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Linköping University

SE-581 83 Linköping, Sweden
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Abstract—An important use of unmanned aerial vehicles is
surveillance of distant targets, where sensor information must
quickly be transmitted back to a base station. In many cases, high
uninterrupted bandwidth requires line-of-sight between sender
and transmitter to minimize quality degradation. Communication
range is typically limited, especially when smaller UAVs are
used. Both problems can be solved to creating relay chains for
surveillance of a single target, and relay trees for simultaneous
surveillance of multiple targets. In this paper we show how
such chains and trees can be calculated. For relay chains we
create a set of chains offering different trade-offs between the
number of UAVs in the chain and the chain’s cost. We also show
new results on how relay trees can be quickly calculated and
then incrementally improved if necessary. Encouraging empirical
results for improvement of relay trees are presented.

Index Terms—Unmanned aerial vehicles, UAV surveillance,
relay, communication, tree optimization

I. INTRODUCTION

Many applications for unmanned aerial vehicles (UAVs)

include the need for surveillance of distant targets. Examples

of such activities include search and rescue operations,

traffic surveillance and forest fire monitoring as well as law

enforcement and military applications. Often the information

gathered must be transmitted continuously from a surveillance

UAV to a base station where the current operation is being

coordinated. As this information may include urgent high-

volume sensor data such as live video, high uninterrupted

communications bandwidth is often required. To minimize

quality degradation, UAV applications therefore tend to require

line-of-sight (LOS) communications, which is problematic in

urban or mountainous areas. The maximum communication

range is typically also limited, especially when smaller and

lower-cost UAVs are used.

The problem of achieving line-of-sight can in some cases

be alleviated by increasing altitude. However, this also requires

greater communication ranges, and the airspace at higher

altitudes may not be permitted by aviation regulations. Smaller

UAVs may also be unable to ascend to sufficient altitude to

achieve line-of-sight to both the target and the base station.

Both intervening obstacles and limited range can be handled

using a chain of one or more cooperating UAVs acting as

relays, passing on information flowing to the base station

(Figure 1). To realize such a relay chain, the UAVs should

be positioned in a way that not only allows an uninterrupted
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Fig. 1. The relay UAVs at positions x1, x2 and x3 are connecting the base
station at x0 with the surveillance UAV at x4, surveilling the target at xt.
This is a relay chain of length 5.

flow of information, but also optimizes the quality of the

chain. The relay chain is a special case of a relay tree, which

occurs in simultaneous surveillance of several targets. A relay

tree places even higher requirements on cooperation as some

UAVs will receive information from several sources.

Generation of relay chains and trees plays an important part

in a larger system involving both human operators and UAVs:

as soon as information about a set of surveillance targets is re-

ceived and a map of the environment is available, a surveillance

mission is planned. A broadcast is performed with the intention

of finding a set of UAVs (Figure 2) that are available during the

required time. The next step is to determine the positions of the

UAVs so that all targets are surveilled, given restrictions such

as e.g. the number of UAVs and communication constraints.

Different options can be explored, such as using the minimum

number of UAVs or a larger number to achieve a higher quality

relay tree. Once the allocation of UAVs has been determined,

each UAV is assigned a position and uses its own path planner

to find a flyable trajectory to the destination. As soon as all

UAVs have reached their respective positions, the surveillance

mission can be initiated.

Algorithms for calculating relay chains and trees should

be sufficiently scalable to be able to calculate positions

involving a large number of UAVs, to enable the use of

relatively inexpensive miniature vehicles with highly limited



Fig. 2. The UASTech Yamaha RMAX helicopter system [1], [2].

Fig. 3. The UAS Tech Lab LinkQuad quadrotor system [3].

communication range, such as the LinkQuad Micro Aerial

Vehicle (Figure 3). Furthermore, such calculation must be

performed in a timely manner as the ground operator expects

a prompt response. In this paper we define relay chains and

trees, as well as describe different factors that can be used

when evaluating positions for suitability of relay placement.

We discuss algorithms for calculating relay chains and trees

and present preliminary results for generating such relay trees.

II. RELAY CHAINS AND RELAY TREES

We will now formally define relay chains and trees as well

as give examples of factors that can be used to model whether

communication and surveillance can take place.

Assume that M UAVs with identical communication capa-

bilities are available and let U ⊆ R3 be the region where the

UAVs may safely be placed. This region must only include

points sufficiently far away from obstacles for the required

safety clearances to be satisfied. No-fly-zones where UAVs

are not permitted may also be excluded from U . Assume that

x0 ∈ R3 \U is the position of a base station, and that the posi-

tions of the surveillance targets are T = {t1, . . . , tm} ∈ R3\U .

Assume as given two boolean reachability functions.

The communication reachability function fcomm(x, x
′) speci-

fies whether communication between two entities at points

x, x′ ∈ U should be considered feasible. The surveillance

reachability function fsurv(x, x
′) specifies whether a surveil-

lance UAV at x ∈ U would be able to surveil a target at

x′ ∈ R3 \ U .

These reachability functions are typically based on specific

characteristics of the equipment used for communication and

surveillance, respectively. For example, fcomm(x, x
′) could hold

if we predict that the strength of the signal transmitted from

x and received at x′ is high enough to allow communication.

For the problem at hand, fcomm would typically be defined

in terms of a limited communication range and a line-of-

sight requirement in order to minimize quality degradation.

For camera surveillance, a maximum surveillance range and

a line-of-sight requirement would typically be used. Other

than their signatures, no assumptions about the reachability

function are made, and more advanced models of e.g. radio

wave propagation can be used if desired.

In addition to reachability functions, we also use two cost

functions: the communication cost function ccomm(x, x
′) and

the surveillance cost function csurv(x, x
′) denote the non-

negative costs of communication and surveillance, respectively.

These functions are valid only if the corresponding reachability

function holds between the positions.

The term cost is used in a very broad sense, and can be

used to model arbitrary measures for evaluating the suitability

of positions for UAV placement. For example, since signal

strength decreases with distance, one can create a cost

measure where the cost increases with distance. Assuming

line of sight, the signal strength decreases with the square

of the distance [4]. To some extent the decrease in signal

strength can be offset by using communication devices with

an error-correcting capability. However, it is likely that some

errors are impossible to correct, and that the risk of such errors

increases with lower signal strength. This can be modeled

by setting a constant communication cost up to threshold

distance, above which the cost increases quadratically.

Likewise, the surveillance cost can be related to the quality

of the sensed information. For example, if the image quality

decreases with increasing distance, the surveillance cost would

likewise increase. In some situations it can be useful to use

several factors in the cost function, which we can achieve using

for example a weighted sum. A lower cost relay chain or tree

has a higher quality.

We can now define a relay chain between x0 and a

single target t1 as a sequence of positions [x0, x1, . . . , xk, t1],
where {x1, . . . , xk} ⊆ U , such that fcomm(xi, xi+1) for all

i ∈ [0 . . . k − 1], and fsurv(xk, t1). The length of a chain is

defined as the number of agents required, including the base

station: len([x0, x1, . . . , xk, t1]) = k + 1. The cost of a relay

chain is defined as (
∑k−1

i=0
ccomm(xi, xi+1)) + csurv(xk, t1).

A relay tree between x0 and the targets {t1, . . . , tm} consists

of a set of relay chains that together form a tree structure. Note

that these chains may share nodes, corresponding to one UAV

relaying information from several other UAVs. For each target

ti ∈ T there exists a chain in the relay tree which starts in x0

and ends in ti. Let L be the number of UAVs required to realize

the tree and let the non-target positions in the tree be denoted

by [x0, . . . , xL]. Also, let x− denote the unique predecessor

of position x. Then, the total cost is
∑L

i=1
ccomm(x

−

i , xi) +∑m

i=1
csurv(t

−

i , ti).
We are interested in generating high quality relay chains



and trees relative to quality measures such as the number of

UAVs required and/or the total cost of the relay chain. Problem

definitions and algorithms for calculating relay chains and trees

are available in Section IV and Section V, respectively.

III. DISCRETIZATION

Finding relay positions that yield high quality relay chains

and trees is difficult since the feasible set typically is disjoint

due to obstacles, and the number of subsets may be very

large. As each subset has at least one local extreme point,

the number of local extrema may be very large. Therefore,

methods for continuous optimization are very time-consuming

and it is not guaranteed that the global optimum is found. For

these reasons we suggest to discretize the environment and

solve a discrete approximation of the continuous problem.

Once a discrete search space has been created, we apply

graph algorithms to calculate the relay chains and trees.

The first step of discretizing an instance of the continuous

relay positioning problem consists of selecting a finite set

of positions U′ ⊆ U . These are the positions that will be

considered for relay and surveillance UAV placement in the

discretized version of the problem. Once this selection has

been made, a directed graph can be created as follows.

Associate each position x ∈ U′ ∪ {x0, t1, . . . , tm} with a

unique node, where n0 denotes the base station node associated

with x0. For convenience, we use the same symbol, T, for

the set of nodes {τ1, . . . , τm} associated with the surveillance

targets {t1, . . . , tm} as for the target positions. Let N be the

set of all nodes.

For each x ∈ U′ corresponding to n ∈ N and satisfying

fcomm(x0, x), create an edge e = (n0, n) of cost ccomm(x0, x)
representing the possibility of communication between the

base station and position x. For each x, x′ ∈ U′ corresponding

to n, n′ ∈ N and satisfying fcomm(x, x
′), create a directed edge

e = (n, n′) of cost ccomm(x, x
′) representing the possibility of

communication between positions x and x′.

Finally, for each τi ∈ {τ1, . . . , τm} corresponding to ti and

for each x ∈ U′ corresponding to n ∈ N and satisfying

fsurv(x, ti), create a directed edge e = (n, τi) of cost csurv(x, ti)
representing the fact that a surveillance UAV at x would be

able to surveil the target at ti. Let E be the set of all edges.

Then, G(N,E) is a directed graph corresponding to the

original continuous problem instance. Note in particular that

the target nodes have no outgoing edges and that all their

incoming edges satisfy fsurv, ensuring that its predecessor in

any path from the base station to the surveillance target must

be suitable for a surveillance UAV. Note also that most parts

of this graph only depend on the environment and not on the

position of the base station or the surveillance targets, and can

be precalculated.

Choosing the set U′ requires some consideration: nodes

must be sufficiently dense so that the set remains connected,

given a limited communication range and possibly a line-of-

sight restriction. A high node density is required to make

good use of the maximum range, especially in the presence

of obstacles. The generation of high quality relay chains and

trees in discretized space therefore requires a sufficient node

density, even in large obstacle-free areas. This is very different

from node placement algorithms for graph-based path planners,

where edges can be arbitrarily long and only the total length of

a path matters. Thus, it is inappropriate to use such algorithms

unmodified.

For the type of urban and mountainous terrain we are

interested in, a regular 3D grid has proven quite suitable. The

grid is placed over the terrain and a graph is constructed from

the unobstructed grid cells, where the grid cell size depends

on the minimum distance between obstacles. To improve

connectivity in certain situations, the grid can be augmented

by nodes placed more randomly, e.g. with a preference for

placing nodes near obstacles or in narrow passages [5], [6].

IV. CALCULATING RELAY CHAINS

When we generate relay chains, the number of UAVs in

a chain is an obvious measure of the relay chain’s quality,

but one can also benefit from using other, mission-specific,

quality measures, even at the cost of using a larger number of

UAVs. As the desired trade-off can be difficult to formalize, we

calculate a set of relay chains and leave the final choice to the

ground operator. For this reason, we find for each 1 ≤ k ≤M ,

a Pareto-optimal [7] relay chain of length k between x0 and

t1, or determine that no such chain exists. A chain is Pareto-

optimal if it is not possible to improve the chain in one aspect

without a decline in another aspect. That is, a longer chain can

only be Pareto-optimal if its cost is less than the costs of all

shorter chains.

A set of Pareto-optimal relay chains can be calculated using

a version of the Bellman-Ford algorithm due to Lawler [8].

The algorithm calculates chains in order of increasing length

and decreasing cost to all nodes in the graph: in iteration k

it finds chains of length exactly k. However, it can require a

substantial amount of time, especially for large problems.

To improve the performance we have developed a complete

and optimal algorithm that calculates a set of Pareto-optimal

relay chains to each node. It uses a preprocessing step to

calculate a tree consisting of paths of minimum length among

those of minimum cost, called minimum length minimum cost

(MLMC) paths, from n0 to each n ∈ N . Such an MLMC-tree

can be calculated by Dijkstra’s algorithm [9] using compound

costs of the form 〈c, l〉 where c is the cost of the path, l is its

length, and 〈c1, l1〉 < 〈c2, l2〉 iff (c1 < c2) or (c1 = c2 and

l1 < l2). By definition, no path from n0 to a node n ∈ N

can be cheaper than the MLMC-path to node n, and for each

n the MLMC-path provides a lower bound on the path cost

and consequently also an upper bound on the path length.

This information allows termination of the calculation of paths

individually for each node, which can be used to decrease

the execution time. For brevity, we refer to the algorithm as

Algorithm 1 and the pseudocode is displayed in Figure 4.

Algorithm 1 creates a set of reachability records in each

node, which can be represented as a table, as shown in Table I.

Each such record 〈k, gk, pk〉 signifies that the node can be

reached from the base station in k hops with a cost of gk using



k (path length) gk (cost) pk (predecessor)

1 6 n0

3 3 n7

TABLE I
EXAMPLE OF REACHABILITY RECORDS STORED IN A NODE AFTER

EXECUTION OF ALGORITHM 1.

0 Calculate MLMC-tree, extract k∗max and all N∗

k ,

generate initial records

1 for each n ∈ N \ {n0} do g(n)← +∞
2 for each n ∈ n0− do // Incoming edges. . .

3 E ← E \ {(n, n0)} // . . . are removed

4 N0 ← {n0}
5 for k = 1, . . . ,min{M + 1, k∗max − 1} do

6 for each n′ ∈ N∗

k do

7 for each n ∈ n′

−
do // Incoming edges. . .

8 E ← E \ {(n, n′)} // . . . are removed

9 Nk ← N∗

k

10 for each n ∈ Nk−1 do

11 for each n′ ∈ n+ do

12 c← gk−1(n) + cn,n′ // To n
′ through n in k hops

13 if c < g(n′) then

14 g(n′)← c // Lowest cost so far

15 gk(n
′)← c // Lowest cost in k hops

16 pk(n
′)← n // Predecessor for k hops

17 Nk ← Nk ∪ {n
′}

Fig. 4. Algorithm 1 – MLMC-tree-based label-correcting algorithm.

the predecessor pk. A complete path to n0 can be reconstructed

(in reverse order) by considering the reachability records of the

predecessor pk for k−1 hops and continuing recursively until

n0 is found. After execution of Algorithm 1, each reachability

record corresponds to a Pareto-optimal path. The shortest chain

is found on the first row, and each consecutive row corresponds

to a cheaper chain, until the cheapest chain is found on the

last row. Any “missing” values of k, e.g. k = 2 in Table I,

means that even if a chain of that length exists, it is not Pareto-

optimal. Also, as Table I contains no record for any k > 3
means that the cost can not be decreased by using more than

3 UAVs.

The following terminology is used: cn,n′ is the cost to go

from node n to node n′, g(n) is the cost of the cheapest

path from n0 to n found so far. The sets of predecessors and

successors of node n are denoted by n− and n+, respectively.

The height of the MLMC-tree is denoted by k∗max ≤ N ,

and the sets N∗

k , 0 ≤ k ≤ k∗max, consists of exactly the nodes

occurring at depth k in the MLMC-tree. Nk is a sequence

of sets, which are characterized by the fact that any Pareto-

optimal chain must consist of a Pareto-optimal chain to a node

n ∈ Nk in k − 1 hops and a single outgoing edge from n.

The MLMC-tree is calculated on line 0, and k∗max and the

N∗

k sets are extracted. Also, initial reachability records are

created. Initially, g(n) = ∞ for all nodes except n0 (line 1).

As the start node is the only node reachable in zero steps, a

reachability record with g0(n0) must have been created during

preprocessing, and N0 = {n0} (line 4). No chain to the start

node can be cheaper, so all incoming edges to the start node

can be removed (lines 2–3).

In lines 5–17, each iteration considers chains of length k ≥
1, up to a maximum of k = 1, . . . ,min{M+1, k∗max−1}. This

is because (i) we allow at most M UAVs, yielding a total chain

length of M+1 when edges to the base station and target node

are added, (ii) no chain longer than k∗max can be of interest as

such chains must be at least as expensive as any shorter chain,

(iii) any chains of length exactly k∗max were found during the

calculation of the MLMC-tree. Setting M = ∞ ensures that

Pareto-optimal chains of all possible lengths are found.

By the definition of N∗

k , no cheaper chain can be found

to any node in N∗

k and the incoming edges to such nodes

can be removed without affecting the properties of the algo-

rithm (lines 6–8). However, we need to consider chains going

through such nodes (line 9), explained further below.

Lines 10–17 considers each outgoing edge of nodes in Nk−1

and checks whether a cheaper chain has been found. If so, a

new reachability record is created and g(n) is set to the cost of

the new chain to signify that we are only interested in strictly

cheaper chains.

The last thing to do is to prepare for the next iteration by

constructing the set Nk. That is, Nk should consist of the

nodes to which a cheaper chain was found during the current

iteration, or that could not be reached at all with chains of

length k−1. This is achieved in line 9, for nodes in N∗

k where

we found a cheaper chain of length k during preprocessing,

and on line 17 for nodes where we found a cheaper chain of

length k in this iteration.

The algorithm’s time complexity is O(k∗max|E|) ⊆ O(|N |3)
as at most k∗max–1 iterations are performed, each one treating

at most |E| edges. However, k∗max is the maximum number of

UAVs required to reach any target, and k∗max ≪ N typically

applies. For more details and proofs, the reader is referred to

[10], [11].

V. CALCULATING RELAY TREES

Finding an optimal relay tree is considerably more difficult

than finding an optimal relay chain, as finding a relay tree is a

variation of the NP-hard Steiner tree problem [12]. Therefore,

we investigate the problem of finding a feasible relay tree

relative to a quality measure such as the number of UAVs

or the cost of the tree. The Steiner tree problem in directed

graphs is defined as: Given a network G = (N,E, c) where

c : E → R+ is an edge cost function, a root node n0 ∈ N and

a non-empty set T ⊆ N of targets, find a tree TG rooted in

n0 whose leaves are T, such that cost(TG) =
∑

e∈TG
c(e) is

minimized. Let Tp denote the set of Steiner nodes, consisting

of the set of nodes in TG that are neither n0 nor target nodes.

Each Steiner node corresponds to a UAV in the relay tree and

a tree is feasible if |Tp| ≤M .

Recall that the directed graph described in Section III

does not have any outgoing edges from the target nodes,



1 TG ← n0

2 for i = 1, . . . , |T| do

3 Calculate the cheapest path q from TG to τ ∈ T \N(TG)
4 TG ← TG ∪ q // Add path to tree

Fig. 5. Cheapest path heuristic for calculating a relay tree in a directed graph.

thereby making sure that all target nodes are leaves1. Even

for small problems, the existing algorithms for the directed

Steiner tree problem require long execution times [15], [16]

or large amounts of memory [17]. Such algorithms are not

applicable for calculating relay trees as the graphs used in the

relay problems may be large and the algorithms are used in a

setting where a ground operator expects a quick response.

Therefore, we adopt another strategy: first we use a heuristic

such as the cheapest path heuristic [18] to calculate an initial

relay tree in a directed graph, and then we incrementally

improve the tree through local optimization of subtrees. Below

we provide more details about our optimization algorithm, but

first we introduce the terminology and describe the cheapest

path heuristic.

The relay tree is denoted by TG, the least cost path from

TG to an unconnected target node is denoted by q and the

unconnected target node is denoted by τ . Let the nodes in TG

be denoted by N(TG).
The cheapest path heuristic (Figure 5) operates iteratively:

in each of the |T| iterations, an unconnected target node is

connected to an existing relay tree TG. Initially, this tree

only consists of the root node, which corresponds to the base

station in our case. In each iteration, the algorithm calculates

paths from the nodes in TG to all unconnected target nodes.

From these paths, the cheapest path is selected and added to

TG, thereby connecting a new target as cheaply as possible.

Though the solution is only guaranteed to be within a factor

|T| from the optimal, the heuristic has in practice proved to be

competitive with more advanced methods [19]. The heuristic

has a time complexity of O(|T|(|E| + |N |log|N |)) as |T|
executions of a cheapest path algorithm are performed, each

one with a time complexity of O(|E|+ |N |log|N |).
After the initial relay tree has been calculated, our new

algorithm is used to incrementally improve the tree. Different

optimization criteria can be used, such as generating the least

cost tree, the tree using the least number of UAVs or the

least cost tree using at most M UAVs. Compound costs as

described in Section IV can also be used. Depending on the

current relay tree, different optimization objectives are used. If

the current tree is infeasible, it is first optimized with regards

to the number of UAVs. Once a feasible tree has been found,

the optimization objective is changed to finding the least cost

feasible tree. This optimization objective is also used if the

initial tree was feasible. The process of continually improving

the tree can be performed until no better tree is found or until

the available time is out. The algorithm suggested by Chen [20]

1This would not be the case in an undirected graph, and to avoid that targets
would potentially be required to relay information, the partial terminal Steiner
tree problem [13], [14] would be used to model our problem.

can also be used to optimize subtrees but is limited to finding

the cheapest subtree or the subtree with the fewest steps. Let a

subtree of TG be denoted by Ts, with r(Ts) denoting the root

node and L(Ts) denoting the set of leaves of the subtree. A

subtree that is a candidate for replacing Ts is denoted by Ts′ .

The algorithm works by performing a sequence of local

optimizations of the relay tree. In each optimization, the

algorithm chooses a subtree and calculates a set of subtrees as

candidates to replace it. From the set of candidate subtrees, the

best candidate is chosen and compared to the original subtree.

A replacement is performed only if it yields an improvement.

Naturally, each candidate subtree Ts′ has the same root node

and the same set of leaves as the subtree it is intended to

replace: r(Ts) = r(Ts′) and L(Ts) = L(Ts′). The candidate

subtrees are calculated through executing Algorithm 1 starting

in the subtree root node as well as in each leaf. The nodes

must store several sets of reachability records as each execution

creates a set of Pareto-optimal chains from the start node to all

reachable nodes. Each reachability records stores information

about a path, and records for paths with different start nodes

are be combined in order to represent a subtree. As target

nodes lack outgoing edges and to maintain consistency with

how the edges will be used in the final tree, all executions

of Algorithm 1 starting in any of the leaf nodes will use the

edges in the reverse direction.

When optimizing TG, only a few nodes are relevant. We

refer to the set of relevant nodes as key nodes. This set

consists of the root node, the targets and the Steiner nodes

with outdegree of at least two. A key path is a path containing

exactly two key nodes: the start node and the end node. To

allow for quickly determining the subtrees for optimization, a

reduced tree is created. The reduced tree is created by replacing

each key path by a single edge. Thus the reduced tree consists

of only key nodes and maintains the same topology as the

relay tree. Determining the nodes in a subtree for optimization

becomes a simple matter of selecting a non-target key node and

retrieving its predecessor and successors. The order in which

subtrees are optimized can be chosen in many different ways,

for example starting with the subtrees furthest from the root

node and progressing towards the root node.

Figure 6 displays parts of a relay tree and the corresponding

reduced tree, where it is clear that the reduced tree only

contains key nodes. The subtree Ts with r(Ts) = n2 and

L(Ts) = {n21, τ1, n22}, marked by heavy solid edges, is

replaced by the tree Ts′ marked by heavy dashed edges. The

reduced tree on the right has the same topology as the relay

tree on left, but consists only of key nodes.

The algorithm pseudocode is displayed in Figure 7, and

the preference operator ≺ is true if the new subtree Ts′

is preferable to Ts with respect to the optimization criteria.

First a subtree is chosen for optimization (line 2) and then

Algorithm 1 is executed starting in the root node and once

starting in each leaf (lines 3–5). As the new subtree must

contain paths to both r(Ts) and all nodes in L(Ts), only nodes

reached by all calculations are considered reachable. In each

reachable node, reachability records are combined to create
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Fig. 6. Relay tree on the left and the corresponding reduced tree on the
right. The subtree marked by heavy edges is replaced by the subtree marked
by dashed heavy edges.

1 while true do

2 Ts ← Choose subtree(TG)

3 Execute Algorithm 1 starting in r(Ts)
4 for each n ∈ L(Ts) do

5 Execute Algorithm 1 starting in n

6 for each n ∈ N do

7 Determine subtrees(n)
8 Ts′ ← Choose best subtree(N )

9 if Ts′ ≺ Ts then

10 TG ← TG \ Ts // Remove old subtree

11 TG ← TG ∪ Ts′ // Insert new subtree

12 Yield TG // Yield improved tree

Fig. 7. Algorithm for optimizing existing Steiner trees.

a set of trees (lines 6–7), explained further below. The next

step consists of choosing the best subtree according to the

optimization criteria (line 8). If the new subtree is better than

the existing, the old subtree is removed and the new subtree is

inserted (lines 9–11). The improved tree is yielded to the user

(line 12).

If a replacement is performed, this may allow further

optimization of previously optimized subtrees. As an example,

after the replacement depicted in Figure 6, the subtree with

root node n0 and leaves n9, n10 is a candidate for further

optimization as the old node n8 was replaced by n9. After

an optimization has been performed, all subtrees involving the

root node and all non-target leaves are candidates for further

optimization.

Consider a subtree consisting of a root node and two target

nodes. After executing Algorithm 1 once starting in each of the

three nodes, the sets of reachability records in Table II exist in

some node. By choosing a reachability record from each set

and combining them, information about 2×1×3 = 6 different

subtrees are created (Table III). The costs and path lengths are

added to get each subtree’s corresponding characteristics. Only

subtrees for which all aspects are not worse are candidates for

replacing the old subtree Ts, i.e. a subtree with a longer total

path length is only a candidate if it is cheaper than all trees

with a shorter total path length.

k gk pk

1 6 n0

3 3 n23

k gk pk

1 13 τ1

k gk pk

2 50 n32

4 32 n12

5 21 n28

TABLE II
EXAMPLE OF REACHABILITY RECORDS FOR EXECUTIONS STARTING IN

NODES n0 , τ1 AND τ2 , RESPECTIVELY.

Path length Path length Path length Total Total
to n0 to τ1 to τ2 path length cost

1 1 2 4 69
1 1 4 6 51
1 1 5 7 40
3 1 2 6 66
3 1 4 8 48
3 1 5 9 37

TABLE III
INFORMATION ABOUT THE DIFFERENT SUBTREES CREATED FROM THE

REACHABILITY RECORDS IN TABLE II.

VI. EMPIRICAL RESULTS

We tested our optimization algorithm in a semi-randomized

urban environment of size 1000×1000×80 meters with 100

tall buildings. The graph had close to 14,000 nodes and

four million edges. The reachability functions were based on

line-of-sight, with a communication and surveillance range

of 100 m. The cost function was based on distance, with a

constant cost up to 60 meters, after which the cost increased

quadratically. For testing, 100 combinations of base station

position and target positions were randomly generated. In this

testing, we used 9 targets, clustered with three targets in each

cluster. Testing has been performed on a standard PC with a

2.4GHz CPU and 2 GB RAM, but the algorithms can and have

been executed using the on-board computers of the UASTech

Yamaha RMAX helicopter (Figure 2), which uses the same

software architecture as used in the testing [2].

For the test results presented in Figures 8 – 9, we used

compound costs (Section IV) in the optimization objective:

the first priority was to decrease the number of nodes in the

tree. If the number of nodes in several trees are the same,

the tree with the least total tree edge cost was chosen. Here

M = ∞. In Figure 8, the x-axis displays the improvement

in the number of nodes in the tree, and the bars show the

number of test cases that attained at least that improvement,

e.g. 30 test cases attained an improvement of at least 12%.

Of the 100 trees, 87 were improved and the best improvement

was 21.4%. The mean improvement was 9.3% and the median

was 7.4%. The largest decrease of the total tree edge cost was

63.4%, with a mean improvement of 37.7% and a median of

37.5% (Figure 9).

Figure 10 displays how the number of UAVs and the

tree’s cost change for a certain test case. First we are trying

to find a feasible tree, and once a feasible tree is found,

the optimization objective is changed to find the cheapest

feasible tree. Here M = 23, the black solid curve displays

the number of UAVs and the green dashed curve displays the

tree cost. The initial tree is infeasible as it uses 26 UAVs,
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Fig. 8. Number of test cases with a given improvement in the number of
nodes.
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Fig. 9. Number of test cases with a given improvement of the cost of the
tree.

and optimization is first performed to find a feasible tree. The

second successful optimization finds a feasible tree using 21

UAVs, and the optimization objective is changed to finding

the cheapest feasible tree. After that, each new tree decreases

the cost, until no lower cost tree is found, after the ninth

subtree optimization. In total, the number of UAVs is decreased

from 26 to 23 and the cost is only marginally increased. The

complete optimization took less than 10 seconds and each

improved tree is available to the user as soon as it is calculated.

VII. RELATED WORK

Control behavior for teams of unmanned ground vehicles

involving line-of-sight was investigated in Sweeney et al. [21].

In an indoor setting, a lead UGV advances from the base

station towards the goal position and incrementally determines

where to place relay UGVs along the way in order to maintain

communication with the base station. Various strategies are

evaluated in terms of time and energy usage. A small survey

of positioning algorithms for UGVs is available in Nguyen et

al. [22]. The algorithms presented in these articles have several

commonalities. No quality or cost measure is used and it is

not certain that the goal position will be reached, as no a priori

calculation or evaluation of paths is performed.
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Fig. 10. Minimization of the number of hops is performed until a feasible
tree is found, using at most 23 UAVs. Once a feasible tree is found, the
optimization objective is changed to finding the cheapest feasible tree.

Arkin and Diaz [23] used a behavior-based architecture to

allow teams of ground robots with line-of-sight communication

to explore buildings and to find stationary objects, using only

limited knowledge about the area in which those objects may

be placed.

An algorithm for maintaining LOS between groups of

planetary rovers exploring an area is presented by Anderson

et al. [24]. The algorithm is based on several heuristics and

although testing indicates that the algorithm performs well,

it does not guarantee a solution even if one exists. Rooker

and Birk present an algorithm for maintaining communication

between a group of UGVs exploring an area [25].

The concept of using a UAV as a communication relay,

including intended platforms and communications equipment,

is discussed in Pinkney et al. [26], but no algorithms are

presented. The benefit of using a single relay UAV in an urban

environment has also been simulated [27]. Here the UAV works

as a relay between two entities on the ground but no algorithm

for a priori determining the quality of the UAV’s position is

provided.

When the number of surveillance targets is greater than

the number of UAVs, UGVs must move between targets and

surveil them sequentially while maintaining communication

with the base station. This can be done by creating a tree

rooted in the base station and spanning the targets. Mosteo et

al. [28] evaluate several different trees with respect to criteria

such as average travel distance for each robot.

Problems that are superficially very similar to the multiple

relay positioning problem are encountered in ad-hoc networks,

where messages are to be delivered in a network where there

is no control of the network topology. Routing algorithms for

such networks must be able to handle addition and removal

of network nodes at runtime [29]. The range and reliability

of ad-hoc networks can be improved by using a UAV as

a relay [4]. Wireless Sensor Networks (WSNs) consist of a

large number of small sensors that are placed to cover an

area [30], [31]. Although there are some similarities with



the problems investigated here, there are also considerable

differences: WSNs must be able to handle frequent sensor

failures, and relays are often also sensors and should be placed

accordingly. In both ad-hoc networks and WSNs, there is

limited control over sensor placement.

VIII. CONCLUSION

In this paper, we have described algorithms for generating

relay chains for surveillance of a single target and relay

trees for simultaneous surveillance of multiple targets. We

can quickly generate a set of Pareto-optimal chains and let

an operator choose between the alternatives. As generation of

optimal relay trees is very computationally demanding, we

use a heuristic to quickly find an initial tree and apply a

new algorithm to incrementally improve the tree. Improvement

can be performed with respect to different criteria such as

minimization of the number of UAVs or the cost given a limit

on the number of UAVs. New empirical results show that

our algorithm can substantially improve the quality of trees

in a short amount of time. In the near future we will further

investigate how we can improve relay trees and generalize our

algorithms to solve a variety of problems involving UAV-based

monitoring and surveillance.
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