices. For example, in 2-way 64-
bit integer mode and 4-way 32-bit integer mode, _mm_unpacklo_epi64 is respec-
tively represented by

M2
mm unpacklo epi64 =

(
1 · · ·
· · 1 ·

)
and M4

mm unpacklo epi64 =

⎛
⎜⎝

1 · · · · · · ·
· 1 · · · · · ·
· · · · 1 · · ·
· · · · · 1 · ·

⎞
⎟⎠.

_mm_unpacklo_epi64 can also be used in 8-way 16-bit and 16-way 8-bit integer
mode as well as in 2-way 64-bit and 4-way 32-bit floating-point mode.

Parameterized instructions. We treat parameterized instructions as one in-
struction instance per possible parameter value. For instance, _mm_shuffle_ps
is parameterized by four 2-bit constants, leading to 256 instruction instances.
We assume that all parameters are fixed at compile time, even if the instruction
set does support variable parameters (as AltiVec’s vec_perm).

Building matrices from ISA definition. Our system generates the matrices
for the given instruction set automatically. To do this, we first collect the in-
struction description from ISA and compiler manuals and basically copy them
verbatim into a database. Each instruction is represented by a record including
the vector length ν, the semantics function that takes up to three lists (two
input vectors and one parameter vector) and produces a list, and the parame-
ters list that contains all possible parameter values. Unary instructions ignore
the second input and unparameterized instructions ignore the third input. For
instance, _mm_shuffle_ps is represented by

Intel_SSE2.4_x_float._mm_shuffle_ps := rec(
v := 4,
semantics := (x, y, p) -> [x[p[1]], x[p[2]], y[p[3]], y[p[4]]],
parameters := Cartesian([[1..4],[1..4], [1..4], [1..4]])

);

The matrix generation is straightforward by “applying” the instruction to the
canonical base vectors; the results are the columns of the desired matrix. More
formally, if eν

i ∈ R
ν is the canonical basis vector with the “1” at the ith posi-

tion and 0ν ∈ R
ν the zero vector, then the matrix Mp for an instruction with

semantics function s(·, ·, ·) and parameter p is given by



Generating SIMD Vectorized Permutations 123

Mν
instr,p =

(
s(eν

0 , 0ν , p)| . . . |s(eν
ν−1, 0

ν, p)|s(0ν , eν
0 , p)| . . . |s(eν

0ν ,ν−1, p)
)
.

3.2 Translating Matrix Formulas into Vector Programs

In Table 2, we summarized how matrix formulas are recursively translated into
scalar code. To obtain vector programs for formulas representing permutations,
we expand this table with three cases: instruction matrices, vector permutations,
and half-vector permutations. Then we define the class of all formulas that we
translate into vector programs and define a cost measure for these formulas.

Instruction matrices. If a matrix, such as M4
mm unpacklo ps, corresponds to a

vector instruction it is translated into this instruction.

Vector permutations. If a permutation is of the form P ⊗ Iν , P a permutation
matrix, it permutes blocks of data of size ν. Hence, we translate P ⊗Iν into vector
code by first translating P into scalar code, and then replacing the scalar data
type to the corresponding vector data type.

For example, y = (L4
2 ⊗ I4)x is implemented for 4-way 32-bit floating point

SSE2 in two steps. First, y = L4
2 x is translated into the scalar program.

float x[2], y[2]; y[0] = x[0]; y[1] = x[2]; y[2] = x[1]; y[3] = x[3];

Then the scalar data type float is replaced by the vector data type __m128 to
get the final program

__m128 x[2], y[2]; y[0] = x[0]; y[1] = x[2]; y[2] = x[1]; y[3] = x[3];

Half-vector permutation. Permutations P ⊗ Iν/2 are implemented using the
same instructions i1 and i2 that implement, if possible, L4

2 ⊗ Iν/2. Otherwise,
P ⊗ Iν/2 cannot be implemented.

Vectorized matrix formulas.We define vectorized matrix formulas 〈vmf〉 as
matrix formulas that can be translated into vector programs as explained above.
The exact form depends on the vector extension and mode used. Formally, in BNF

〈vmf〉 ::= 〈vmf〉 〈vmf〉 | Im ⊗〈vmf〉 |
(

〈vmf〉
〈vmf〉

)
| 〈perm〉 ⊗ Iν |

〈perm〉 ⊗ Iν/2 if L4
2 ⊗ Iν/2 possible | Minstr with instr in ISA

〈perm〉 ::= Lmn
m | Im ⊗〈perm〉 | 〈perm〉 ⊗ Im | 〈perm〉〈perm〉

Cost measure. We define a cost measure for vectorized matrix formulas re-
cursively through (5)–(11). (6) assigns a constant cost cinstr to each instruction
instr. (7) states that permutations of vectors are for free, as they do not incur
any vector shuffle instructions. (9)–(11) makes our cost measure additive with
respect to matrix operators “·”, “

(
·
·

)
”, and“⊗”. The instructions i1 and i2 in

(8) are the same that implement L4
2 ⊗ Iν/2.



124 F. Franchetti and M. Püschel

CostISA,ν (P ) = ∞, P not a 〈vmf〉 (5)
CostISA,ν (Mν

instr) = cinstr (6)
CostISA,ν (P ⊗ Iν) = 0, P permutation (7)

CostISA,ν

(
P ⊗ Iν/2

)
= �n/2�ci1 + n/2�ci2, P 2n × 2n permutation (8)

CostISA,ν (AB) = CostISA,ν (A) + CostISA,ν (B) (9)

CostISA,ν

((
A
B

))
= CostISA,ν (A) + CostISA,ν (B) (10)

CostISA,ν (Im ⊗A) = mCostISA,ν (A) (11)

To minimize the instruction count cinstr = 1 is chosen. Using values of cinstr that
depend on instr allows for fine-tuning of the instruction selection process when
multiple solutions with minimal instruction count exist. For example, for SSE2
we set cinstr = 1 for binary instructions and cinstr = 0.9 to unary instructions.
This slightly favors unary instructions which require one register less. Other
refinements are possible.

4 Generating Vectorized Permutation Programs

Our goal is to generate efficient vector programs that implement stride permu-
tations Lnν

k . The parameters of the stride permutation imply that we permute
data that can be stored in an array of n SIMD vectors and that k | nν.

Problem statement. Input: The permutation Lnν
k to be implemented, the vec-

tor length ν, and a list of vector instruction instances instr for the ISA consid-
ered and their associated costs cinstr.

Output: A vectorized matrix formula for Lnν
k with minimized cost and the

implementation of the formula.
Our algorithm for solving the problem uses a rewriting system that is used in

tandem with a dynamic programming search using backtracking. For important
cases the solution is proven optimal.

4.1 Rewriting Rule Set

We use a rewriting system [14] to recursively translate the given stride permuta-
tion Lnν

k into a vectorized matrix formula. In each rewriting step, the rewriting
system finds one of the rules (12)–(22) and suitable parameters (a subset of k,
�, m, n, r, instr, i1, and i2) for that rule so that its left side matches a subfor-
mula in the current matrix formula. This matching subformula is then replaced
by the right side of the rule.

Note that there may be degrees of freedom, as the matching of the left side
may, for instance, involve factorizing the integer kmn into three integers k, m,
and n, or involve the picking of a suitable, non-unique instruction instr. Also,
it is not guaranteed that one of the rules is applicable, which may lead to dead
ends. However, Section 4.3 shows that under relatively weak conditions (that are
met by most current vector extension modes) there exists a solution for any Lnν

k .



Generating SIMD Vectorized Permutations 125

The best solution has no obvious closed form; we use a dynamic programming
search with backtracking to find it. The remainder of this section discusses the
rewriting rule set while Section 4.2 discusses the search.

Recursive rules. Rules (12)–(17) are recursive rules. (12) is the entry rule, nor-
malizing Lnν

k into the shape I� ⊗ Lmn
m ⊗ Ir to simplify pattern matching. (13)–(16)

mirror identities (1)–(4) and have the factorization kmn as degree of freedom.
(17) extracts candidates for vector instruction matrices and may be followed by
application of (20)–(22).

Lmn
m → I1 ⊗ Lmn

m ⊗ I1 (12)
I� ⊗ Lkmn

n ⊗ Ir →
(
I� ⊗ Lkn

n ⊗ Imr

)(
I�k ⊗ Lmn

n Ir
)

(13)

I� ⊗ Lkmn
n ⊗ Ir →

(
I� ⊗ Lkmn

kn ⊗ Ir
)(

I� ⊗ Lkmn
mn ⊗ Ir

)
(14)

I� ⊗ Lkmn
km ⊗ Ir →

(
Ik� ⊗ Lmn

m ⊗ Ir
)(

I� ⊗ Lkn
k ⊗ Im

)
(15)

I� ⊗ Lkmn
km ⊗ Ir →

(
I� ⊗ Lkmn

k ⊗ Ir
)(

I� ⊗ Lkmn
m ⊗ Ir

)
(16)

Ik� ⊗ Lmn
m ⊗ Ir → Ik ⊗

(
I� ⊗ Lmn

m ⊗ Ir
)

if �mnr ∈ {ν, 2ν} (17)

Base cases. Rules (18)–(22) translate constructs I� ⊗ Lmn
m ⊗ Ir into vectorized

matrix formulas. Rule (19) is only applied if L4
2 ⊗ Iν/2 can be done using two

instructions.

I� ⊗ Lmn
m ⊗ Irν →

(
I� ⊗ Lmn

m ⊗ Ir
)

⊗ Iν (18)

I� ⊗ Lmn
m ⊗ Irν/2 →

(
I� ⊗ Lmn

m ⊗ Ir
)

⊗ Iν/2 (19)
I� ⊗ Lmn

m ⊗ Ir → Mν
instr if ∃ instr: I� ⊗ Lmn

m ⊗ Ir = Mν
instr (20)

I� ⊗ Lmn
m ⊗ Ir → Mν

i1M
ν
i2 if ∃ i1, i2: I� ⊗ Lmn

m ⊗ Ir = Mν
i1M

ν
i2 (21)

I� ⊗ Lmn
m ⊗ Ir →

(
Mν

i1
Mν

i2

)
if ∃ i1, i2: I� ⊗ Lmn

m ⊗ Ir =
(

Mν
i1

Mν
i2

)
(22)

The right-hand side of (18) can be implemented solely using vector assignments
(see Section 3.2). (19) introduces half-vector permutations which are necessary
if mn is not a two-power. (20) matches if a (necessarily unary) vector instruction
(instance) instr exists, which implements the left-hand side. As example,

y = _mm_shuffle_ps(x, x, _MM_SHUFFLE(0,2,1,3));

implements y = (I1 ⊗ L4
2 ⊗ I1)x for 4-way single-precision floating-point SSE2.

(21) matches if two (necessarily unary) vector instruction (instances) i1 and i2
exist, which implement its left-hand side when applied consecutively. As example,

y = _mm_shufflehi_epi16(_mm_shufflelo_epi16(x,
_MM_SHUFFLE(0,2,1,3)), _MM_SHUFFLE(0,2,1,3));

implements y = (I2 ⊗ L4
2 ⊗ I2)x for 16-way 8-bit integer SSE2. (22) matches if

two (necessarily binary) vector instruction (instances) i1 and i2 exist, which
implement its left-hand side when applied to the input in parallel. As example,

y[0] = _mm_unpacklo_epi64(x[0], x[1]);
y[1] = _mm_unpacklo_epi64(x[0], x[1]);

implements y = (I1 ⊗ L4
2 ⊗ I4)x for 8-way 16-bit integer SSE2.



126 F. Franchetti and M. Püschel

Base case library. To speed up the pattern matching required in (20)–(22), we
perform a one-time initialization for each new vector architecture (instruction set
and mode), and build a base case library that caches the instruction sequences
that implement I� ⊗ Lmn

m ⊗ Ir for all values �, m, n, and r with �mnr ∈ {ν, 2ν}
or stores that no such instruction(s) exist. We build this table in a five-step
procedure.

– First we create the matrices associated with each instance of each instruction
(for all modes and parameters).

– Next we filter out all matrices that have more than one “1” per column, as
these matrices cannot be used to build permutations.

– To support (19), we search for a pair of binary instructions that implement
L4

2 ⊗ Iν/2.
– To support (20), we find all unary instruction (instances) that implement

I� ⊗ Lmn
m ⊗ Ir with ν = �mnr and save them in the cache.

– To support (21), we find all sequences of two unary instruction (instances)
that implement I� ⊗ Lmn

m ⊗ Ir with ν = �mnr and save them in the cache.
– To support (22), we find all pairs binary instruction (instances) that imple-

ment I� ⊗ Lmn
m ⊗ Ir with 2ν = �mnr and save them in the cache.

4.2 Dynamic Programming Search

The rule set (12)–(22) contains recursive and base rules with choices. We want to
find a (not necessarily unique) vectorized matrix formula for Lnν

k with minimal
cost. We use dynamic programming with backtracking, which finds the optimal
solution within the space of possible solutions spanned by the rewriting rules.

Dynamic Programming (DP). For a formula F , let E(F ) be the set of formu-
las that can be reached by applying one rewriting step using (12)–(22). Assume
A ∈ E(F ) is not yet a vectorized matrix formula. We define X(A) as the optimal
vectorized matrix formula, computed recursively together with its cost, or cost
= ∞ is it does not exist. DP computes X(F ) as

X(F ) = arg min {CostISA,ν (X(A)) |A ∈ E(F )} . (23)

All computed optimal costs and associated formulas are stored in a table. DP is
started by evaluating CostISA,ν (X(Lnν

k )).

Backtracking. Not all formulas I� ⊗ Lmn
m ⊗ Ir with �mnr ∈ {ν, 2ν} can be

necessarily translated into a vectorized matrix formula using (20)–(22). Thus,
randomly picking elements A ∈ E(F ) during the rewriting process may not yield
a vectorized matrix formula at termination; hence, DP needs to backtrack and
in the worst case will generates all formulas that can be obtained using our
rewriting rules.

Existence and optimality of the solution are discussed in Section 4.3.



Generating SIMD Vectorized Permutations 127

Cycles in rewriting. (14) and (16) produce an infinite cycle. To avoid that
problem, we actually run two DPs—once without (14) and once without (16)—
and take the minimum value of both answers.

Runtime of algorithm. The generation of vectorized base cases consists of
two components: one-time generation of the base case library, and a DP for each
stride permutation to be generated.

– Base case library. For an instruction set extension mode with n instruction
instances, O(n2) matrix comparisons are required to build the base case
library. On a current machine the actual runtime is a few seconds to minutes.

– DP. Let nν =
∏k−1

i=0 pri

i be the prime factorization of nν. For a stride per-
mutation Lnν

k , DP with backtracking is in exponential in
∑

i ri. However, k
and ri are small as we are only handling basic blocks. On a current machine
the actual runtime is a few seconds.

4.3 Existence and Optimality

Since we model both permutations and instructions using matrices, we can use
mathematics to answer existence and optimality questions. Specifically, we give
conditions under which our rewriting system finds a solution, i.e., a vectorized
matrix formula, at all.

Further, we show vectorized matrix formulas for Lν2

ν generated for all modes
of SSE2 and the Cell BE and establish their optimality. We also discuss the
optimality of solutions for L2ν

2 , and L2ν
ν . These three permutations are the ones

needed, for example, in the short-vector Cooley-Tukey FFT [4]; Lν2

ν is an ubiqui-
tous algorithmic building block and crucial in matrix-matrix and matrix-vector
multiplication for some vector extensions.

Existence of solution. Under the most general conditions, our algorithm does
not necessarily return a solution. However, under relatively weak conditions im-
posed on the ISA, a solution can be guaranteed. The conditions are met by most
current SIMD extensions. One notable exception is 16-way 8-bit integer in SSE2,
for which the second condition does not hold.

– For ν | k | n, a 〈vmf〉 for L2ν
2 must exist.

– For ν � k or k � n, 〈vmf〉 for L2ν
2 , Lν

2 , and L4
2 ⊗ Iν/2 must exist.

The proof explicitly constructs a (suboptimal) vectorized formula using rules
(1)–(4). We omit the details.

Optimality of generated implementations. Floyd [7] derived the exact num-
ber of block transfers required to transpose an arbitrary matrix on a two-level
memory where the small memory can hold two blocks. We can apply his theorem
to our situation by identifying binary vector instructions with the two-element
memory in his formulation. The number of block transfer operations then yields
a lower bound on the number of binary vector instructions required to perform



128 F. Franchetti and M. Püschel

a stride permutation. Specifically, if Cν(P ) is the minimal number of vector
shuffle instructions required to perform P , then

Cν(L2ν
k ) ≥ 2, for k �= 1, 2ν, and Cν(Lν2

ν ) ≥ ν log2 ν. (24)

For example, for Lν2

ν our method generates the following vectorized matrix for-
mulas. On SSE2 and on Cell the corresponding instructions counts match the
lower bounds on (24) for all modes and are hence optimal.

L16
4 =

(
L8

4 ⊗ I2
)(

I2 ⊗ L8
4
)

L64
8 =

(
I4 ⊗(L4

2 ⊗ I4)
)(

L8
4 ⊗ I8

)(
I4 ⊗(L8

4 ⊗ I2)
)(

(I2 ⊗ L4
2) ⊗ I8

)(
I4 ⊗ L16

8
)

L256
16 =

(
I8 ⊗(L4

2 ⊗ I8)
)(

L16
8 ⊗ I16

)(
I8 ⊗(L8

4 ⊗ I4)
)(

(I4 ⊗ L4
2) ⊗ I16

)
(
(I2 ⊗ L4

2 ⊗ I2) ⊗ I16
)(

I8 ⊗(L16
8 ⊗ I2)

)(
(I4 ⊗ L4

2) ⊗ I16
)(

I8 ⊗ L32
16

)

The formula for L64
8 yields the following implementation in 8-way 16-bit integer

SSE2. All variables are of type m128i.

t3 = _mm_unpacklo_epi16(X[0], X[1]); t4 = _mm_unpackhi_epi16(X[0], X[1]);
t7 = _mm_unpacklo_epi16(X[2], X[3]); t8 = _mm_unpackhi_epi16(X[2], X[3]);
t11 = _mm_unpacklo_epi16(X[4], X[5]);t12 = _mm_unpackhi_epi16(X[4], X[5]);
t15 = _mm_unpacklo_epi16(X[6], X[7]);t16 = _mm_unpackhi_epi16(X[6], X[7]);
t17 = _mm_unpacklo_epi32(t3, t7); t18 = _mm_unpackhi_epi32(t3, t7);
t19 = _mm_unpacklo_epi32(t4, t8); t20 = _mm_unpackhi_epi32(t4, t8);
t21 = _mm_unpacklo_epi32(t11, t15); t22 = _mm_unpackhi_epi32(t11, t15);
t23 = _mm_unpacklo_epi32(t12, t16); t24 = _mm_unpackhi_epi32(t12, t16);
Y[0] = _mm_unpacklo_epi64(t17, t21); Y[1] = _mm_unpackhi_epi64(t17, t21);
Y[2] = _mm_unpacklo_epi64(t18, t22); Y[3] = _mm_unpackhi_epi64(t18, t22);
Y[4] = _mm_unpacklo_epi64(t19, t23); Y[5] = _mm_unpackhi_epi64(t19, t23);
Y[6] = _mm_unpacklo_epi64(t20, t24); Y[7] = _mm_unpackhi_epi64(t20, t24);

Further, L2ν
ν can be implemented optimally on all considered vector architec-

tures using 2 binary vector instructions. However, L2ν
2 cannot be implemented

optimally on 8-way and 16-way SSE2 due to restrictions in the instruction set.

5 Experimental Results

We generated and evaluated vectorized permutations for a single core of a 2.66
GHz Intel Core2 Duo and one SPE of a 3.2 GHz IBM Cell BE processor. We
used the Intel C++ compiler 9.1 for SSE and the GNU C compiler 4.1.1 for the
Cell BE. The small sizes of the code generated by our approach makes it infea-
sible to compare our generated programs to any optimized matrix transposition
library.

Implementation in Spiral. We implemented our approach as part of Spi-
ral [2], a program generator that autonomously implements and optimizes DSP



Generating SIMD Vectorized Permutations 129

transforms. In particular, Spiral generates high performance vectorized DFT
implementations [4]. These implementations require vectorized basic blocks for
stride permutations Lν2

ν , L2ν
2 , and L2ν

ν , which were hand-supplied in [4]. Using
the approach presented in this paper, we automate this last manual step to
enable automatic porting to new vector architectures.

Stand-alone stride permutation. In the first experiment, we generated im-
plementations for y = Lν2

ν x for SSE2 2-way, 4way, 8-way, and 16-way, as well
as one 4-way Cell SPU. We compare our generated vectorized shuffle-based im-
plementation against the one based on vector gathers (see Section 2.1). The
shuffle-based implementations require ν vector loads, ν vector stores, and ν log2 ν
shuffle operations. The gather-based implementations require ν vector gathers
and ν vector stores. We measured the cycles required for the data to get per-
muted from L1 cache to L1 cache, measuring many iterations to compensate for
the timing overhead and to get a throughput measure.

Table 3 summarizes the results. In this setting, the shuffle-based implementa-
tion is much cheaper than the gather-based implementation. The reason is that
sustained subword memory access is particularly costly on modern CPUs, which
are optimized for wide words.

Table 3. Runtime and number of instructions needed for the stride permutations
y = Lν2

ν x when implemented using vector shuffles (generated by our method) or
gather-based (the usual approach)

Core2 SSE2 Cell SPU

ν = 2 ν = 4 ν = 8 ν = 16 ν = 2 ν = 4

vector shuffle
shuffle instructions 2 8 24 64 2 8
move instructions 4 8 16 32 6 10
cycles 4 13 35 106 15 22

vector gather
gather instructions 4 28 128 384 14 62
store instructions 2 4 8 16 2 4
cycles 15 60 94 407 32 112

Permutations within numerical kernels. In the second experiment we in-
vestigated the impact of our generated vectorized permutations versus vector
gathers inside DFT kernels. For proper evaluation, we used Spiral-generated
DFT kernels using the split complex format; these kernels are very fast (equal
or better than FFTW 3.1.2 and Intel IPP 5.1) since they consist exclusively of
vector arithmetic, vector memory access, and stride permutations Lν2

ν .
For n = kν2 ≤ 128, 1 ≤ k ≤ 8, a split complex DFTn requires between

3
ν n log2 n and 8

ν n log2 n vector arithmetic operations and k stride permutations



130 F. Franchetti and M. Püschel

0

200

400

600

800

1,000

4 8 12 16 20 24 28 32 16 32 48 64 64 128

[cycles]

DFT with vectorized permutation

DFT with gather-based permutation

2-way 64-bit double 4-way 32-bit float 8-way 16-bit 

Runtimes of Split Complex DFT on 2.66 GHz Core2

Fig. 1. Vectorized split complex DFT for various small sizes

Lν2

ν . Hence, the majority of vector instructions are arithmetic operations, but
the number of vector shuffles and vector gathers still make up between 5% and
15% and between 15% to 50% of all instructions in their respective implemen-
tations. The overhead is largest for long vector lengths ν and small problem
sizes n.

Figure 1 shows the cycle counts of Spiral-generated FFT code in both cases.
For 2-way double-precision SSE2 the difference is negligible. For 4-way single-
precision SSE2, the difference is up to 35%, due to a relative higher vector
shuffle operations count and since expensive 4-way shuffle instructions are rel-
atively more expensive. In the 8-way case these arguments become even more
pronounced and the shuffle-based implementation is more than twice as fast as
the gather-based implementation.

6 Conclusion

In this paper we show how to generate efficient vector programs for small stride
permutations, which are important building blocks for numerical kernels. Even
though this is a very specific class, we think we put forward an interesting ap-
proach that may have broader applicability. Namely, we have shown how to
model vector instructions as matrices and then use matrix algebra for both
generating and optimizing algorithm and implementation for the desired permu-
tation and analyzing the quality of the result. On the practical side, our method
enables us to quickly generate the building blocks that Spiral needs to generate
FFTs for a given vector architecture. This enables us to port Spiral to new vector
architectures without creative human effort.



Generating SIMD Vectorized Permutations 131

References

1. van Loan, C.: Computational Framework of the Fast Fourier Transform. SIAM,
Philadelphia (1992)

2. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B.W.,
Xiong, J., Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R.W.,
Rizzolo, N.: SPIRAL: Code generation for DSP transforms. Proceedings of the
IEEE 93(2), 232–275 (2005); Special issue on Program Generation, Optimization,
and Adaptation

3. Franchetti, F., Voronenko, Y., Püschel, M.: A rewriting system for the vectorization
of signal transforms. In: Proc. High Performance Computing for Computational
Science (VECPAR) (2006)

4. Franchetti, F., Püschel, M.: Short vector code generation for the discrete Fourier
transform. In: Proc. IEEE Int’l Parallel and Distributed Processing Symposium
(IPDPS), pp. 58–67 (2003)

5. Nuzman, D., Rosen, I., Zaks, A.: Auto-vectorization of interleaved data for SIMD.
In: Proc. Programming Language Design and Implementation (PLDI), pp. 132–143
(2006)

6. Johnson, J.R., Johnson, R.W., Rodriguez, D., Tolimieri, R.: A methodology for
designing, modifying, and implementing FFT algorithms on various architectures.
Circuits Systems Signal Processing 9, 449–500 (1990)

7. Floyd, R.W.: Permuting information in idealized two-level storage. Complexity of
Computer Calculations, 105–109 (1972)

8. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory I: Two-level memo-
ries. Algorithmica 12(2/3), 110–147 (1994)

9. Suh, J., Prasanna, V.: An efficient algorithm for out-of-core matrix transposition.
IEEE Transactions on Computers 51(6), 420–438 (2002)

10. Lu, Q., Krishnamoorthy, S., Sadayappan, P.: Combining analytical and empirical
approaches in tuning matrix transposition. In: Proc. Parallel Architectures and
Compilation Techniques (PACT), pp. 233–242 (2006)

11. Zima, H., Chapman, B.: Supercompilers for parallel and vector computers. ACM
Press, New York (1990)

12. Ren, G., Wu, P., Padua, D.: Optimizing data permutations for SIMD devices. In:
Proc. Programming Language Design and Implementation (PLDI), pp. 118–131
(2006)

13. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: A language and compiler
for DSP algorithms. In: Proc. Programming Language Design and Implementation
(PLDI), pp. 298–308 (2001)

14. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 1, pp. 535–610. Elsevier, Amsterdam
(2001)


	Introduction
	Background
	Vector SIMD Extensions
	Mathematical Background

	Vector Programs and Matrix Expressions
	Modeling Vector Shuffle Instructions as Matrices
	Translating Matrix Formulas into Vector Programs

	Generating Vectorized Permutation Programs
	Rewriting Rule Set
	Dynamic Programming Search
	Existence and Optimality

	Experimental Results
	Conclusion

