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Abstract

This paper presents an unsupervised approach for learn-

ing long-term human activities without requiring any user

interaction (e.g., clipping long-term videos into short-term

actions, labeling huge amount of short-term actions as in

supervised approaches). First, important regions in the

scene are learned via clustering trajectory points and the

global movement of people is presented as a sequence of

primitive events. Then, using local action descriptors with

bag-of-words (BoW) approach, we represent the body mo-

tion of people inside each region. Incorporating global

motion information with action descriptors, a comprehen-

sive representation of human activities is obtained by cre-

ating models that contains both global and body motion

of people. Learning of zones and the construction of

primitive events is automatically performed. Once mod-

els are learned, the approach provides an online recogni-

tion framework. We have tested the performance of our ap-

proach on recognizing activities of daily living and showed

its efficiency over existing approaches.

1. Introduction

From the very beginning of human activity analysis, su-

pervised approaches has been one of the most popular ap-

proaches for recognizing actions [1]. Recently, a particular

attention has been drawn on extracting action descriptors

using space-time interest points, local image descriptors and

bag-of-words (BoW) representation [9, 11, 12]. For simple

and short-term actions such as walking, hand waving, these

approaches report high recognition rates. As the field of

human activity analysis evolved in time, now we demand

systems that can analyze long-term activity of people from

videos.

Analyzing long-term activities has many application areas

in surveillance, smart environments, etc. Especially moni-

toring activities of daily living (ADL) is one of the applica-

tion areas that has been investigated by researchers in recent

years. ADL, such as cooking, consist of long-term complex

activities that are composed of many short-term actions. As

people perform daily activities in different ways, there is a

big variation for the same type of activities and it is a very

challenging problem to model ADL.

In this paper, we propose an unsupervised approach that of-

fers a comprehensive representation of activities by mod-

eling both global and body motion of people. Compared

to existing supervised approaches, our approach automati-

cally learns and recognizes activities in videos without user

interaction. First, the system learns important regions in the

scene by clustering trajectory points. Then, a sequence of

primitive events is constructed by checking whether peo-

ple are inside a region or moving between regions. This

enables to represent the global movement of people and au-

tomatically split the video into clips. After that, using ac-

tion descriptors [11], we represent the actions occurring in-

side each region. Combining action descriptors with global

motion statistics of primitive events, such as time duration,

an activity model that represents both global and local ac-

tion information is constructed. Since the video is automat-

ically clipped , our approach performs online recognition

of activities. The contributions of this paper are two folds:

i) generating unsupervised human activity models that ob-

tains a comprehensive representation by combining global

and body motion information, ii) recognizing activities on-

line without requiring user interaction. Experimental results

show that our approach increases the level of accuracy com-

pared to existing approaches.
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2. Related Work

Over the last two decades, many approaches have been

proposed for recognizing human actions from videos. Dif-

ferent features have been examined for robust and discrimi-

native representation of actions. In addition, many machine

learning approaches have been applied to model actions and

to obtain robust classifiers.

In many approaches the motion in the video is represented

using various interest point detectors, such as space-time in-

terest points [8], dense trajectories [11], and extracting var-

ious types of features around interest points, such as HOG

[3], HOF [9], MBHx, MBHy [11].

In addition, there are unsupervised methods that directly

learn activity models from the whole data (videos). Hu et

al. [6] learn motion patterns in traffic surveillance videos by

using a two-layered trajectory clustering via fuzzy k-means

algorithm: clustering first in space and second in time. The

approach in [4] builds semantic scene models by cluster-

ing trajectory points and motion direction. They segment

the regions in the scene that are similar in terms of space

and motion direction. In [5], Emonet et al. use hierarchi-

cal Dirichlet processes (HDP) to automatically find recur-

ring optical flow patterns in each video and recurring motifs

cross videos.

Supervised approaches are suitable for recognizing short-

term actions. For training, these approaches requires huge

amount of user interaction to obtain very well-clipped

videos that only include a single action. However, ADL

are complex long-term activities that are composed of many

simple short-term actions. Therefore, the representation in

supervised approaches is not sufficient to model ADL. In

addition, since the supervised approaches requires manually

clipped videos, these approaches can only follow an offline

recognition scheme. However, the global motion patterns

are not enough to obtain a precise recognition of ADL. To

overcome the drawbacks of both approaches, we propose

an unsupervised method that generates activity models by

combining global and local motion information, thereby ob-

taining a better representation of activities. Without any

user interaction, our approach automatically discovers ac-

tivities, extract features and perform online recognition.

3. Proposed Approach

3.1. Learning Zones

People interact with the environment in specific regions

of the scene while performing activities (e.g. people manip-

ulate kitchen utensils inside kitchen). Thus, finding these

regions helps to discover and localize activities occurring in

the scene. As first step of our approach, zone learning is

sensitive to accurately discover these specific regions.

We find dense scene regions by clustering 3D position

points using K-means algorithm. The number of cluster

Figure 1. (a) a sample of scene regions clustered using trajectory information, (b)

a sample of sequence of Primitive Actions and Discovered Activities in three levels of

granularity.

shows the granularity of the regions. Less number of re-

gions creates smaller but wider regions. We denote Scene

Region (SR) with k clusters as SR = {SR0, ..., SRk−1}.

An example of scene regions is illustrated in Figure 1-a.

We find distinctive scene regions with different granularity

to capture activities spatially. A set of scene regions de-

fines a scene topology. Consequently a scene model is de-

fined as a vector of topologies of different resolution levels.

We define 3 levels of topologies that correspond to 8, 10,

and 15 clusters where each level respectively corresponds

to high, medium and low level activities ({SRl}l=1,2,3).

Therefore, each scene region in higher levels may include

several smaller regions. This helps to locate sub-activities

that are limited to sub-regions of a bigger scene region.

3.2. Activity Discovery

Complex activities, such as daily living activities, are

composed of several actions (spatio-temporal segments). To

be able to decompose each activity to its underling seg-

ments, we use trajectory points along with learned scene

regions. For a set of trajectory points, we can obtain the

corresponding regions for each point by finding the nearest

scene region. This converts position set into a set of scene

region labels. Using this set of region labels, we can find

state of transition between scene regions. In this way, the

trajectory of the person is transformed into an intermediate

layer called primitive events. Primitive events character-

ize the movement of people inside the scene. Decomposing

activities into underlying primitive events helps to automat-

ically localize the activities. It also enables to summarize

the whole video by filling the gap between low-level trajec-

tory and high-level activities. Primitive Events are defined

as directed region pairs:

Primitive Event = (StartRegion → EndRegion) (1)

where StartRegion and EndRegion are the labels of the near-

est scene regions to two adjacent trajectory points. By com-

bining Primitive Events in lower-level, we obtain a higher-

level sequence, called Discovered Activities. We define two

types of Discovered Activities as:

ChangeP−Q = (P → Q)

StayP−P = (P → P ) (2)



Change refers to ”moving from region P to region Q” and

Stay refers to ”being at region P” and it is defined as a max-

imal sub-sequence of same type of Primitive Events. Fig-

ure 1-b shows a sample for a sequence of Primitive Events

together with the sequence of Discovered Activities. As it

is shown in Figure 1-b, we can divide the whole video se-

quence into a sequence of discovered activity segments. So

far, Discovered Activities only represent the location and

time interval of the activities. In order to recognize the

performed activity in the segments, we also need to extract

spatio-temporal information. Then we can create an activity

model using all the information we have collected for each

of Discovered Activities (Section 3.4).

3.3. Extracting Action Descriptors

Although Discovered Activities present global informa-

tion about the movement of people throughout the regions,

it is not sufficient to distinguish activities occurring in the

same region (e.g. drinking or reading). Thus, we incorpo-

rate body motion information by extracting motion descrip-

tors. We employ the approach in [11] which extracts motion

descriptors around dense trajectory points. Dense trajecto-

ries are sampled at each frame and tracked through consec-

utive frames using optical flow. To avoid drifting, the trajec-

tories are discarded after passing L frames. Because motion

is an important feature to characterize the activities, we use

the following descriptors in spatio-temporal volume around

each trajectory point: HoG (histogram of oriented gradient)

[3], HoF (histogram of oriented flow) [9] and MBH (motion

boundary histogram) [11]. We extract these descriptors in a

volume of NxN pixels and L frames. Then, we follow BoW

approach to obtain a discriminative representation. In su-

pervised approaches, action descriptors are extracted from

manually clipped videos and labeled. Instead, in our ap-

proach, we extract the descriptors for all Discovered Activ-

ities that are automatically computed. In order to decrease

computational cost, we extract action descriptors only for

Discovered Activities in the first level of topology. During

experiments, we have selected N = 32 and L = 15.

3.4. Learning Activity Models

Discovered Activities contain spatio-temporal informa-

tion about both the global movements and the body motion

of the person in the scene. In other words, a Discovered Ac-

tivity describes type of body motion of the person, its time

interval and the region of the scene where activity happens.

This information is used to create activity models. We de-

fine model of activities as a tree structure where each node

has collective information of Discovered Activities. Since

our scene model (topology) contains three levels of scene

regions, the tree of the activity model has three levels. As

illustrated in Figure 2, during training, all discovered activ-

ities which have the same region number are collected from

all the training instances. Afterwards, these are assembled

in the activity’s tree-structured model.

Every node in the model defines with a set of attributes

that characterize the Discovered Activities segment. The at-

tributes are as follows:

• Type: indicates the type of Discovered Activities for that

node, e.g. Stay3−3.

• Duration: describes the temporal duration for that node. It

is modeled as a Gaussian distribution by using the instances

with the same type N (µduration, σduration).
• Action Descriptors: contains the BoW histogram of body

motion descriptors. The distribution of histograms of the

instances with the same type is modeled as a Gaussian dis-

tribution N (µaction,Σaction).
• Sub-activity: stores the attribute information of all child

nodes of a node in higher level.

Figure 2. Creating activity models as a tree of nodes using discovered activities in

training set. Each node’s color indicates its corresponding activity or sub-activity in

discovered activities representation.

3.5. Recognizing Activities

During testing, for a new unknown video, we create the

activity tree in online mode following the same steps we

have done for training models. But here, instead of several

instances that we had for training, we have just one instance.

We wish to find the most similar learned activity model to

the constructed test instance tree. By using person’s trajec-

tory, we detect the entrance and exit instants from a scene

region. We also create Discovered Activities and extract ac-

tion descriptors using detected enter/exit instants. To obtain

BoW histograms of the descriptors, we use the codebook

obtained during the training. Since at this point we have

all the attribute information, we construct a tree structure

for the test video (if a video contains several activities, we

created a tree for each one of the activities). Finally, a sim-

ilarity score is computed between the tree of the test seg-

ment and all learned models. We assign the activity label

with label of the model corresponding to maximum score.

As person continues to walk through the scene, we iterate

the same steps of the pipeline and perform online activity

recognition.

Similarity Score: Having the learned Activity model and

test Activity′, we define a distance metric that recursively

compares and scores all nodes in the two models. If type

of the nodes matches (Activitytype = Activity′type), we



Figure 3. A sample of activities in datasets: (a) answering phone, (b) preparing

drink, (c) establishing account balance, (d) prepare drug box, (e) watering plant, (f)

reading, (g) turning on radio, (h) using bus map.

compute 3 scores between the nodes of the learned model

Activity and the nodes of test instance Activity′, otherwise

we set the score to 0:

Scoretotal = Scoreduration + Scoreaction + Scoresub−activity

(3)

where

Scoreduration = 1−
|Activityduration −Activity′

duration
|

max (Activityduration, Activity′
duration

)
(4)

and

Scoreaction = 1−Bhattacharyya(Activityaction, Activity′action)
(5)

Scoreduration measures the difference between duration of

the test segment and mean duration of the learned model. It

results a value between 0 and 1. Scoreaction compares the

BoW histogram of the test segment with the mean BoW

histogram of the learned model. We compute the Bhat-

tacharyya distance between histograms. The total sim-

ilarity score is calculated by summing these two scores

and the scores calculated recursively for sub-activity nodes

(Scoresub−activity) till reaching to a leaf node. The highest

similarity score for a model votes for the final recognized

activity label.

4. Experimental Results

There is a lack of data for ADL recognition and there

is no standard benchmark dataset. Therefore, the perfor-

mance of the proposed approach has been tested on the pub-

lic GAADRD dataset[7] and CHU dataset that are recorded

under EU FP7 Dem@Care Project1 in a clinic in Thes-

saloniki, Greece and in Nice, France, respectively. The

datasets contain people performing everyday activities in

a hospital room. The activities considered in the datasets

are listed in Table 1 and Table 2. A sample image for each

activity is presented in Figure 3. Each person is recorded

using RGBD camera of 640×480 pixels of resolution. The

GAADRD dataset contains 25 videos and the CHU dataset

contains 27 videos. Each video lasts approximately 10-15

minutes..

For person detection, we have used the algorithm in [10]

that detects head and shoulders from RGBD images. Tra-

jectories of people in the scene are obtained using the multi-

feature algorithm in [2] that uses features such as 2D size,

1http://www.demcare.eu/results/datasets

3D displacement, color histogram, dominant color and co-

variance descriptors.

The groundtruth of each video is collected by doctors man-

ually marking the performed activities. The accuracy is

evaluated using Sensitivity = TP
TP+FN

and Precision =
TP

TP+FP
measures, where TP , FP and FN stands for

True Positive, False Positive and False Negative, respec-

tively. We have compared our approach with the results of

the supervised approach in [11] where videos are manually

clipped. We did also a comparison with an online super-

vised approach that follows [11]. For doing this, we train

the classifier on clipped videos and perform the testing us-

ing sliding window. There are more recent approaches but

they are not appropriate for our problem. For example [12]

is adapted to cope with camera motion. Since there is no

camera motion in our experiments it is not fitting the case

in our problem. In the online approach, a SVM is trained

using the action descriptors extracted from groundtruth in-

tervals. For online testing, the descriptors of a test video are

extracted in a sliding window of size W frames with a step

size of T frames. At each sliding window interval, the ac-

tion descriptors of the corresponding interval are extracted

and classified using SVM. W and T parameters are found

during learning. We have also tested different versions of

our approach that i) only uses global motion features and ii)

which only uses body motion features. We have randomly

selected 3/5 of the videos in both datasets for learning the

activity models using global and body motion information,

as described in Section 3.4. The remaining videos are used

for testing. The codebook size is set to 4000 visual words

for all the methods.

The performance of the online supervised approach and our

approach in GAADRD dataset are presented in Table 1. In

all approaches that use body motion features, HoG descrip-

tors are selected since they give the best results. It can be

clearly seen that, using models that represent both global

and body motion features, our unsupervised approach en-

ables to obtain high sensitivity and precision rates. Com-

pared to the online version of [11], thanks to the learned

zones from positions and discovered activities, we obtain

better activity localization, thereby better precision. How-

ever, since the online version of [11] utilizes only dense

trajectories (not global motion), it fails to localize activi-

ties. Hence, it detects the intervals that does not include an

activity (e.g. walking from radio desk to phone desk) and

for ”prepare drug box“, ”watering plant“, and ”reading“ ac-

tivities, it cannot detect the correct intervals of the activi-

ties. To evaluate models that only use either global motion

or body motion, we eliminate their correspondent elements

during score calculation. Compared to the unsupervised ap-

proach that either use global motion features or body motion

features, we can see that, by combining both features, our

approach achieves more discriminative and precise mod-



Supervised Online Version Unsupervised Unsupervised
Proposed Approach

Approach [11] of [11] (Only Global Motion) (Only Body Motion)

ADLs Sens. (%) Prec. (%) Sens. (%) Prec. (%) Sens. (%) Prec. (%) Sens. (%) Prec. (%) Sens. (%) Prec. (%)

Answering Phone 100 88 100 70 100 100 57 100 100 100

Establish Acc. Bal. 67 100 100 29 100 86 50 100 100 86.67

Preparing Drink 100 69 100 69 78 100 100 100 100 100

Prepare Drug Box 58.33 100 11 20 33.34 100 33.34 100 33.34 100

Watering Plant 54.54 100 0 0 44.45 57 33 100 44.45 100

Reading 100 100 88 37 100 100 38 100 100 100

Turn On Radio 60 86 100 75 89 89 44 100 89 100

AVERAGE 77.12 91.85 71.29 42.86 77.71 90.29 50.71 100 80.97 98.10

Table 1. The activity recognition results for GAADRD dataset. Bold values represent the best sensitivity and precision results for each class.

els, thereby improves both sensitivity and precision rates.

For ”answering phone“ and ”turn on radio“ activities global

motion feature are more discriminative and for ”preparing

drink“ and ”watering plant“ activities, body motion features

are more discriminative and precise. By combining global

and body motion features, our approach benefits from dis-

criminative properties of both feature types. Table 1 also

presents the results of the supervised approach in [11]. Al-

though the supervised approach uses groundtruth intervals

in test videos in an offline recognition scheme, it fails to

achieve accurate recognition. As our approach learns the

zones of activities, we discover the places where the activi-

ties occur, thereby we achieve precise and accurate recogni-

tion results. Since this information is missing in the super-

vised approach, it detects ”turning on radio“ while the per-

son is inside drink zone preparing drink. Table 2 shows the

results of the online supervised approach and our approach

in CHU dataset. MBH descriptor along y axis and HoG de-

scriptor gives the best results for our approach and the on-

line supervised approach, respectively. In this dataset, since

people tend to perform activities in different places (e.g.

preparing drink at phone desk), it is not easy to obtain high

precision rates. However, compared to the online version of

[11], our approach detects all activities and achieves a much

better precision rate. The online version of [11] again fails

to detect activities accurately, thereby misses some of the

”preparing drink“ and ”reading“ activities and gives many

false positives for all activities.

Supervised Approach [11] Online Version of [11] Proposed Approach

ADLs Sens. (%) Prec. (%) Sens. (%) Prec. (%) Sens. (%) Prec. (%)

Answering Phone 57 78 100 86 100 65

Preparing Drink 78 73 92 43 100 58

Prepare Drug Box 100 83 100 43 100 100

Reading 35 100 92 36 100 78

Using Bus Map 90 90 100 50 100 47

AVERAGE 72.0 84.80 90.95 48.76 100 70.00

Table 2. The activity recognition results for CHU dataset. Bold values represent

the best sensitivity and precision results for each class.

5. Conclusion

In this paper, we have presented an unsupervised ap-

proach for long-term activity recognition which provides

a complete representation of human activities by exploit-

ing both global and body motion features. Without re-

quiring a user interaction (e.g., clipping long-term videos

and labeling short-term clips as in supervised approaches),

our approach automatically computes important scene re-

gions, discovers activities and generates unsupervised activ-

ity models. By incorporating both global and body motion

features, we have recognized precise activities compared

to unsupervised approaches that only model global motion.

Supervised approaches cannot achieve precise recognition

in an online scheme, due to wrongly detected activities.

Thanks to the activity models learned in unsupervised way,

we accurately perform online recognition. In addition, the

zones learned in an unsupervised way helps to model ac-

tivities accurately, thereby most of the times our approach

achieves more accurate recognition compared to supervised

approaches.
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