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Abstract. Generative statistical models have a wide variety of appli-
cations in modelling of cardiac anatomy and function, including disease
diagnosis and prediction, personalized shape analysis, and generation
of population cohorts for electrophysiological and mechanical computer
simulations. In this work, we propose a novel geometric deep learning
method based on the variational autoencoder (VAE) framework capa-
ble of accurately encoding, reconstructing, and synthesizing 3D surface
models of the biventricular anatomy. Our non-linear approach works di-
rectly with memory-efficient point clouds and is able to process multiple
substructures of the cardiac anatomy at the same time in a multi-class
setting. Furthermore, we introduce subpopulation-specific characteristics
as additional conditional inputs to allow the generation of new person-
alized anatomies. Our method achieves high reconstruction quality on
a dataset derived from the UK Biobank study with average Chamfer
distances between reconstructed and gold standard point clouds below
the underlying image pixel resolution, for all anatomical substructures
and combinations of conditional inputs. We investigate our method’s
generative capabilities and show that it is able to synthesize virtual pop-
ulations of realistic hearts with volumetric measurements in line with
established clinical precedent. We also analyse the effects of variations
in the latent space of the autoencoder on the generated anatomies and
find interpretable changes in cardiac shapes and sizes.

Keywords: Cardiac Anatomy Synthesis · Point Cloud Generation ·
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1 Introduction

The human heart exhibits considerable inter-person variability both in terms of
its shape and function, which significantly impacts the effectiveness of cardiac
disease prevention, diagnosis, and treatment. The ability to capture this vari-
ability with data-driven methods is highly beneficial for clinical practice and
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therefore a key objective of the cardiac image analysis community, as it allows
population-specific shape analysis, disease and outcome prediction, dimensional-
ity reduction, and computer modelling of cardiac function [14]. While traditional
statistical models such as principal component analysis (PCA) have been widely
used for this purpose [1, 11, 14], recent research efforts focus increasingly on deep
learning methods [5, 6, 9, 13]. In this paper, we propose a novel variational au-
toencoder (VAE) [8] architecture acting directly on memory-efficient point clouds
to generate subpopulation-specifc 3D biventricular anatomy models. To the best
of our knowledge, this is the first geometric deep learning approach for cardiac
anatomy generation. Our point cloud surface representations avoid the sparsity
issues of 3D voxelgrids leading to quick execution and high resolution. Compared
to PCA and other traditional shape modelling techniques, our method can cap-
ture non-linear relations in the data and does not require any prior landmark
detection or registration, making its application significantly simpler and less
error-prone. The choice of VAE framework enables stable training and a com-
pact but also interpretable latent space representation of population datasets.
By additionally introducing multiple conditional inputs, we can generate arbi-
trarily large subpopulation-specific cohorts of artificial hearts, which allows us to
visualize and better understand the effects of combinations of different subject
characteristics on biventricular anatomy and function.

2 Methods

We first briefly describe the dataset used for method development, followed by
the network architecture and training procedure.

2.1 Dataset

Our point cloud dataset is based on 3D reconstructions of cine MRI acquisitions
obtained from volunteers of the UK Biobank study [10]. We randomly select
∼500 female and ∼500 male subjects and extract the end-diastolic (ED) and
end-systolic (ES) slices from the temporal sequence for each case [2], allowing
us to condition our method on two binary metadata variables (sex and cardiac
phase). We follow the pipeline described in [3] to create the 3D point cloud
reconstructions from each acquisition and split our dataset into ∼1700 and ∼300
point clouds for training and testing respectively with equal representation of
all conditions.

2.2 Network Architecture

Our proposed model architecture consists of a point cloud-based geometric deep
learning network embedded in a conditional β-VAE [7, 8] framework (Fig. 1).

We choose the PointNet++ [12] and the Point Completion Network [15] as
the baseline architectures of our encoder and decoder, respectively. We adapt
them to our multi-class setting by adding class information about the cardiac
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Fig. 1. Architecture of the proposed conditional Point Cloud β-VAE. The input (top
left) is an unstructured point cloud with n points. Each point is represented by a 4-
dimensional vector with three coordinate values (x,y,z) and a class label. A conditional
vector c which contains additional information about the subject is concatenated to
each input point vector as well as the latent space vector. The output consists of a coarse
(top right) and a dense (top centre) point cloud generated from a random sample of
the latent space distribution. Separate 3D coordinate values are used for each of the
three classes in both output point clouds.

substructures (left ventricular (LV) endocardium, LV epicardium, right ventric-
ular (RV) endocardium) to the encoder input and adjust the decoder architec-
ture to output separate point clouds for each class. We enable conditional point
cloud generation by concatenating our global input conditions to both encoder
and decoder inputs. In order to effectively process high-density surface data
and cope with the difficulty of latent space sampling, we also insert multiple
fully connected layers to facilitate the exchange of spatial, class, and condition
information. The standard reparameterization approach [8] is applied in the net-
work’s latent space. We choose a latent space size of 16, which we found to be
sufficiently large to capture almost all of the variability in cardiac shapes and
maintain good disentanglement.

2.3 Loss Function

Our loss function follows the design of the β-VAE [7] with a reconstruction loss
and a latent space loss balanced by a weighting parameter β. We use a β value
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of 0.2, chosen empirically as a good trade-off between low reconstruction error
and high latent space quality. The Kullback-Leibler divergence between the prior
and posterior distributions of the latent space is used as a second loss term [8].
We split the reconstruction loss into a coarse and a dense loss term [15], which
respectively compare the low-density and high-density point cloud predictions
of our network to the gold standard point clouds for all C = 3 classes in the
biventricular anatomy:

Lrecon =

C∑
i=1

(Lcoarse,i + α ∗ Ldense,i) . (1)

The weighting parameter α allows to dynamically adjust the importance of
each reconstruction loss term during training. Initially, it is set to a low value of
0.01 to allow the network to focus on accurate reconstruction of global shapes,
and is then gradually increased during training until it reaches the value 5.0 to
put more emphasis on local structures in the high density output while main-
taining a good overall shape. Due to its approximation of a surface-to-surface
distance and its ability to process point cloud data, we propose the Chamfer dis-
tance (CD) between the predicted point cloud P1 and the gold standard input
point cloud P2 as a metric for both terms of the reconstruction loss:

CD(P1, P2) =
1

2
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3 Experiments

We evaluate our method in terms of both its point cloud reconstruction and
generation performance. We also analyze its ability to correctly incorporate con-
ditional inputs into the generation process and calculate commonly used clinical
metrics over the generated heart shapes.

3.1 Reconstruction Quality

In order to assess the VAE’s reconstruction ability, we select the point clouds
of the unseen test dataset as our gold standard, input them into the network,
and compare these inputs to the network’s reconstructions using the Chamfer
distance. We report the results separated by class and subpopulation in Table 1.

We find mean distance values to be consistently below the pixel resolution
of the underlying MR images (1.8× 1.8× 8.0 mm) [10] and standard deviations
all in the range of 0.19 mm to 0.32 mm.

For a qualitative evaluation of our method’s reconstructions, we visualize
the network input and output point clouds of five sample cases in Fig. 2. We
observe that our method is able to reconstruct anatomical surfaces with high
accuracy on both a global and local level for all biventricular substructures and
can successfully cope with considerable variations.
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Table 1. Reconstruction results of the proposed method on the test dataset.

Condition Chamfer Distance (mm)

Sex Phase LV Endocardium LV Epicardium RV Endocardium

Female
ED 1.06 (±0.23) 1.17 (±0.32) 1.37 (±0.29)

ES 0.88 (±0.23) 1.00 (±0.21) 1.11 (±0.25)

Male
ED 1.16 (±0.23) 1.25 (±0.21) 1.38 (±0.24)

ES 0.91 (±0.19) 1.08 (±0.21) 1.22 (±0.23)

Values represent mean (± standard deviation) in all cases.

Fig. 2. Qualitative reconstruction results of our method on five sample cases.

3.2 Conditional Point Cloud Generation

In order to evaluate the generative performance of our method, we randomly
sample from the latent space probability distribution and add either a ‘male’ or
a ‘female’ label as well as either an ‘ED’ or an ‘ES’ label as conditional inputs
to assess the ability of the method to generate specific subpopulations. We then
pass the samples through the trained decoder part of our network. Fig. 3 shows
the generated point clouds from two such samples.

Comparing the point clouds in Fig. 3, we observe noticeable differences in
sizes and shapes, indicating the decoder’s ability to generate diverse point clouds.
The effects of changing conditional inputs of each latent space vector on the
reconstructed anatomy are also easily visible in a column-wise comparison and
match well-known clinical expectations. For example, male hearts exhibit a larger
size in both ED and ES phases than their female counterparts.

Next, we randomly sample 500 latent space vectors and use our trained de-
coder to generate random subpopulations for each combination of conditional
inputs (ED female, ES female, ED male, ES male). We then convert both gener-
ated and test set point clouds into meshes using the Ball Pivoting algorithm [4].
This allows us to calculate common clinical metrics for each mesh and thereby



6 M. Beetz et al.

Fig. 3. Generated point clouds from two randomly sampled latent space vectors (rows)
for each combination of input conditions (columns).

quantify the clinical accuracy of our generated subpopulations compared to the
meshes of the test dataset, that we consider to be our gold standard (Table 2).

Table 2. Clinical metrics of meshed point clouds generated by our method with specific
input conditions.

Sex Phase Clinical Metric Gold Standard Ours

Female

ED
LV volume (ml) 124 (±24) 122 (±24)

RV volume (ml) 147 (±26) 146 (±27)

ES
LV volume (ml) 50 (±13) 53 (±13)

RV volume (ml) 64 (±15) 69 (±14)

ED/ES LV mass (g) 85 (±19) 85 (±21)

Male

ED
LV volume (ml) 153 (±28) 154 (±29)

RV volume (ml) 190 (±27) 192 (±32)

ES
LV volume (ml) 65 (±13) 73 (±15)

RV volume (ml) 91 (±16) 98 (±16)

ED/ES LV mass (g) 121 (±23) 122 (±27)

Values represent mean (± standard deviation) in all cases.

We find comparable values across all clinical metrics and subpopulations in
terms of both means and standard deviations. Slightly better scores are achieved
for female hearts and the ED phase than for male hearts and the ES phase.
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3.3 Latent Space Analysis

The quality of the latent space distribution plays an important role in the VAE’s
ability to synthesize artificial populations of realistic hearts that are also suffi-
ciently diverse. We analyze the contributions of each part of the latent space
to the generated point clouds by varying individual latent space components,
while keeping the remaining latent space constant, and passing the resulting
vectors through the decoder to obtain the respective outputs. Fig. 4 shows the
synthesized point clouds corresponding to variations in three sample latent space
dimensions, similar to the most important modes of variation in a PCA analysis.

Fig. 4. Effect of different latent space components on point cloud reconstructions.

We observe gradual interpretable changes to the biventricular shapes and
sizes without loss of a realistic appearance, while individual components encode
different aspects of the biventricular anatomy. Among other things, component 1
is responsible for the overall heart size, component 2 changes the orientation
angle of the basal plane of the heart, while component 3 transforms thin hearts
with small mid-ventricular short-axis diameters into thicker ones.

4 Discussion

In this work, we have developed an efficient and easy-to-use method for synthe-
sizing 3D biventricular anatomies conditioned on subject metadata. The method
does not require any registration or point correspondence while maintaining high
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accuracy and diversity in its generation task. It is also capable of efficiently work-
ing with high-dimensional 3D MRI-based surface data due its usage of point
clouds instead of highly-sparse and memory-intensive voxelgrids. We achieve
mean Chamfer distances considerably below the pixel resolution of the underly-
ing images, demonstrating good reconstruction quality, while the small standard
deviation values indicate that our method is highly robust and can successfully
cope with a variety of different morphologies, both within and between subpop-
ulations. Our approach is able to process multi-class point clouds which allows
us to model different cardiac substructures with a single network. Despite no
explicit constraint on the connectivity of the different substructures, we do not
observe any sizeable disconnected or overlapping components between them. We
therefore conclude that the low values in the general reconstruction loss were
sufficient to implicitly impose correct inter-class connectivity. The closeness in
mean clinical metrics of the synthesized subpopulation-specific distributions and
the respective gold standard values show our method’s good generative perfor-
mance as well as its ability to accurately incorporate multiple conditional inputs
into the generation process. In addition, the observed similarities in standard
deviation values demonstrate that our method can produce a highly diverse set
of point clouds that is representative of the real population. We find easily inter-
pretable and gradual anatomical changes resulting from latent space variations
of each component, which indicate that the latent space resembles a continuous
unimodal probability distribution. This finding is also in line with other com-
monly used statistical approaches for population-based cardiac shape modeling,
such as the effect of varying along the primary modes of variation in a PCA
model. However, due to its non-linear design, our method is capable of captur-
ing more complex relationships in the data while maintaining interpretability.
Furthermore, we observe good latent space disentanglement with each compo-
nent encoding different aspects of the biventricular anatomy. To this end, the
weighting parameter β of the β-VAE framework was important for our high-
dimensional dataset as it allowed for the right balance to be set between latent
space and reconstruction quality.

5 Conclusion

In this work, we have presented an easy and efficient geometric deep learning
method capable of generating arbitrarily-sized populations of realistic biventric-
ular anatomies. We have shown how different subject metadata can be success-
fully incorporated into our approach to synthesize subpopulation-specific heart
cohorts and how our method’s compact latent space representation enables an
interpretable shape analysis of cardiac anatomical variability.
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