
 Open access Proceedings Article DOI:10.1109/APSEC.2004.55

Generating test cases from UML activity diagram based on Gray-box method
— Source link

Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun ...+2 more authors

Institutions: Nanjing University

Published on: 30 Nov 2004 - Asia-Pacific Software Engineering Conference

Topics: Test suite, Test case, Test harness, Applications of UML and Automatic test pattern generation

Related papers:

 Automatic test case generation for UML activity diagrams

 Test Cases Generation from UML Activity Diagrams

 A Novel Approach to Generate Test Cases from UML Activity Diagrams

 Test cases generation from UML state diagrams

 Generating tests from UML specifications

Share this paper:

View more about this paper here: https://typeset.io/papers/generating-test-cases-from-uml-activity-diagram-based-on-
3oa69by0a0

https://typeset.io/
https://www.doi.org/10.1109/APSEC.2004.55
https://typeset.io/papers/generating-test-cases-from-uml-activity-diagram-based-on-3oa69by0a0
https://typeset.io/authors/wang-linzhang-4n3aobsxfm
https://typeset.io/authors/yuan-jiesong-3wi2xf3wua
https://typeset.io/authors/yu-xiaofeng-2fz5v54em5
https://typeset.io/authors/hu-jun-d0m0nvph69
https://typeset.io/institutions/nanjing-university-24cwm43c
https://typeset.io/conferences/asia-pacific-software-engineering-conference-1g4gevca
https://typeset.io/topics/test-suite-ethn2g5b
https://typeset.io/topics/test-case-7ehjd9bt
https://typeset.io/topics/test-harness-1flg2muy
https://typeset.io/topics/applications-of-uml-3mbnqd2b
https://typeset.io/topics/automatic-test-pattern-generation-fkjnl7gs
https://typeset.io/papers/automatic-test-case-generation-for-uml-activity-diagrams-3kft7odrm9
https://typeset.io/papers/test-cases-generation-from-uml-activity-diagrams-1yl6on9oyr
https://typeset.io/papers/a-novel-approach-to-generate-test-cases-from-uml-activity-4ngkw06wm6
https://typeset.io/papers/test-cases-generation-from-uml-state-diagrams-3icjidslqw
https://typeset.io/papers/generating-tests-from-uml-specifications-32bm0rbvnc
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/generating-test-cases-from-uml-activity-diagram-based-on-3oa69by0a0
https://twitter.com/intent/tweet?text=Generating%20test%20cases%20from%20UML%20activity%20diagram%20based%20on%20Gray-box%20method&url=https://typeset.io/papers/generating-test-cases-from-uml-activity-diagram-based-on-3oa69by0a0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/generating-test-cases-from-uml-activity-diagram-based-on-3oa69by0a0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/generating-test-cases-from-uml-activity-diagram-based-on-3oa69by0a0
https://typeset.io/papers/generating-test-cases-from-uml-activity-diagram-based-on-3oa69by0a0

Generating Test Cases from UML Activity Diagram based on Gray-Box Method∗

Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li Xuandong and Zheng Guoliang

State Key Laboratory of Novel Software Technology

Department of Computer Science and Technology, Nanjing University

Jiangsu, Nanjing, P.R.China 210093

wanglz@seg.nju.edu.cn

Abstract

Test case generation is the most important part of

the testing efforts, the automation of specification based

test case generation needs formal or semi-formal spec-

ifications. As a semi-formal modelling language, UML

is widely used to describe analysis and design specifica-

tions by both academia and industry, thus UML models be-

come the sources of test generation naturally. Test cases are

usually generated from the requirement or the code while

the design is seldom concerned, this paper proposes an ap-

proach to generate test cases directly from UML activ-

ity diagram using gray-box method, where the design is

reused to avoid the cost of test model creation. In this ap-

proach, test scenarios are directly derived from the activity

diagram modelling an operation. Then all the informa-

tion for test case generation, i.e. input/output sequence and

parameters, the constraint conditions and expected ob-

ject method sequence, is extracted from each test scenario.

At last, the possible values of all the input/output param-

eters could be generated by applying category-partition

method, and test suite could be systematically gener-

ated to find the inconsistency between the implementa-

tion and the design. A prototype tool named UMLTGF has

been developed to support the above process.

Keywords: gray-box method, UML activity diagram, test

scenario, test case

1. Introduction

Testing is an important part of quality control in the Soft-

ware life-cycle. As the complexity and size of software

grow, the time and effort required to do sufficient testing

∗ Supported by the National Natural Science Foundation of China
(No.60233020 and No.60273036), the National 863 High-Tech Pro-
gramme of China (No.2002AA116090), and by the National Grand
Fundamental Research 973 Program of China (No.2002CB312001).

grow. Manual testing is time-consuming and error-prone.

Therefore it is pressing to automate the testing effort. The

testing effort can be divided into three parts: test case gen-

eration, test execution, and test evaluation. The latter two

parts are relatively easy to be automated provided that the

criteria for passing the tests are available. However, to de-

termine which tests are required to achieve a certain level

of confidence is not trivial. Test case generation in prac-

tice is still performed manually most of the time, since au-

tomatic test case generation approaches require formal or

semi-formal specification to select test case to detect faults

in the code implementation.

As the virtual standard of modelling language, UML [1]

provides life-cycle support in software development, and

is widely used to describe analysis and design specifica-

tions of software by both academia and industry. This brings

great advantages to software development, but also chal-

lenges to study the test generation from UML specifica-

tion. Using the UML models as inputs for the test case gen-

eration process is a natural idea, but how to derive tests

from UML analysis and design specification is still a press-

ing problem to be solved. UML activity diagram[1, 2] de-

scribes the sequential or concurrent control flow between

activities. Activity diagram can be used to model the dy-

namic aspects of a group of objects, or the control flow of

an operation. Activity diagram emphasizes on the activities

of the object, so it is the perfect one to describe the real-

ization of the operation in the design phase, and to describe

the sequence of the activities among the involving objects

in the control flow during the implementation of an opera-

tion, the relationship between the activity and the object in

the message flow, the state change of object in the object

flow as the executing of activity. What these modelling ele-

ments in the activity diagram represent are different aspects

of system information, which are essential information of

the system and must be preserved from design to imple-

mentation of the SUT(System Under Test) [3, 4]. UML be-

comes more and more pervasively applied in the industry,

but there are relatively few practical approaches and tools

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

support deriving test cases from models in analysis and de-

sign phases. Research and practice in software testing gen-

erate test from the specification based on black-box method,

or from the code based on white-box method, but few re-

searches were done on generating test from design. The de-

sign models are intermediate artifacts between requirement

specification and final code implementations of system un-

der develop, they preserve the essential information from

analysis models, and are the basis of code implementation.

We hope to work out a method which can generate test di-

rectly from UML design models, and can be partly auto-

mated so as not to impose too much workload on the user.

The rest of the paper is organized as follows. Section

2 briefly introduces the syntax of UML activity diagrams,

and formally defines the semantics of the test-oriented ac-

tivity diagram. Section 3 overviews the grey-box testing

method. The test coverage criteria and test scenario are also

defined in this section. Section 4 proposes an approach to

generate test cases from UML activity diagram using gray-

box method. A prototype tool supporting the presented ap-

proach is described in section 5. Finally, the last section

discusses the related works and contains some conclusion.

2. UML activity diagrams

UML activity diagrams extract the core idea from flow

chart, state transition graph, and Petri net[3]. Its modelling

elements consist of nodes and edges. The nodes represent

processes or process control, including action states, activ-

ity states, decisions, swim lanes, forks, joins, objects, signal

senders and receivers. The edges represent the occurring se-

quence of activities, objects involving the activity, includ-

ing control flows, message flows and signal flows. Activ-

ity states and action states are denoted with round cornered

boxes. Transitions are shown as arrows. Branches are shown

as diamonds with one incoming arrow and multiple exit ar-

rows each labelled with a boolean expression to be satisfied

to choose the branch. Forks or joins are shown by multi-

ple arrows entering or leaving a synchronization bar. Activ-

ity diagram can be used to model the work flow of business

system or the complex behavior of an operation. This paper

focuses on UML activity diagrams which model the opera-

tions to generate test cases. Figure 1 shows a UML activ-

ity diagram for an operation of withdrawing money from an

ATM [6]. It consists of the most modelling elements of ac-

tivity diagram to describe an operation.

In order to automatically analyze the activity diagram to

extract essential information to derive test cases, we formal-

ize it as follows.

Definition 1 An activity diagram is a tuple

D = (A, T, F, C, aI , aF), where

1. A = {a1, a2, · · · , am} is a finite set of activity states;

BankATM

prompt("pls input amount:")

getentry()

prompt("processing")

[amount<=1500 and amount<=banlance and amount mod 50 = 0]

addtxlog() getnewbalance()

setbalance()

printtxlog()

outputcash()

prompt("take cash and receipt")

a0

a1 t0

a2

a3

a4 a5

a6

a7
a8

a9

a10

t1

t2

t3

t4

t5

t6
t7

t8

t9

[amount>1500 or amount>balance or amount mod 50 <> 0]

Figure 1. An activity diagram of ATM

2. T = {t1, t2, · · · , tn} is a finite set of completion tran-

sitions;

3. C = {c1, c2, · · · , cn} is a finite set of guard condi-

tions, and Ci is in the corresponding transition ti;

4. F ⊆ (A× T ×C)∪ (T ×C ×A) is the flow relation-

ship between the activities and transitions;

5. aI ∈ A is the initial activity state, aF ∈ A is the fi-

nal activity state, there is only one transition t such

that (aI , t) ∈ F ,and (t′, aI) �∈ F and (aF , t′) �∈ F for

any t′.

When an activity diagram runs, at any time its current

state (denoted by CS) is represented by a set of activity

states.

Definition 2 Let D = (A, T, F,C, aI , aF) be an activity

diagram, CS be the current state of D, for any transition

t ∈ T , let

1. •t, t• denote preset and postset of t respectively, then
•t = {a ∈ A | (a, t) ∈ F} and t• = {a ∈ A | (t, a) ∈
F};

2. enabled(CS) denotes the set of firable transi-

tions from CS, then enabled(CS) = {t |• t ⊆ CS

are all completed and c(t) is satisfied};

3. fired(CS) denotes the only firable transition from

CS at certain moment, then fired(CS) = {t | t ∈
enabled(CS) and (CS −• t) ∩ t• = ø}, and after t

2

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

was fired, the new current state CS′ = (CS−• t)∪ t•,

if there are more than one transition satisfy the con-

dition, we can randomly choose one which is still un-

fired.

4. ep denotes an executing path of D in runtime, then

ep = CS0
t0−→ CS1

t1−→ · · ·
tn−1

−→ CSn is a se-

quence of states and transitions, CS0 = {aI}, CSn =
{aF }, CSi is current state, and ti = fired(CSi), i ≥
0; CSi = (CSi−1 −

• ti−1) ∪ t•
i−1), i ≥ 1.

Based on above definition, we can parse the activity dia-

gram and represent the essential information in a computer-

readable format, so as to be automatically processed.

3. Gray-box method

Black box testing method generates tests from sys-

tem specifications in the user’s viewpoint, it only validates

whether the functions specified in the system requirement

specifications were implemented or not. It needs no in-

formation about how the system was implemented, and

does not take into account the developing method and pro-

gramming language adopted[7]. On the contrary, white box

testing method, which is based on the programmer’s view-

point, creates program flow charts from the code imple-

mentation by reverse engineering using software compre-

hension and analysis techniques. Then it analyzes the pro-

gram structure to generate test cases[8]. These two methods

are effective and practical, but they also have shortcom-

ings respectively which can not be overcome by consum-

mating the methods themselves. In the object-oriented

context, the design pattern and structure of software dif-

ferentiate with those of procedure-oriented structural sys-

tem, but the traditional testing method could not adapt to

such changes[9]. Gray-box testing method,which was pro-

posed in recent years[10] in the designer’s viewpoint,

generates test cases based on high level design mod-

els which represent the expected structure and behavior

of the SUT. The design specifications are the interme-

diate artifact between requirement specification and fi-

nal code. They preserve the essential information from

the requirement, and are the basis of the code imple-

mentation. Gray box method combines the white box

method and the black box method. It extends the log-

ical coverage criteria of white box method and finds

all the possible paths from the design model which de-

scribes the expected behavior of an operation. Then it gen-

erates test cases which can satisfy the path conditions by

black box method. It can find problems which used to be ig-

nored by both black and white method.

An activity diagram modelling an operation describes

the expected behaviors of that operation. The incorrect im-

plementation of the activity diagram will result in unex-

pected behaviors of the operation. If there is any defect in

the implementations of the operation modelled in the activ-

ity diagram, it must be in one ep of the activity diagram de-

fined in section 2. Since we have no idea about in which ep

the defect could be, we have to check all the possible eps of

the activity diagram. As the result, either we reach the de-

fect and correct the error, or the implementation is proved

to be consistent with the design.

To traverse all the eps satisfying the test requirement,

general method is to transform the activity diagrams to flow

charts, and then traverse the graph to achieve path cover-

age. In this paper, in order to avoid the cost of complex

graph transformation and impossible path traverse, we try

to get these paths directly from the activity diagram. An ac-

tivity diagram which represents the implementation of an

operation is just like the flow chart of code implementation

of the corresponding operation, an ep of the activity dia-

gram is a possible executing trace of a thread of the program

which implements the operation in runtime. Dynamic test-

ing is to run the program in its possible executing scenario

against certain inputs, and to evaluate the real outputs with

expected results so as to determine its conformance to the

specification. The executing trace of thread during the test-

ing is just the implementation of the ep in the correspond-

ing activity diagram,which can be found in the activity dia-

gram.

To do sufficient testing at code level, path coverage is

the best choice[6], which means to exercise all possible ex-

ecuting traces of the thread of the operation in runtime. To

design the test using gray-box method, we should find all

the eps of the activity diagram. However, we could not per-

form exhaustive testing of all the eps in practice. Because

full combination of branches and loops could result in path

explosion, and in the extreme circumstance, complex activ-

ity diagram could have huge amount of paths. So in this pa-

per, in order to exercise possible and effective paths, the ba-

sic path is defined as follows.

Definition 3 When we traverse an activity diagram from

the initial activity state to the final activity state by

DFS(Depth First Search method), we restrict that the loops

be executed at most one time, and all action states and tran-

sitions be covered. Thus we can get all basic paths.

The number of the basic paths is usually acceptable in

practice, so we define the basic path based coverage criteria

of gray box method as the test completion criteria .

Definition 4 Coverage criteria: Let BP be the basic path

set of an activity diagram, tc be the set of test cases, for any

p1 ∈ BP , there must be at least one test case t ∈ tc such

that when the software is executed using t, the basic path p1

of the activity diagram is executed.

We can get the maximum number of basic paths of the

activity diagram by cycle complexity [8]. That is the mini-

3

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

mum number of test cases to satisfy the gray box test crite-

ria, and the BP can be the guidance to generate test cases.

Any ep in an activity diagram is a complete executing trace

of a thread implementing the operation, and also is a trace

of the interactions among the involving objects. BP is the

subset of the set of all the eps. Every ep represents a run sce-

nario of SUT, in the view of testing in this paper, we name

it as a testing scenario, which is made up of activity states

and transitions including the guard condition in the execut-

ing sequence of the control flow, from the initial activity

state to the final activity state. In this paper, we formalize it

as follow.

Definition 5 Let D = (A, T, F, C, aI , aF) be an activity

diagram, TS the set of test scenarios of D, ts ∈ TS is

a sequence of activity states and conditioned transitions,

then ts = CS0
[c0]t0
−→ CS1

[c1]t1
−→ · · ·

[cn−1]tn−1

−→ CSn,

where,CS0 = {aI}, CSn = {aF }, CSi is current state,

and ti = fired(CSi), Ci is the guard condition on ti,

i ≥ 0; CSi = (CSi−1 −
• ti−1) ∪ t•

i−1), i ≥ 1;

In the above definition, if all the conditions of a test sce-

nario, i.e. c0, c1, · · · , cn−1, are set,we can get an ep. An ep

is an implementation of a test scenario in runtime. If one ep

is set for each test scenario of TS, BP can be derived from

TS. The number of the test scenarios of an activity diagram

must be finite, because it is equal to the number of the el-

ements of the BP of the activity diagram. So we can find

all the test scenarios more easily than all the eps. The pur-

pose of testing is to validate whether the implementation

preserve the semantics of design, that is to verify the con-

sistency between the code implementation and the behav-

ior specified in the activity diagram. A test scenario is an

expected execute scenario of the operation, also is a condi-

tioned run of the activity diagram which models the opera-

tion. When all the guard condition on transitions of the test

scenario sequence are satisfied, an ep implements a test sce-

nario of the activity diagram. The purpose of test case gen-

eration is to find the proper inputs which satisfy the path

conditions and can run the SUT in the test scenario so as to

reach the potential error in corresponding path.

4. Generating test cases from activity dia-

grams using gray-box method

The verification of models themselves is done by infor-

mal review and formal model checking[5], and it is out of

our concern in this paper. In order to directly reuse the ac-

tivity diagrams modelling an operation as the test model to

generate test cases, it is necessary to follow the testability

requirement. An activity diagram only has one initial ac-

tivity state, pair of branches and merges, pair of forks and

joins. The owner object of each activity state should be la-

belled by swim lanes, or be labelled in the name of activ-

ity state. Every node other than the initial node and final

node has at least one outgoing edge and one incoming edge,

which means all nodes are reachable. Any fork node only

has two exit edges. Concurrent activity states will not ac-

cess the same object and only execute asynchronously. In

order to focus on the test case generation, we suppose that

the operation represented in the activity diagram be consis-

tent with the specification of use case.

Based on these assumptions, gray-box method could sys-

tematically generate test cases directly from the activity di-

agrams which can be used to test the system at code level.

Firstly, it parses the activity diagram and derives the set

of test scenarios to satisfy the basic path coverage criteria.

Then, each test scenario is processed. The input and out-

put parameters are extracted from the action sequence. The

constraint conditions are extracted from the guard condi-

tions in each transition of the test scenario sequence. The

object method sequence which represents the internal be-

havior of the software in runtime is extracted from activity

states and corresponding objects. At last we can use cate-

gory partition method [11] to generate proper combination

of values of input and output parameters to satisfy the con-

dition constraints. So the input sequence, expected object

method call sequence and expected output form a test case.

And we could also generate all test cases to form the test

suite for the activity diagrams.

4.1. Deriving test scenarios from activity diagram

To traverse all the possible basic paths of an activity di-

agram, we comply with the criteria described in section 3,

fully combine the conditional branches and forks, and exe-

cute the loops at most one time. Based on the definition in

section 2, we can represent the essential information of the

activity diagram in intermediate data structures. As an ex-

ample, table 1 shows guard condition, preset and post set

of each transition of the activity diagram in Figure 1.

Based on these program readable representations of the

activity diagram, we design an algorithm TsGenerator to

automatically traverse all the activity states and transitions

of each basic path with the retrospective DFS method, so as

to get all the test scenarios from the activity diagram. From

the initial activity state(CS[0] = {aI}) to the final activity

state(CS[n] = {aF }), TsGenerator visits the current state

CS[i] and transitions fired from it in turn. A stack s is em-

ployed to sequentially record the visiting trace of CSs and

transitions, which is also the trace of a run of the activity di-

agram. After the algorithm is initialized, CS[i] is pushed

into the top of s, and its occurring time in the stack is set

in the flag array. When the enabled(CS[i]) is not empty,

one firable transition t is chosen and fired from CS[i], and

its occurring time in the stack is set in the flag array. Af-

ter that t is deleted from enabled(CS[i]). t and the cor-

4

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

t •t c(t) t•

t0 a0 a1

t1 a1 a2

t2 a2 amount > 1500 or

amount > balance or

amount mod 50 �= 0

a1

t3 a2 amount ≤ 1500 and

amount ≤ balance and

amount mod 50 = 0

a3

t4 a3 a4, a5

t5 a4 a6

t6 a6 a7

t7 a5 a8

t8 a7, a8 a9

t9 a9 a10

Table 1. The transition transformation rela-

tionships

responding guard conditions are pushed into top of s. The

new state set CS[i + 1] could then be calculated by delet-

ing the prestate of t from CS[i] and merging the poststate of

t into CS[i]. If a loop has been executed once, i.e. the occur-

ring times of CS[i] in s equal to two, it is bypassed in the se-

quence. If CS[i] in the top of the stack s is empty, a full path

is completed. We can read out a test scenario from the bot-

tom to the top of the stack into a test scenario ts[j. Then the

algorithm backtracks to the last visited CS[i] with an un-

visited firable transition in the enabled(CS[i]) and contin-

ues the traverse. This progress continues until all the current

states set and transitions of the activity diagram were found

at least one time in the set of test scenarios. The pseudocode

algorithm is presented in figure 2.

By applying the above algorithm, we could get a set of

test scenarios. In fact we have applied it to the activity dia-

gram in figure 1. Table 2 shows the relations between the

current states and fired transitions. One of six derived test

scenarios from the above activity diagram is as follows.

ts1:{a0}t0{a1}t1{a2}[amount > 1500 or amount >

balance or amount mod 50 �= 0]t2{a1}t1{a2}
[amount ≤ 1500 and amount ≤ balance and

amount mod 50 = 0]t3{a3}t4{a4, a5}t5{a5, a6}t6{a5, a7}
t7{a7, a8}t8{a9}t9{a10};

After all the test scenarios have been found from the ac-

tivity diagram,we can now work on generating test cases

from the set of test scenarios.

4.2. Generating test cases for each test scenario

A test case of gray-box testing is made up of the possible

input sequence, object method executing sequence and out-

TsGenerator(D)
//Input:D = (A, T, F, C, aI , aF);
//visted CS[] is an array of the visited times of CS

//visted t[] is an array of the visited times of t

//s is a stack to record the visited CS and fired t

//output:ts[n];
begin

i := 0; j := 1; ts := null; s := null; visited CS := 0
visited T := 0; CS[i] := {aI};

do while CS[i] �= NULL

push(CS[i], s);
visited CS[CS[i]] := visited CS[CS[i]] + 1;

if enabled(CS[i]) �= NULL;

visitnexttransition(CS[i]);
Loop;

else

Read out the stack s from bottom to top to ts[j];
j := j + 1;

if all the CS[i] and t at least shown one time in ts

exit;

else

do while s �= NULL

t := pop(s);CS[i] := pop(s);
if enbaled(CS[i]) �= NULL

visitnexttransition(CS[i]);
endif

Loop;

enddo

endif

endif

Loop;

enddo

end

visitnexttransition(CS[i])
begin

t := next unvisited transition in enabled(CS[i]);
enabled(CS[i]) := enabled(CS[i]) \ t;

CS[i + 1] = (CS[i] − preset(t)) ∪ postset(t);
i := i + 1;

if visited CS[CS[i]] == 2
visitnexttransition(CS[i]);

endif

push(c[t]t, s);
visited t[t] := visited t[t] + 1;

end;

Figure 2. The algorithm to generate test sce-

narios from an activity diagram

5

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

i CS[i] enabled(CS[i]) fired(CS[i]) CS[i + 1]

1 a0 t0 t0 a1

2 a1 t1 t1 a2

3 a2 t2, t3 t2 a1

t3 a3

4 a3 t4 t4 a4, a5

5 a4, a5 t5, t7 t5 a5, a6

t7 a4, a8

6 a5, a6 t6, t7 t6 a5, a7

t7 a6, a8

7 a4, a8 t5 t5 a6, a8

8 a5, a7 t7 t7 a7, a8

9 a6, a8 t6 t6 a7, a8

10 a7, a8 t8 t8 a9

11 a9 t9 t9 a10

12 a10

Table 2. The current state and transition rela-

tionships

put sequence. Given a test scenario, the sequence of its ac-

tion states and scenario conditions on its transitions could be

extracted. ¿From the swim lane in the activity diagram, we

could also find the object of each activity state. Thus the se-

quence of action states can be transformed to the expected

executing sequence of object methods. The input parame-

ters could be found in the input action states of the test sce-

nario. The input sequence and output sequence could be ex-

tracted from the sequence of corresponding input and out-

put action states of the test scenario. All the guard condi-

tions in the transitions of the test scenario are extracted as

the path condition. The expected output can be extracted

from the output action states corresponding to the specifica-

tion and guard conditions. At last, referring to the input do-

main, output domain and constraints between them in the

requirement specification of the SUT, the rational combina-

tion of input values and output values are generated by cat-

egory partition method. At least one test case could be gen-

erated from one test scenario. Table 3 lists one test case tc1

derived from the test scenario ts1.

Test cases for all the test scenarios could be generated

to form the test suite. And the redundant and impossible

test cases should be eliminated from the test suite. We can

also incrementally generate test cases for other activity di-

agrams of the same use case using above gray box testing

method. We can use the instrumentation method in [16] to

instrument the SUT against each test scenario. After execut-

ing the SUT with these test cases, we can collect and com-

pare the results with the expected results in the test cases

to find the inconsistency between the design and the imple-

mentation. If a test case fails, there must be a defect in one

ep, which is the implementation of corresponding test sce-

ID Input

seq.

expected method seq. expected out-

put seq.

tc1 28 ATM.prompt(), Please in-

put amount,

ATM.getentry(),
ATM.prompt(), Please in-

put amount,

150 ATM.getentry(),
ATM.prompt(), Processing,

bank.addtxlog(),
ATM.printtxlog(), Print the note,

bank.getnewbalance(),
ATM.outputcash(), Output cash

150,

bank.setbalance(),
ATM.prompt() Take your cash

and receipt

Table 3. The test case for the test scenario ts1

nario of the activity diagram.

5. A prototype tool

To support the automation of above test case generation

method, we have developed a tool named UMLTGF, which

automatically generates test cases from UML activity di-

agrams. UMLTGF can easily import and parse the UML

specifications(called MDL plain text file). UMLTGF can

systematically generate test cases for each test scenarios de-

rived from the activity diagram. The test suite can also be

managed to be reused in the future. There are three use cases

as shown in the use case diagram in figure 3. The class dia-

gram of UMLTGF is in figure 4. The detail functions of the

three use case are as follows.

Generating test

case

managing test case

Parsing activity

diagram

Building test

scenario

Generating test

case

REI

Test engineer

<<uses>> <<uses>>
<<uses>>

Figure 3. The use case diagram of UMLTGF

6

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

+ParseModel()

-GetCategoryActivityDiagram()

-GetClassActivityDiagram()

-GetStateMachineActivityDiagram()

-ParseStates()

-ParseActivities()

-ParseDecisions()

-ParseSyncBars()

-ParseSwimLanes()

-ParseTransitions()

CModelParser

+SetStartVertexID()

+GetStartVertexID()

+AddEndVertexID()

+GetEndVertexIDs()

+AddScenario()

+GetScenarios()

+AddVertex()

+GetVertexIDs()

+AddTransition()

+GetTransitionIDs()

+AddSwimlane()

+GetSwimlaneIDs()

+GetItemByID()

+GetSize()

+Draw(in pDC : CDC*)

CActivityDiagram

+ClearDummyVertex()

+SetTestCase()

+GetTestCase()

+AddVertexes()

+GetVertexIDSet()

+AddTransitions()

+GetTransitionIDSet()

+Draw()

CScenario

+GetScenario()

+AddInputs()

+AddOperations()

+AddOutputs()

+GetInputs()

+GetOperations()

+GetOutputs()

CTestCase

+BuildScenario()

-PreState()

-PostState()

-Enabled()

-Fired()

CScenarioBuilder

+GenterateTC()

-GetInputVarForces()

CTCGenerator

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

1

1

1

*

+AddTestCase()

+DeleteTestCase()

+ReplaceTestCase()

CTestCaseManager

1 *

Figure 4. The class diagram of UMLTGF

Abiding by the XMI specification of OMG, UML model

parser can import the activity diagrams directly from UML

modelling tools and analyze the text file of specification

(Rational Rose MDL file) with the help of Rose Extensi-

bility Interface[12], then extract the activity states and the

transitions information and store them in the data structure

so as to be accessed by the test case generator. Gray-box

test case generator mainly includes test scenario genera-

tor and test case generator. The former one analyzes the se-

mantics of the result of the model parser, and derives test

scenarios satisfying the gray method criteria, while the lat-

ter analyzes each test scenario and generates test case. Test

case manager manages the generated test cases. It can add,

modify, delete the test case to reuse, reduce, maintain the

test suite.

The activity diagram in figure 1 was imported and pro-

cessed by UMLTGF. Then the result was shown in the panel

in figure 5. The tree of test scenarios was listed in the top-

left of the panel. Once a test scenario was selected, the la-

belled sequence of the activities and transitions would be

represented in the top-right of the panel, and the final test

case of selected test scenario would be described in the bot-

tom of the panel.

Figure 5. The interface of UMLTGF

6. Related works and conclusion

Even though UML is widely employed in industry and

research, only a little part of the reported literatures has ad-

dressed its use in the testing phase so far. These methods

generate test cases for various testing levels from various

UML diagrams. An approach for generating test cases sat-

isfying different coverage criteria from UML state chart is

described in [12]. In [13], the state charts are transformed

to global finite state machine(GFSM) from which the inte-

gration test cases are generated. A number of approaches

for generating test cases indirectly from the UML analy-

sis and design models, i.e. use case diagram, sequence di-

agram, collaboration diagram and class diagram, are pro-

posed in [14, 15, 16, 17]. But most of them need to trans-

late UML description into another formal description and

then derive the test from the latter. [18, 19] introduce the ap-

proach to generate test from UML activity diagram. In [18],

an UML activity diagram is formalized and transformed

to a test case model, and the test case could be generated

from the test case model. This approach need to consider-

ate transformation cost. A strategy is proposed to derive test

scenarios from activity diagrams and to generate test cases

from the test scenario in [19], but it only proposes a con-

ceptual idea, and does not give a systematic method. An ap-

proach proposed in [20] formalizes the activity diagram to

a more rigorous formal activity diagram(FAD), and repre-

sents the interactions between the user and the SUT in FAD,

then generates formatted test cases from FAD on the basis

of the state machine testing method. However it only fo-

cuses on the inputs and outputs based on black box method,

and does not consider complex behaviors.

The approach proposed in this paper differentiates with

the above mentioned methods mainly as follows. Firstly,

test cases could be generated directly from UML activ-

ity diagrams systematically. Secondly, our method is com-

7

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

pletely based on UML models. Thirdly, the most part of

this method could be automated. In our opinion, it will be

adopted by industry easily.

It makes full advantage of the black-box method to an-

alyze the expected external behavior, and the white-box

method to covers the internal structure of the activity di-

agram of the SUT to generate test cases. And it is also

helpful to find defects in the implementation such as over-

implementation and under-implementation, which can not

be found by the test cases only generated from the code it-

self. Using this method, test cases could be generated be-

fore or parallel with the code implementation, since design

based testing is started up as soon as the design phase ends.

It enables testers to reasonably employ the test resources.

Directly reusing the design model for generating test cases

avoids the cost of building test models or transforming mod-

els. Defects in design model could also be detected during

the analysis of the model itself. In this case, the defect could

be removed as early as possible, thus reducing the cost of

defect removal. It could also prevent the testers from be-

ing prematurely involved in details of the implementation,

so as to reuse the tests generated from essential informa-

tion of specifications for system migration. It is consistent

with the idea of Model Driven Architecture proposed by the

Object Manage Group[21], and also is the basis of model

driven testing[22], which is our purpose in the future.

Acknowledgement We are grateful to Dr. Peiyu for his

critical feedback and constructive suggestions.

References

[1] Object Management Group,UML Specification 1.5, avail-

able at http://www.omg.org/uml, 2003

[2] Grade Booch, James Rumbaugh, Ivar Jacobson, The Unified

Modeling Language User Guide, Addison-Wesley, 2001

[3] Grade Booch, James Rumbaugh, Ivar Jacobson, The Unified

Modeling Language Reference Manual, Addison-Wesley,

2001

[4] Philippe Kruchten, The Rational Unified Process -An Intro-

duction, 2nd edition, Addison-Wesley, Reading, MA, 2000

[5] Cui Meng, Li Xuan-dong, Zheng Guo-liang, Formal Analy-

sis on UML Real-time Activity Diagram, Chinese Journal of

Computers, vol. 3,2004(in Chinese)

[6] Robert V. Binder, Testing Object-oriented Systems: Models,

Patterns, and Tools, Addison-Wesley, 2000

[7] Beizer. Black-box Testing:Techniques for functional testing

of software and systems, John Wiley & Sons,Inc, New York,

1995

[8] Paul C. Jorgrnsen, Software Testing: A Craftsman’s Ap-

proach , CRC PressInc 1995

[9] Imran Bashir, Amrit L. Goel, Testing Object-oriented Soft-

ware: Life Cycle Solution, Springer-Verlag New York, Inc,

1999

[10] Hung Q.NguyenTesting Application on the Web:Test Plan-

ning for Internet-Based SystemsJohn Wiley & Sons2003

[11] Thoms J. Ostrand, Marc J. Balcer, The Category-Partition

Method for Specifying and Generating Functional Tests,

Communication of ACM,Vol. 31,No. 6, June 1988

[12] A. J. Offutt and A. Abdurazik, Generating Tests from UML

specifications, Proc. 2nd International Conference on the

Unified Modeling Language (UML’99), Fort Collins, CO,

pp. 416-429, October, 1999.

[13] Hartmann, J., Imoberdof, C., Meisenger, M., UML-Based

Integration Testing, in ISSTA 2000 conference proceeding,

Portland, Oregon, 22-25 August 2000, pp. 60-70.

[14] Byoungju Choi, Hoijin Yoon, Jin-Ok Jeon, A UML-based

Test Model for Component Integration Test, Workshop on

Software Architecture and Component, Japan, pp63-70, Dec.

1999

[15] Basanieri, F., Bertolino, A.: A Practical Approach to

UML-based Derivation of Integration Tests. Proceeding of

QWE2000, Bruxelles, November 20-24, 3T., 2000

[16] A. J. Offutt and A. Abdurazik, ”Using UML Collaboration

Diagrams for Static Checking and Test Generation,” Proc.

3rd International Conference on the Unified Modeling Lan-

guage (UML’00), York, UK, pp. 383-395, October, 2000.

[17] Ye Wu, Mei-Hwa Chen and Jeff Offutt, ”UML-based Inte-

gration Testing for Component-based Software”, The 2nd

International Conference on COTS-Based Software Systems

(ICCBSS). pages 251-260, Ottawa, Canada, February 2003.

[18] Zhang Mei, Liu Chao, Sun Chang-ai, Automated Test Case

Generation Based on UML Activity Diagram Model, Jour-

nal of Beijing University of Aeronautics and Astronautics(in

Chinese), pp.433 437, vol. 27 No. 4, August 2001,

[19] Liu Min, Jin Maozhong, Liu Chao, Design of Testing Sce-

nario Generation Based on UML Activity Diagram, The En-

gineering and Application of Computer,(in Chinese), Vol.

12,pp.122 124, 2001

[20] Chris Rudram, Generating Test Cases from UML, Uni-

versity of Sheffield ,technique report, available at

http://www.dcs.shef.ac.uk2003.

[21] Anneke Kleppe, Jos Warmer, Wim Bast, MDA Explained:

The Model Driven Architecture: practice and promise,

Addison-Wesley, 2003

[22] R. Heckel, M. Lohmann, Towards Model-Driven Testing,

TACoS - International Workshop on Test and Analysis of

Component Based Systems, Warsaw, April 13th, 2003,in

conjunction with ETAPS 2003

8

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

