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Abstract: As daily problems involve a great deal of data and ambiguity, it has become vital to build
new mathematical ways to cope with them, and soft set theory is the greatest tool for doing so. As
a result, we study methods of generating soft topologies through several soft set operators. A soft
topology is known to be determined by the system of special soft sets, which are called soft open
(dually soft closed) sets. The relationship between specific types of soft topologies and their classical
topologies (known as parametric topologies) is linked to the idea of symmetry. Under this symmetry,
we can study the behaviors and properties of classical topological concepts via soft settings and
vice versa. In this paper, we show that soft topological spaces can be characterized by soft closure,
soft interior, soft boundary, soft exterior, soft derived set, or co-derived set operators. All of the soft
topologies that result from such operators are equivalent, as well as being identical to their classical
counterparts under enriched (extended) conditions. Moreover, some of the soft topologies are the
systems of all fixed points of specific soft operators. Multiple examples are presented to show the
implementation of these operators. Some of the examples show that, by removing any axiom, we will
miss the uniqueness of the resulting soft topology.

Keywords: soft topology; soft closure operator; soft interior operator; soft boundary operator; soft
exterior operator; soft derived set operator; co-derived set operator; fixed point

1. Introduction

Most real-world problems in engineering, medical science, economics, the environ-
ment, and other fields are full of uncertainty. Soft set theory was proposed by Molodtsov [1],
in 1999, as a mathematical instrument for dealing with uncertainty. This theory is free
of the obstacles associated with previous theories including fuzzy set theory [2], rough
set theory [3], and so on. The nature of parameter sets related to soft sets, in particular,
provides a uniform framework for modeling uncertain data. This has resulted in the rapid
development of soft set theory in a short period of time, as well as diverse applications of
soft sets in real life.

The mathematical area of topology known as general topology is concerned with
the core set-theoretic principles and procedures. The Kuratowski closure axioms [4] are a
collection of axioms that can be used to establish a topological structure on a set in topology
and related disciplines of mathematics. They are the same as the more widely used open
set concept. The closure system of axioms is significant in domain theory, and also has real
applications (see [5] for more details).

Influenced by the standard postulates of traditional topological space, Shabir and
Naz [6], and Çağman et al. [7], separately, established another branch of topology known
as “soft topology”, which is a mixture of soft set theory and topology. It focuses on the
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development of the system of all soft sets. The study in [6,7], in particular, was essential
in building the subject of soft topology. Despite the fact that many studies followed their
directions and many ideas appeared in soft contexts (see, [8–11]), significant contributions
can indeed be made. Hence, we generalize the Kuratowski closure system together with
five other operators in soft settings. The role of these operators is to characterize soft
topologies over a domain set. Some operators and bioperators have been explored via
soft topologies [12]. The symmetry between soft topology and its parametric topologies
was investigated by Al-shami and Kočinac [13]. Under an extended soft topology, they
proved that Int(F, ∑) = (Int(F), ∑) and Cl(F, ∑) = (Cl(F), ∑), which obviously shows the
symmetry of soft interior and closure operators with their classical topological counterparts.
This symmetry between soft topology and its parametric topologies has been recently
investigated for some kinds of soft separation axioms as illustrated in [14,15]

It is well known that soft topologies form a family of parametric classical topolo-
gies. In contrast, producing soft topologies from classical topologies was studied in some
published literature, such as [8,13,16]. Investigation of the methods of producing soft
topologies is among the most important and interesting notions concerning soft topologies
because they are employed to build various classes of soft topological spaces, as well as
providing a new environment to discuss and characterize topological concepts, such as the
compactness, connectedness, and separation axioms. This matter motivated us to generate
new types of soft topologies using different types of soft operators, which represent a rich
area for discussion of topological concepts and researching their characterizations.

The body of the paper is structured as follows: In Section 2, we present an overview
of the literature on soft set theory and soft topology. More precisely, the main properties
of soft closure, soft interior, soft boundary, soft exterior and soft derived set of a soft set
with respect to underlying soft topological space are considered. Section 3 focuses on the
concepts of soft set operators and their implications for characterizing soft topologies over
domain sets. Section 4 illustrates that, by omitting an axiom from the stated operators, we
can still attain a soft topology but lose uniqueness. We end our paper, in Section 5, with a
brief discussion and conclusions.

2. Preliminaries

Let X be a domain set and Σ be a set of parameters. An ordered pair (F, Σ) =
{(e, F(e)) : e ∈ Σ} is said to be a soft set over X, where F : Σ → 2X is a set-valued
mapping. The set of all soft sets on X parameterized by Σ is identified by SΣ(X). A soft
set (X, Σ)− (F, Σ) (or simply (F, Σ)′) is the complement of (F, Σ), where F′ : Σ → P(X)
is given by F′(e) = X− F(e) for each e ∈ Σ. A soft set (F, Σ) ∈ SΣ(X) is called a null soft
set, denoted by Φ, if F(e) = ∅ for each e ∈ Σ, it is called an absolute soft set, denoted by
X̃, if F(e) = X for each e ∈ Σ. Evidently, X̃′ = Φ and Φ′ = X̃. A soft point [6] is a soft
set (F, Σ) over X in which F(e) = {x} for each e ∈ Σ, where x ∈ X, and is denoted by
({x}, Σ). It is said that a soft point ({x}, Σ) is in (F, Σ) (briefly, x ∈ (F, Σ)) if x ∈ F(e) for
each e ∈ Σ. On the other hand, x /∈ (F, Σ) if x /∈ F(e) for some e ∈ Σ. This implies that if
({x}, Σ)∩̃(F, Σ) = Φ, then x /∈ (F, Σ). A soft element [17,18], denoted by xe, is a soft set
(F, Σ) over X in which F(e) = {x} and x(e′) = ∅ for each e′ ∈ Σ with e′ 6= e, where e ∈ Σ
and x ∈ X. An argument xe ∈ (F, Σ) means that x ∈ F(e). It is said that (A, Σ1) is a soft
subset of (B, Σ2) (written by (A, Σ1)⊆̃(B, Σ2), [19]) if Σ1 ⊆ Σ2 and A(e) ⊆ B(e) for each
e ∈ Σ1, and (A, Σ1) = (B, Σ2) if (A, Σ1)⊆̃(B, Σ2) and (B, Σ2)⊆̃(A, Σ1). The union of soft
sets (A, Σ), (B, Σ) is represented by (F, Σ) = (A, Σ)∪̃(B, Σ), where F(e) = A(e) ∪ B(e) for
each e ∈ Σ, and the intersection of soft sets (A, Σ), (B, Σ) is given by (F, Σ) = (A, Σ)∩̃(B, Σ),
where F(e) = A(e) ∩ B(e) for each e ∈ Σ, (see, [20]).

Definition 1 ([6]). A collection T of SΣ(X) is said to be a soft topology on X if it has the next
postulates:

(T.1) Φ, X̃ ∈ T .

(T.2) If (F1, Σ), (F2, Σ) ∈ T , then (F1, Σ)∩̃(F2, Σ) ∈ T .
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(T.3) If {(Fi, Σ) : i ∈ I}⊆̃T , then ∪̃i∈I(Fi, Σ) ∈ T .

Terminologically, we call (X, T , Σ) a soft topological space on X. The elements of T are called
soft open sets. The complements of every soft open (or elements of T ′) are called soft closed sets.
The lattice of all soft topologies on X is referred to TΣ(X), (see, [21]).

Definition 2 ([6]). Let (B, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The soft closure of (B, Σ) is

Cl(B, Σ) :=
⋂̃{

(F, Σ) : (B, Σ)⊆̃(F, Σ), (F, Σ) ∈ T ′
}

.

Lemma 1 ([6], Theorem 1). Let (F, Σ), (G, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The following
properties are valid:

1. Cl(Φ) = Φ, Cl(X̃) = X̃.
2. (F, Σ)⊆̃Cl(F, Σ).
3. Cl(F, Σ) = Cl(Cl(F, Σ)).
4. (F, Σ)⊆̃(G, Σ) =⇒ Cl(F, Σ)⊆̃Cl(F, Σ).
5. (F, Σ) ∈ T ′ ⇐⇒ (F, Σ) = Cl(F, Σ).
6. Cl

(
(F, Σ)∪̃(G, Σ)

)
= Cl(F, Σ)∪̃Cl(G, Σ).

7. Cl
(
(F, Σ)∩̃(G, Σ)

)
⊆̃Cl(F, Σ)∩̃Cl(G, Σ).

Definition 3 ([22]). Let (B, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The soft interior of (B, Σ) is

Int(B, Σ) :=
⋃̃{

(F, Σ) : (F, Σ)⊆̃(B, Σ), (F, Σ) ∈ T
}

.

Lemma 2 ([22], Theorem 2). Let (F, Σ), (G, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The following
properties are valid:

1. Int(Φ) = Φ, Int(X̃) = X̃.
2. Int(F, Σ)⊆̃(F, Σ).
3. Int(F, Σ) = Int(Int(F, Σ)).
4. (F, Σ)⊆̃(G, Σ) =⇒ Int(F, Σ)⊆̃ Int(F, Σ).
5. (F, Σ) ∈ T ⇐⇒ (F, Σ) = Int(F, Σ).
6. Int

(
F, Σ)∩̃(G, Σ)

)
= Int(F, Σ)∩̃ Int(G, Σ).

7. Int(F, Σ)∩̃ Int(G, Σ)⊆̃ Int
(

F, Σ)∪̃(G, Σ)
)
.

Definition 4 ([22]). Let (B, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The soft exterior of (B, Σ) is
Ext(B, Σ) := Int((B, Σ)′).

Lemma 3. Let (F, Σ), (G, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The following properties are valid:

1. Ext(Φ) = X̃, Ext(X̃) = Φ.
2. Ext(F, Σ)⊆̃(F, Σ)′.
3. Ext(F, Σ) = Ext([Ext(F, Σ)]′).
4. (F, Σ)⊆̃(G, Σ) =⇒ Ext(G, Σ)⊆̃Ext(F, Σ).
5. Int(F, Σ)⊆̃Ext(Ext(F, Σ)).
6. Ext

(
(F, Σ)∪̃(G, Σ)

)
= Ext(F, Σ)∩̃Ext(G, Σ).

Proof. Theorems 6 & 8 in [23] and Theorem 4 in [22].

Definition 5 ([22]). Let (B, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The soft boundary of (B, Σ) is
Bd(B, Σ) := Cl(B, Σ)∩̃Cl((B, Σ)′).

Lemma 4. Let (F, Σ), (G, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The following properties are valid:

1. Bd(Φ) = Φ, Bd(X̃) = X̃.
2. Bd(F, Σ) = Cl(F, Σ)− Int(F, Σ).
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3. Int(F, Σ) = (F, Σ)− Bd(F, Σ).
4. Bd(Int(F, Σ))⊆̃Bd(F, Σ).
5. Bd(Cl(F, Σ))⊆̃Bd(F, Σ).
6. Bd(Bd(F, Σ))⊆̃Bd(F, Σ).
7. Bd

(
(F, Σ)∪̃(G, Σ)

)
⊆̃Bd(F, Σ)∪̃Bd(G, Σ).

8. Bd
(
(F, Σ)∩̃(G, Σ)

)
⊆̃Bd(F, Σ)∪̃Bd(G, Σ).

Proof. Theorems 7 & 10 in [23] and Theorem 17 in [7].

Lemma 5. Let (F, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The following properties are valid:

1. (F, Σ) ∈ T ⇐⇒ (F, Σ)∩̃Bd(F, Σ) = Φ.
2. (F, Σ) ∈ T ∩̃T ′ ⇐⇒ Bd(F, Σ) = Φ.
3. (F, Σ) ∈ T ′ ⇐⇒ Bd(F, Σ)⊆̃(F, Σ)′.

Proof. Theorems 6 & 11 in [22].

Definition 6 ([7]). Let (B, Σ) ∈ SΣ(X) and T ∈ TΣ(X). A soft point xe in X̃ is called a soft
limit point of (B, Σ) if (G, Σ)∩̃(B, Σ)− {xe} 6= Φ for all (G, Σ) ∈ T with xe ∈ (G, Σ). The set
of all soft limit points is symbolized by Dr(B, Σ).

Lemma 6. Let (F, Σ), (G, Σ) ∈ SΣ(X) and T ∈ TΣ(X). The following properties are valid:

1. Cl(F, Σ) = (F, Σ)∪̃Dr(F, Σ).
2. xe /∈ Dr({xe}, Σ)
3. Dr(F, Σ)⊆̃Cl(F, Σ).
4. (F, Σ)⊆̃(G, Σ) =⇒ Dr(F, Σ)⊆̃Dr(G, Σ).
5. Dr

[
(F, Σ)∩̃(G, Σ)

]
⊆̃Dr(F, Σ)∩̃Dr(G, Σ).

6. Dr
[
(F, Σ)∪̃(G, Σ)

]
= Dr(F, Σ)∪̃Dr(G, Σ).

Proof. Theorem 15 in [7].

It should be highlighted that several of the properties in the preceding lemmas are
new, and their proofs are common; consequently, they have been disregarded.

3. Soft Operators and the Soft Topologies Generated by Them

The following two lemmas are presented before we begin with the definitions of
soft operators:

Lemma 7. For (F, Σ) ∈ SΣ(X) and T ∈ TΣ(X), the following are equivalent:

1. (F, Σ) ∈ T ′.
2. Cl(F, Σ) = (F, Σ).
3. Dr(F, Σ)⊆̃(F, Σ).
4. Bd(F, Σ)⊆̃(F, Σ).

Proof. (1) =⇒ (2) Lemma 1 (5).
(2) =⇒ (3) Since (F, Σ) = Cl(F, Σ) = (F, Σ)∪̃Dr(F, Σ), so Dr(F, Σ)⊆̃(F, Σ).
(3) =⇒ (4) By (3), Cl(F, Σ) = Dr(F, Σ)∪̃(F, Σ)⊆̃(F, Σ). Then, by Lemma 4 (2),

Bd(F, Σ) = (F, Σ)− Int(F, Σ)⊆̃(F, Σ). Thus (4) holds.
(4) =⇒ (1) Since Int(F, Σ)⊆̃(F, Σ) and Bd(F, Σ)⊆̃(F, Σ), from Lemma 4 (2), we get

Cl(F, Σ) = Bd(F, Σ)∪̃ Int(F, Σ) and so Cl(F, Σ)⊆̃(F, Σ). Thus, (F, Σ) ∈ T ′.

Lemma 8. For {(Fi, Σ) : i ∈ I}⊆̃SΣ(X), where I is any index, and T ∈ TΣ(X), the following
are valid:

1. Int
(⋂̃

i∈I(Fi, Σ)
)
⊆̃⋂̃i∈I Int(Fi, Σ).
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2.
⋃̃

i∈I Int(Fi, Σ)⊆̃ Int
(⋃̃

i∈I(Fi, Σ)
)
.

3. Cl
(⋂̃

i∈I(Fi, Σ)
)
⊆̃⋂̃i∈I Cl(Fi, Σ).

4.
⋃̃

i∈I Cl(Fi, Σ)⊆̃Cl
(⋃̃

i∈I(Fi, Σ)
)
.

5. Dr
(⋂̃

i∈I(Fi, Σ)
)
⊆̃⋂̃i∈I Dr(Fi, Σ).

6.
⋃̃

i∈I Dr(Fi, Σ)⊆̃Dr
(⋃̃

i∈I(Fi, Σ)
)
.

Proof. It is deduced from the lemmas presented in Section 2.

Definition 7 (Soft Closure Operator). A mapping c : SΣ(X) → SΣ(X) is said to be a soft
closure operator on X if it has the following properties for every (F, Σ), (G, Σ) ∈ SΣ(X):

(C.1) c(Φ) = Φ.

(C.2) (F, Σ)⊆̃c(F, Σ).

(C.3) c(c(F, Σ)) = c(F, Σ).

(C.4) c
(
(F, Σ)∪̃(G, Σ)

)
= c(F, Σ)∪̃c(G, Σ).

The following result illustrates how a closure operator derives a soft topology and
concludes that the operator is a soft topological closure in this topology.

Before stating our theorem, we note that the monotonicity of c follows from (C.4).
That is, if (F, Σ)⊆̃(G, Σ), then c(F, Σ)⊆̃c(G, Σ). Suppose (F, Σ)⊆̃(G, Σ), then (G, Σ) =
(F, Σ)∪̃

(
(G, Σ)− (F, Σ)

)
. By axiom (C.4), c(G, Σ) = c(F, Σ)∪̃c

(
(G, Σ)− (F, Σ)

)
, and thus,

c(F, Σ)⊆̃c(G, Σ).

Theorem 1. Let c be a soft closure operator on X, and let C = {(B, Σ) : (B, Σ)⊆̃X̃, c(B, Σ) =
(B, Σ)}. The system T = {(F, Σ) : (F, Σ)′ ∈ C} is the unique soft topology on X having the
property that c(F, Σ) = Cl(F, Σ) for every (F, Σ) ∈ SΣ(X), and Range(c) = C.

Proof. (T.1) Since Φ ∈ C, by (C.1), so X̃ ∈ T . By (C.2), we have X̃⊆̃c(X̃) which follows that
c(X̃) = X̃. Therefore X̃ ∈ C, and so Φ ∈ T .

(T.2) Given (F, Σ), (G, Σ) ∈ T , then (F, Σ)′, (G, Σ)′ ∈ C. Therefore, c
(
(F, Σ)′

)
= (F, Σ)′

and c
(
(G, Σ)′

)
= (G, Σ)′. By (C.4),

c
[
(F, Σ)′

⋃̃
(G, Σ)′

]
= c
[
(F, Σ)′

]⋃̃
c
[
(G, Σ)′

]
= (F, Σ)′

⋃̃
(G, Σ)′.

This implies that (F, Σ)′∪̃(G, Σ)′ ∈ C. But, (F, Σ)∩̃(G, Σ) =
[
(F, Σ)′∪̃(G, Σ)′

]′, hence
(F, Σ)∩̃(G, Σ) ∈ T .

(T.3) Assume {(Fi, Σ) : i ∈ I}⊆̃T . Then {(Fi, Σ)′ : i ∈ I}⊆̃C and for every i, we have
that c

[
(Fi, Σ)′

]
= (Fi, Σ)′. Set (R, Σ) =

⋂̃
i∈I(Fi, Σ)′. Then (R, Σ)⊆̃(Fi, Σ)′ for every i, and so

c(R, Σ)⊆̃c
[
(Fi, Σ)′

]
= (Fi, Σ)′ for every i. Therefore, c(R, Σ)⊆̃c

[
(Fi, Σ)′

]
=
⋂̃

i∈I(Fi, Σ)′ =
(R, Σ), and by (C.2), (R, Σ)⊆̃c(R, Σ). Hence, (R, Σ) = c(R, Σ), which implies that (R, Σ) =⋂̃

i∈I(Fi, Σ)′ ∈ C. But,
⋃̃

i∈I(Fi, Σ) =
[⋂̃

i∈I(Fi, Σ)′
]′, thus

⋃̃
i∈I(Fi, Σ) ∈ T . This proves that

T is a soft topology on X.
We now show that c(F, Σ) = Cl(F, Σ) for every (F, Σ) ∈ SΣ(X). Recalling that

the closure of a set with respect to T is defined as Cl(G, Σ) =
⋂̃{(F, Σ) : (F, Σ) ∈

C, (G, Σ)⊆̃(F, Σ)}. Since, by (C.2) and (C.3), (G, Σ)⊆̃c(G, Σ), c
[
c(G, Σ)

]
= c(G, Σ), then

c(G, Σ) ∈ C and so c(G, Σ) ∈ {(F, Σ) : (F, Σ) ∈ C, (G, Σ)⊆̃(F, Σ)}. Hence Cl(G, Σ)⊆̃c(G, Σ).
For the converse of the inclusion, since (G, Σ)⊆̃Cl(G, Σ) and Cl(G, Σ) is soft closed, then
c(G, Σ)⊆̃c

[
Cl(G, Σ)

]
= Cl(G, Σ). Thus, c(G, Σ) = Cl(G, Σ).

The last claim directly follows.

Notice that the set of all fixed points of c constitutes a soft closed topological system
(c.f. Lemma 7).
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Definition 8 (Soft Interior Operator). A mapping i : SΣ(X) → SΣ(X) is said to be a soft
interior operator on X if it has the next postulates for every (F, Σ), (G, Σ) ∈ SΣ(X):

(I.1) i(X̃) = X̃.

(I.2) i(F, Σ)⊆̃(F, Σ).

(I.3) i(i(F, Σ)) = i(F, Σ).

(I.4) i
(
(F, Σ)∩̃(G, Σ)

)
= i(F, Σ)∩̃i(G, Σ).

Here, we note that if (F, Σ)⊆̃(G, Σ), then (F, Σ) = (F, Σ)∩̃(G, Σ). By (I.4), i(F, Σ) =
i(F, Σ)∩̃i(G, Σ) implies that i(F, Σ)⊆̃i(G, Σ).

The next result demonstrates that a soft interior operator produces a soft topology on
X which is the set of all fixed points of i:

Theorem 2. Let i be a soft interior operator on X, and let T = {(F, Σ) : (F, Σ) ∈ SΣ(X), i(F, Σ) =
(F, Σ)}. Then T is the unique soft topology on X having the property that i(F, Σ) = Int(F, Σ) for
every (F, Σ) ∈ SΣ(X), and Range(i) = T .

Proof. (T.1) Indeed, X̃ ∈ T because i(X̃) = X̃, see (I.1). From (I.2), i(Φ)⊆̃Φ and Φ⊆̃i(Φ)
always hold, then i(Φ) = Φ. Thus Φ ∈ T .

(T.2) Assume (F, Σ), (G, Σ) ∈ T . Then i(F, Σ) = (F, Σ), i(G, Σ) = (G, Σ). By (I.3), we
have

i
[
(F, Σ)

⋂̃
(G, Σ)

]
= i(F, Σ)

⋂̃
i(G, Σ) = (F, Σ)

⋂̃
(G, Σ).

Therefore, (F, Σ)∩̃(G, Σ) ∈ T .
(T.3) If {(Fj, Σ) : j ∈ J}⊆̃T , then i(Fj, Σ) = (Fj, Σ) for every j. By (I.2), one can get

i
[⋃̃

j∈J(Fj, Σ)
]
⊆̃⋃̃j∈J(Fj, Σ). It remains to prove that

⋃̃
j∈J(Fj, Σ)⊆̃i

[⋃̃
j∈J(Fj, Σ)

]
. By Lemma 8

(2),
⋃̃

j∈J i
[
(Fj, Σ)

]
⊆̃i
[⋃̃

j∈J(Fj, Σ)
]
. But, for every j, i(Fj, Σ) = (Fj, Σ), then

⋃̃
j∈J

(Fj, Σ) =
⋃̃

j∈J
i
[
(Fj, Σ)

]
⊆̃i
[⋃̃

j∈J
(Fj, Σ)

]
.

Thus, i
[⋃̃

j∈J(Fj, Σ)
]
=
⋃̃

j∈J(Fj, Σ) implies
⋃̃

j∈J(Fj, Σ) ∈ T . Hence T is a soft topology.
The soft interior with respect to (X, T , Σ) is given by Int(G, Σ) =

⋃̃{(F, Σ) : (F, Σ) ∈
T , (F.Σ)⊆̃(G, Σ)}. By (I.3), i(i(G, Σ)) = i(G, Σ), and i(G, Σ)⊆̃(G, Σ) always, so i(G, Σ) ∈
{(F, Σ) : (F, Σ) ∈ T , (F, Σ)⊆̃(G, Σ)}. Hence, i(G, Σ)⊆̃ Int(G, Σ). On the other hand,
since Int(G, Σ)⊆̃ (G, Σ) and Int(G, Σ) ∈ T , then i

[
Int(G, Σ)

]
⊆̃i(G, Σ) and i

[
Int(G, Σ)

]
=

Int(G, Σ). Therefore, Int(G, Σ)⊆̃i(G, Σ) and hence Int(G, Σ) = i(G, Σ).
The range of i can be concluded from Lemma 2 (5).

Definition 9 (Soft Boundary Operator, I). A mapping b : SΣ(X)→ SΣ(X) is said to be a soft
boundary operator on X if it has the next postulates for every (F, Σ), (G, Σ) ∈ SΣ(X):

(B.1) b(Φ) = Φ.

(B.2) b(F, Σ) = b((F, Σ)′).

(B.3) b(b(F, Σ))⊆̃b(F, Σ).

(B.4) (F, Σ)∩̃(G, Σ)∩̃b
[
(F, Σ)∩̃(G, Σ)

]
= (F, Σ)∩̃(G, Σ)∩̃

[
b(F, Σ)∪̃b(G, Σ)

]
.

Lemma 9. Let (F, Σ) ∈ SΣ(X) and T ∈ TΣ(X). If b(F, Σ)∩̃(F, Σ) = Φ, then b(G, Σ)∩̃(F, Σ) =
Φ for every (G, Σ) with (F, Σ)⊆̃(G, Σ).

Proof. Since (F, Σ)⊆̃(G, Σ), then (F, Σ) = (F, Σ)∩̃(G, Σ). Put this in (B.4) implies

(F, Σ)
⋂̃

b(F, Σ) = (F, Σ)
⋂̃[

b(F, Σ)
⋃̃

b(G, Σ)
]
=
[
(F, Σ)

⋂̃
b(F, Σ)

]⋃̃[
(F, Σ)

⋂̃
b(G, Σ)

]
.
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By assumption, (F, Σ)∩̃b(F, Σ) = Φ, hence (F, Σ)∩̃b(G, Σ) = Φ.

The following result shows that a boundary operator yields a soft topology on X:

Theorem 3. Let b be a soft boundary operator on X that satisfies the axioms in Definition 9, and let
T = {(F, Σ) : (F, Σ) ∈ SΣ(X), b(F, Σ)∩̃(F, Σ) = Φ}. Then T is the unique soft topology on X
having the property that b(F, Σ) = Bd(F, Σ) for every (F, Σ) ∈ SΣ(X), and Range(b) = T .

Proof. (T.1) By (B.1), b(Φ) = Φ implies Φ ∈ T . Furthermore, applying (B.1), (B.2), we
obtain b(X̃)∩̃X̃ = b(X̃′)∩̃X̃ = Φ∩̃X̃ = Φ. Thus, X̃ ∈ T .

(T.2) Suppose (F, Σ), (G, Σ) ∈ T . Then b(F, Σ)∩̃(F, Σ) = Φ and b(G, Σ)∩̃(G, Σ) = Φ.
Now, consider (B.4),

(F, Σ)∩̃(G, Σ)∩̃b
[
(F, Σ)∩̃(G, Σ)

]
= (F, Σ)∩̃(G, Σ)∩̃

[
b(F, Σ)∪̃b(G, Σ)

]
=

[
(F, Σ)∩̃(G, Σ)∩̃b(F, Σ)

]
∪̃
[
(F, Σ)∩̃(G, Σ)∩̃b(G, Σ)

]
=

[(
(F, Σ)∩̃b(F, Σ)∩̃(G, Σ)

]
∪̃
[
(F, Σ)∩̃

(
(G, Σ)∩̃b(G, Σ)

)]
=

(
Φ∩̃(G, Σ)

)
∪̃
(
(F, Σ)∩̃Φ

)
= Φ.

(T.3) Assume {(Fi, Σ) : i ∈ I}⊆̃T . We need to prove that b
(⋃̃

i∈I(Fi, Σ)
)⋂̃(⋃̃

i∈I(Fi, Σ)
)
=

Φ. Since, for every i, (Fi, Σ) ∈ T , then b(Fi, Σ)∩̃(Fi, Σ) = Φ. Since (Fi, Σ)⊆̃⋃̃i∈I(Fi, Σ) for
every i, so by Lemma 9, b

(⋃̃
i∈I(Fi, Σ)

)⋂̃
(Fi, Σ) = Φ for every i. Therefore,

b
(⋃̃

i∈I
(Fi, Σ)

)⋂̃(⋃̃
i∈I

(Fi, Σ)
)
=
⋃̃

i∈I

[(⋃̃
i∈I

(Fi, Σ)
)⋂̃

(Fi, Σ)
]
= Φ.

Thus,
⋃̃

i∈I(Fi, Σ) ∈ T and hence T is a soft topology on X.
Now, we examine that b(H, Σ) = Bd(H, Σ) for every (H, Σ) ∈ SΣ(X). We start

by showing that for every (H, Σ), (H, Σ)∪̃b(H, Σ) is a soft closed set including (H, Σ).
By Lemma 5 (1), a soft set (F, Σ) is closed if and only if b

(
(F, Σ)′

)
∩̃
(
(F, Σ)′

)
= Φ if and

only b(F, Σ)∩̃
(
(F, Σ)′

)
= Φ (by (B.3)). Therefore, we must check that

b
(
(H, Σ)∪̃b(H, Σ)

)
∩̃
(
(H, Σ)∪̃b(H, Σ)

)′
= Φ.

Set (F, Σ) = (H, Σ)′, (G, Σ) =
(
b(H, Σ)

)′, and substitute them in (B.4), yields

(H, Σ)′∩̃(b(H, Σ))′∩̃b[(H, Σ)′∩̃(b(H, Σ))′] = (H, Σ)′∩̃(b(H, Σ))′∩̃[b((H, Σ)′)∪̃b((b(H, Σ))′)].
Applying (B.2) and after some computations, we get(

(H, Σ)∪̃b(H, Σ)
)′∩̃b

(
(H, Σ)∪̃b(H, Σ)

)
= (H, Σ)′∩̃

(
b(H, Σ)

)′∩̃[b(H, Σ)∪̃b(b(H, Σ))
]
.

By (B.3), b(b(H, Σ))⊆̃b(H, Σ), so b(H, Σ)∪̃b(b(H, Σ)) = b(H, Σ), and thus(
(H, Σ)∪̃b(H, Σ)

)′∩̃b
(
(H, Σ)∪̃b(H, Σ)

)
=
(
(H, Σ)∪̃b(H, Σ)

)′∩̃b(H, Σ) = Φ.

This proves that (H, Σ)
⋃̃

b(H, Σ) is soft closed.
For showing b(H, Σ)⊆̃Bd(H, Σ), we shall recall that Bd(H, Σ) = Cl(H, Σ)∩̃Cl((H, Σ)′).

Now,

Bd(H, Σ) = Cl(H, Σ)∩̃Cl((H, Σ)′)⊆̃
(
(H, Σ)∪̃b(H, Σ)

)
∩̃
(
(H, Σ)′∪̃b((H, Σ)′)

)
= b(H, Σ).

For the other direction, we have to prove that (H, Σ)∪̃b(H, Σ)⊆̃Cl(H, Σ) reduces to
b(H, Σ) ⊆̃Cl(H, Σ). If b(H, Σ)*̃Cl(H, Σ), then b(H, Σ)∩̃

(
Cl(H, Σ)

)′ 6= Φ. Since Cl(H, Σ)
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is soft closed, then b(Cl(H, Σ))∩̃
(

Cl(H, Σ)
)′

= Φ. We apply (B.4) for (F, Σ) = (H, Σ)′,
(G, Σ) =

(
Cl(H, Σ)

)′, and get

(K, Σ)∩̃b(K, Σ) = (K, Σ)∩̃
(
(H, Σ)′

)
∩̃b
(
(Cl(H, Σ))′

)
,

where (K, Σ) = (H, Σ)′∩̃
(

Cl(H, Σ)
)′. This turns into

(
(H, Σ)∪̃Cl(H, Σ))′∩̃b((H, Σ)∪̃Cl(H, Σ)) = (

(H, Σ)∪̃Cl(H, Σ))∩̃(b(H, Σ)∪̃b((Cl(H, Σ))′)).
Since (H, Σ)∪̃Cl(H, Σ) = Cl(H, Σ), therefore

(H, Σ)′∩̃b
(

Cl(H, Σ)
)

= (H, Σ)′∩̃
(
b(H, Σ)∪̃b(Cl(H, Σ))

)
=

(
(H, Σ)′∩̃b(H, Σ)

)
∪̃
(
(H, Σ)′∩̃b(Cl(H, Σ))

)
.

But (H, Σ)′∩̃b
(

Cl(H, Σ)
)
= Φ implies that (H, Σ)′∩̃b(H, Σ) = Φ, a contradiction.

Hence b(H, Σ) = Bd(H, Σ) for every (H, Σ) ∈ SΣ(X).
The last claim follows from Lemma 5 (1).

Definition 10 (Soft Boundary Operator, II). A mapping b : SΣ(X)→ SΣ(X) is said to be a soft
boundary operator on X if it has the next postulates for every (F, Σ), (G, Σ) ∈ SΣ(X):

(B’.1) b(Φ) = Φ.

(B’.2) b(F, Σ) = b((F, Σ)′).

(B’.3) b(b(F, Σ))⊆̃b(F, Σ).

(B’.4) (F, Σ)⊆̃(G, Σ) implies b(F, Σ)⊆̃(G, Σ)∪̃b(G, Σ).

(B’.5) b
(
(F, Σ)∪̃(G, Σ)

)
= b(F, Σ)∪̃b(G, Σ).

The following result shows that the boundary operator defined above provides a soft
topology on X:

Theorem 4. Let b be a soft boundary operator on X that satisfies the axioms in Definition 10, and let
c(F, Σ) = (F, Σ)∪̃b(F, Σ). The system T = {(H, Σ) : (H, Σ) ∈ SΣ(X), c((H, Σ)′) = (H, Σ)′}
is the unique soft topology on X such that b(F, Σ) = Bd(F, Σ) for every (F, Σ) ∈ SΣ(X).

Proof. We begin by illustrating that the operator c(F, Σ) fulfills the axioms stated in
Definition 7.

(C.1) c(Φ) = Φ∪̃b(Φ) = Φ.
(C.2) (F, Σ)⊆̃(F, Σ)∪̃b(F, Σ) = c(F, Σ).
(C.3) c(c(F, Σ)) = c

[
(F, Σ)

⋃̃
b(F, Σ)

]
=

[
(F, Σ)∪̃b(F, Σ)

]⋃̃
b
[
(F, Σ)∪̃b(F, Σ)

]
⊆̃

[
(F, Σ)∪̃b(F, Σ)

]⋃̃[
b(F, Σ)∪̃b(b(F, Σ))

]
=

[
(F, Σ)∪̃b(F, Σ)

]⋃̃
b(F, Σ) = c(F, Σ).

(C.4) The first direction can be computed as:

c
[
(F, Σ)∪̃(G, Σ)

]
=

(
(F, Σ)∪̃(G, Σ)

)⋃̃
b
(
(F, Σ)∪̃(G, Σ)

)
=

(
(F, Σ)∪̃(G, Σ)

)⋃̃(
b(F, Σ)∪̃b(G, Σ)

)
=

(
(F, Σ)∪̃b(F, Σ)

)⋃̃(
(G, Σ)∪̃b(G, Σ)

)
= c(F, Σ)∪̃c(G, Σ).
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Following the similar steps established in the proof of Theorem 1, one can show that
T = {(H, Σ) : (H, Σ) ∈ SΣ(X), c((H, Σ)′) = (H, Σ)′} is the unique soft topology on X.
In which for every (F, Σ) ∈ SΣ(X), the soft boundary of (F, Σ) is

c(F, Σ)∩̃(F, Σ)′ =
[
(F, Σ)∪̃b(F, Σ)

]⋂̃[
(F, Σ)′∪̃b((F, Σ)′)

]
=

[
(F, Σ)∪̃b(F, Σ)

]⋂̃[
(F, Σ)′∪̃b(F, Σ)

]
= b(F, Σ).

Remark 1. If J = {(H, Σ) : (H, Σ) ∈ SΣ(X), b((H, Σ)′)⊆̃(H, Σ)′}, then J also produces
another soft topology on X, but J = T . Other systems can be provided and the resulting soft
topologies are either dual or equivalent.

Definition 11 (Soft Boundary Operator, III). A mapping b : SΣ(X) → SΣ(X) is said to be a
soft boundary operator on X if it has the following postulates for every (F, Σ), (G, Σ) ∈ SΣ(X):

(B*.1) b(Φ) = Φ.

(B*.2) b(F, Σ) = b((F, Σ)′).

(B*.3) b
(
(F, Σ)∪̃b(F, Σ)

)
⊆̃b(F, Σ).

(B*.4) (F, Σ)⊆̃(G, Σ) implies b(F, Σ)⊆̃(G, Σ)∪̃b(G, Σ).

(B*.5) b
(
(F, Σ)∪̃(G, Σ)

)
= b(F, Σ)∪̃b(G, Σ).

We now show that the set of axioms mentioned in Definitions 10 and 11 are equivalent.
We need only to work on (B’.3) and (B*.3).

Lemma 10. (1) If (B’.3) and (B’.5) hold, then (B*.3) holds.
(2) If (B*.2), (B*.3), and (B*.4) hold, then (B’.3) holds.

Proof. (1) By (B’.5), b
(
(F, Σ)

⋃̃
b(F, Σ)

)
⊆̃b(F, Σ)

⋃̃
b(b(F, Σ)). Since b(b(F, Σ))⊆̃b(F, Σ), so

b
(
(F, Σ)

⋃̃
b(F, Σ)

)
⊆̃b(F, Σ)

follows, i.e., (B*.3).
(2) Since for every (F, Σ) ∈ SΣ(X), b(F, Σ)⊆̃(F, Σ)

⋃̃
b(F, Σ). By (B*.3) and (B*.4),

b(b(F, Σ))⊆̃
[
(F, Σ)

⋃̃
b(F, Σ)

]⋃̃
b
[
(F, Σ)

⋃̃
b(F, Σ)

]
= (F, Σ)

⋃̃
b(F, Σ). (1)

For the complement (F, Σ)′ of (F, Σ), we also have b(b((F, Σ)′))⊆̃(F, Σ)′∪̃b((F, Σ)′).
Apply (B*.2) and get

b(b((F, Σ)′))⊆̃(F, Σ)′
⋃̃

b((F, Σ)). (2)

From (1) and (2), we obtain

b(b((F, Σ)′)) ⊆̃ (F, Σ)
⋃̃

b(F, Σ)
⋃̃
(F, Σ)′

⋃̃
b((F, Σ))

=
[
(F, Σ)

⋂̃
(F, Σ)′

]⋃̃
b(F, Σ)

= Φ
⋃̃

b(F, Σ) = b(F, Σ).

Thus (B’.3) holds.

Definition 12 (Soft Exterior Operator). A mapping e : SΣ(X) → SΣ(X) is said to be a soft
exterior operator on X if it has the following postulates for every (F, Σ), (G, Σ) ∈ SΣ(X):
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(E.1) e(Φ) = X̃.

(E.2) (F, Σ)∩̃e(F, Σ) = Φ.

(E.3) e((e(F, Σ))′) = e(F, Σ).

(E.4) e(F, Σ)∩̃e(G, Σ) = e
[
(F, Σ)∪̃(G, Σ)

]
.

Theorem 5. Let e be a soft exterior operator on X. The system T = {(H, Σ) : (H, Σ) ∈
SΣ(X), e((H, Σ)′) = (H, Σ)} is the unique soft topology on X such that e(F, Σ) = Ext(F, Σ) for
every (F, Σ) ∈ SΣ(X).

Proof. Theorem 2 will finish the proof whenever we show that e fulfills the interior opera-
tor axioms.

(I.1) i(X̃) = e(X̃′) = e(Φ) = X̃ (by (E.1)).
(I.2) i(F, Σ) = e((F, Σ)′)⊆̃(F, Σ) (by (E.2)).
(I.3) i(i(F, Σ)) = i

[
e((F, Σ)′)

]
= e
([

e((F, Σ)′)
]′)

= e((F, Σ)′) = i(F, Σ) (by (E.3)).
(I.4) i

[
(F, Σ)∩̃(G, Σ)

]
= e

([
(F, Σ)∩̃(G, Σ)

]′)
= e

[
(F, Σ)′∪̃(G, Σ)′

]
= e

(
(F, Σ)′

)
∩̃e(

(G, Σ)′
)
= i(F, Σ)∩̃i(G, Σ).

Therefore, T = {(H, Σ) : (H, Σ) ∈ SΣ(X), e((H, Σ)′) = (H, Σ)} is the unique soft
topology on X such that e(F, Σ) = Ext(F, Σ) for every (F, Σ) ∈ SΣ(X).

Definition 13 (Soft Derived Set Operator). A mapping d : SΣ(X)→ SΣ(X) is said to be a soft
derived set operator on X if it satisfies the following axioms for every (F, Σ), (G, Σ) ∈ SΣ(X):

(D.1) d(Φ) = Φ.

(D.2) xe ∈ d(F, Σ)⇐⇒ xe ∈ d
(
(F, Σ)− {xe}

)
.

(D.3) d
[
(F, Σ)∪̃d(F, Σ)

]
⊆̃(F, Σ)∪̃d(F, Σ).

(D.4) d
[
(F, Σ)∪̃(G, Σ)

]
= d(F, Σ)∪̃d(G, Σ).

Remark 2. If (F, Σ)⊆̃(G, Σ), then, d(F, Σ)⊆̃(G, Σ)∪̃d(G, Σ) (by (D.4)).

Lemma 11. If an operator c∗ is defined by c∗(F, Σ) = (F, Σ)∪̃d(F, Σ) for every (F, Σ) ∈ SΣ(X),
then c∗ = c (c is a soft closure operator, see Definition 7).

Proof. (C.1) Since d(Φ) = Φ, so c∗(Φ) = Φ.
(C.2) Since c∗(F, Σ) = (F, Σ)∪̃d(F, Σ), then (F, Σ)⊆̃c∗(F, Σ).
(C.3) c∗(c∗(F, Σ)) =

[
(F, Σ)∪̃d(F, Σ)

]
∪̃d
[
(F, Σ)∪̃d(F, Σ)

]
= (F, Σ)∪̃d(F, Σ) = c∗(F, Σ)

(by (D.3)).
(C.4) c∗

[
(F, Σ)∪̃(G, Σ)

]
=
[
(F, Σ)∪̃(G, Σ)

]
∪̃d
[
(F, Σ)∪̃(G, Σ)

]
, by (D.4) and some sim-

plification, we have c∗
[
(F, Σ)∪̃(G, Σ)

]
=
[
(F, Σ)∪̃d(F, Σ)

]
∪̃
[
(G, Σ)∪̃d(G, Σ)

]
= c∗(F, Σ)

∪̃c∗(G, Σ). Thus, c∗ = c.

Theorem 6. Let d be a soft derived set operator on X, and let C = {(C, Σ) : (C, Σ) ∈ SΣ(X),
d(C, Σ)⊆̃(C, Σ)}. The system T = {(F, Σ) : (F, Σ)′ ∈ C} is the unique soft topology on X
having the property that d(F, Σ) = Dr(F, Σ) for every (F, Σ) ∈ SΣ(X).

Proof. (T.1) By (D.1), Φ ∈ C, so X̃ ∈ T . By definition of d, d(X̃)⊆̃X̃, then X̃ ∈ C. Thus,
Φ ∈ T .

(T.2) Let (F, Σ), (G, Σ) ∈ T . Then (F, Σ)′, (G, Σ)′ ∈ C. Therefore, d((F, Σ)′)⊆̃(F, Σ)′ and
d((G, Σ)′)⊆̃(G, Σ)′, and so d((F, Σ)′)∪̃d((G, Σ)′)⊆̃(F, Σ)′∪̃(G, Σ)′. Apply (D.4) and obtain
d
[
(F, Σ)′)∪̃(G, Σ)′

]
⊆̃(F, Σ)′∪̃(G, Σ)′. Thus, (F, Σ)′)∪̃(G, Σ)′ ∈ C implies (F, Σ)∩̃(G, Σ) ∈

T .
(T.3) Let {(Fi, Σ) : i ∈ I}⊆̃T . Then, for every i, (Fi, Σ)′ ∈ C. Therefore, d(Fi, Σ)′)⊆̃(Fi, Σ)′

for every i. Since ∩̃i∈I(Fi, Σ)′⊆̃(Fi, Σ)′ for any i, by Remark 2, d
[
∩̃i∈I(Fi, Σ)′

]
⊆̃d
(
(Fi, Σ)′

)
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∪̃(Fi, Σ)′ = (Fi, Σ)′. Thus, d
[
∩̃i∈I(Fi, Σ)′

]
⊆̃∩̃i∈I(Fi, Σ)′. This shows that ∩̃i∈I(Fi, Σ)′ ∈ C and

consequently, ∪̃i∈I(Fi, Σ) ∈ T .
The uniqueness of T follows from Theorem 1 and Lemma 2.
Now, by Theorem 1, Cl(F, Σ) = c(F, Σ). By Lemma 6 (1), Cl(F, Σ) = (F, Σ)∪̃Dr(F, Σ).

Then (F, Σ)∪̃d(F, Σ) = (F, Σ)∪̃Dr(F, Σ) for every (F, Σ) ∈ SΣ(X). More precisely, ((F, Σ)−
{xe})∪̃Dr((F, Σ) − {xe}) = ((F, Σ) − {xe})∪̃d((F, Σ) − {xe}), for every xe ∈ X̃. This
means that xe ∈ Dr((F, Σ)− {xe})⇐⇒ xe ∈ d((F, Σ)− {xe}). By (D.2), xe ∈ d(F, Σ)⇐⇒
xe ∈ d

(
(F, Σ)− xe

)
. By Lemma 6 (2), xe ∈ Dr(F, Σ) ⇐⇒ xe ∈ Dr

(
(F, Σ)− xe

)
. Hence,

xe ∈ d(F, Σ)⇐⇒ xe ∈ Dr(F, Σ), and so d(F, Σ) = Dr(F, Σ).

Definition 14 (Soft Coderived Set Operator). A mapping cd : SΣ(X)→ SΣ(X) is said to be a
soft co-derived set operator on X if it satisfies the following axioms for every (F, Σ), (G, Σ) ∈ SΣ(X):

(D.1) cd(X̃) = X̃.

(D.2) xe ∈ cd(F, Σ)⇐⇒ xe ∈ cd
(
(F, Σ)∪̃{xe}

)
.

(D.3) (F, Σ)∩̃cd(F, Σ)⊆̃cd
[
(F, Σ)∩̃cd(F, Σ)

]
.

(D.4) cd
[
(F, Σ)∩̃(G, Σ)

]
= cd(F, Σ)∩̃cd(G, Σ).

Remark 3. Similar to the soft derived set operator, the soft co-derived operator can be used to
define a unique soft topology on X that meets the axioms stated above. The proposed soft topology
is T ∗ = {(F, Σ) : (F, Σ) ∈ SΣ(X), (F, Σ)⊆̃cd(F, Σ)}, which is the dual of soft topology T
constructed in Theorem 6.

4. Some Examples

In this section, we show that, by removing an axiom from the operators defined earlier,
we may still obtain a soft topology, but we miss some properties.

Example 1. Let X = {1, 2, 3} and let E be any parameters set. Define a soft operator α : SΣ(X)→
SΣ(X) by:

α(F, Σ) =


Φ if (F, Σ) = Φ,
({1, 2}, Σ) if (F, Σ) = ({1}, Σ) or ({2}, Σ) or ({1, 2}, Σ),
({1, 3}, Σ) if (F, Σ) = ({3}, Σ),
X̃ if (F, Σ) = ({1, 3}, Σ) or ({2, 3}, Σ) or X̃.

We can simply verify that α meets all soft closure operator axioms except (C.3). On the
other hand, a soft topology formed by α (in Theorem 1) is T = {Φ, ({3}, Σ), X̃}. Therefore,
Cl({3}, Σ) = X̃, but α({3}, Σ) = ({1, 3}, Σ).

Example 2. Let X be a set and let E be a parameters set. Define a soft operator β : SΣ(X)→ SΣ(X)
by:

β(F, Σ) = (F, Σ) for every (F, Σ) ∈ SΣ(X).

Then β satisfies all soft derived set operator axioms except (D.2), and β generates the soft
discrete topology. Therefore, every soft subset of X̃ includes all of its soft limits points, but this is
not the case for all soft topology. That xe may not be a soft limit point of {xe}.

The next examples explain how these soft operators naturally generate soft topologies.

Example 3. Let X be a set and E be a parameters set. Define a soft operator γ : SΣ(X)→ SΣ(X) by:

γ(F, Σ) =

{
Φ if (F, Σ) = Φ,
X̃ if (F, Σ) 6= Φ.
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It is clear that γ(Φ) = Φ and for any soft set (F, Σ) we have (F, Σ)⊆̃γ(F, Σ) = X̃ and
γ(γ(F, Σ)) = X̃ = γ(F, Σ). Also, γ

(
(F, Σ)∪̃(G, Σ)

)
= γ(F, Σ)∪̃γ(G, Σ) for any soft sets

(F, Σ) and (G, Σ). Thus, γ satisfies the axioms in Definition 7, and it forms the soft indiscrete
topology T = {Φ, X̃}. On the other hand, γ does not satisfy (I.4) of the soft interior operator given
in Definition 8.

Example 4. Let X be an infinite set and let E be a parameters set. Define a soft operator λ:
SΣ(X)→ SΣ(X) by:

λ(F, Σ) =

{
(F, Σ) if (F, Σ) is finite,
X̃ if (F, Σ) is infinite.

One can verify that all axioms in Definition 7. By Theorem 1 and Lemma 1, every finite soft
set is soft closed together with X̃. Accordingly, Φ and all (F, Σ) ∈ SΣ(X) such that (F, Σ)′ is finite
are soft open. Therefore, the obtained T is the soft co-finite topology on X.

Example 5. Let X be a set and E be a parameters set. For a fixed xe ∈ X̃, we define a soft operator
ρ : SΣ(X)→ SΣ(X) as follows:

ρ(F, Σ) =

{
Φ if xe 6= (F, Σ),
(F, Σ) if xe ∈ (F, Σ).

Then ρ meets all the axioms in Definition 8. Therefore, for a soft point xe, ρ forms a soft
topology T = {(F, Σ) ∈ SΣ(X) : xe ∈ (F, Σ) or (F, Σ) = Φ} or dually T ∗ = {(F, Σ) ∈
SΣ(X) : xe /∈ (F, Σ) or (F, Σ) = X̃}. The soft topologies T , T ∗ are, respectively, called included
point soft topology and excluded point soft topology on X.

5. Conclusions

In this paper, we have considered a closure operator as an extension of the set of
axioms that postulates a topological system. Five other axiomatized set operators have
been introduced: soft interior operator, soft boundary operators, soft exterior operator,
soft derived set operator, and soft co-derived set operator. Three different versions of
soft boundary operators have been defined under which all generated soft topologies
are equivalent. The interactions between these six soft operators are comparable to their
relationships in a soft topological space, so topological descriptions, which are based on
the linked connections between these soft operators and their corresponding fixed points,
can be enlarged to the general setting of an arbitrary closure system. As a result, our
axiomatized soft set operators in closure systems throw fresh light on the interaction
between soft topology and fixed point theory. Multiple examples have been proposed
that show the implementations of these operators. Some of the examples show that
by weakening a set of axioms of any soft operator, the uniqueness of the resulting soft
topologies will be dropped.

We remarked that all the obtained results are valid when implementing the con-
cept of soft elements except for the last two soft operators. The reason is Cl(F, Σ) 6=
(F, Σ)∪̃Dr(F, Σ) for soft points, (see, Example 3.21 in [24]). Even more, if we assume
Cl(F, Σ) to be the set of all soft point x for which every soft open set including x intersects
(F, Σ), we may not get a unique soft topology (see, Example 3.14 in [24]).

To complete this line of research, we plan to characterize new kinds of soft separation
axioms using some soft topological operators. In addition, we will reveal the relationships
between these soft operators and their counterparts via classical topologies.
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