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Abstract. Video texture is a new type of medium which can provide
a continuous, infinitely varying stream of video images from a recorded
video clip. It can be synthesized by rearranging the order of frames based
on the similarities between all pairs of frames. In this paper, we propose a
new method for generating video textures by implementing probabilistic
principal components analysis (PPCA) and Gaussian Process Dynamical
model (GPDM). Compared to the original video texture technique, video
texture synthesized by PPCA and GPDM has the following advantages:
it might generate new video frames that have never existed in the input
video clip before; the problem of “dead-end” is totally avoided; it could
also provide video textures that are more robust to noise.
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1 Introduction

Video textures, first introduced by Schödl et al. [1], is a new type of medium
between static image and dynamic video. It can create a continuous, infinitely
changing stream of images from a recorded video. Following the work of video
texture, Schödl et al. also extended this technique on video sprites [2] [3]. Re-
cently, a number of extensions and applications of video texture have emerged.
Dong et al. [4] proposed a novel method of generating video texture based on
wavelet coefficients which are computed from the decomposition of the pixel
values of neighboring frames. In the work of Fitzgibbon [5], video texture is syn-
thesized first by applying the principal components analysis (PCA) to obtain
the signatures of each frame, then autoregressive process (AR) is used to predict
new frames. In [6], Campbell et al. extended this approach to work with strongly
non-linear sequences.

Our work is inspired from [5], where the author has shown that video texture
may be created by implementing regression methods such as AR process which
allow the prediction of new video frames. Accordingly, new video textures are
obtained by appending synthesized frames. Gaussian process [7] [8] [9] is another
approach which can be exploited to solve regression problems. Via Gaussian
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process, we can define probability distributions over functions directly, and a
Gaussian process prior can be combined with a likelihood to acquire a posterior
over functions. In our work, we adopt an extension of Gaussian process namely
Gaussian process dynamical model (GPDM) [10] [11] which is a latent variable
model that can be applied for nonlinear time series analysis. GPDM extended the
Gaussian process latent variable model (GPLVM) [12] with a latent dynamical
model. In GPDM, it includes a low-dimensional space account for dynamics in
the time series data, as well as a mapping from the latent space to observation
space. Since video sequence is a time series data, in principle, GPDM is a suitable
method to synthesize new video textures. Fitzgibbon [5] has applied PCA as a
dimensionality reduction technique to obtain the frames signatures. However,
we have shown in a previous works [13] that probabilistic principal components
analysis (PPCA) [14] is more robust to noise and provide better results. Thus, our
video texture generation framework will be based on both PPCA and GPDMs.

The remainder of this paper is organized as follows. First we introduce Gaus-
sian processes regression in Section 2. Then GPDM for video texture is discussed
in Section 3. Section 4 is devoted to the experimental results. The conclusion
and future work are included in Section 5.

2 Gaussian Processes Regression

A Gaussian process is defined as a probability distribution over some functions
y(x), such that the set of values of y(x) evaluated at an arbitrary set of points
x1, ...,xN jointly have a Gaussian distribution. Here, we will illustrate how Gaus-
sian process can be applied on general regression problems. We consider a model
where the observed target values tn are corrupted with some random noise

tn = yn + εn (1)

where yn = y(xn) for input data x. εn is the random noise which has Gaussian
distribution with zero mean and β−1 variance. Since the noise is independent
for each data point, given the values of y = (y1, ...yN )T , the joint distribution
of target values t = (t1, ..., tN ) is an isotropic Gaussian

p(t|y) = N (t|y, β−1IN ) (2)

After obtaining the marginal distribution of t, the next job is to evaluate the con-
ditional distribution p(tN+1|t) where tN+1 is the next target value that we wish
to predict. In order to find p(tN+1|t), we first need to find the joint distribution
of p(tN+1) for t1, ..., tN+1

p(tN+1) = N (tN+1|0,CN+1) (3)

where CN+1 is an (N + 1) × (N + 1) covariance matrix. The covariance matrix
CN+1 needs to be partitioned as

CN+1 =
(

CN k
kT c

)
(4)
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where CN is the N×N covariance matrix of the training data, vector k represents
the N × 1 covariance matrix of training data and the predictive target tN+1,
and the scalar c denotes the variance of tN+1. As shown in [8], since the joint
distribution p(tN+1) is also a Gaussian distribution, we can obtain the mean
and covariance of the conditional distribution p(tN+1|t) as

m(xN+1) = kT C−1
N t (5)

σ2(xN+1) = c − kT C−1
N k (6)

These results represent the core idea of Gaussian process regression. More details
and discussion about Gaussian processes can be found in [7].

3 Gaussian Processes Dynamical Models

The Gaussian process dynamical model (GPDM) [11] is a latent variable model
with two nonlinear mappings. One mapping is from the latent space to the obser-
vation space and the other is the dynamical mapping in the latent space. Suppose
{y1, ...,yN} denotes the D-dimensional observation data set and yt represents
a particular observation output at the specific time t, yt ∈ R

D. x1, ...,xN is a
data set in the latent space, xt represents the d-dimensional latent coordinate of
the observation data at time index t, xt ∈ R

d. The first-order Markov dynamics
and the latent space mapping are given by

xt = f(xt−1;A) + nx,t (7)

yt = g(xt;B) + ny,t (8)

here, the dynamical mapping function f is parameterized by A and latent space
mapping function g is is parameterized by B. nx,t and ny,t are zero-mean,
isotropic, white Gaussian noise processes. Two basis functions φi and ϕj are
used for f and g are given by

f(x;A) =
∑

i

aiφi(x) (9)

g(x;B) =
∑

j

bjϕi(x) (10)

where weights A ≡ [a1, a2, ...]T and B ≡ [b1, b2, ...]T . f and g are nonlinear
functions of x, but the dependencies of f and g on the parameters A and B
are linear. For the mapping from latent space to the observation space, after
marginalizing over g, the joint distribution of Y can be represented as

p(Y|X, β̄,W) =
|W|N√

(2π)ND|KY |D exp(−1
2
tr(K−1

Y YW2YT )) (11)
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here, KY is the kernel matrix of the mapping g and β̄ are the hyperparameters of
the kernel. W represents the scale parameters which account for the overall scale
in each data dimension. The elements of KY are defined by a kernel function
(KY )ij ≡ kY (xi,xj). We choose the radial basis function (RBF) as the kernel
function for the latent mapping g

kY (x,x′) = β1 exp(−β2

2
‖x− x′‖2) + β−1

3 δx,x′ (12)

where the hyperparameter β1 represents the output scale of the kernel function,
β2 represents the inverse width of the RBF, and β3 gives the variance of the
isotropic noise term ny,t. The dynamic mapping for latent coordinate is simi-
lar to the latent space mapping. The joint probability density over the latent
coordinates can be represent as

p(X|ᾱ) =
p(x1)√

(2π)(N−1)d|KX |d exp(−1
2
tr(K−1

X X2:NXT
2:N )) (13)

here, X2:N = [x2, ...xN ]T denotes the input data that except the first element.
KX is the kernel matrix build from [x1, ...xN−1]. In this dynamic mapping, the
form ”RBF + linear” is defined for the kernel function

kX(x,x′) = α1 exp(−α2

2
‖x− x′‖2) + α3x

T x′ + α−1
4 δx,x′ (14)

In order to discourage overfitting, prior distributions are placed on hyperpa-
rameters ᾱ, β̄ and W.1 Then a generative model for time-series observations
can be obtained through a latent space mapping, a dynamic mapping and prior
distributions:

p(X,Y, ᾱ, β̄,W) = p(Y|X, β̄,W)p(X|ᾱ)p(W)p(ᾱ)p(β̄) (15)

This represents the general form of the GPDM. Details of how to evaluate the
parameters for GPDM can be found in [10].

4 Experimental Results

In our work, the goal is to apply GPDM to synthesize video textures. The per-
formance of our approach is evaluated by comparing our results with the video
textures generated by AR approach in [5]. In the AR approach for synthesizing
video textures, frame signatures are first calculated by adopting the dimension
reduction technique: principal components analysis (PCA), followed by the syn-
thesis of new video textures using AR process. In our case, in order to test our
approach under different scenarios, several input video clips are selected. First,

1 p(ᾱ) ∝ ∏
i α−1

i , p(β̄) ∝ ∏
i β−1

i and p(W) =
∏D

m=1
2

k
√

2π
exp(−w2

m
2k2 ), where wm are

the variances that contain the elements of W, and in practice, k is set to 103.
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the input video clip is decomposed into a sequence of frames. Each individ-
ual frame is an input vector x, with dimensionality D. The value of D is the
number of pixels contained in each frame. Second, these input vectors are mean-
subtracted and the latent coordinates are initialized with PPCA. Last, GPDM
is applied to synthesize new video frames which are then composed together to
generate a new video texture.

4.1 Generation of New Frames

As described above, new video frames are predicted using GPDM. In other words,
it is to predict the next video frame xN+1 conditioned on the previous frame xN .
The marginal distribution of the new frame p(xN+1) derived from the conditional
distribution p(xN+1|xN ) is also a Gaussian distribution

xN+1 ∼ N (μX(xN ); σ2
X(xN )) (16)

We can solve this prediction problem by applying the similar ideas as in Gaussian
process regression. According to results in (5) and (6), the mean and covariance
can be calculated as

μX(x) = XT
2:NK−1

X kX(x) (17)

σ2
X(x) = kX(x,x) − kX(x)T K−1

X kX(x) (18)

In the above equations, kX(x) represents a vector that contains the covariance
kX(x,xi) in the i-th entry and xi denotes the i-th training vector. Then, the
next frame in the latent space is: xN+1 = μX(xN ). Therefore, the new video
frames can be generated by yN+1 = μY (xN+1).

New video textures are successfully generated from input video clips by apply-
ing PPCA and GPDM with 50 frames in each video texture. They can be played
without any visual discontinuity but with similar motions as the original one.
Moreover, all resulted frames have never appeared before in the input videos.
Fig.1∼ Fig.6 show the first three frames generated by PPCA and GPDM for
several input video clips ((a), (b) and (c) represent the first, second and third
frame, respectively).

(a) (b) (c)

Fig. 1. The first three synthesized frames for a movie of a man moving a pen
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(a) (b) (c)

Fig. 2. The first three synthesized frames for a movie a candle flame

(a) (b) (c)

Fig. 3. The first three synthesized frames for an animation of cartoon

(a) (b) (c)

Fig. 4. The first three synthesized frames for a movie of fountain

(a) (b) (c)

Fig. 5. The first three synthesized frames for a movie of flag

(a) (b) (c)

Fig. 6. The first three synthesized frames for a movie of waterfall



Generating Video Textures by PPCA and GPDM 807

4.2 Comparison of the Results

In this section, we compare the performance of synthesizing video textures by
GPDM and AR process. Via the AR process, although the result seems very
good, there is still one problem which is the occurrence of noise. For all results,
after a certain time, the noise will start to become visible and make the video
blur. However, through GPDM, it is more robust to noise compared to AR
process since it contains a latent space account for the dynamics in the input
data. As shown in Fig.7, the 20th, 25th and 30th frames generated by PCA
and AR process contain much more noise than the ones produced by PPCA
and GPDM at each corresponding frame number. Based on our experimental
results, we may conclude that video textures generated by PPCA and GPDM
can provide better results with more robustness to noise than AR approach. The
synthesized new video textures contain similar motions as the input video clips
and all frames in the new video textures are completely new.

(a) (b) (c)

(d) (e) (f)

Fig. 7. (a), (b) and (c) illustrate the 20th, 25th and 30th frames synthesized by PPCA
and GPDM; (d), (e) and (f) demonstrate the 20th, 25th and 30th frames generated by
PCA and AR process

5 Conclusion and Future Works

In this paper, we proposed a new approach for generating video textures us-
ing PPCA and GPDM. GPDM is a nonparametric model for learning high-
dimensional nonlinear dynamical data sets. We have tested PPCA and GPDM
on several movie clips, it can generate video textures containing frames that
never appeared before with similar motions as the original video. Compared
with PCA and AR process, PPCA and GPDM can produce better results with
more robustness to noise. Unfortunately, video textures synthesized by PPCA
and GPDM still have visual discontinuities for some highly structured and vari-
able motions (such as dancing and fighting). Thus, there might be some more
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potential improvements on generating video textures. Since GPDM is highly de-
pendent on the kernel functions, selection of a better function would be a key
factor for improving the predictive power. Besides this, We also would like to
modify the statistical model of the GPDM in order to acquire the ability of
modelling highly variable motion sequences in the future.
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