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BACKGROUND: Blood chemicals are routinely measured in clinical or preclinical research studies to diagnose diseases, assess risks in epidemiological
research, or use metabolomic phenotyping in response to treatments. A vast volume of blood-related literature is available via the PubMed database
for data mining.

OBJECTIVES:We aimed to generate a comprehensive blood exposome database of endogenous and exogenous chemicals associated with the mamma-
lian circulating system through text mining and database fusion.

METHODS: Using NCBI resources, we retrieved PubMed abstracts, PubChem chemical synonyms, and PMC supplementary tables. We then employed
text mining and PubChem crowdsourcing to associate phrases relating to blood with PubChem chemicals. False positives were removed by a phrase
pattern and a compound exclusion list.

RESULTS: A query to identify blood-related publications in the PubMed database yielded 1.1 million papers. Matching a total of 15 million synonyms
from 6.5 million relevant PubChem chemicals against all blood-related publications yielded 37,514 chemicals and 851,999 publications records.
Mapping PubChem compound identifiers to the PubMed database yielded 49,940 unique chemicals linked to 676,643 papers. Analysis of open-access
metabolomics papers related to blood phrases in the PMC database yielded 4,039 unique compounds and 204 papers. Consolidating these three
approaches summed up to a total of 41,474 achiral structures that were linked to 65,957 PubChem CIDs and to over 878,966 PubMed articles. We
mapped these compounds to 50 databases such as those covering metabolites and pathways, governmental and toxicological databases, pharmacology
resources, and bioassay repositories. In comparison, HMDB, the Human Metabolome Database, links 1,075 compounds to blood-related primary
publications.

CONCLUSION: This new Blood Exposome Database can be used for prioritizing chemicals for systematic reviews, developing target assays in expo-
some research, identifying compounds in untargeted mass spectrometry, and biological interpretation in metabolomics data. The database is available
at http://bloodexposome.org. https://doi.org/10.1289/EHP4713

Introduction
Human blood is the most commonly used sample matrix in clini-
cal as well as in epidemiological studies. In this context, factors
measured in blood are investigated that indicate a subject’s health
status (Chaleckis et al. 2016) or risk for chronic diseases (Miranti
et al. 2017). Typically, such factors are built into the study design
along with smoking status, food frequency questionnaires, sex,
race, body mass index, and age. Yet these factors do not reflect
exposures to exogenous chemicals and phenotypes of human
health such as endogenous metabolites. Thousands of chemicals
from food, drugs, household chemicals, and environmental pollu-
tants enter the bloodstream. Information on these compounds
could stratify subject cohorts to actual exposures (instead of
relying on questionnaires) and could also be used to estimate
risks of specific compounds impacting health. Furthermore, expo-
sure chemicals may be biochemically transformed by cellular
enzymes, for example, in the liver (Gu and Manautou 2012) or
by gut microbes (Koppel et al. 2017). The dynamics of chemical
intake, metabolism, and transport govern the human blood’s
chemical composition and concentrations (Bray et al. 2018).

Therefore, the overall dynamics of chemical exposures and bod-
ily metabolism (metabolomics) must be studied by comprehen-
sive blood chemical analysis. For example, increased blood
homocysteine was shown to modify stroke risk in a subset of hy-
pertensive Chinese adults (Zhao et al. 2017), while serum
4-hydroxynonenal was shown to be an oxidative stress biomarker
in rats (Kim et al. 2015). The term exposome is defined by the to-
tality of exposures during a lifespan (Wild 2005). The blood
exposome concept includes performing association modeling on
all the chemicals present in human blood (Rappaport et al. 2014;
Vlaanderen et al. 2017). It requires measuring all these com-
pounds using analytical assays, analyzing the levels of those
compounds, and then interpreting them in the contexts of pheno-
types and physiology (Dennis et al. 2017). Since only a small
portion of risk for chronic diseases can be explained by genetic
factors, a large portion of the remaining risk can be attributed to
these chemicals that are present in the blood. It has been strongly
suggested that studies of exposomics and genomics will provide
a better estimate of risk and causes of chronic diseases (Wild
2005).

Comprehensive chemical analysis in blood has tremendously
improved over the past 20 y. Single-molecule assays are being
replaced with multitargets assays or untargeted chemical profiling
offered by mass spectrometry–based targeted and untargeted
metabolomics assays (Marksteiner et al. 2018; Cohen et al.
2018). The increased breadth of the analysis has the potential to
provide quantitative data for up to 900 compounds (Barupal et al.
2019; Hu et al. 2019; Long et al. 2017; Price et al. 2017), as
exemplified in Karl et al. (2017), where untargeted metabolomics
was used to compare 737 chemicals in the plasma of soldiers
before and after rigorous training exercises. Untargeted plasma
metabolomics has been routinely used in clinical and epidemio-
logical settings to identify exposure biomarkers (Rothwell et al.
2014) and chronic disease risk factors (Li et al. 2018). Two major
challenges still remain. How can we interpret changes in the level
of hundreds of compounds (Karl et al. 2017; Miller et al. 2016),
and how can we identify the chemical structure of detected
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signals in mass spectrometry profiling? The most logical step is
to map all detected signals to a list of all known chemicals that
have been reported in the literature in mammalian blood. Yet
such a comprehensive database does not exist. Many compounds
are found in the literature that are not covered by existing reposi-
tories such as the Human Metabolome Database (HMDB)
(Wishart et al. 2018), which was manually curated. Yet such
repositories are necessarily incomplete due to the large volume of
literature. Instead, text mining has been used in other important
areas of biomedical research such as tagging genes (Funk et al.
2014) and diseases (Jimeno et al. 2008), mapping complex bio-
logical relationships (Ananiadou et al. 2010; Pyysalo et al. 2012),
and understanding mechanisms and disease contexts (Jensen et al.
2006; Zhu et al. 2013). However, to our knowledge, text mining
has not been used to date for exposome analysis of blood-
associated chemicals. We show here, through text mining and
database fusion, how to construct a complete list of all chemicals
currently reported to be associated with the mammalian circula-
tory system.

Methods

PubMed Data

Blood-related (relevant publications that reported measurements
of chemicals in blood) papers were identified by a PubMed query
using the combined keywords (blood[Title/Abstract] OR serum
[title/abstract] OR plasma[title/abstract] OR circulating[title/
abstract]) AND (level* OR concentration* OR content OR value*)
AND has_abstract[filt] AND eng[language] NOT review[pt]”.
Query results were downloaded in the XML format from the
PubMed website interface. Two-word-pair phrases (“shingle” in
text mining), for example, “plasma glucose” or “blood pressure,”
were extracted from abstracts and titles for “blood OR sera OR
serum OR circulating OR plasma.” Shingles were manually
reviewed by the authors, and those that did not reflect blood
chemical analysis were marked as false positives and conse-
quently compiled into a phrase exclusion list (Excel Table S1).
PubMed abstracts that only had these exclusion phrases were
removed from the list of literature reports on blood chemicals.

PubChem Data

The following four mapping files were downloaded from the
PubChem FTP server (ftp://ftp-private.ncbi.nlm.nih.gov/pubchem/
Compound/) on 24 April 2019 and saved in a tab-separated text for-
mat: a) PubChem CID to chemical synonyms, b) PubChem CID to
Biosystems, c) PubChem CID to PubMed identifiers, and d)
PubChem CID to InChIKey.

WemanuallydefinedPubChemstructuredepositors thatwere rele-
vant to exposome research usingmission descriptions of the associated
organizations (ExcelTableS2).Acompositequeryof termsanddepos-
itors was compiled to retrieve relevant structures from PubChem
(https://www.ncbi.nlm.nih.gov/pccompound) using the following
search strategy: “Tox21”[SourceName] OR “NIST”[SourceName]
OR “NIAID”[SourceName]OR “NCBI Structure”[SourceName] OR
“DTP/NCI”[SourceName] OR Nikkaji[SourceName] OR “Broad
Institute”[SourceName] OR “NCGC”[SourceName] OR “MLSMR”
[SourceName] OR “MetabolomicsWorkbench”[SourceName] OR
“EPASubstanceRegistryServices”[SourceName]OR“ChemIDplus”
[SourceName] OR “Human Metabolome Database”[Source
Name] OR “Springer Nature”[SourceName] OR “NCBI Structure”
[SourceName] OR “Comparative Toxicogenomics Database”[Source
Name] OR “KEGG”[SourceName] OR “ChEBI”[SourceName]
OR “EPA DSSTox”[SourceName] OR “FDA/SPL Indexing
Data”[SourceName] OR “pccompound pubmed”[Filter] OR

“pccompound pmc”[Filter] OR “has mesh”[Filter] OR “pccom-
pound omim”[Filter] OR “pccompound gene”[Filter] OR “pccom-
pound gds”[Filter] OR “pccompound biosystems”[Filter] OR “has
dailymed”[Filter] OR pccompound_pcassay_active[filt] OR “has
src nih mlp”[Filter]. One limitation of this approach is that the list
covers major exposome-related databases and sources; however, it
does not cover databases that have notdeposited their chemical struc-
tures to thePubChemdatabase.

The PubChem synonym file was used for retrieving synonyms
for the CIDs returned by the PubChem search. A manually cura-
ted list of synonyms (Excel Table S3) that did not refer to chemi-
cal names was prepared, and synonyms from this list were
removed from the PubChem synonym list. The filtered list of
synonyms was searched against the PubMed abstracts to identify
relevant publications that reported measurements of chemicals in
blood.

PMC Data

Bloodmetabolomicspaperswere identifiedbyaPMCqueryof the syn-
tax (“metabolomics”[Body - All Words] OR “metabolomic”[Body -
All Words] OR “metabolite profiling”[Body - All Words] OR “meta-
bolic profiling”[Body - All Words] OR (“metabolome”[Body - All
Words] OR “metabolome”[Body - All Words]) ) AND (blood[Body -
All Words] OR serum[Body - All Words] OR plasma[Body - All
Words] OR circulating[Body - All Words] OR blood[Body - All
Words] OR serum[Body - All Words] OR plasma[Body - All Words]
OR circulating[Body - All Words]) AND “open access”[filter] AND
“has suppdata”[Filter]. Supplementary data tables (CSV, XLS, or
DOC) for metabolomic papers were retrieved using the PMC
open-access web service. These tables were extracted using an R
script (version 3.4.1; R Development Core Team) by identifying
chemical names by matching table entries against the mapping
file “PubChem CID to chemical synonyms.” The PMC database
provides 5.6 million full-text articles (as of September 2019) for
reading online at their website; however, only a subset of these
articles are available for download and for subsequent computa-
tional text mining. The PMC copyright policy is available at
https://www.ncbi.nlm.nih.gov/pmc/tools/textmining/.

Human Metabolome Database Data

Serum metabolite annotations were downloaded from the HMDB
website in an XML format. Using an R script, biofluid and
PubMed annotations were extracted for each metabolite in the
database. To focus on primary publications instead of generic
databases or reviews, the top 10 publications (based on total
counts of chemicals and citation accuracy; see Excel Table S4)
and their associated compounds were removed from the list.

Merging Data

A master list of unique PubChem CIDs was created by combining
the results of PubChem, PubMed, and PMC blood metabolomics
queries (Excel Table S5). A hashed version of an International
Chemical Identifier (InChI) and Simplified Molecular Input
Line Entry System for PubChem CIDs were downloaded from
the PubChem identifiers exchange service. Molecular structures
have unique chemical descriptors of the three-dimensional struc-
ture defined by InChIKeys. While, in many cases, researchers may
truly identify specific metabolic stereoisomers (such as distinguish-
ing glucose and galactose), in other cases, scientists may have used
ambiguous names. We therefore used the first block of the
InChIKeys, describing the two-dimensional chemical structure, to
use a conservative approach for analyzing the blood exposome.
Also, structures with noncovalent bonds, such as those found in a
salt of a chemical, for instance, “Octenidine dihydrochloride” and
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“Octenidine,” were flagged in the database. Then we removed
structures that were labeled with stable isotopes (such as 2D or
13C).

Using the final list of PubChem CIDs, the structure definition
files (SDFs) of all blood exposome compounds were downloaded
from the PubChem structure download utility. Information of exact
monoisotopic mass and lipophilicity (XlogP) was extracted from
the SDF. To test the presence of chemicals in databases relevant to
exposome research, we collected and cross-referenced PubChem
CIDs of chemicals in 50 different depositors that we manually
defined as relevant to exposome research to include environmental
pollutants, occupational hazards, drugs, dietary compounds, endog-
enous compounds, and food additives (Table 1).

Computer Hardware and Software

Calculations were performed using a 4-core (3:7GHz) computer
with 64GB of memory on 2 TB of solid state drive hard drives. R
(version 3.4.1) was used for processing all the files.

Code and Data Availability

The R script is available at https://github.com/barupal/exposome
and in Supplemental Material, “The Blood Exposome Database -
R script.” Web addresses for input information sources are pro-
vided in Excel Table S6.

Results
An overview of the workflow as described in the “Methods” sec-
tion is provided in Figure 1. In the following sections, we
describe the general approach and results from each step of the
process.

Identifying Publications Using Blood Measurements

The most comprehensive resources for literature-based searches
are PubMed with abstracts of over 29 million scientific articles
and the PMC full-text repository for about 5.5 million papers
which were searched in April 2019. Using synonyms for “blood,”
we therefore exploited the PubMed database to search for all
papers related to “measurements in blood,” using the four terms
“level,” “concentration,” “content,” and “value,” as described in
the “Methods” section. In a broad literature search of all terms
related to blood, we found a total of 1.4 million papers—too
many to be manually assessed. We kept the query terms generic
enough to cover both humans and other mammals. In this way,
we yielded dedicated exposure studies (e.g., Wang et al. 2012)
that were conducted only on animal models such as rats or pigs,
showing that the inclusion of animal studies was a valid and
important aspect of constructing a full exposome database.
However, an intrinsic problem of generic query terms is the iden-
tification of many false-positive publication records. For exam-
ple, queries returned reports that used specific chemicals for
treatments in study designs without measurement of chemicals in
blood. To remove such publication records, we created a phrase
exclusion list (Excel Table S1) of about 10,000 phrases that
included phrases such “blood pressure” or “blood transfusion.”
Such phrases built a context in which chemicals were likely used
as actors in clinical or preclinical trials, but not chemicals that
were reported as measured in blood. If phrases from the exclusion
list occurred only once in an abstract together with a chemical, we
removed the corresponding paper from the blood exposome publi-
cation list. We removed 350,133 publications in this way, retain-
ing a final list of 1,085,023 literature abstracts with PMIDs from
PubMed. This final list of all included PMIDs is available on the

Blood Exposome Database website (https://exposome1.fiehnlab.
ucdavis.edu/download/pmid_title_abstract_sb.zip).

Querying Chemicals by Synonym Lists

Inspired by the construction of the medical subject headings
(MeSH) (Coletti and Bleich 2001) ontology, we used a chemical
synonym entity lookup approach. Chemical synonyms were
extracted from the PubChem database, which stores over 100
million structures from 634 sources. With our existing resources,
it was impractical to query 100 million structures and their syno-
nyms. We therefore prioritized chemicals from 19 sources within
the PubChem database that indicated a direct relationship with
biology, exposures, or medicine (Excel Table S2) and were
potentially relevant to the exposome research. We subsequently
created a subset of chemicals from these databases using 10
built-in PubChem search filters that mapped directly to biologi-
cally relevant contexts, such as “bioassay” or “present in
PubMed,” biological pathways, genetic diseases, and drugs
(Excel Table S2). Overall, we compiled a total of 7.5 million
unique chemicals to be cross-referenced with our list of 1.1 mil-
lion blood-related associated publications. The full list of
included PubChem structures can be retrieved from the PubChem
database using the search strategy described in “PubChem Data”
in the “Methods” section.

In research papers, scientists use different synonyms for the
same chemical. We therefore had to query all synonyms that
mapped to the 7.5 million PubChem CID structures in the
PubChem compound synonym file that links 147 million chemi-
cal names to 100 million PubChem CIDs. PubChem regularly
updates this file and provides it through their FTP server (see
“PubChem Data” in the “Methods” section). From this file, we
retrieved 15 million synonyms for our list of 7.5 million chemi-
cals that we used for all further queries of blood-related chemical
reports by use of text mining of PubMed abstracts and PMC sup-
plement tables.

Linking Literature to Chemicals

We used three approaches (Figure 1) to link literature to chemi-
cals: a) Chemical synonym name lookups against PubMed
abstracts, b) direct links between PubChem and PubMed, and c)
mining blood-related PMC supplement tables for chemical
synonyms.

First, we used PubMed directly. The PubMed database can be
queried by use of a web interface for a limited number of queries.
To run a few hundred queries, NCBI Eutils utilities (https://www.
ncbi.nlm.nih.gov/books/NBK25500/) can be used, but not for mil-
lions of queries. We therefore downloaded our final list of over 1
million blood-related PubMed abstracts and queried them locally
in R. When querying all 15 million synonyms against the 1.1 mil-
lion blood-related research papers, a total 851,999 PMIDs were
returned with 37,514 unique chemicals and 62,809 synonyms. This
query also yielded the frequency with which chemicals were
reported in our list of included blood-related PubMed abstracts.

Secondly, we used literature information that is directly
mapped in PubChem. PubChem maintains a compound/literature
file that is regularly updated (ftp://ftp-private.ncbi.nlm.nih.gov/
pubchem/Compound/Extras/CID-PMID.gz). New annotations of
chemicals with literature are submitted by any new depositor,
including new annotations built within the MeSH database. The
corresponding PubChem literature mapping file linked 8,565,681
research papers to 1,838,374 unique PubChem CID chemicals.
Indeed, the largest contributing depositor originated from
the MeSH database with 7,614,881 papers and 119,287 unique
chemicals. A total of 282,741 unique compounds mapping to
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Table 1. Coverage of blood-related structures in different databases and sources relevant for exposome research.

Source
category Source name and description Website Blood chemicals Application areas

Literature data PubChem, PubMed pubchem.ncbi.nlm.nih.gov/ 49,542 Blood exposome
PubMed Abstract ncbi.nlm.nih.gov/pubmed/ 37,070 Blood exposome
PMC: Blood Metabolomics ncbi.nlm.nih.gov/pmc/ 4,036 Blood exposome

Metabolite
databases

Metabolomics Workbench www.metabolomicsworkbench.org/ 11,194 Metabolism,
general

MassBank of North America (MoNA) https://massbank.us/ 7,238 Metabolomics
Human Metabolome Database www.hmdb.ca/ 7,039 Human

metabolism
LipidMaps database www.lipidmaps.org/ 3,243 Lipid

metabolism
Ontology National Institutes of Health (NIH), NCBI: Medical

Subject Headings
www.ncbi.nlm.nih.gov/mesh 39,285 Biological

relevance
Chemical Entities of Biological Interest (ChEBI) www.ebi.ac.uk/chebi/ 15,646 Biological

relevance
Pathway
databases

Kyoto Encyclopedia of Genes and Genomes (KEGG) www.genome.jp/kegg/ 11,440 Biochemical
pathways

NIH, NCBI: Gene (human) www.ncbi.nlm.nih.gov/gene 9,190 Precision
medicine

BioCyc biocyc.org/ 5,257 Biochemical
pathways

NIH, NCBI: Structure (Protein) ncbi.nlm.nih.gov/Structure/ 3,878 Precision
medicine

NIH, NCBI: BioSystems Database www.ncbi.nlm.nih.gov/biosystems/ 3,813 Biochemical
pathways

NIH: Online Mendelian Inheritance in Man www.ncbi.nlm.nih.gov/omim/ 2,731 Genetic disorders
Governmentd
atabases

Japan Chemical Substance Dictionary (NIKKAJI) jglobal.jst.go.jp/en/ 30,871 Biomonitoring
U.S. Food and Drug Administration (FDA):
Structured Product Labeling

labels.fda.gov/ 17,362 Biomonitoring

European Chemical Agency (ECHA) echa.europa.eu/ 12,368 Biomonitoring
U.S. National Institute of Standards and Technology:
Mass Spectrometry Data Center

chemdata.nist.gov 10,480 Biomonitoring

U.S. Environmental Agency (EPA): Substance
Registry Services

ofmpub.epa.gov/sor_internet/registry/substreg/
LandingPage.do

678 Biomonitoring

U.S. FDA: Food Additive database www.fda.gov/food/ingredientspackaginglabeling/
foodadditivesingredients/default.htm

1,207 Biomonitoring

U.S. FDA: Center for Food Safety and Applied
Nutrition

www.fda.gov/about-fda/office-foods-and-
veterinary-medicine/center-food-safety-and-
applied-nutrition-cfsan

83 Biomonitoring

Pharmacology NIH, National Library of Medicine (NLM):
DailyMed

dailymed.nlm.nih.gov/dailymed/ 4,483 Drugs

U.S. Department of Agriculture (USDA): Dr. Duke's
Phytochemical and Ethnobotanical Database

phytochem.nal.usda.gov/phytochem/search/list 4,135 Food biomarkers

World Health Organization (WHO): Anatomical
Therapeutic Chemical Classification System

www.who.int/medicines/regulation/medicines-
safety/toolkit_atc/en/

3,754 Drugs

Logical Observation Identifiers Names and Codes loinc.org/ 1,812 Clinical assays
U.S. FDA: Endocrine Disruptor Knowledge Base www.fda.gov/science-research/bioinformatics-

tools/endocrine-disruptor-knowledge-base
821 Endocrine

disrupters
Toxicological
databases

U.S. EPA: Distributed Structure-Searchable Toxicity
(DSSTOX)

www.epa.gov/chemical-research/distributed-
structure-searchable-toxicity-dsstox-database

21,427 Exposome:
toxicants

Comparative Toxicogenomics Database ctdbase.org/ 9,878 Exposome:
toxicants

NIH: Toxicology in the 21st Century ncats.nih.gov/tox21 6,899 Exposome:
toxicants

U.S. EPA: Toxic Substances Control Act www.epa.gov/laws-regulations/summary-toxic-
substances-control-act

6,515 Exposome:
toxicants

NIH, NLM: Chemical Carcinogenesis Research
Information System

toxnet.nlm.nih.gov/newtoxnet/ccris.htm 4,607 Exposome:
toxicants

NIH, NLM: Hazardous Substances Data Bank toxnet.nlm.nih.gov/newtoxnet/hsdb.htm 4,512 Exposome:
toxicants

NIH, NLM: Information on Hazardous Chemicals
and Occupational Diseases

hazmap.nlm.nih.gov/ 2,669 Exposome:
occupational

U.S. EPA: Pesticides www.epa.gov/pesticides 1,851 Exposome:
toxicants

The Organization for Economic Co-operation and
Development: Existing Chemicals Database

hpvchemicals.oecd.org/ui/Default.aspx 1,690 Exposome: daily

NIH, NLM: Household Products Database householdproducts.nlm.nih.gov/ 1,601 Exposome: daily
International Labor Organization (ILO): International
Chemical Safety Cards (ICSC)

www.ilo.org/safework/info/publications/WCMS_
113134/lang–en/index.htm

1,311 Exposome:
occupational

Note: Descriptions and web addresses for these sources and databases are provided in Table S6. PubChem CIDs from each database and sources were cross-referenced against the mas-
ter list of PubChem CIDs in the Blood Exposome Database.
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2,649,881 papers were submitted by various structure depositors,
including publishers and governmental agencies, and a total
1,565,939 unique compounds and associated 69,401 papers were
submitted by the NCBI BioAssay database. Many pairs of
compound–paper associations were submitted by more than one
contributor. We cross-referenced the list of 1.1 million publica-
tions of blood measurement–related studies with the PubChem
literature mapping file, yielding a subset file of 676,643 publica-
tions with 49,940 chemicals (Figure 2). This approach led us to

retrieve compounds that were not mentioned in the publications
abstracts but that were directly provided by different depositors.
Those compounds could be mentioned in the main text or supple-
mentary tables of a paper. As an example, N-lactoyl-leucine was
reported for human plasma (Jansen et al. 2015) in the main text
but not mentioned in the corresponding literature abstract.

Thirdly, we used the 6 million papers deposited in PMC.
Because of copyright restrictions, not all papers from the PMC
database can be downloaded for text mining. Instead, we

Table 1. (Continued.)

Source
category Source name and description Website Blood chemicals Application areas

New Jersey Right to Know: Hazardous
Substance List

www.nj.gov/health/workplacehealthandsafety/
right-to-know/hazardous-substances/

1,271 Exposome:
toxicants

California Office of Environmental Health Hazard
Assessment

oehha.ca.gov/ 1,013 Exposome:
toxicants

U.S. Centers for Disease Control and Prevention
(CDC), National Institute for Occupational Safety
and Health (NIOSH)

www.cdc.gov/niosh/index.htm 828 Exposome:
occupational

California Preposition 65: Safe Drinking Water and
Toxic Enforcement Act of 1986

oehha.ca.gov/proposition-65/law/proposition-65-
law-and-regulations

787 Exposome:
toxicants

U.S. CDC, Agency for Toxic Substances and
Disease Registry

www.atsdr.cdc.gov/ 746 Exposome:
toxicants

WHO: International Agency for Research on Cancer
(IARC) Monographs

monographs.iarc.fr/ 580 Carcinogens

U.S. EPA: Integrated Risk Information System www.epa.gov/iris 447 Carcinogens
USDA: Pesticide Data Program www.ams.usda.gov/datasets/pdp 340 Exposome:

toxicants
WHO: Joint Food and Agriculture Organization
(FAO)/WHO Expert Committee on Food Additives

www.who.int/foodsafety/areas_work/chemical-
risks/jecfa/en/

259 Food additives

BioAssay
databases

NIH: Molecular Libraries and Imaging commonfund.nih.gov/molecularlibraries/index 18,748 Pharmaceuticals
NIH, National Cancer Institute (NCI):
Developmental Therapeutics Program

dtp.cancer.gov/ 9,896 Pharmaceuticals

NIH, National Institute of Allergy and Infectious
Diseases (NIAID): screening program

www.niaid.nih.gov 7,508 Pharmaceuticals

NIH, National Center for Advancing Translational
Sciences (NCATS): Chemical Genomics Center

ncats.nih.gov/ncgc 8,788 Pharmaceuticals

NIH, Common Fund: Molecular Libraries and
Imaging program

commonfund.nih.gov/molecularlibraries/index 5,152 Pharmaceuticals

The Broad Institute of Massachusetts Institute of
Technology (MIT) and Harvard

www.broadinstitute.org 5,154 Pharmaceuticals

PubMed to PubChem 

PMC to PubChem 

Chemical synonyms

to PubMed

Blood associated 

PubMed abstracts 

and metabolomics 

full text papers

Blood 

Exposome 

Database

42,000 Unique 

2D structures

Figure 1. Overview schema for constructing the Blood Exposome Database. Three NCBI hosted databases were used as inputs for the workflow that yielded
42,000 two dimensional structures for blood specimens.
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performed a literature search using keywords associated with
blood metabolomics publications (see “PMC Data” in the
“Methods” section) against the PMC database and retrieved
7,683 open-access papers. For these papers, we downloaded
1,706 supplementary data tables and 7,617 supplementary text
files. We then focused on retrieving chemical names reported in
the supplementary tables. This approach covered compounds that
were neither reported in literature abstracts or directly mapped to
the information in the PubChem database (Cohen et al. 2018).
Extraction of chemical names from these supplementary tables
and mapping them to PubChem database compound CIDs yielded
4,039 chemical compounds linked to 204 papers, providing a
consolidated list of chemicals detected by metabolomics assays
in blood.

Merging of Compound Lists and Comparative Analysis of
Text-Mining Approaches

When inspecting the file contents for the three approaches to link
literature to chemicals (chemical synonym name lookups, direct
PubChem/PubMed links, and PMC supplement tables), we found
that each approach yielded unique new literature-based blood
chemicals. We therefore merged the contents of these three map-
ping lists to obtain a consolidated list of 66,691 chemicals linked
to 878,966 publications (Figure 2). For each chemical compound,
we obtained metadata such as InChIKey, XlogP, exact mass, mo-
lecular formula, and SMILES codes from the PubChem database.
Chemicals can have structure variants such as salts, neutral struc-
tures, and stereoisomers, leading to multiple CID entries in
the PubChem database. These structure variants overestimate the
total number of unique chemicals in the Blood Exposome
Database. The exposome list was constrained using the structure
variant filtering approach (see “Merging Data” in the “Methods”
section) to a total of 41,474 achiral two-dimensional structures
linked to 65,957 PubChem CIDs and 878,966 publications. The
database is provided in Excel Table S5. We investigated chemi-
cals composing the Blood Exposome Database with respect to
classic chemical parameters. Median lipophilicity, as indicated
by the partition coefficient XlogP, was 2.1 (such as those found
for penicillin, estrone sulfate, or resolvin E1) (Figure 3A).

Surprisingly, the distribution of reported exposome compounds
in blood is normally distributed between hydrophilic compounds
(at negative XlogP values, such as phenylalanine) and hydropho-
bic chemicals [above XlogP 5, such as benz(a)pyrene]. The me-
dian mass was found at 318 Da, with a 98% range from 10 to
1,500 Da (Figure 3B). Interestingly, we observed a skewed distri-
bution towards small molecules, likely due to an underrepresenta-
tion of blood lipids.

Text mining for lipid names and their transformation into
InChIKeys is challenging because researchers often use abbrevia-
tions and leave parts of the chemical structure ambiguous, such
as TG (54:4). Over 3,000 compounds were reported in more than
100 papers, whereas 20,896 chemicals were linked to a single
literature report (Figure 3C). If a compound was frequently
detected and reported in blood, we had a high confidence that this
chemical is a genuine, bona fide blood exposome compound. Yet
we could not simply exclude all compounds that had been rarely
reported, but we certainly expected that rarely reported blood
chemicals may have had higher false-positives rate. As an exam-
ple of a false positive, we identified “N-Nitrosopyrrolidine” as a
blood chemical in one paper (Tan-ariya et al. 1998), based on the
appearance of the synonym “no-pyr” in the abstract; however, on
further inspection, we found that the reference to “no-pyr” in the
abstract actually referred to the absence of pyrimethamine activ-
ity as “no PYR” (Tan-ariya et al. 1998). On the other hand,
“hydrazobenzene” was only reported once (Dodd et al. 2012) in
the literature as well, but it is also found in the U.S. Food
and Drug Administration (FDA) and Environmental Protection
Agency (EPA) databases, increasing the confidence that this
compound was positively detected in blood.

Next, we investigated the coverage of the blood exposome
with respect to the extent at which any single text-mining
approach would have already yielded a comprehensive overview
on the blood-associated chemicals (Figure 2). When comparing
our text mining results directly, we found that 98% of all
retrieved blood chemicals were covered by combining results of
PubChem–PubMed mapping with results of PubMed abstracts
queries. Importantly, both PubChem–PubMed mapping and
PubMed abstracts queries resulted in more than 15,000 unique
blood compounds each, showing that both approaches were

A

B
C

D

A – HMDB - blood

B – PubChem – PubMed Mapping

C – PubMed abstract search

D – PMC Blood metabolomics

1,075

29,625 28,284

3,436

1,032

15,833

11,730 10,200

1,250

Figure 2. Overlap analysis of the origin of 41,474 achiral blood chemicals. PubChem to PubMed mapping provided the most comprehensive overview of the
blood related compounds.
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necessary and complemented each other. In comparison, the
PMC blood metabolomics search added fewer additional unique
structures. As validation for our approach, we found only 90
unique compounds, with most being measurements of endoge-
nous compounds rather than exogenous exposures when we
searched the HMDB (Figure 2). HMDB is a very popular tool
that is created through a manual literature search, and it contains
exposome compounds (such as food compounds) in addition to
classic metabolites. Up to 92% of HMDB’s blood-associated
compounds were covered by our workflow. Overall, HMDB only
contains 1,075 achiral chemical structures with blood annotation
with primary literature citations. In comparison, our three text
mining approaches (PubChem–PubMed mapping, a PubMed
abstracts search, and a PMC blood metabolomics search) yielded
46-fold more annotated blood chemicals. Therefore, our analysis
suggests that the current HMDB content greatly underreports the
human blood exposome. We successfully annotated 7,039

HMDB compounds with primary literature on blood measure-
ments by use of our text-mining methods. For example, xantho-
humol has been reported to be present in the human blood
(Legette et al. 2014), information that is currently missing in the
HMDB database.

To attain functional and biological contexts and enriching
the set of available metadata, we cross-referenced all blood-
associated chemicals with chemicals in 50 prioritized databases
for the exposome research. Because we did not intend to per-
form overlap analysis but did plan to perform direct mapping of
specific compounds to databases, we used individual PubChem
CID entries. Table 1 gives a summary of how many compounds
were successfully mapped to metabolite databases, pathway
and enzyme repositories, or databases focusing on ontologies,
bioassays, governmental agencies, pharmacology, or toxicol-
ogy. The largest contribution was found through the MeSH, the
Kyoto Encyclopedia of Genes and Genomes (KEGG), the Japan
Chemical Substance Dictionary (NIKKAJI), NIH Molecular
Libraries Program (NIH_MLP), Distributed Structure-Searchable
Toxicity (DSSTOX), and the National Library of Medicine
DailyMed databases.

The purpose of these database assignments is to enable a pri-
oritization for specific investigations. For example, the Tox21
database of the U.S. EPA contained 6,899 known toxicants and
pollutants that we found as detected in blood samples. Such com-
pounds might be used as candidates for expanding biomonitoring
programs such as the National Health and Nutrition Examination
Survey (NHANES) (Sobus et al. 2015) or the California
Biomonitoring program (Mann 2018). Secondly, we investigated
food exposure biomarkers such as those retrieved from the U.S.
Department of Agriculture database of phytochemicals com-
monly found in foods and plants. Our analysis suggests that
4,135 phytochemicals were reported in blood-related papers.
Such compounds could be used as inclusion lists for untargeted
metabolomics investigations of epidemiological cohort studies to
complement food frequency questionnaires. Thirdly, 7,238 blood
exposome compounds have associated spectra in the MassBank
of North America database (https://massbank.us), enabling their
annotation in untargeted metabolomics assays. Conversely, over
30,000 published blood chemicals lack public experimental mass
spectra but might be detected in blood metabolomics experi-
ments. These compounds can be used as target structures for MS-
FINDER software (RIKEN Center for Sustainable Resource
Science) (Tsugawa et al. 2016)–based substructure annotation.

To explore the overall chemical diversity of blood expo-
some chemicals, the database utilizes the MeSH ontology. By
mapping MeSH to chemical compounds from the PubChem
database, 1,161 chemical ontology classes were obtained with a
class size of at least 50 chemicals. For example, PubChem lists
88 compounds as annotated by the MeSH term “polychlori-
nated biphenyls.” We used these MeSH terms as “classes” in
the Blood Exposome Database for user queries. Fifty-eight pol-
ychlorobiphenyls (PCBs) were found in the Blood Exposome
Database. Here, PCB-153 and Aroclor 1,254 were found to be
the most reported compounds in the class of PCBs. Apart from
the main entry MeSH term, synonyms can be queried (such as
“polychlorinated biphenyls” or “PCBs,” but not “PCB” because
that is not a synonym in MeSH). The compound list, identifiers,
chemical and physical properties, literature data, and coverage
in different biomedical databases are provided as a single data
file at bloodexposome.org. Users can query and retrieve the
database content using a range of options that are highlighted in
the online instructions page for the database. The Blood
Exposome Database will be updated on a quarterly basis to
include new entries from the PubMed and PubChem databases.

Figure 3. Distribution of lipophilicity (A), molecular weight (B), and publi-
cation count (C) in the Blood Exposome Database. The y-axis shows the fre-
quency of chemicals. Xlogp is a unitless measurement for lipophilicity, in
which negative values indicate more polar compounds.
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Discussion
Blood chemicals were analyzed in routine clinical assays and in
metabolomics, yielding a large volume of biomedical literature.
A systematic compilation of blood-related chemicals will assist
in the design of future studies ranging from epidemiology to
nutrition research or environmental hazard assessments. We have
developed such a comprehensive blood exposome database in a
novel way by use of text mining and merging query results,
adopting concepts that have been used before in genomic research
(Cañada et al. 2017). Our database supports ongoing efforts to
combine informatics resources for exposomics research (Gabb and
Blake 2016; Manrai et al. 2017; Rappaport et al. 2014), but is by
far larger than existing repositories, including the suite of chem-
icals listed in the HMDB blood database (Wishart et al. 2018).
The database can be used for a wide range of applications, such
as compound identification in untargeted metabolomics, devel-
opment mass spectral libraries, meta-analysis of chemicals, and
risk for chronic diseases, prioritizing chemicals for toxicity
evaluation or interpreting the biological implications of metabo-
lomics studies.

Similar work on chemical text mining is pursued by MeSH
(Lowe and Barnett 1994), NutriChem (Ni et al. 2017), and
PolySearch (Liu et al. 2015), but is less comprehensive. Among
these tools, MeSH covers a large part of the exposome database
presented here but misses compounds that were deposited directly
by submitters or that were present in the supplementary tables of
open-access articles. However, the utility of systematic use of
ontologies as demonstrated by MeSH is shown by subsidiary tools
like Meta2MeSH that provide statistical significance to linking
chemicals with genes, diseases, and phenotypes (Sartor et al.
2012). A similar tool based on MeSH ontologies was developed as
PolySearch, which associates biological concepts with biomedical
literature and various databases (Liu et al. 2015). Similarly, the
NutriChem database associates phytochemicals, food, and diseases
using text mining of PubMed abstracts (Ni et al. 2017). However,
these approaches do not appropriately associate the presence of
chemicals in blood with PubMed abstracts, and they miss annota-
tions of compounds with literature if these chemicals were directly
submitted to the PubChem database. For this reason, our approach
added 15,015 compounds through PubMed abstract searches using
the PubChem synonym list. We recommend these synonyms be
added to the MeSH ontology.

In contrary, our approach is more comprehensive because we
combined three approaches, including PubMed abstract search,
PMC supplementary tables, and crowdsourced information in
PubChem to annotate literature with blood and chemical names.
Our approach greatly accelerates and extends manual curation
efforts to create a blood exposome database. We found almost 1
million papers reporting blood chemical measurement. It is not
possible to manually extract chemical details from that many
papers. In comparison, HMDB only used 1,278 papers for associ-
ating HMDB entries with blood levels. It would be interesting to
automatically extract levels of blood chemicals directly from sup-
plementary tables (or public databases); however, not all reports
provide such tables or deposit data in public databases.

At Mayo Clinic, medical doctors can order tests for 900 chemi-
cals in blood using a set of targeted analytical assays, showing that
many compounds have direct medical relevance (https://www.
mayocliniclabs.com/test-catalog/). Over 10,000 achiral blood chem-
icals were reported more than 10 times in the literature, while an
even larger number of compounds were reported less than 10 times,
and only 3,109 compounds were frequently analyzed with more
than 100 citations. We think that these figures reflect a bias in clini-
cal and epidemiological studies toward a few metabolites when
many more compounds could be relatively easily determined with

modern technologies. While we cannot enumerate the number of
false-positive chemical annotations, we are the first to use a very
large exclusion list of 10,000 phrases to control this error rate.

We suggest that authors should directly submit compound
lists from their studies to the PubChem database to improve the
coverage of compound to literature mapping. Supplementary
tables should be submitted in CSV formats including InChIKeys
for each measured compound. While authors will continue using
chemical names and abbreviations in the main text of scientific
reports, it is increasingly important to limit the ambiguity for chem-
ical synonyms by using InChIKeys (Wohlgemuth et al. 2010). We
likely underestimated the report on plasma lipids because very few
authors use full chemical names or even InChIKeys for detected
lipids. It appears highly unlikely that the chemical community will
all adhere to one reference list to name particular structures.
Therefore, we strongly urge chemists to use PubChem CIDs and
InChIKeys to promote standardization in the fields so they can be
found in full-text searches.

Although we here give evidence for 41,474 achiral compounds
measured in blood, high-resolution mass spectrometry detects
many more signals of unidentified origins in blood specimens
(Andra et al. 2017). Annotation of chemical structures to these sig-
nals remains difficult. MS-FINDER software (Tsugawa et al.
2016) and other in silico methods (Allen et al. 2014; Blaženović
et al. 2017; Lai et al. 2018; Psychogios et al. 2011; Ruttkies et al.
2016) propose the most probable identifications for unknown
chemicals using chemical fragmentation rules. Using a priori

knowledge has been another successful method in annotating com-
pounds in untargeted metabolomics surveys (Edmands et al. 2015;
O'Sullivan et al. 2017). The Blood Exposome Database opens a
new opportunity for in silico spectra prediction and correlation
mining to (re)analyze acquired high-resolution mass spectrometry
data sets to predict high-confidence annotation for unidentified
peaks.

The Blood Exposome Database will also serve as a knowledge
base to guide investigations in chronic disease risk, metabolomics,
metabolic regulation, precision medicine, exposure biomarkers,
and chemical biomonitoring. For environmental epidemiology,
links to IARC monographs and Tox21 and NLM HazMap data-
bases can now be used to prioritize blood chemicals to be studied
in prospective human cohorts. Previously, we have used the NCBI
Eutils web services to identify cancer epidemiology–related publi-
cations for pesticides (Guha et al. 2016), and we have now
extended this approach using R-based text mining to also include
measurements of 422 pesticides in blood.

Conclusion
Manually curated databases cannot keep up with the pace and the
wealth of information that is presented in peer-reviewed publica-
tions. We here show that text mining can be efficiently used to
retrieve actionable data from the public NCBI database. From
almost 1 million publications. we retrieved more than 41,474
achiral chemical structures that were associated with mammalian
blood, and we expanded this repository to 65,957 unique isomer
structures and their salts. We argue that such a database is needed
as a baseline for exposome studies that aim at finding all expo-
some chemicals in mass spectrometry–based untargeted assays.
The database can be used in epidemiology research, cheminfor-
matics, and related areas.
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