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Abstract

Physically based vibration modes have been shown to provide a useful mech-
anism for describing non-rigid motions of articulated and deformable objects.
The approach relies on assumptions being made about the elastic properties of
an object to generate a compact set of orthogonal shape parameters which can
then be used for tracking and data approximation. We present a method for au-
tomatically generating an equivalent physically based model using a training
set of examples of the object deforming, tuning the elastic properties of the ob-
ject to reflect how the object actually deforms. The resulting model provides
a low dimensional shape description that allows accurate temporal extrapola-
tion based on the training motions. Results are shown in which the method is
applied to an automatically acquired training set of the outline of a walking
pedestrian.

1 Introduction

We are interested in accurately tracking a non-rigid deforming object. Pentland and
Horowitz [1] describe a method for recovering non-rigid motion and structure by deriv-
ing physically based "free vibration" modes using the Finite Element Method (FEM). The
method relies on making physical assumptions about the object, such as uniform distribu-
tion of mass and constant elasticity. The vibration modes are derived from the governing
equation of the FEM nodal parametrisation. The mass and stiffness matrices in the govern-
ing equation are either known or derived from the physical assumptions. Physically based
"modal analysis" has been used in a wide range of applications (e.g. Nastar and Ayache
[2], [3]).

In this paper we describe a method that generates physically based "vibration modes"
from a set of training examples of an object deforming, utilising a single assumption of
constant (unknown) density. The resulting vibration modes provide a good basis for the
types of motion represented in the training set (e.g. walking). We show the results of our
method on a real example, modeling the 2D shape of a walking pedestrian using auto-
matically acquired (noisy) training data. The model retains the benefits of conventional
modal analysis (e.g. low dimensional parametrisation, decoupled filter mechanism for
rapid tracking), whilst utilising the training information to improve accuracy. The training
set allows the rejection of physical assumptions being made about the object (e.g. model-
ing a walking person as a simple lump of elastic "clay").
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A related training based approach to modeling deformable shape is the Point Distribu-
tion Model (PDM) described by Cootes and Taylor [4]. The PDM has proven useful in im-
age sequence analysis (e.g. real-time contour tracking [5], robust tracking of deformable
models [6]). However, one drawback of this approach is that there is no temporal aspect to
the model. Hence it is not possible to extrapolate forward in time to obtain good estimates
for the expected shape of the object. Furthermore the purely spatial model can not discrim-
inate between similar shaped objects that deform in different ways. One obvious approach
to this problem would be to model n landmark positions taken at N regularly spaced time
intervals. However this would require modeling in a 2nN dimensional space.

2 Background: Modal analysis

Modal analysis has been described extensively [1], [7]. The FEM represents object de-
formation in terms of a set of discrete nodal points with displacements U. The governing
equation in the FEM is given by

M U + CU + / i U = R (1)

where U is the n x l vector of nodal displacements, M, C and K are n x n symmetric
matrices describing the mass, damping and material stiffness between each point within
the object and R is a n x 1 vector of external forces acting on the nodes.

The modal analysis approach decouples the above system by transforming to a basis
of "M-orthogonal" free vibration modes derived by solving the eigenvalue problem

K4>i = LOi
2
M4>i (2)

Assuming Rayleigh damping (C ~ boM + biK), the system of equations is decoupled
into n independent 2nd order differential equations. The high frequency vibration modes
are usually discarded.

The object to be modelled is assumed to have a constant (uniform) density p, and the
mass matrix is calculated in the usual way by

Mtj = pj Hi(u)Hj{u)du = pH

where Hi(u) is the interpolation function for the i'th nodal parameter.
The mass matrix defines an inner product and an associated distance metric that mea-

sures the "error" between two parametrised curves (in 2D) or surfaces (in 3D). The inner
product is given by

(U,U') = U T M U ; (3)

3 Learning by example

3.1 Nature of the training data

It is assumed that we can generate training data in which nodal (or point) displacements
for an object have been tracked over short intervals of time allowing derivatives to be cal-
culated. It is also assumed that the nodal points have been matched throughout the training
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set and that the training information has been rotated and scaled to some normal frame (e.g.
using the Hotelling transform, see [8]).

Hence we assume an observed set of matched, aligned shape vectors consisting of
nodal (or point) positions observed over short intervals of time. e.g. a set of shape vectors
x(k) each consisting of n control points.

Y(0) _ (pi pi pn pn\

with x(°), x^1), x^2) observations of the nodes at time t = 0, At, 2 At. From this data set
a set of nodal displacements u^) is extracted by subtracting off the mean shape vector.
The corresponding nodal velocities u ^ and nodal accelerations û *̂  are then calculated
by finite difference approximations.

One approach to generating this training data would be to utilise previous approaches
such as standard modal analysis or other mesh-like deformable models (described by Ter-
zopoulos et al [9]) applied to good quality training images. Alternatively point data can be
hand-generated, although this may be laborious. In our experiments 2D training data was
automatically generated from training image sequences using background image subtrac-
tion (see Baumberg and Hogg [10]).

3.2 Mapping to "V-space"

In order to simplify the problem we consider the mapping

V = HiU (4)

where 7i? is the positive definite square root of the matrix H (= p~
l
 M). Note, Ji and

H? are both real, symmetric, positive-definite, invertible matrices.
Substituting equation (4) into equation (3) we obtain:

(u,u') = pv.v

where V . V is the standard vector dot product. The training data is mapped to a new data

Assuming an unbiased, homogeneous, isotropic Gaussian noise model for the unmap-
ped data, it can be shown that that the associated noise covariance matrix, Ru, is propor-
tional to li*

1 (see Blake et al [11]). The associated covariance matrix for measurements
in "V-space", Ry, is given by

Rv = [{'H-')
T
Ru

l
{'H--)]-

1
 = rI (5)

i.e. some scalar multiple of the identity matrix.

3.3 Generating vibration modes

We are not concerned with explicitly obtaining the mass and stiffness matrices M and A'
but in generating the associated vibration modes of the system. Making the substitution
(4), the governing equation (1) can be rewritten in the form

V + BV + AV = H~
y
S
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where

B = n-ip-^n-i s = n*n
A = H-ip-

l
KH-

1
* V = H*1

and assuming Rayleigh damping, B = b^I + b\A.

The basic idea of the training method is to assume there are no external forces (i.e. the
observed deformations are simply a sum of the object's free vibrations) with some random
noise present (incorporating measurement noise as well as the effect of input and internal
disturbance). Hence the quantity

(the observed "external acceleration") is minimised over the training set. The following
error function is minimised

J(A, b0, h) = E (|v<*> + Bv<*> + A v ^ l 2 ) (6)

where E is the expectation (or averaging) operator over the data set and |v| is the standard
Euclidean norm.

In fact this is an off-line, system identification problem where the residual error co-
variance matrix (in "V-space") has been shown to be proportional to the identity matrix
(equation 5). Hence the ordinary least squares estimate (above) is also the minimum vari-
ance estimate (see for example Sinha and Kuszta [12]).

For a physically plausible solution, the stiffness matrix is symmetric and hence the
matrix A is constrained to be a real, symmetric matrix, i.e. AT

 — A. The symmetric
constraint ensures the resulting modes are real and orthogonal and hence the 2nd order n
by n system is decoupled into n independent 2nd order systems. Note that in this formu-
lation the stiffness matrix K is not constrained further to be banded as in the purely the-
oretical, physical model. Physically this corresponds to virtual springs attached between
non-adjacent as well as adjacent points.

3.4 Solving the constrained minimisation problem

In order to solve (6) subject to the constraint AT
 = A, the matrix A is parametrised in

terms of y(«+i) parameters {ctij : i > j} and the unconstrained minimisation of

J(ao,o, ai,o, ai,i> a2,o, •••, V &i) is solved.
As the training set may be large equation (6) is expanded to the form

hi

where the n x n matrices S** need only be calculated once for a given training set and are

given by

S°° = £ ( v v T ) S
01

 = E(vir
T
) S

02 = £ ( v v T )

S n = £ ( v v T ) S12 = £ (vv T )

S
22

 = £ ( v v T )
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Analytic expressions for the partial derivatives of J are easily derived and a standard
local optimisation routine used to perform the minimisation. A quasi-Newton conjugate
gradient method was used (see for example Ciarlet [13]). The problem can be simplified
a little by ignoring damping effects (i.e. setting B = 0). The assumption of Rayleigh
damping can be extended to Cauchy damping by adding higher order terms to the series
B(A).

Any minimisation scheme used to solve the problem may converge to a non-optimal
local minimum. The minimisation scheme requires a reasonable initial estimate of the so-
lution to ensure that the numerical solution is useful. To find the initial estimate we project
the global unconstrained solution into the constrained solution space. The global solution
A, B minimises the error function

J(A,B) = E>

and is given by

f A\ f S
00

 \S
ol

]
r>

{B)
=
~{S

01
 s

n

The initial estimate A^°\ is calculated by projecting A into the space of symmetric matri-
ces, i.e.

(0) lU + A
T
)

The initial estimates for 6o and&i are calculated by solvingtheminimisationof J(J4, bo, &I)
with A fixed equal to A^°\ Alternatively the traditional physics based model can be used
to generate mass and stiffness matrices which can be used to calculate initial estimates for
the matrices A and B.

Once the local optimisation scheme has converged the vibration modes ,̂- are calcu-
lated from the eigenvectors of A, V1;, using

and these "trained" vibration modes can be utilised in the usual way (see Pentland et al

[1]).

4 Results

4.1 Artificial data - recovery of SHM

An artificial training set was generated in which a 2D point undergoes simple harmonic
motion along a ID axis with a fixed frequency. 2D Gaussian noise was added and the re-
sulting training set processed. Figure (1) shows a graph of the signal-to-noise ratio (SNR)
of the training data (in dB) against the relative error in the recovered period of motion.
The relative error converges to zero as the signal-to-noise ratio increases. The method is
fairly robust although for accurate modeling it is desirable for the training data to be as
noise-free as possible.
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Figure I: Recovery of artificial motion

4.2 Real data - one walk

Real data sets were automatically generated from training image sequences (see Baumberg
and Hogg [10] ) of a walking person taken with a fixed camera. The background image
was subtracted from each image allowing the extraction of the boundary of the pedestrian.
The boundary points were approximated with a uniformly spaced cubic B-spline.

A subset of the training set for the 1st experiment is shown in figure (2). The sequence
contains 57 shapes of a pedestrian walking from left to right across the image with each
shape represented by a spline with 40 control points. The shapes were aligned about the
principal axis and scaled to be a fixed height. The lowest frequency vibration mode gen-
erated from this training set is shown in fig.3(a).

Figure 2: Training data
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(a) single walk model

(b) generic model

Figure 3: low frequency vibrations

4.3 Real data - several walks

A "generic" pedestrian model was created using a training set consisting of several pedes-
trians walking in a variety of directions. The aim was to build a rough generic model which
incorporates spatiotemporal vibration modes approximating the various types of motion
observed. A low frequency vibration mode is shown in fig.3(b).

4.4 Fitting the low dimensional model to new input data

A sequence of 10 consecutive data frames was selected from a new shape sequence not
used in the training set. An attempt was then made to represent this data using the vibration
modes with fixed amplitude and phase. Hence only two parameters were calculated for
each vibration mode in order to approximate the whole sequence. A least squares method
was utilised minimising the errors in the nodal positions.

A graph of signal-to-noise ratio of the recovered motion (with respect to the original
data) against the number of vibration modes used is shown in figure (4). Two experiments
were carried out using the single pedestrian and generic pedestrian training sets. It is clear
that the benefits of utilising additional modes decreases. Note the errors in the nodal posi-
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tions are small (typically less than 2%) when a reasonable number of vibration modes are
used.
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Figure 4: Fitting the model to data

Figure (5) shows another input sequence and the approximated sequence using the
generic model. The nodal errors were minimised over the first 8 frames and the subse-
quent frames are purely extrapolations. As before, the amplitude and phase of each vibra-
tion mode is fixed over the approximated sequence.

5 Computational Considerations

The partial derivatives SJ/Sa-ij in the calculation of the vibration modes are computed
in O(n) operations and hence each step in the iterative optimisation scheme takes O(n

3
)

operations.
When the number of desired nodes is large the method may appear computationally

expensive. However in many cases the object shape does not vary arbitrarily within this
high dimensional space and the dimensionality of the problem may be reduced by using
the Karhunen-Loeve transform (as in the PDM). This step involves reparametrising the
training shapes vM in terms of a truncated basis of spatial eigenvectors and calculating
vibration modes as before. (This may be achieved by transforming the covariance matrices
S** appropriately). The resulting modes can then be mapped back into the original shape
space.

For example, in the "generic" model 40 spline control points were used and hence the
dimensionality of the problem was 80. However 95% of the training data lay within a sub-
space spanned by the first 10 spatial eigenvectors. Hence the dimensionality of the prob-
lem was reduced to 10. The scheme was found to converge in a few seconds on a modest
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(a) input walk sequence

(b) approximated sequence (24 parameters)

Figure 5: Modeling a walk sequence

single processor workstation. This step also ensures the unconstrained global solution ex-
ists, even when the training set is small (compared to the number of nodal points).

6 Conclusions

We have shown how a training set can be utilised to automatically generate physics based
"vibration modes" for a specific deformable object. The resulting modes are intended to
represent the typical motions contained within the training set with a minimal set of M-
orthogonal parameters. The method has been shown to be fairly robust to noise and has
been applied to a real automatically acquired noisy training set. The use of training data
allows the theoretical, constant elasticity assumption to be rejected resulting in improved
vibration modes that reflect how the object actually deforms.

The method described has potential uses for tracking, recognition and data compres-
sion of deformable or articulated objects undergoing complex motions. The reduction in
dimensionality allows these problems to become overconstrained increasing robustness
and speed. The advantage of utilising a training set is that typical motions are well char-
acterised without the use of general physical assumptions that may be inappropriate (e.g.
modeling an articulated object as a simple lump of elastic "clay"). These modes have the
potential for accurate prediction in the absence of image measurements (e.g. when a walk-
ing pedestrian becomes occluded).

Currently, work is being done to look at fast and robust mechanisms for tracking the
model parameters (e.g. using a mechanism similar to Blake et al [11]). Future work may
investigate the use of the model for recognition of different deformations (e.g. analysing
gait).
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