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Abstract

It has been demonstrated that a piecewise-linear system can generate chaos under suitable conditions. This paper

proposes a novel method for simultaneously creating two symmetrical chaotic attractor––an upper-attractor and a

lower-attractor––in a 3D linear autonomous system. Basically dynamical behaviors of this new chaotic system are

further investigated. Especially, the chaos formation mechanism is explored by analyzing the structure of fixed points

and the system trajectories.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos is a very interesting non-linear phenomenon. It has been demonstrated that chaos is actually useful and can

also be well controlled. Over the last decade, the intensive study of chaotic dynamics has gradually evolved from the

traditional trend of understanding and analyzing chaos to the new tasks of controlling and utilizing it [1–10]. Especially,

there has been increasing interest in exploiting chaotic dynamics for high-tech and real engineering applications. Re-

cently, many efforts have been devoted to effectively generating chaos by simple control and design methods, such as

switching piecewise-linear controllers [6,8,10] and chaotic circuits design [4,5,11–13].

In 2002, L€uu and Chen found a new chaotic attractor by linear feedback control [9,14–18], called L€uu attractor by

others [19–21]. Nowadays, creating n-scroll chaotic attractors in (modified) Chua’s circuits has become a matured

technique [11,12]. Similarly, piecewise-linear functions can easily generate various chaotic attractors [6,8,10]. Motivated

by many similar examples, L€uu and Chen introduced a switching piecewise-linear controller [9], which can generate

chaos from a 3D linear autonomous system within a wide range of parameter values. In fact, the simple analog chaos

generators have strong capability of chaos generation.

In this paper, we propose a new method for simultaneously generating two symmetrical chaotic attractors via

switching control based on [8]. The key is to reconstruct the controller. More precisely, we introduce a new switching

scheme, a switching piecewise-linear controller, which can simultaneously create two chaotic attractors––an upper-

attractor and a lower-attractor, from a 3D linear autonomous system. Moreover, basically dynamical behaviors of the

new chaotic system will be investigated in some detail, by employing some mathematical tools used in [14,22–24].
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Particularly, the formation mechanism of chaos will be further explored by analyzing the structure of the fixed points

and the system trajectories.
2. A new chaotic system with switching controller

Consider the following 3D linear controlled system:
_XX ¼ AX þ f ðX Þ; ð1Þ
where
A ¼
a b 0

�b a 0

0 0 c

0
@

1
A;
with a switching piecewise-linear controller
f ðX Þ ¼ k
�x
�y
d

0
@

1
A; if zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> k;

0; otherwise;

8>><
>>: ð2Þ
where a, b, c, d, k are real parameters. The system (1) and (2) can generate chaos within a wide range of parameter

values [8].

To make system (1) simultaneously generate two chaotic attractors, the controller (2) is redesigned as the following

switching piecewise-linear controller:
f ðX Þ ¼

k

�x

�y

d

0
@

1
A; if z > 0; zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> k;

m

�x

�y

e

0
@

1
A; if z < 0; z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< �m;

0; otherwise;

8>>>>>>>>>><
>>>>>>>>>>:

ð3Þ
where a, b, c, d, e, k, m are real parameters.

The controller (3), embedded in system (1), is switched on, when the state variables travel through the manifolds

zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ kðz > 0Þ and z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ �mðz < 0Þ within the state space. These two switchings generate simul-

taneously two chaotic attractors––an upper-attractor and a lower-attractor, as shown in Fig. 1, when a ¼ 3, b ¼ 20,
Fig. 1. The upper and lower chaotic attractors generated by the switching controller (3).
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c ¼ �20, d ¼ 10, e ¼ �10, k ¼ 4, and m ¼ 4. The maximum Lyapunov exponents of the two chaotic attractors are both

LE¼ 1.4374.

A closer look at the controller (3) reveals that it has two switching manifolds: one is zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ kðz > 0Þ, and

the other is z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ �mðz < 0Þ. These two switching manifolds are responsible for the generation of two chaotic

attractors: The switching manifold zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ kðz > 0Þ is responsible for generating the upper-chaotic attractor;

while the switching manifold z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ �mðz < 0Þ creates the lower-chaotic attractor.
3. Basically dynamical behaviors

Basically dynamical behaviors, such as symmetry and dissipativity, of the system (1) under the control of the

switching piecewise-linear controller (3), are further investigated here from a theoretical point of view.

3.1. Symmetry and invariant set

Obviously, system (1), controlled by the switching piecewise-linear controller (3), has a natural symmetry under the

coordinates transform ðx; y; zÞ ! ð�x;�y; zÞ, which persists for all values of the system parameters.

Obviously, z ¼ 0 is the invariant manifold of system (1), denoted by M1. There exists a unique fixed point, S0ð0; 0; 0Þ,
on the invariant manifold M1 for system (1). Let V ¼ x2 þ y2 on the invariant manifold M1, then
Fig. 2

(d) a <
_VV ¼ 2x _xxþ 2y _yy ¼ 2aðx2 þ y2Þ ¼ 2aV :
Thus, V ðtÞ ¼ V ð0Þe2at. If a ¼ 0, then S0 is a center point; if a 6¼ 0, then S0 is a focus point; if a > 0, then S0 is unsta-

ble (and in this case, if V ð0ÞP 0, then V ðtÞ ! þ1 as t ! þ1 but V ðtÞ ! 0 as t ! �1); if a < 0, then S0 is stable

(and in this case, if V ð0ÞP 0, then V ðtÞ ! 0 as t ! þ1 and V ðtÞ ! þ1 as t ! �1), as summarized in Fig. 2.

Therefore, R3 can be decomposed into three invariant subsets: M1, M2 ¼ fðx; y; zÞ 2 R3jz > 0g, and M3 ¼ fðx; y; zÞ 2
R3jz < 0g.
. The structure of trajectory in the neighborhood of the equilibrium point S0 on M1: (a) a ¼ 0; (b) a > 0, b > 0; (c) a > 0, b < 0;

0, b > 0; (e) a < 0, b < 0.
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3.2. Dissipativity

In the following, assume that a > 0, c < �2a, k > 0, and m > 0.

The variation of the volume V ðtÞ of a small element, dXðtÞ ¼ dxdydz in the state space, is determined by the di-

vergence of the flow:
rV ¼ o _xx
ox

þ o _yy
oy

þ o_zz
oz

;

which is
rV ¼
2aþ c� 2k < 0; for z > 0; zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> k;

2aþ c� 2m < 0; for z < 0; z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< �m;

2aþ c < 0; otherwise:

8<
:

Therefore, system (1) is dissipative at an exponential contraction rate:
dXðtÞ ¼
e2aþc�2k ; for z > 0; zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> k;

e2aþc�2m; for z < 0; z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< �m;

e2aþc; otherwise:

8<
:

As a result, a volume element V0 is contracted by the flow into a volume element V0erVt in time t. Namely, each volume

containing the system trajectories shrinks to zero as t ! 1 at an exponential rate, rV , which is independent of x, y, z.
Thus, all system orbits will ultimately be confined to a specific subset of zero volume and the asymptotic motion settles

onto an attractor.
4. Fixed point and the global attractive region

4.1. Fixed point of the controlled system

Suppose that a ¼ b ¼ 0. Then, all the points in the invariant manifoldM1 ¼ fðx; y; zÞ 2 R3jz ¼ 0g are the fixed points

of system (1).

(1) If a ¼ b ¼ c ¼ 0 and k, d, m, e are non-zero, then the set of all the fixed points is M1 [ fðx; y; zÞ 2 R3jz > 0;
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 kg [ fðx; y; zÞ 2 R3jz < 0; z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
P � mg ¼ G1.

If k < 0 and m < 0, then G1 ¼ M1. Fig. 3(a) shows the structure of system (1) for d > 0 and e > 0; Fig. 3(b) displays

the structure of system (1) for d > 0 and e > 0; Fig. 3(c) shows the structure of system (1) for d < 0 and e < 0; Fig. 3(d)

displays the structure of system (1) for d < 0 and e > 0.

(2) If a ¼ b ¼ c ¼ k ¼ 0 and me 6¼ 0, then the set of all the fixed points are G2 ¼ fðx; y; zÞ 2 R3jzP 0g[
fðx; y; zÞ 2 R3jz < 0; z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
P � mg.

If m < 0, then G2 ¼ fðx; y; zÞ 2 R3jzP 0g. Fig. 4(a) shows the structure of the trajectories of system (1) for e < 0; Fig.

4(b) displays the structure of the trajectories of system (1) for e > 0. For other degenerative cases, one can draw similar

structure graphs for trajectories of system (1).

(3) If b 6¼ 0, c 6¼ 0, m > 0, and k > 0, then:

ii(i) If � d
c > 1 and e

c > 1, then system (1) has three equilibria: S0ð0; 0; 0Þ, S1ð0; 0;� kd
c Þ and S2ð0; 0;� me

c Þ;
i(ii) If � d

c < 1 and e
c < 1, then system (1) has unique equilibrium point: S0ð0; 0; 0Þ;

(iii) If � d
c > 1 and e

c < 1, then system (1) has two equilibria: S0ð0; 0; 0Þ, S1ð0; 0;� kd
c Þ;

(iv) If � d
c < 1 and e

c > 1, then system (1) has two equilibria: S0ð0; 0; 0Þ and S2ð0; 0;� me
c Þ.

Next, consider the equilibrium S0ð0; 0; 0Þ. The system Jacobian J at this point is
J ¼
a b 0

�b a 0
0 0 c

0
@

1
A; ð4Þ
which has the eigenvalues k1;2 ¼ a� bi and k3 ¼ c. Therefore, the stability of the equilibrium S0ð0; 0; 0Þ can be classified

as follows:



Fig. 3. The structure of the trajectories of system (1): (a) d > 0, e > 0; (b) d > 0, e < 0; (c) d < 0, e < 0; (d) d < 0, e > 0.

Fig. 4. The structure of trajectory for system (1): (a) e < 0; (b) e > 0.
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i(i) If a > 0 or c > 0, then this equilibrium is unstable. Fig. 5(a)–(b) show the structure of the trajectories in the neigh-

borhood of S0ð0; 0; 0Þ for a > 0 and c > 0; Fig. 5(c)–(d) display the structure of the trajectories in the neighborhood

of S0ð0; 0; 0Þ for a > 0 and c < 0; Fig. 5(e)–(f) show the structure of the trajectory in the neighborhood of S0ð0; 0; 0Þ
for a < 0 and c > 0.

(ii) If a < 0 and c < 0, then this equilibrium is stable. Fig. 5(g)–(h) display the structure of the trajectory in the neigh-

borhood of S0ð0; 0; 0Þ.

Moreover, note that for c < 0, a ¼ 0 is a Hopf bifurcation point.

Similarly, when � d
c > 1, for the equilibrium S1ð0; 0;� kd

c Þ, the system Jacobian is
J ¼
a� k b 0

�b a� k 0

0 0 c

0
@

1
A; ð5Þ



Fig. 5. The structure of the system trajectories in the neighborhood of S0: (a)–(b) a > 0, c > 0; (c)–(d) a > 0, c < 0; (e)–(f) a < 0, c > 0;

(g)–(h) a < 0, c < 0.
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and its eigenvalues are k1;2 ¼ a� k � bi and k3 ¼ c. Obviously, for c < 0, a ¼ k is a Hopf bifurcation point. The sta-

bility of this equilibrium, S1ð0; 0;� kd
c Þ, is classified as follows:

ii(i) If a > k and c > 0, then S1 is unstable. Fig. 6(a)–(b) show the structure of the trajectories in the neighborhood of S1.
i(ii) If a > k and c < 0, then S1 is unstable. Fig. 6(c)–(d) display the structure of the trajectories in the neighborhood of

S1.
(iii) If a < k and c > 0, then S1 is unstable. Fig. 6(e)–(f) show the structure of the trajectory in the neighborhood of S1.
(iv) If a < k and c < 0, then S1 is stable. Fig. 6(g)–(h) display the structure of the trajectory in the neighborhood of S1.

Similarly, when e
c > 1, for the equilibrium S2ð0; 0;� me

c Þ, the system Jacobian is
J ¼
a� m b 0
�b a� m 0

0 0 c

0
@

1
A ð6Þ
and its eigenvalues are k1;2 ¼ a� m� bi and k3 ¼ c. Clearly, for c < 0, a ¼ m is a Hopf bifurcation point. The stability

of this equilibrium, S2ð0; 0;� me
c Þ, is classified as follows:

ii(i) If a > m and c > 0, then S2 is unstable. The structures of the trajectories in the neighborhood of S2 are similar to

Fig. 6(a)–(b).

i(ii) If a > m and c < 0, then S2 is unstable. The structures of the trajectory in the neighborhood of S2 are similar to Fig.

6(c)–(d).

(iii) If a < m and c > 0, then S2 is unstable. The structures of the trajectory in the neighborhood of S2 are similar to Fig.

6(e)–(f).

(iv) If a < m and c < 0, then S2 is stable. The structures of the trajectories in the neighborhood of S2 are similar to Fig.

6(g)–(h).

4.2. The global attractive region

For any point Aðx0; y0; z0Þ 2 R3, let gðt;AÞ be the solution of system for gð0;AÞ ¼ A. Denote gðR0;AÞ ¼
fgðt;AÞjt 2 R0g for R0 � R.
Definition 1. Suppose that B � R3. If 8A 2 R3, 9T > 0, such that gð½T ;þ1Þ;AÞ � B, then B is called as the global
attractive region.

In the following, assume that a < 0, b > 0, c < 0, d > 0, e < 0, m > 0, k > 0. Denote B1 ¼ fðx; y; zÞjzP 0,

zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 kg, B2 ¼ fðx; y; zÞjz6 0, z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
P � mg, l1 ¼ � k

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p
, l2 ¼ � m

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ e2

p
. Let l3 > l1, l4 > l2,

such that B1 � B3,fðx; y; zÞjzP 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ kd

c Þ
2

q
6 l3g, B2 � B4,fðx; y; zÞjz6 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ me

c Þ
2

q
6 l4g. De-

note �BB ¼ B3 [ B4.
Theorem 1. When c < minfa� k; a� mg, then �BB is a global attractive region.

Proof. 8Aðx0; y0; z0Þ 2 R3, when z0 ¼ 0, we have gðR;AÞ � M1 and there is unique fixed point S0 2 M1 from the dis-

cussion in Section 3.

Since a < 0, then S0 is a stable focus point, and the positive trajectories of all trajectories inM1 tend to S0. Therefore,
9T > 0, such that gð½T ;þ1Þ;AÞ � �BB.

When z0 > 0, let V ¼ x2 þ y2 þ ðzþ kd
c Þ

2
. For z > 0 and zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> k, we have
_VV ¼ 2 x _xx
�

þ y _yy þ z
�

þ kd
c
_zz
��

¼ 2 ða
"

� kÞðx2 þ y2Þ þ c z
�

þ kd
c

�2
#

¼ 2 ða
"

� kÞV2 þ ðcþ k � aÞ z
�

þ kd
c

�2
#
6 2ða� kÞV2 6 0



Fig. 6. The structure of the trajectories in the neighborhood of S1: (a)–(b) a > k, c > 0; (c)–(d) a > k, c < 0; (e)–(f) a < k, c > 0; (g)–(h)

a < k, c < 0.
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Moreover, when z > 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ kd

c Þ
2

q
> l1, V > 0. Hence, _VV < 0. Denote A5ðx; y; zÞ be the boundary point of

region B5 ¼ fðx; y; zÞjzP 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ kd

c Þ
2

q
6 lgðl > l1Þ. When z > 0, A5 is the strictly entering point according to

the theorem in Ref. [23]. Therefore, when z0 > 0, 9T > 0, such that gð½T ;þ1Þ;AÞ � �BB.
Similarly, when z0 < 0, 9T > 0, such that gð½T ;þ1Þ;AÞ � �BB. Hence, �BB is a global attractive region. And the proof is

completed here. h

Remarks. For the case of a > 0, we can get similar theorem. That is, there are local attractive regions in certain pa-

rameter region for M2 and M3, respectively.
5. Chaos formation mechanism

In this section, we explore the chaos formation mechanism by using the structure of trajectories and numerical

simulations.

5.1. Structure of trajectory

In this subsection, assume that a > 0, c < 0, 0 < d < �c, c < e < 0, a < k6 a� c, and a < m6 a� c. Denote four

regions as: R1 : fðx; y; zÞjz > 0, zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 kg, R2 : fðx; y; zÞjz > 0, zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> kg, R3 : fðx; y; zÞjz < 0,

z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
P � mg, R4 : fðx; y; zÞjz < 0, z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< �mg.

When z < 0 and z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
P � m, system (1) becomes
_xx ¼ axþ by;
_yy ¼ �bxþ ay;
_zz ¼ cz:

8<
: ð7Þ
From the third equation of system (7), zðtÞ ¼ zð0Þect. Thus, for c < 0, when t ! þ1, one has zðtÞ ! 0. Let V1 ¼ x2 þ y2,
then we have
_VV1 ¼ 2x _xxþ 2y _yy ¼ 2aðx2 þ y2Þ ¼ 2aV1:
Hence, V1ðtÞ ¼ V1ð0Þe2at. That is, when V1ð0ÞP 0 and t ! þ1, V1ðtÞ ! þ1, so that f ðtÞ ¼ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
! �1. So

9 t1 > 0, such that f ðt1Þ < �m. Therefore, the trajectories of system (1) will go through the plane z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ �m

from the region R3 and then switches into region R4. After this instant, the system becomes
_xx ¼ ða� mÞxþ by;
_yy ¼ �bxþ ða� mÞy;
_zz ¼ czþ me:

8<
: ð8Þ
Let V2 ¼ x2 þ y2 þ ðzþ me
c Þ

2
, then we get
_VV2 ¼ 2½x _xxþ y _yy þ z
�

þ me
c

�
_zz� ¼ 2 ða

�
� mÞðx2 þ y2Þ þ c z

�
þ me

c

�2
�

¼ 2 ða
�

� mÞV2 þ ðcþ m� aÞ z
�

þ me
c

�2
�
6 2ða� mÞV2:
Hence, V2ðtÞ6 V2ð0Þe2ða�mÞt ! 0, as t ! þ1. Then, when t ! þ1, f ðtÞ ¼ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
! � me

c > �m. That is, 9 t2 > t1,

such that f ðt2Þ > �m. Thus, the trajectories of system (1) will go through the plane z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ �m from the region

R4 and then switches into region R3.

Therefore, for any initial value ðx0; y0; z0Þ, if z0 < 0, then as t ! þ1, the trajectories of system (1) will go through the

plane z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ �m repeatedly for infinitely many times. System (1) has different dynamical behaviors in the

above different regions, R3 and R4. When t ! þ1, system (1) changes dynamical behaviors as the trajectory goes

through the two regions alternately and repeatedly. That is, the dynamical behaviors of system (1) is changing re-

peatedly, leading to complex dynamics such as the appearance of bifurcations and chaos.

Note that, if z0 < 0, then all trajectories of system (1) remain in the above two regions: R3 and R4. According to the

above theoretical analysis, for any initial value ðx0; y0; z0Þ, if z0 < 0, then system (1) has folding and stretching dynamics

repeatedly, producing a chaotic attractor below the plane z ¼ 0, called the lower-attractor.



Fig. 7. The structure of trajectories for the upper and lower chaotic attractors.
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Similarly, for any initial value ðx0; y0; z0Þ, if z0 > 0, then as t ! þ1, the trajectories of system (1) go through the

plane zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ k repeatedly for infinitely many times. Note that, if z0 > 0, then all trajectories of system (1)

remain in the two regions: R1 and R2. Furthermore, for any initial value ðx0; y0; z0Þ, if z0 > 0, then as t ! þ1, system (1)

changes dynamical behaviors when the trajectories go through the two regions: R1 and R2, repeatedly, producing a

chaotic attractor above the plane z ¼ 0, called the upper-attractor.

In summary, for any two different initial values ðx1; y1; z1Þ and ðx2; y2; z2Þ, if z1 > 0 and z2 < 0, then system (1) may

produce two different chaotic attractors––the upper-attractor and the lower-attractor––for some suitable system pa-

rameters a, b, c, d, e, k, m.
As discussed in Section 3, under condition 0 < d < �c and c < e < 0, system (1) has unique and stable equilibrium,

ð0; 0; 0Þ.
Suppose that a ¼ 3, b ¼ 20, c ¼ �20, d ¼ 10, e ¼ �10, and k ¼ m ¼ 4. For initial value ðx0; y0; z0Þ ¼ ð0:1; 1; 0:1Þ,

since z0 > 0, all trajectories of system (1) remain in the invariant manifold M2 and form a upper-chaotic attractor as

shown in Fig. 1(a). Fig. 7(a) shows the directions of the trajectories for the attractor, indicated by the arrows therein.

From Fig. 7(a), one can see that the trajectories run to inside of region R1, and then to inside of region R2, and finally

back to inside of region R1, and so on.

For initial value ðx0; y0; z0Þ ¼ ð0:1; 1;�0:1Þ, since z0 < 0, all trajectories of system (1) remain in the invariant man-

ifold M3 and form a lower-attractor, as shown in Fig. 1(b). Fig. 7(b) displays the directions of the trajectories for the

attractor, indicated by the arrows therein. From Fig. 7(b), one can see that the trajectories run to inside of region R3,

and then to inside of region R4, and finally back to inside of region R3, and so on.

5.2. Numerical simulations

In this section, the dynamical behaviors of the switching controlled system (1) are investigated by numerical sim-

ulations.

For the switching piecewise-linear controller (3), one can see that when d ¼ �e and k ¼ m, the upper-attractor and
the lower-attractor are symmetrical about the plane z ¼ 0 (see Fig. 1).

Fix parameters b ¼ 20, c ¼ �15, d ¼ �e ¼ 10, k ¼ m ¼ 6, and let a vary. Numerical simulations show that the

trajectories of system (1) converge to a sink for both a < 0 and a > 6; system has two symmetrical limit cycles for both

a ¼ 0 and a ¼ 6 (see Fig. 8(a)–(b)); system is chaotic or chaos-like for 0:1 < a < 6.

Fix parameters a ¼ 3, c ¼ �15, d ¼ �e ¼ 10, k ¼ m ¼ 6, and let b vary. Numerical simulations show that system (1)

is chaotic or chaos-like for almost all values of b (see Fig. 8(c)–(d)).

Fix parameters a ¼ 3, b ¼ 20, k ¼ 8, d ¼ �e ¼ 10, k ¼ m ¼ 6, and let c vary. The system (1) does not converge to

any point for cP 0; it converges to a sink for �10 < c < 0; it is chaotic or chaos-like for c < �10.
6. Conclusions

This paper has introduced a new switching controller for chaos generation, which can simultaneously generate two

symmetrical chaotic attractors. Basically dynamical behaviors of the switching piecewise-linear controlled system have



Fig. 8. Symmetrical phase portraits of system (1): (a) a ¼ 6, z0 > 0; (b) a ¼ 6, z0 < 0; (c) b ¼ 10, z0 > 0; (d) b ¼ 10, z0 < 0.
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been analyzed, both theoretically and numerically. Moreover, the chaos formation mechanism of the new chaotic

system has been explored by analyzing the structure of fixed points and the system trajectories.

It has been demonstrated that abundant complex dynamical behaviors can be generated by piecewise-linear func-

tions if designed appropriately. Although this paper provides one more class of systems that fall into this category, the

new finding is quite interesting both theoretically and practically, especially in the regard of possible future engineering

applications of chaos generation.
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