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Reprinted from 
J3IOMETRICS 

1 THm BroMETrnc SocmTY, Vol. 17, No.2, June 1961 

GENERATING UNBIASED RATIO AND REGRESSION 
ESTIMATORS 

w. H. WILLIAMS 

Bell Telephone Laboratories, Incorporated 
Murray Hill, New Jersey, U.S. A. 

1. INTRODUCTION 

Information eollected on a concomitant variate is often used in 
finite sampling theory to create more precise estimators of population 
characteristics. This supplementary information is obtained in addi­
tion to the characteristic under study and some aspects of it may be 
derived from sources other than the sample itself. It may be either 
qualitative or quantitative. For example, suppose that the variate 
under consideration in a sample survey is the number of dairy cattle 
per farm y and that at the time of the survey the number of grazing 
acres per farm x is also obtained. It may then be known from census 
data that the total number of grazing acres in the entire area is N J.Lx 

and the mean per farm is Jl.x. Analytically, we have a random sample 
of n pairs (yi , x,), i = 1, · · · , n, from a population of size Nand the 
population x-mean is known exactly. The problem is to estimate the 
population 1nean ~ty • 

A general class of estimators designed to utilize this supplementary 
information includes ratio and regression estimators. These estimators 
are described in textbooks on the subject, see for example Cochran 
(1953]. Additional developments have been presented by Hartley and 
Ross [1954}, Nieto [1958] and Robson [1957]. 

The two classical ratio estimators are the ratio of means estimator 
g = (y/i)Jl.x and the mean of ratios estimator y = Jl.x 2::~= 1 rdn where 
fi and x are sample means and r, yJxi . It is well known that these 
estimators are biased. The usual regression estimator is obtained by 
evaluating the least squares line of best fit y = fi + b(x - x) at the 
point Jl.x giving yb = y b(Jl.x x) as a regression estimator of Jl.y . 
This estimator is biased if the assumption of a linear model is not valid. 

The generation of some exactly unbiased ratio and regression esti­
mators is discussed in this paper. Specifically, we classify an estimator 
as of the regression type if it is invariant under location and scale 
changes in x and if it undergoes the same location and scale changes 
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268 BIOMETRICS, JUNE 1961 

as the y variate. A ratio estimator has analogous properties but for 
scale changes only. 

2. DERIVATION OF UNBIASED ESTIMATORS 
FOR SIMPLE RANDOM SAMPLING 

'I'o generate unbiased estimators, consider the following sampling 
procedure. At step one, select with equal probability one of all possible 
splits of the population into s mutually exclusive groups of size1 n/k, 
i.e., N = sn/k. At the second stage, select randomly without replace­
ment k of the groups from the total number of groups s of that particular 
split of the population. This gives a sample of size n. 

Now consider the conditional distribution for a particular set of s 
groups. Attached to each of these groups there are characteristics2 

g<i), ::e<i)' b<i>, i 1, · · · , s, where g<i) and ::e<i> are means of the n/lc 
units in the group and b (i) is as yet an unspecified function of they and 
x of that group. For a given split and a random selection of groups, the 
expectations of f/ and xi, i = 1, · · · , lc, are f..ky and Mx respectively; 
that is, they are conditionally unbiased. Furthermore, 

( k) 1 ~ . - . 
1 - 8 k(k - 1). ~ (b' - b)(x' - x) (1) 

is an unbiased estimator of Cov (6, x) where 6 = 2:';= 1 bi/lc. 
Hence if g = '[j + 6(Mx - x) then E(g) = f..ky - Cov (6, x) and 

T" = y + 6(Mx - x) + ( 1 - ~) 1 i; (bi - 6)(xi - x) (2) 

is ~~ eoilditioilttll~y· ll11bi~tsed estirr1ator <Jf fJy . I-L is Ll1e11 llrtl)ia,secl 1111-

conditionally. 
This approach is valid for any defined form of the coefficient b ( i); 

T" will remain unbiased. If b<i) has a form which is invariant under 
linear x and y transformation (say least squares form) then T" is classi­
fied as a regression estimator. If b<i> = g<il/x<iJ (say), then T~c falls 
into the class of a ratio estimator. 

This procedure is used to generate the unbiased estimators; in 
practice a simple random sample would be drawn and to compute Tk 
it would be split randomly into groups, see Section 7 for an example. 
The latter operation is equivalent to the generating procedure which 

allows a particular split-sample to arise in C~) (N - n) !/[(n/k) w-/c 
llt is assumed that this relationship is true in t,erms of integers. 
2Superscripts will be used to specify the groups. They will be used with parentheses when the 

reference is to the entire population of s groups and without parentheses when referring to the sample 
of k: groups. 
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ways while splitting the simple random sample allows a particular 
split-sample to arise in only one way. The unbiasedness is preserved 
by either procedure. 

The argument is easily generalized to p auxiliary variates. 

3. SPECIFIC ILLUSTRATIONS IN SIMPLE RANDOM SAMPLING 

A form of interest is 
n/k 

.L: (yi - g<i))(xi - x<il) 
i=l 

n/k "'= l, ... 's, 
"" ( -(i))2 L.J xi - x 
i=l 

the least squares slope form. 

(3) 

In this case T" bears much resemblance to yb and might be thought 
of as possessing an additional component which is required to compen­
sate for possible bias in yb . This is not exactly true of course, because 
the first two terms of Tk are not exactly the two terms of yb . However, 
in this case (3), it seems natural to make some remarks on the efficiency 
of T~c. 

The variance of T~c depends very much on the form of the b<il 
coefficients. In fact, until the form of b<il is specified little can be 
said about the variance of Tk . One can imagine choices which would 
lead to poor efficiency indeed. However, T1c in this case has coefficients 
in the least squares slope form and it is natural to ask how it compares 
with yb when a linear model is assumed, for then yb has optimum variance 
properties. But with this assumption, yb also possesses unbiasedness 
and the advantage of 'I\ is unbiasedness in situations in which yb is 
not unbiased. However,·one would like the efPciency of T" to compare 
favorftbly even in this linear model case. So by assuming a linear 
model and a normal x-distribution, it is easily found that V(yb)/V(Tk) = 
(n - 2)(n - 6)/(n - 3)(n - 4), k = 2 and n > 6. This expression 
is less than one but approaches one as n gets larger and, for example, 
when n = 15, 2.5 is equal to 0.89 and 0.95. Thus ·we see that one does 
not lose all the efficiency brought about by the use of an auxiliary 
variate and that [V(T") - V(yb)J!V(zh) is O(n- 1

). 

Furthermore, the role of k also depends upon the choice of the b w. 
For example, in the special case of the previous paragraph, if the number 
of groups is regarded as variable, V(y,)jT1(T~c) will be found to have 
a maximum at k = v;;:;3'. Thus for this form of the b<o, the optimum 
number of groups is V n/3. Other forms of the b (i) would yield other 
results. 

Another possible choice is 
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b(i) = ""' . ""' 2 
n/k I n/lc 

~ YiXi f=i Xi • 

In this form T~c is a ratio estimator and it is unbiased even if the linear 
relationship of y and x does not pass through the origin. But character­
istically the variance will be inflated by such a relationship. 

Next, if b<i) = y<i) /x<i) = r<i), T~c will reduce to the for1n 

(4) 

where b is denoted f. It will be noted that when lc = n, T~c = y', the 
unbiased ratio estimator presented by Hartley and Ross [1954]. The 
efficiency of this form of T~c has been examined in detail by Goodman 
and Hartley [1958] and Robson [1957]. Robson presents an exact 
variance formula for finite populations. 

Finally, consider b<i> = r<i> = (lc/n) L;t~~ r; , T; yJx; , then 
b = f = L~= 1 r;/n which does not depend upon the particular split 
of the population. Now if, after substitution of this form into T1c , 
the estimator is averaged over all possible splits of the sample into 
groups of size n/k it will be found that the result is again the Hartley­
Ross unbiased ratio estimator. This averaging process is indicated 
by a star, i.e., Tt . 

Other forms could, of course, be considered. 

4. STRATIFIED SAMPLING 

Since a bias may be magnified relative to the standard deviation, 
stratified sampling may perhaps be regarded as the most important 
application of unbiased estimators. Their separate use within strata 
requires exact knowledge of the population strata means but is straight­
forward. We now develop a combined stratified estimator. 

Consider L strata of size Nt , t = 1, · · · , L with N, = N, 
and again consider the sampling in two stages. At the first stage select 
with equal probability one of the possible splits of each stratum into s 
groups of size n 1/k, t = 1, · · · , .D. Then snt/lc. At the second 
stage select k groups with equal probability and without replacement 
from each of the strata, giving a sample of size nt in the t-th stratum, 

nt = n. 
For a given split and a random selection of groups 

L L 

1J!t = (NJN)y; and 

are unbiased estimators of· fJy and Jlx respectively, where g; and x! 
denote means of the i-th group in the t-th stratum. Also we can consider 
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a coefficient b;;) which is as yet unspecified in form but utilizes the set 
of elements in the i-th group of all strata. For example, 

L nt/k '/, = 1, ... 's (5) 
L: L: (x;j- xi 
1=1 i=l 

is an over-all slope estimator. 
Next we note that 

L k 

L (Nt/N)yt .z=g;Jk (6) 
t=l i=l 

where Yt is the mean of the n 1 observations in the t-th stratum 
(similarly for and finally that a conditionally unbiased estimator of 
Cov is given by 

1 1r 

(1 - n/N) k(k _ 1) t; 
Consequently, if g = Yst + bst(J.tx - Xst) then E(g) 
Cov (b 81 , and therefore 

Tk(d) = Yst + l)s,(J.tx - Xst) 

J.l.y -

(7) 

is a combined stratified unbiased estimator of J.ty • Note that since 
Nt = snjk, k/s = n/N. Nieto [1958] discussed the efficiency of the 
estimator (7) (for sampling with replacement) in detail. 

As a specific illustration consider the case in which 

T'hen > reduces to 

-r (8) 

In Lhe special case that Nt = l!, n 1 fi for all t and k fi, s = then 

(9) 

which is a generalized Hartley-Ross estimator. 
Finally, we again consider an averaging of over all possible splits 

of the sample into groups of size nt/k, t = 1, · · · , L. For this, the 
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coefficient is taken in the form b;;> r~;> "'L = ~t=l (Nt/ N)ri i) where 
rii> = (k/nt) L~~1k (y)xi). Therefore, 

L 

L (Nt/N)ft 
t=l 

and some algebraic reduction will show that T~ccst> averaged over all 
possible splits is equal to 

(10) 

which does not quite reduce to a form similar in appearance to Equa­
tion (8) and the Hartley-Ross estimator. 

As before other selections of coefficients will yield other unbiased 
estimators. 

5. MULTISTAGE SAMPLING 

We consider a population with N primaries of equal size M and the 
following sampling scheme. First select n primaries from the N avail­
able with equal probability with or without replacement. Then select 
with equal probability one of the splits of each of the primaries into s 
groups of size in/k. Then with equal probability and without replace­
ment draw k of the groups so that the sample size is iii in each selected 
pnmary. 

Consider now the conditional distribution for a fixed set of primaries 
and a fixed split of the primaries into s groups each. Then by Section 4, 
Equation (11) is an unbiased estimator of Yn , the population mean of 
the n selected primaries. 

Tlc(M) =f)+ b(J.tx- x) + (1 - ;) --1-- k 

I:: Cb':-
-i=l 

- x) (ll) 

where 
lc n m, 

'it = (k/nm) f) = (1/k) L rt = (1/nm) L L Yt i 
T=l t~l 1=1 

and similarly for x. The coefficient b Ci> is again arbitrary in form. 
Finally, the expectation of TkcM> over all possible primary selections 

is the average of Yn over all possible primary selections; this is f.Lv and 
TkcM> is unbiased in multi-stage sampling. 

Again the selection of the coefficients yields estimators of different 
types. For example, an unbiased ratio estimator of the Hartley-Ross 
type generalized to multistage sampling can be obtained. 
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6. VARIANCE ESTIMATION 

H is interesting to notice that the same sampling scheme 
can be used to form an estimate of the variance of '1\ . First assume a 
negligible n/N (or k/s) and a fixed set of uncorrelated groups. Tk can 
now be written 

k 

I: - J.lx) (12) 
1r'j 

and its conditional variance can be expressed in terms of the variances 
and co variances of the components in (12). Since Tk is conditionally 
unbiased this variance has expectation equal to the over-all variance. 
Substitution of unbiased estimators for each of the terms of the variance 
(plus some terms of zero expectation) yields (13) as an unbiased esti­
mator of the variance of 1\ . 

v('l\) = T~ 
1 

(13) 
k(k -- J) 

Although this procedure is unbiased it can be subject to high sampling 
error, particularly for small J.c. 

TABLE 1 

A SIMPLE ExAMPLE OF THE EsTIMATORS 

Tz 
Sample Pairs in 

Nun1ber ~)a11llJ.1e ~~ 
<.:.._t ~c~ 1 ~ .J. i Split 2 q 
L.!_lJl!LJ l_ ,_) 

1 P1PzPaP4 :3.500 7' 167 G.GG7 G .500 6.778 
2 P1PzPsPr, 5.250 8.917 8.250 7.917 8.3()1 
:3 PdJzPsPG 7.500 11.000 JO.H\7 D.GG7 10.278 
4 plp2p4p6 8.750 11.917 10.250 H.917 10.694 
5 P1Pd-'4P" 6.500 10.000 8.667 8.500 9.056 
6 D D D v "'"': !::{II\ 1D.r-: 7.667 7.500 '"7 ~r-JO 

1. 21 ~{1. 41 5 I .u\/V .. l Ul I, 110 

7 PzPsPoP6 11 '500 10.000 8.GG7 8.500 9.056-
8 PzP3P4P6 \1.750 9.417 8.750 8.417 8.861 
9 plp3p4p5 7.250 ~l.417 8.750 8.417 8.8Gl 

10 P1PsP4PG P.500 11 '000 10' 167 H.500 10.222 
11 P1PJ.:>rPil 11.250 11 917 10.250 n.Dl7 10.694 
12 PsP4PuP6 1:3.500 7' 167 G.GG7 6.500 6.778 
13 P1P4PrPr, 12.500 ] 1.000 10.1G7 ~). G67 10.278 
14 PzP4P&P6 12.750 8.917 8.250 7.917 8.361 
15 P1P:lP;,P6 10.500 13' 167 10' 667 10.500 11.444 
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7. NUMERICAL ILLUSTRATION 

To illustrate T"' a small population consisting of the six pairs 
Pi = (y; , xi), i = 1, 2, · · · , 6, withy x2 and xi = 0, 1, 2, · · · , 5 
was completely examined. Table I presents the values of fj, T2 and T~ 
[using Equation (3)] for all possible samples of size four. For T 2 , each 
of the possible samples was split into two groups of two in all possible 
ways, and the value of T 2 was computed for each. The three distinct 
values of T 2 for each sample are presented in the table. The numbering 
of the splits within a sample is of course arbitrary. It is readily veri­
fied that the average value of each of fj, T 2 and Tt is the population 
mean J.Ly 9.167. Furthermore, the exact population variances of 
y, T2 and Tt are 7.914, 2.281 and 1.886 respectively. 

As a second example, the six pairs (yi , X;) were taken as follows: 
(0,2), (1, 3), (2, 5), (4, 9), (8, 14), (9, 15). All possible samples of size 
four were drawn and for each sample JJ, y', yb , T" (for all possible 
splits) and T't were computed, A summary of the computations is 
presented in Table 2. 

TABLE 2 

ILLUSTRATION OF RELATIVE EFFICIENCIES 

Estimator 

fJ y' Yb T~c T* k 

Expectation 3.937 4.000 3.961 4.000 4.000 
Bias -0.063 0.000 -0.039 0.000 0.000 
Variance fl. '1011 £); C)f)O) fl A0'7 ll OO)ry 1\ ()0() v . .t..::.v V • .o::JUU v.v..::.1 v.vu.:.> v.v..::...::. 

Mean Square Error 0.124 0.233 0.029 0.033 0.022 
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