
Generating Transformation Definition from
Mapping Specification:

Application to Web Service Platform

Denivaldo Lopes1,2, Slimane Hammoudi1, Jean Bézivin2, and Frédéric Jouault2,3

1 ESEO, France
2 Atlas Group, INRIA and LINA, University of Nantes, France

3 TNI-Valiosys, France
{dlopes, shammoudi}@eseo.fr

{jean.bezivin, frederic.jouault}@lina.univ-nantes.fr

Abstract. In this paper, we present in the first part our proposition for mapping
specification and generation of transformation definition in the context of Mo-
del Driven Architecture (MDA). In the second part, we present the application of
our proposition to Web Services platform. We propose a metamodel for mapping
specification and its implementation as a plug-in for Eclipse. Once mappings are
specified between two metamodels (e.g. UML and WSDL), transformation defi-
nitions are generated automatically using transformation languages such as Atlas
Transformation Language (ATL). We have applied this tool to edit mappings be-
tween UML and Web Services. Then, we have used this mapping to generate ATL
code to achieve transformations from UML into Web Services.

Keywords: Model Driven Architecture (MDA), Web Services, Tools for MDA.

1 Introduction

Recently, the OMG has proposed the Model Driven Architecture (MDATM)1 [1] to sup-
port the development of complex and large software systems providing an architecture
with which:

– systems can evolve for meeting new requirements.
– old, current and new technologies can be harmonized.
– business logic is protected against the changes in technologies.
– legacy systems are integrated and harmonized with new systems.

In this approach, models are applied in all steps of development up to a target plat-
form, providing source code, files of deployment and config, and so on. MDA proposes
an architecture to address the complexity of software development and maintenance
which has no precedents. It claims that software developers can create and maintain

1 MDATM is a trademark of the Object Management Group (OMG).

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 309–325, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

310 D. Lopes et al.

software artifacts with little effort. However, before this becomes a mainstream rea-
lity some issues in MDA approach need solutions such as mapping specification and
transformation definition [2].

In this paper, we use the term mapping as a synonym for correspondence between
the elements of two metamodels, while transformation is the activity of transforming
a source model into a target model in conformity with the transformation definition.
In our approach, a transformation definition is generated from a mapping specification.
The distinction between mapping specification and transformation definition is detailed
in later sections.

The objective of this paper is fourfold. First, to provide a precise definition of the
concepts of mapping and transformation. Second, to provide a general metamodel for
mapping specification in the context of MDA. Third, to present a tool based on Eclipse
enabling the editing of mappings and the generation of transformation definition from
mapping specifications. Fourth, to apply our tool to Web Service Platform.

This paper is organized in the following way. Section 2 is an overview of MDA.
Section 3 presents our approach for mapping specification between two metamodels in
the context of MDA. Section 4 illustrates our approach applied to Web Services. Section
5 shows the implementation of our proposed metamodel for mapping through a plug-in
for Eclipse, and its application to Web Services. Finally, section 6 concludes this paper
and presents the future directions of our research.

2 Overview

At the beginning of this century, software engineering needs to handle software systems
that become larger and more complex than before. The object-oriented and component
technology seems insufficient to provide satisfactory solutions to support the develop-
ment and maintenance of these systems. To adapt to this new context, software enginee-
ring has applied an old paradigm, i.e. models, but with a new aspect, i.e. Model Driven
Architecture (MDA).

Some ideas around the MDA approach are not new. For example, the generation of
code from a model exists from the 80’s, the transformation from models into a target
platform was applied some time ago to the database domain (e.g. transformation from
entity-relationship to relational-tables and SQL schema). However, the standardization
of an approach based on models to enable the development and maintenance of software
systems is a big advance in software engineering. The change from object-oriented and
component paradigm to the model paradigm was inevitable and should be irreversible.
However, this does not mean the end of the former, but the introduction of models
as a supplementary layer to address the development of complex and large software
systems. In fact, models are the top layer and the other paradigms are the bottom layer
in the MDA approach.

We cannot yet advocate that the MDA approach will resolve all problems in soft-
ware system development because some issues are not well settled such as mapping,
transformation, semantic distance, traceablity, and so on. However, several case stu-
dies have demonstrated that MDA is a potential solution and the future for developing
software systems [3].

Generating Transformation Definition from Mapping Specification 311

Fig. 1. Architecture with four meta-layers

2.1 The Architecture with Four Meta-layers

MDA is based on an architecture with four meta-layers [4]: metametamodel, meta-
model, model and information (i.e. an implementation of its model). Figure 1 presents
the idea and the relationships between different levels of models. In this approach, ev-
erything is a model or a model element, and a high level of abstraction about a problem
and its solution are provided.

In level M3, a metametamodel is a well-formed specification for creating metamo-
dels. In level M2, a metamodel is a well-formed specification for creating models. In
level M1, a model is a well-formed specification for creating software artifacts. In level
M0, an operational example of a model is the final representation of a software system.
According to this architecture, we can envisage the existence of few metametamodels
such as MOF [4] and Ecore [5], several metamodels such as UML, UEML [6] and
EDOC [7], more models describing real life applications such as a travel agency, and fi-
nally infinite information such as the implementation of this travel agency model using
Java. Here, it is important to pay attention to the existence of several metamodel lan-
guages, providing a Domain-Specific Language [8] or a general-purpose language (e.g.
UML). In fact, the four layers are models. However, it is important to understand that
each model level achieves a different goal in software development.

The development of software systems using MDA is based on the separation of con-
cerns (e.g. business and technical concerns) which are afterwards transformed between
them. So, business concerns are represented using Platform-Independent Model (PIM),
and technical concerns are represented using Platform-Specific Model (PSM).

3 Mapping and Transformation

Nowadays, MDA suffers from a lack of agreement on terminology, especially concer-
ning the concepts of mapping and transformation. In MOF QVT [2], mapping is defined

312 D. Lopes et al.

as specification of a mechanism for transforming the elements of a model conforming
to a particular metamodel into elements of another model that conforms to another
(possibly the same) metamodel. In MDA distilled book [9], mapping is defined as the
application or execution of a mapping function in order to transform one model to
another, and mapping function is defined as a collection of mapping rules that defines
how a particular mapping works. In both references and others discussed in [10], the
concepts of mapping and transformation are not so clear, since these terms can refer to
many different concepts. Moreover, they are usually defined without explicit distinction
between them.

According to our vision, the concepts of mapping and transformation should be
explicitly distinguished, and together could be involved in the same process that we
denominate transformation process. In fact, in the transformation process, the mapping
specification precedes the transformation definition. A mapping specification is a de-
finition (as declarative as possible [11]) of the correspondences between metamodels
(i.e. a metamodel for building a PIM and another for building a PSM). Transforma-
tion definition 2 contains a minute description to transform a model into another using a
hypothetic or concrete transformation language. Hence, in our approach the transforma-
tion process of a PIM into a PSM can be structured in two stages: mapping specification
and transformation definition. Finally, we define the term transformation as the manual
or automatic generation of a target model from a source model, according to a transfor-
mation definition.

From a conceptual point of view, the explicit distinction between mapping specifi-
cation and transformation definition remains in agreement with the MDA philosophy,
i.e. the separation of concerns. Moreover, a mapping specification could be associated
with different transformation definitions, where each transformation definition is based
on a giving transformation definition metamodel.

Figure 2 illustrates the different concepts of MDA according to our vision where
mapping specification is a mapping model, and transformation definition is a transfor-
mation model. In this figure, a mapping model is based on its metamodel, and it relates
two metamodels (left and right). A transformation model is based on its transformation
metamodel, and it is generated from a mapping model. A transformation engine takes
a source model as input, and it executes the transformation program to transform this
source model into the target model.

Several research projects have studied the mapping specification between metamo-
dels [13] [14]. However, the ideas around mapping specification are not sufficiently
developed to create efficient tools to enable automatic mappings in the context of MDA.

Nowadays, transformation languages are not yet very well explored to make choices
about a standard transformation language such as desired by OMG [2]. In the next few
years, the submitted propositions [15] [16] in response to QVT RFP might converge to
a standard language, which will provide a new step forward in the evolution of MDA.
However, wisdom tells us that one problem can be resolved using different solutions, but
one solution for all problems does not exist. Thus, it is clear that this standard language

2 In [12], transformation definition is a set of transformation rules that together describes how
a model in a source language can be transformed into a model in the target language.

Generating Transformation Definition from Mapping Specification 313

Fig. 2. Transformation process within MDA: from mapping to transformation

will not provide a sufficient solution for all types of model transformations around MDA.
However, this will not be a limitation for applying MDA, because a transformation lan-
guage is also a model, thus one transformation language can also be transformed into
another transformation language. A priori, transformations between transformation lan-
guages seem unnecessary and unproductive. However, several examples such as Struc-
tured Query Language (SQL) (i.e. a standard query language for manipulating databases)
have demonstrated that a standard is beneficial, because it establishes a unique and well-
known formalism for understanding a problem and its solution. On the one hand, SQL
provides a universal language for manipulating databases. On the other hand, SQL can be
transformed into a proprietary language for execution into a database engine. A transfor-
mation from SQL into a proprietary language provides some benefits such as improved
performance, reduction of memory-use, and so on. Making an analogy between SQL
and a standard transformation language, we can expect that a standard transformation
language can provide some benefits without imposing severe limitations.

Mapping and transformation have been studied for a long time ago in the database
domain [11] [17]. However, they have taken another dimension with the sprouting of
MDA. This does not mean that they are well-studied and ready to be applied in the
MDA context. In fact, mapping specification and transformation definition are not yet
an easy task. Moreover, tools to enable the automatic creation of mapping specifica-
tion and automatic generation of transformation definition are still under development.
Some propositions enabling the mapping specification have been based on heuristics
[18] (for identifying structural and naming similarities between models) and on ma-
chine learning (for learning mappings) [19]. Other propositions enabling transformation
definition have been based on graph theory [20] and compilers.

In this section, we start briefly presenting a foundation for mapping and afterwards
we discuss our proposition for specifying mappings (i.e. correspondences between me-

MMM

mapping MMsource MM target MM

mapping M

transformation MM

transformation Msource M target M

transformation engine transformation program

basedOn
basedOn

exec
source target

basedOn

left right
basedOn

basedOn basedOnbasedOn

generatedFrom

basedOn

MM : metamodel M : modelMMM : meta-metamodel

basedOn

314 D. Lopes et al.

tamodels). This approach for mapping is based on a metamodel and implemented as a
tool on Eclipse. This tool provides mapping support that is a preliminary step before
the generation of a transformation definition.

3.1 Foundation for Mapping Specification

A mapping specification can be formalized as follows:
Given M1(s)/Ma, M2(s)/Mb, and CMa→Mb

/Mc, where M1 is a model of a sys-
tem s created using the metamodel Ma, M2 is a model of the same system s created
using the metamodel Mb, and CMa→Mb

is the mapping between Ma and Mb cre-
ated using the metamodel Mc, then a transformation can be defined as the function
Transf(M1(s)/Ma, CMa→Mb

/Mc) → M2(s)/Mb. In this section, we aim to detail
CMa→Mb

/Mc. In general, Ma, Mb and Mc are based on the same metametamodel
which simplifies the mapping specification. For now, we can define the mapping as
CMa→Mb

⊇ {Ma ∩ Mb}, where ∩ is a binary operator that returns the elements of Ma

and Mb which have equivalent structure and semantics.
We can also represent a mapping as a set. So, given:
Ma = {a1, a2, a3, ..., am} and Mb = {b1, b2, b3, ..., bn}
Then,
CMa→Mb

= {c1, c2, c3, ..., cp}
Where:
ci = {ak, bj}
i = {i ∈ N |1 ≤ i ≤ p}, k = {k ∈ N |1 ≤ k ≤ m} and j = {j ∈ N |1 ≤ j ≤ n}.
In fact, models (i.e. in the general sense: models, metamodels and metametamodels)

can be represented as sets. However, these sets are complex and heterogeneous, because
their elements are classes, attributes, relationships, enumerations and datatypes. Thus,
the creation of a mapping is not an easy task.

For clarity reasons, we divide elements of a metamodel into two categories: ba-
sic elements and relationships. Basic elements groups classes, attributes, enumerations
and datatypes. Relationships relate classes. So, CMa→Mb

must satisfy the following
requirements to be a complete mapping:

1. Basic element preservation: each basic element of Ma must verify one of the
following requirements:

– it corresponds to an equal (=) basic element of Mb.
– it corresponds to a set of basic elements of Mb that are similar (∼=)3.
– it is part of a set of basic elements from Ma that together are similar to one

basic element in Mb.
2. Relationship preservation:

– each relationship in Ma must verify one of the following requirements:
• it has a corresponding relationship in Mb.
• it has a corresponding set of relationships of Mb that are similar (∼=).
• it can be implicitly preserved in Mb (i.e. through aggregating attributes or

merging classes).

3 As in [17], by similar, “we mean that they are related but we do not express exactly how“.

Generating Transformation Definition from Mapping Specification 315

If Mb requires one basic element or relationship that can be deduced from two or
more elements or relationships, respectively, from Ma, then the need for element and
relationship preservation is satisfied.

If a mapping cannot satisfy the two requirements, then it is not complete, and the
transformation definition is also not complete. Consequently, a target model genera-
ted from a source model using this transformation definition does not contain all the
information of the source model.

The process of identifying and characterizing inter-relationships between metamo-
dels is denoted schema matching [18]. In fact, mapping describes how two metamodels4

are related to each other. So, schema matching results in a mapping. According to mo-
del management algebra [17], a mapping is generated using an operator called match
which takes two metamodels as input and returns a mapping between them. We have
adapted this operator as follow: given Ma, Mb and CMa→Mb

/Mc, the adapted match
operator is formally defined as Match′(Ma,Mb) = CMa→Mb

/Mc.
The identification of inter-relationships between two metamodels is generally based

on the metamodel structure. A metamodel structure is a consequence of relationships
between its elements. These relationships have some characteristics such as kind. Gene-
rally, five relationship kinds can relate one element to another element [14]: Association,
Contains, Has-a, Is-a, Type-of. These relationships have been used for a long time in
software engineering. For example, they are common in UML: Association is associa-
tion; Contains is composition; Has-a is aggregation; Is-a is inheritance; Type-of relates
a class that is a type of an attribute. These relationship kinds can be formalized as follow:

– Association: A(a, b) means a is associated with b.
– Contains: C(c, d) means container c contains d.
– Has-a: H(e, f) means e has an f .
– Is-a: I(g, h) means g is an h.
– Type-of: T (i, j) means i is a type of j.

In [14], the authors propose the following cross-kind-implications:

– if T (q, r) and I(r, s) then T (q, s).
– if I(p, q) and H(q, r) then H(p, r).
– if I(p, q) and C(q, r) then C(p, r).
– if C(p, q) and I(q, r) then C(p, r).
– if H(p, q) and I(q, r) then H(p, r).

In [14], two models are considered equivalent “if they are identical after all im-
plied relationships are added to each of them until a fixed point is reached”. Apply-
ing these relationship kinds and cross-kind-implications in MDA context, metamodels
can be simplified and compared to find equivalences or similarities. Moreover, ap-
plying these principles and the operator Diff ′(defined hereafter) based on the same
principles presented in [17], the semantic distance [21] can be quantified. This ope-
rator Diff ′ takes a metamodel Ma and a mapping CMa→Mb

/Mc, and returns a sub-
set containing the elements of Mb that do not participate in the mapping. Formally,

4 In our approach, we prefer to employ the term metamodel in the definition of the term mapping.

316 D. Lopes et al.

Diff ′(Ma, CMa→Mb
/Mc) = Md, where Md ⊂ Mb. We could quantify semantic dis-

tance using a numeral value, but as metamodels can be considered as a set, then we
prefer to quantify semantic distance as a sub-set of Mb. In spite of [17], we do not con-
sider the result of Diff ′ a sub-metamodel as expected, because we understand that this
difference will return only fragments of a metamodel.

3.2 A Metamodel for Mappings

A metamodel for mapping must enable the specification of inter-relationships (i.e. cor-
respondences) between the elements from two metamodels without modifying them. It
should also provide support to handle different versions of a mapping.

Figure 3 presents a metamodel for mapping specification that meets these require-
ments.

In this metamodel, we consider that a mapping can be unidirectional or bidirec-
tional. In unidirectional mapping, a metamodel is mapped into another metamodel. In
bidirectional mapping, the mapping is specified in both directions. Thus, we prefer to
call two metamodels in a mapping as left or right metamodel.

This metamodel for mapping presents the following elements:

– Element is a generalization for the other elements.
– Historic enables the explanation of the different choices taken for making the

mapping. It has the date of the last update, a note, and the number of the last version,
and a collection of Definitions.

Fig. 3. Metamodel for Mapping Specification

Generating Transformation Definition from Mapping Specification 317

– Definition is the main element and it contains all Correspondences between
two metamodels (i.e. each correspondence has one left element and many right
elements).

– Correspondence is used to specify the inter-relationship between two or more
elements, i.e. one left and one or more right elements. The correspondence has
a filter that is an OCL expression. When bidirectional is false, a mapping
is unidirectional (i.e. left to right), and when it is false it is bidirectional (i.e. in
both directions). It has two TypeConverters identified by typeconverterRL

and typeconverterLR. typeconverterRL enables the conversion of the ele-
ments from a right metamodel into the elements from a left metamodel. type-
converterLR enables the conversion of the elements from a left metamodel into
the elements from a right metamodel. Often we need to specify only the type-

converterLR.
– Left is used to identify the left element of a mapping.
– Right is used to identify the right elements of a mapping.
– MetaModelHandler is used to navigate into a metamodel. It has the information

necessary for accessing a metamodel participating in a mapping. A mapping is itself
a model, and it must not interfere with the two metamodels being mapped.

– ElementHandler enables access to the elements being mapped without changing
them.

– TypeConverter enables the type casting between a left and a right element. If one
element of a left metamodel and another element of a right metamodel are equals,
then the mapping is simple and direct. However, if one element of a left metamodel
and another element of a right metamodel are similar, then the mapping is complex
and it is achieved using type converter, i.e. a complex expression to adapt a left
element to a right element.

3.3 A Graphical Notation for Mapping

In order to simplify the mapping task, the description of a mapping specification based
on our proposed metamodel for mapping should have a simplified graphical notation
such as depicted in figure 4.

According to figure 4, some metamodel elements have a graphical representation.
Historic is represented using a table. MappingDefinition is represented using a
form that has correspondences. Correspondence is represented by a circle. Left is
represented by a single arrow. Right is represented by a double arrow.

4 Applying MDA for Web Services

Nowadays, MDA is not sufficiently developed and experimented. In our research, we
develop the MDA approach and we use Web Services as a target platform to experiment
it.

Web Services have been introduced to resolve the problem of interoperability on
the Internet. In fact, Web Services were created using the standards suitable for Inter-
net. Consequently, they are more adapted to Internet than previous solutions such as

318 D. Lopes et al.

Fig. 4. Metamodel for mapping and its graphical notation

CORBA, Java RMI and EJB. However, they only provide support to the development
of software systems in low level, thus the interoperability is only guaranteed in the level
of implementation. MDA approach proposes an interoperability in the level of models
which seems to be a promising solution. In addition, it provides mobility, i.e. a same
business model can be implemented on different target platforms.

4.1 Web Services

The concept of services was introduced before Web Services. In fact, this concept
has been used for a long time by OSF’s Distributed Computing Environment (DCE),
OMG’s CORBA, Sun’s Java RMI, and Microsoft’s Distributed Component Object Mo-
del (DCOM) 5. A service is an abstraction of programs, business process, and other
artifacts of software defined in terms of what it does.

Service Oriented Architecture (SOA) [22] describes how a system composed of ser-
vices can be built. Developing applications on SOA requires the adoption of a service-
oriented design6 which is based on the requirements determined in the strategy and
business process levels.

Figure 5 shows the main SOA elements. An AgentProvider has Services. These
Services are described through a meta-data representation, i.e. ServiceDescrip-
tion. Afterwards, the AgentProvider stores information about its Services in a
Registry. An AgentRequester searches in the Registry for a specific service
according to a determined criterion. The Registry returns information about a de-
sired service. The AgentRequester finds the meta-data about this service and uses it
to exchange messages with the service. According to this figure, Universal Description,

5 The actual COM+ is descendant of DCOM.
6 Web Services is not inherently compliant to service-oriented design and to SOA.

Generating Transformation Definition from Mapping Specification 319

AgentProvider

Services ServiceDescription

1..*+services

Describes

+service

AgentRequester

Registry
Publish 1..*

+registry

Search1..*

+registry

+serviceDescription

MessageExchange

0..* +serviceInterface

1..*Publish

1..*+services

+service

Describes

1..*

+registry+registry

Search

+serviceInterface0..*

MessageExchange

+serviceDescription

Fig. 5. Service Oriented Architecture (fragment)

UDDI

WSDL

SOAP

HTTP SMTPFTP

Service

+refReferences

Publishes

+businesService

+service

Describes

Uses +soap

+http
+ftp

+smtp+http
+ftp

+smtp

+refReferences

Publishes

+businesService

+service

Describes

Uses +soap

Fig. 6. Web Services (main technologies)

Discovery, and Integration (UDDI) [23] implements the Registry. Web Service Des-
cription Language (WSDL) [24] implements the ServiceDescription. Services
use Simple Object Access Protocol (SOAP) [25] as a communication protocol, and
SOAP uses HTTP or FTP or SMTP as transport protocol. Figure 6 presents the main
technologies of Web Services and their relationships.

However, some issues related to Web Services still need solutions such as service
composition, security and availability. Web Service composition can be static or dy-
namic. In a static composition, the services are determined and composed in the design
time, while in the dynamic composition, the services are determined and composed at
runtime. Some languages were proposed to take into account the service composition
such as Business Process Execution Language for Web Services (BPEL4WS) [26].

4.2 MDA and Web Services: Mapping Specification

Web Services are the main target platform used in our experiments, and B2B applica-
tions are our privileged domain. In this paper, we present the application of our tool
to map UML into Web Services, and afterwards to generate the corresponding trans-
formation definition with Atlas Transformation Language (ATL). In order to simplify
the presentation of this paper, we only show experiments with UML, WSDL [24] and
BPEL4WS [26].

Figure 7 depicts a mapping specification from UML into WSDL. This representation
is based on the graphical notation presented in section 3.3. For the moment, we have
used this graphical notation to illustrate mappings, but we aim to introduce it in the next
version of our plug-in.

320 D. Lopes et al.

Fig. 7. A mapping from UML into WSDL (fragment)

According to figure 7, P2D maps Package into Definition, C2S maps Class into
Service, Port, Binding and PortType7, and so on. It is important to note that C2S
is a mapping one-to-many, i.e. it takes one element and maps it into many elements.

5 Tool for Mapping

A tool for supporting mappings between metamodels should provide the following cha-
racteristics:

– importation of pre-existing metamodels from XMI file.
– graphical visualization of the mapping model and metamodels.
– edition of the mapping model.
– verification of conformity between mapping model and its metamodel.
– another simplified representation of a mapping model such as textual representa-

tion.
– navigation between the metamodels that are being mapped.
– semi-automatic matching.

7 PortType was renamed to Interface in WSDL 1.2

Generating Transformation Definition from Mapping Specification 321

– generation of a transformation definition from a mapping specification (i.e. map-
ping model).

– exportation of a mapping model using XMI file.

Our proposed tool supports all these characteristics, except the semi-automatic mat-
ching which is the next step for its improvement.

5.1 Mapping Modeling Tool (MMT)

Figure 8 shows our plug-in for Eclipse denominated Mapping Modeling Tool (MMT)
that supports the mapping modeling. MMT presents a first metamodel on the left side,
a mapping model in the center, and a second metamodel on the right. In this figure,
the UML metamodel (fragment) is mapped into a WSDL metamodel (fragment). At
the bottom, the property editor of mapping model is shown. A developer can use this
property editor to set the properties of a mapping model.

Before specifying mapping using our tool, we need to create metamodels based
on Ecore [5]. Some tools support the editing of a metamodel based on Ecore such as
Omondo [27] or the Ecore editor provided with EMF [5]. The application of our tool
using UML and WSDL metamodel can be explained in the following steps:

1. We created a project in eclipse and we imported the UML and WSDL metamodel
into this project.

Fig. 8. Applying the tool to specify a mapping from UML into WSDL

322 D. Lopes et al.

Fig. 9. The generated ATL code to transform UML into WSDL

2. We used a wizard to create a mapping model. In this step, we chose the name for
the mapping model, the encoding of the mapping file (e.g. Unicode and UTF-8),
the files of metamodel in the format XMI.

3. The UML and WSDL metamodels are loaded from the XMI files, and the mapping
model is initially created, containing the elements Historic, Definition, and
left and right MetamodelHandlers. For each MetamodelHandler are also
created ElementHandlers that are references to the elements of the correspon-
ding metamodel.

4. We edit the mapping model. First, we define the inter-relationships between the
metamodels creating Correspondences between their elements. Second, we cre-
ate for each Correspondence nested Correspondences. Third, for each nested
correspondence, we create one Left and one or more Right elements. In addi-
tion, each Left and Right element has a ElementHandler. If it is necessary, the
TypeConverter is created to explicit the casting between two mapped elements.

5. The mapping model can be validated according to its metamodel, and it can be used
to generate a transformation definition (e.g. using ATL language).

According to figure 8, C2S maps Class into Service, Port, Binding and Port-

Type.
MMT can generate transformation definition from a mapping model. For the mo-

ment, we have implemented a generator for ATL[28]. The resulting code in ATL of the

Generating Transformation Definition from Mapping Specification 323

Fig. 10. Applying the tool to specify a mapping from UML into BPEL4WS

mapping between UML (fragment) and this WSDL metamodel is presented in figure 9.
In this figure, a fragment of an ATL code is presented as module uml2wsdl;... and
the rule C2S.

Figure 10 depicts the mapping model from UML into BPEL4WS [26] using our
proposed tool. In this figure, Ag2P maps ActivityGraph into Process, Dt2V maps
DataType into Variable, and so on. Since this mapping model is complete, MMT
can generate the ATL code to realize transformations.

In this experiment, the ATL code was generated on the basis of the mapping model.
This proposed tool left the developer free to think only at the point of the mapping
between two metamodels, helping him to specify how the metamodels can be inter-
related. Afterwards, it generated the code to transform models.

6 Conclusion

In this paper, we have discussed the MDA approach providing a detailed description of
transformation process, distinguishing mapping and transformation. We have proposed
a metamodel for mapping and a tool to support mappings. To illustrate our tool, we
have specified mappings between UML as PIM and Web Services as PSM.

The schema matching was not yet integrated in our plug-in, because, at this stage,
we are more interested in addressing the creation of mappings driven by models.

Some formalisms have been simplified and do not distinguish model, metamodel
and metametamodel. Here, we have explicitly differentiated all model levels, because

324 D. Lopes et al.

a model can be created using different metamodels. Moreover, the diffusion of MOF,
Ecore and DSL will stimulate an increase in available metamodels.

In future research, we will develop further the graphic representation (discussed in
section 3.3) and the schema matching in order to integrate them also into our plug-in
for Eclipse.

Acknowledgments

The work described in this paper was partly financed by “Conseil Général de Maine-et-
Loire”, through a fellowship provided to Denivaldo Lopes.

References

1. OMG: Model Driven Architecture (MDA)- document number ormsc/2001-07-01. (2001)
2. OMG: Request for Proposal: MOF 2.0 Query/Views/Transformations RFP. (2002)
3. Middleware Company: Model Driven Development for J2EE Utilizing a Model Driven Ar-

chitecture (MDA) Approach. Technical report, The Middleware Company (2003)
4. OMG: Meta Object Facility(MOF) Specification. (2002) Version 1.4.
5. Eclipse Tools Project: Eclipse Modeling Framework (EMF) version 2.0. (2004)
6. UEML.org: Unified Enterprise Modeling Language (UEML) (2003) Available at

http://www.ueml.org.
7. OMG: UML Profile for Enterprise Distributed Object Computing Specification. (2002)
8. Cook, S.: Domain-Specific Modeling and Model Driven Architecture. MDA Journal (2004)

1–10
9. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven

Architecture. 1st edn. Addison-Wesley (2004)
10. Favre, J.M.: Towards a Basic Theory to Model Driven Engineering. UML 2004 - Workshop

in Software Model Engineering (WISME 2004) (2004)
11. Velegrakis, Y., Miller, R.J., Popa, L.: Mapping Adaptation under Evolving Schemas. Pro-

ceedings of the 29th VLDB Conference (2003) 584–595
12. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Practice

and Promise. 1st edn. Addison-Wesley (2003)
13. Caplat, G., Sourrouille, J.L.: Model Mapping in MDA. Workshop in Software Model Engi-

neering (WISME2002) (2002)
14. Pottinger, R.A., Bernstein, P.A.: Merging Models Based on Given Correspondences. Pro-

ceedings of the 29th VLDB Conference (2003) 826–873
15. DSTC, IBM, CBOP: MOF Query / Views / Transformations - Second Revised Submission.

(2004) ad/2004-01-06.
16. QVT-Merge Group: Revised submission for MOF 2.0 Query/Views/Transformations RFP

(ad/2002-04-10). (2004) Available at http://www.omg.org/docs/ad/04-04-01.pdf.
17. Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems. Procee-

dings of the Conference on Innovative Data Systems Research (CIDR 2003) (2003)
18. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB

Journal 10 (2001) 334–350
19. Martin S. Lacher, G.G.: Facilitating the Exchange of Explicit Knowledge through Ontology

Mappings. 14th International FLAIRS Conference (2001) 21–23

Generating Transformation Definition from Mapping Specification 325

20. Agrawal, A., Levendovszky, T., Sprinkle, J., Shi, F., Karsai, G.: Generative Programming
via Graph Transformation in the Model-Driven Architecture. OOPSLA 2002 Workshop on
Generative Techniques in the Context of Model Driven Architecture (2002)

21. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA Approach for Web Ser-
vice Platform. 8th IEEE International Enterprise Distributed Object Computing Conference
(EDOC 2004) (2004) 58–70

22. W3C: Web Services Architecture (WSA). (2004)
23. UDDI.ORG: Universal, Description, Discovery and Integration (UDDI) Version 3.0. (2002)
24. W3C: Web Services Description Language (WSDL) 1.1. (2001)
25. W3C: Simple Object Access Protocol (SOAP) 1.1. (2001)
26. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Language
for Web Services (BPEL4WS) version 1.1. (2003)

27. Omondo: Omondo Eclipse UML. (2004) Available at http://www.omondo.com.
28. Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First Experiments with the ATL

Model Transformation Language: Transforming XSLT into XQuery. 2nd OOPSLA Work-
shop on Generative Techniques in the context of Model Driven Architecture (2003)

	Introduction
	Overview
	The Architecture with Four Meta-layers

	Mapping and Transformation
	Foundation for Mapping Specification
	A Metamodel for Mappings
	A Graphical Notation for Mapping

	Applying MDA for Web Services
	Web Services
	MDA and Web Services: Mapping Specification

	Tool for Mapping
	Mapping Modeling Tool (MMT)

	Conclusion

