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Generating Virtual Network Embedding Problems

with Guaranteed Solutions
Andreas Fischer and Hermann de Meer

Abstract—The efficiency of network virtualization depends
on the appropriate assignment of resources. The underlying
problem, called Virtual Network Embedding, has been much
discussed in the literature, and many algorithms have been
proposed, attempting to optimize the resource assignment in
various respects. Evaluation of those algorithms requires a large
number of randomly generated embedding scenarios. This paper
presents a novel scenario generation approach and demonstrates
how to produce scenarios with a guaranteed exact solution,
thereby facilitating better evaluation of embedding algorithms.

I. INTRODUCTION

T
HE rising complexity of todays communication net-

works demands new approaches to network manage-

ment. The flexibility introduced with network virtualiza-

tion [1] can help to achieve that goal. Network virtualiza-

tion allows network operators to define virtual network

topologies on demand. On a given Substrate Network (SN),

arbitrary Virtual Networks (VNs) can be realized. The VNs are

logically separated from each other, thereby ensuring parallel

execution of diverse networked applications with minimal

mutual influence and even providing some security through

compartmentalization.

There is, however, the problem of assigning resources

for such networks in an efficient way. An SN always has

limited resources, and each further VN consumes some of

those resources. This calls for resource assignment algorithms,

trying to figure out for a given set of VNs how to best embed

them into the SN. This problem is commonly known as Virtual

Network Embedding (VNE) [2]. For the last few years, many

algorithms have been proposed, providing solutions under

various aspects of this problem.

The evaluation of these algorithms depends largely on

randomly generated problem instances, as real-world scenar-

ios are not available in sufficient numbers. Algorithms are

evaluated with a simulator that generates random embedding

scenarios and computes metrics to judge the performance

of the algorithm. The random generation process is hard

to control, however, and it is difficult to generate problem

instances which are hard and which serve to exhibit particular

properties of VNE algorithms. To improve this situation, in this

paper three main contributions are presented by the authors:

• An architectural pattern which allows more flexible

generation of evaluation scenarios;

• The concept of perfectly solvable scenarios—scenarios

that have a known optimal solution;
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• Two novel scenario generation approaches that enable

generation of scenarios with an optimal solution that is

known a priori to the experimenter.

The contributions focus on VNE problems for which

it is assumed that no co-hosting of nodes from the

same VN is allowed, virtual links are unsplittable, and

node and link resources are integral. The new scenario

generation approach is implemented in a publicly available

VNE simulator, providing the opportunity for researchers to

generate problem instances that allow to compare the solution

quality of any VNE algorithm to a known optimum.

The rest of the paper is structured as follows: Section II

discusses background and related work. Section III introduces

the problem of solvable scenario generation. Section IV

discusses the generation process and proposes a more flexible

architectural pattern. In Section V the concept of perfectly

solvable scenarios is defined, and two elements for generating

such scenarios are presented and analyzed. Section VI con-

cludes the paper and gives directions for future research.

II. BACKGROUND AND RELATED WORK

Work related to this paper can be roughly categorized in

three areas: Experimental evaluation of algorithms, VNE in

general, and simulation of VNE algorithms in particular.

A. Experimental evaluation of algorithms

Experimental evaluation of algorithms is not a new field.

There has been a lot of work on experimental algorithmics

(cf. [3], [4], [5], [6], [7]). Rardin and Uzsoy focus particularly

on evaluation of heuristic algorithms [8]. Berberich et al. [9]

discuss in particular the design of experiments for algorithmic

evaluation. McGeoch [10] provides a good introduction on the

subject. Most of the work, however, focuses on classical NP

problems—the application to VNE algorithms has not been

investigated, so far.

As for generation of problem instances, again various

approaches exist for classical NP problems such as bin

packing [11], the travelling salesman problem [12], graph

partitioning [13], and other NP-hard graph problems [14].

These are not easily adaptable to the VNE problem,

which, in the variant considered here, is actually the

combination of two NP problems—node embedding and

link embedding. Current approaches for generation of VNE

problem instances up to now rely on only loosely controlled

random processes, without much discussion on the effects and

properties of the generated problem instances.
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Fig. 1. Embedding two virtual network requests into one substrate network
(Example adapted from [2])

B. Virtual Network Embedding

Virtual Network Embedding is a resource assignment prob-

lem at its core: Virtual nodes have to be assigned to nodes

from an SN and the interconnecting virtual links have to

be assigned to appropriate paths in the SN. Both substrate

nodes and links have limited resources, whereas their virtual

counterparts impose respective demands on those resources.

Here, it is assumed that resources and demands are

represented by integers. It is also assumed that nodes of a

single VN may not be assigned to the same substrate node.

Moreover, virtual links are assumed to be unsplittable.

These assumptions reflect settings found in a significant

part of the literature (cf. [2]).

Fig. 1 shows a problem instance with two Virtual Network

Requests (VNRs) to be embedded in a SN, with a possible

embedding depicted, already. While the given example is

simple, the generic problem of trying to embed as many

VNRs as possible into a given SN with limited resources is

NP-hard [15]. Algorithms attempting to solve this problem,

therefore, mostly use heuristic or meta-heuristic approaches.

This raises an interesting question: Which algorithm can

provide better solutions in a given situation?

The first approaches of resource assignment for virtual

networks have come up around 2006 (cf. [16], [17], [18]).

Since then, a very large number of VNE algorithms has been

proposed in the literature. Surveys on the topic are provided

by Belbekkouche et al. [19] and Fischer et al. [2].

Comparative analysis of VNE algorithms is a building block

of VNE evaluation (cf. [20]). Most authors reuse the same set

of parameters for problem generation—often slightly modified.

To increase comparability of different experiments, Zhu and

Wolf [21] propose a common set of parameters to serve as a

benchmark for VNE algorithms. However, the issue of random

generation of VNE problems has not been discussed in detail

in the literature, so far.

C. Simulation of VNE algorithms

Simulation of VNE algorithms can be performed in two

different ways, depending on whether the algorithm is eval-
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Fig. 2. The three steps of offline VNE simulation

uated in an online or an offline environment. In an offline

environment, the algorithm has full knowledge, and temporal

aspects (apart from algorithm runtime) are not in the focus

of evaluation. In online evaluation, the problem changes over

time, as VNRs enter and leave the system (cf. Fischer et

al. [2]). The focus here is on offline evaluation. This does not

impede applicability of the discussed concepts, as every online

algorithm can easily be evaluated in an offline environment.

The extension to online evaluation is left as future work.

Offline simulation of VNE algorithms consists of three

distinct stages: Problem generation, algorithm execution, and

evaluation of results (cf. Fig. 2).

First, problem instances have to be generated. In the context

of VNE this means that substrate and virtual topologies have

to be created and resources and demands have to be assigned

to create the respective SNs and VNRs. Typically, the problem

instances are randomly generated (e. g., by creating random

Waxman topologies and assigning random resources and

demands). In that case, a number of parameters drives the

generation of substrate and virtual networks (e. g., number of

nodes in a network). The result of this step is a generated

scenario for further evaluation. Such a scenario is defined as

follows:

Definition 1: A scenario is represented by a tuple

(SN, (V N Ri )i=1, ...,n ), consisting of a substrate network SN

and a sequence of virtual network requests (V N Ri ).

Once the scenario has been generated, it is fed to the VNE

algorithm for experimentation. The algorithm tries to embed

as many of the given VNRs as possible into the SN. Once the

algorithm is done, results are evaluated and interpreted with

the help of various metrics.

A number of simulation frameworks specializing on VNE

simulation has been used in the VNE literature. Four of these

have been made publicly available:

Yu et al. [22] presented the VNE Simulator1. It is written

in ANSI C, uses the GT-ITM topology generator [23] and has

been used in multiple further publications (cf. [24], [25], [26]).

Chowdhury et al. [27], [28] introduced the Vineyard simula-

tor2. Similar to the VNE Simulator it uses GT-ITM to generate

topologies. It is written in C++ and has also been used for

multiple publications, already (cf. [29], [30], [31]).

1https://github.com/USC-NSL/embed
2http://www.mosharaf.com/ViNE-Yard.tar.gz

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TNSM.2016.2596802

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/USC-NSL/embed
http://www.mosharaf.com/ViNE-Yard.tar.gz


IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

Another simulator—the CVI-Sim3—has been proposed by

Papagianni et al. [32]. It is written in Java and can generate

Erdös-Rényi topologies. The SN can also be generated from

a PlanetLab topology, instead. It has also been used multiple

times in the literature, already (cf. [33], [34], [35]).

The authors have contributed to the ALEVIN4 simula-

tor [36], [37]. It is written in Java and has been developed to

support comparative algorithm analysis [20]. It can generate

multiple types of topologies (e. g., Waxman or Erdös-Rényi) or

import pre-generated topologies from multiple formats (e. g.,

SNDLib [38]). Like the other simulators, it has been used

multiple times in the literature (cf. [39], [40], [41], [42]).

The extensibility and the focus on comparative algorithm

analysis of the ALEVIN simulator provide a solid foun-

dation for integrating the scenario generation approaches

presented in this paper. Therefore, the concepts proposed

in this paper have been implemented in the ALEVIN

simulator. They are available online as open source.

III. PROBLEM STATEMENT

When generating embedding scenarios for algorithm evalu-

ation, one should strive to generate scenarios that are “good”.

The obvious question is: What constitutes a “good” scenario?

Embedding scenarios are supposed to highlight particular qual-

ities or properties of the VNE algorithm under investigation.

Some types of scenarios are clearly not a good fit. E. g., a

scenario that is trivial to solve by any algorithm will hardly

help to shed insight onto the behavior of said algorithm.

This poses a challenge in particular to random generation

processes. Generation parameters have to be chosen such that

the solution to a given scenario is non-trivial for the algorithm.

A straightforward approach is to set generation parameters

such that the generated resources are sparse in comparison to

the generated demands.

Considering that substrate resources are limited, any VNE

algorithm will then have to deal at some point with a VNR

that can not be embedded in the given SN. In this case, the

VNR is typically rejected and embedding continues with the

next VNR. There is, of course, still the option of deleting

an already embedded virtual network instead, but in practice

this will often be undesirable and, consequently, algorithms

discussed in the literature rarely deal with that possibility.

There is a significant difference between a genuinely im-

possible scenario and a theoretically possible scenario that just

could not be solved by a given VNE algorithm. Due to the

NP-hardness of the VNE problem, most VNE algorithms are

heuristic and are therefore bound to make mistakes and reject

a VNR although further search might have provided a solution.

There are three separate cases to consider:

1) An algorithm fails to embed a VNR that is genuinely

impossible to embed because the absolute number of

substrate resources is too small.

2) An algorithm fails to embed a VNR that is genuinely

impossible to embed because substrate resources are too

fragmented.

3https://github.com/chrisap/CVI-SIM
4http://alevin.sf.net/
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Fig. 3. Different types of impossible embedding scenarios and why they fail

3) An algorithm fails to embed a VNR although a solution

would actually exist.

It is important to appreciate the difference between the three

cases. The first case is easy to detect a priori. Even before

starting the embedding process, one can sum up the virtual

demands and compare them with the sum of all substrate

resources. If the first number is higher than the second, the

respective VNR should be rejected outright.

The second case is somewhat more subtle. Fig. 3 shows

some examples. Here, three different configurations of a VNR

and an SN are presented, where in all configurations it is

impossible to embed the VNR, although the overall number

of substrate resources appears to be sufficient. The first config-

uration depicts a scenario in which the VNR is impossible to

embed because no substrate node can host the middle virtual

node. Of course, a similar example could be set up with

link resources, instead. In the second configuration it is the

combination of node and link resources that causes a problem.

The distribution of available node resources forces the virtual

nodes to be embedded on the outer nodes of the substrate

network. However, it is then impossible to realize the virtual

link, as the right substrate link would be overloaded. The third

configuration is specific to scenarios with directed graphs. In

this case, the direction of the virtual links clashes with the

direction of the substrate links. The available node resources

dictate that each substrate node hosts at most one virtual node.

However, the second virtual link then cannot match the

direction of the substrate link. It is worthwhile to note that

in all three configurations the sum of all virtual resources is

less than the sum of all substrate resources, so it is not the
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absolute lack of substrate resources that causes these problems.

Instead, the fragmentation (i. e., the unfortunate distribution)

of the substrate resources causes the VNR to be rejected. In

general it is difficult to detect such problems a priori—for the

simulation environment as well as for the VNE algorithm. The

algorithm will likely have to try to perform the (necessarily

unsuccessful) embedding.

Finally, the third case is the most difficult one. Situations

will occur where a solution is possible, but the algorithm fails

to find it and rejects the VNR. This brings up an interesting

observation: In the first two cases it was the specific config-

uration of SN and VNR that made embedding impossible. In

contrast, in the third case it is a property of the algorithm

whether embedding succeeds or not. Indeed, some algorithms

may find a solution where others fail. This is highly relevant

for evaluation, as the quality of VNE algorithms will be judged

by their ability to find possible embeddings.

A major challenge, therefore, is to generate scenarios that

fall into this third category: The scenarios should be possible

to solve, but at the same time finding the solution should be

non-trivial for any given VNE algorithm. In order to discuss

how to generate such scenarios, first a more detailed look at

the random scenario generation process is necessary.

IV. CONSTRUCTION OF RANDOM EMBEDDING SCENARIOS

Flexible scenario generation is a key requirement for a

VNE simulator. Several different parameters such as network

size, number of VNRs, or resource and demand ranges have

to be supported. Moreover, various experiments will focus

on different aspects of the VNE problem. For example, one

experiment may investigate the effects of increasing the SN

size, whereas another experiment may vary the distribution

of resources and demands. This has to be reflected in the

scenarios that have to be generated. In order to cover a

sufficient range of possible configurations and to gain trust

in evaluation results, scenarios are typically generated in

large numbers with a random generation process. While it is

certainly possible to implement individual scenario generators

for each experiment, this leads to significant duplication of

code and likely to additional bugs in software and, therefore,

less trust in the simulation itself.

A better approach is to identify components that can be

reused by different experiments. For example, generators for

Waxman [43] and Erdös-Rényi [44], [45] topologies are likely

to be used in many different experiments. Likewise, a random

distribution of node and link resources and demands will have

to be implemented in many experiments, as well. Identifying

those components and exporting a common interface allows

the experimenter to set up VNE experiments with minimal

change to the code base. Ideally, the experimenter should be

able to provide code that influences only a small, specific

aspect of scenario generation without changing the rest of the

generation process at all.

A. Conventional scenario generation

The main challenge for a scenario generation approach

is to allow decomposition of functionality into individual

Topo.

Params

Res.Gen.

Params

Substrate

Topo.

Params

Dem.Gen.

Params

Virtual

combine
Final

scenario
RNG

Seed

Fig. 4. Conventional random scenario generation process

items, while still supporting complex generation requirements.

Conventionally, scenarios are generated by first using topology

generators to create a set of topologies, one of which becomes

the SN, and then randomly assigning weights (i. e., resources

and demands) to the generated nodes and links.

Fig. 4 shows such a conventional scenario generation ap-

proach. Substrate and virtual networks are generated sepa-

rately, each controlled by their own parameters. The substrate

topology is handed to a resource generator, which assigns

resources to nodes and links. Likewise, each virtual topology

is handed on to a demand generator, assigning node and link

demands. Typically, several VNR are generated by repeating

the virtual network generation process multiple times. Also,

resource and demand generators may actually be split into

multiple generators, e. g., to have different random value

ranges for node and link weights. At the end, SN and VNRs

are combined to form the final evaluation scenario.

This approach is followed by all four VNE simulators

presented before, although in some cases topology generation

may be performed by an external tool like the BRITE or GT-

ITM topology generators [46], [23]. While such an approach

serves well for a number applications, there are still some

shortcomings that call for a different approach:

• Avoiding the generation of scenarios that are impossible

to solve completely is very hard (i. e., it is hard to avoid

“unfortunate resource fragmentation”; cf. Section III).

• Correlating the generation of virtual and substrate net-

works is not supported by this approach (e. g., to stop

generating demands when the sum of demands al-

ready exceeds the sum of resources).

• Changing the generation process itself is difficult and still

requires changes to the simulation code base.

An approach that can overcome these shortcomings has to

support in particular a more flexible combination of functional

generation elements. An architectural pattern to support

this is proposed next.

B. A chain of generation elements for scenario generation

In order to overcome the shortcomings of a conventional

scenario generation process, this paper presents a more flex-

ible approach. The pipe-and-filter pattern (cf. Hohpe and

Woolf [47]) is adapted to the generation of embedding sce-

narios. Specifically, a number of scenario generation elements
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Fig. 5. A chain of scenario generation elements

(or “filters”) are combined to form a chain of elements which

generates a full scenario each time it is invoked.

In this scenario generation approach, a chain element is

defined as follows:

Definition 2: Let Sin be a scenario, R be a Random

Number Generator (RNG), and P be a sequence of parameters

represented as key-value pairs. A chain element is then a

function CE : (Sin ,R,P) 7→ Sout that modifies a scenario

according to the specified parameters with the help of the

RNG, and returns the modified scenario.

Each individual element is responsible for a part of the

scenario. The experimenter is responsible for specifying pa-

rameters that generate different scenarios for each parameter

combination. A RNG is used as a source of randomness for

the individual chain elements such that each invocation creates

a different scenario. Assuming that the RNG is an implicit

parameter to each chain element, a given element CE with

parameters (p1,p2, . . . ) can be denoted as [CE(p1,p2, . . . )]

or simply [CE], if parameters are clear from the context.

Chain elements can be simple or complex. The only re-

quirement for them is to take a scenario and, based on their

parameters, produce a scenario. This allows to concatenate an

arbitrary number of these elements, not unlike the concept used

in UNIX shell programming where individual console utilities

are concatenated to form complex commands. Here, the con-

catenation of such elements produces a scenario generation

chain:

Definition 3: Given a sequence of chain elements

(CEi )i=1, ...,n , a corresponding sequence of parameters

(Pi )i=1, ...,n and a RNG R. Let S0 be the empty scenario.

A scenario generation chain is then the functional compo-

sition of the individual chain elements, generating interme-

diate results (Si )i=1, ...,n such that ∀i ∈ {1, . . . ,n} : Si =

CEi (Si−1,R,Pi ).

Each element takes the scenario that is generated by the

preceding element, modifies it, and hands it on to the next

element in the chain. The last result, Sn , is the final generated

scenario. Using the notation above, a given scenario generation

chain with elements (CEi )i=1, ...,n can be written as:

[CE1]—[CE2]—. . . —[CEn]

Figure 5 depicts this concept. Scenarios are generated

by having the user specify a chain of scenario generation

elements, a set of parameters to configure the elements, and a

seed for the internal RNG. The chain is started with an initially

empty scenario and produces the final scenario which is then

handed on to the VNE algorithm by the simulator.

C. Replicating the functionality of a conventional scenario

generation process

The conventional scenario generation process, as shown in

Fig. 4, can be fully replicated by the concept of a scenario gen-

eration chain. By defining appropriate topology and constraint

generation elements and chaining them in the right order, the

same type of scenarios can be generated. The widely used

approach of using Waxman topologies along with randomly

assigned CPU and bandwidth resources and demands can be

realized with the following elements:

Waxman (SN) This element generates a Waxman topology

for the SN. It takes the number of nodes n to be generated,

and the two Waxman parameters α and β as input. As a

chain element, it is denoted as: [WS (n,α, β)]

Waxman (VNR) This element generates a number of Wax-

man topologies for the VNRs. Like its substrate counter-

part, it takes the number of nodes n to be generated,

and the two Waxman parameters α and β as input.

Additionally, the number m of topologies to generate is

taken as a parameter. As a chain element, it is denoted

as: [WV (n,α, β,m)]

CPU and bandwidth resources These elements assign CPU

resources to each substrate node and bandwidth re-

sources to each substrate link. The respective values are

taken from a random interval [rlow ,rhigh]. The inter-

val may differ for CPU and bandwidth—therefore, two

elements are actually defined: [CPUS (rc
low
,rc

high
)] and

[BWS (rb
low
,rb

high
)]

CPU and bandwidth demand Like the resource elements,

these elements assign CPU demands to each virtual node

and bandwidth demands to each virtual link. Virtual nodes

and links are considered from all previously generated

VNRs topologies. Again, the respective value is taken

from a random interval [rlow ,rhigh], which may differ

for CPU and bandwidth. The chain element denotations

are: [CPUV (rc
low
,rc

high
)] and [BWV (rb

low
,rb

high
)]

In (shortened) chain notation a conventional scenario gen-

eration process that generates random Waxman topologies for

substrate and virtual networks and assigns CPU and bandwidth

resources and demands can then be denoted as:

[WS]—[CPUS]—[BWS]—[WV ]—[CPUV ]—[BWV ]

Thus, with these elements in place, no functionality is lost

compared to the conventional approach and the same type of

scenarios can be generated.

D. Discussion

There are several advantages of the proposed new approach

to scenario generation. Additional generation aspects are now

easy to introduce via the concept of chain elements. For

example, it is trivial to create and integrate generators for

new types of resources and demands or additional topology

generators. The chain structure for a particular experiment

can be specified by the experimenter as needed, providing

increased flexibility for experiment design. Moreover, a gen-

eration chain implementing specific functionality can be

defined at runtime by the experimenter without having to

change the simulation code base.
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An additional advantage of this approach is repeatability

of experiments. An experiment is fully specified by the or-

der of chain elements and their respective input parameters.

The RNG remains the only source of non-determinism. If a

pseudo-random number generator based on an initialization

seed is used, experiments become fully deterministic and the

generated scenarios can be perfectly recreated on demand. This

can be used not only to confirm previous results, but also to

verify whether any change to a VNE algorithm has had effects

on the results or not.

The scenarion generation chain concept, along with all of

the chain elements defined above, has been implemented in the

ALEVIN simulator. The results are publicly available online.

Going beyond a conventional scenario generation approach,

the scenario generation chain concept now also enables def-

inition of more complex chain elements, taking previously

generated parts of the scenario into account. This leads to the

concept of a perfectly solvable scenario and the generation of

such scenarios.

V. PERFECTLY SOLVABLE SCENARIOS

An interesting question comes up when looking for scenar-

ios that are neither trivial to solve, nor obviously impossible:

Where is the exact turning point where solvable scenarios

change to impossible scenarios? It seems that in this vicinity

of the parameter space, the hardest scenarios are to be found.

The exact turning point is then represented by a scenario

that is just barely solvable—i. e., one where only optimal

assignment of resources will lead to a successful embedding

of all VNRs. For VNE evaluation it is very helpful to construct

scenarios that fall close to this turning point. They allow to put

VNE algorithms under stress, giving them the most difficult

problems to solve.

A. Definition

There are various optimization criteria for VNE. Here

it is assumed that optimization focuses on resource usage.

An optimal solution is then defined as:

Definition 4: A solution for a scenario is called optimal if

every other solution occupies at least as many resources.

An optimal solution is not necessarily unique: Two or more

solutions can exist with the same resource consumption. It

should also be noted that whereas node demands are

always satisfied by a single resource, regardless of the

embedding, link demands may consume multiple resources

if the respective virtual nodes are not assigned to adjacent

substrate nodes. Thus, given two solutions for a problem,

differences in resource consumption are always due to

differences in path length of the virtual links.

Bearing this in mind, a perfectly solvable scenario can be

defined as follows:

Definition 5: A perfectly solvable scenario is one for which:

1) at least one solution exists.

2) every solution is also optimal.

I. e., every sub-optimal solution must necessarily lead to

VNR rejection. An example of such a scenario is given in

Fig. 6. Although maybe not immediately obvious at first, it is
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Fig. 6. Example of a perfectly solvable scenario with two VNRs
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Fig. 7. A possible embedding solution. Resource occupation for nodes and

links is denoted as:
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possible to embed both VNRs (a possible solution is shown

below in Fig. 7). After embedding, all resources of the SN

will be consumed.

While such scenarios can of course be constructed by hand,

it is more relevant for experimentation to be able to construct

them algorithmically with random variations, to be able to

rapidly generate a large number of such scenarios such that

a large part of the parameter space can be explored. The

major advantage of such a scenario lies in the fact that if

the optimal solution is known in advance, it can be compared

to the solution produced by a VNE algorithm. The algorithm

can then be judged in terms of how far its solution deviates

from the known optimum.

Sanchis [48] shows that most NP problem generators that

generate problem instances with known solutions are limited

in that they cannot efficiently generate the full spectrum

of possible problems. This means that any efficient problem

generator is necessarily limited to generating only a particular

type of problems. Properties of the instances generated by
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Fig. 8. Replication of the substrate network with scaled demands

such a generator thus have to be analyzed. Two examples

of such scenario generators are discussed and analyzed here:

A very simple generator that just duplicates the substrate

topology, and a more complex generator that generates random

subnetworks out of a given SN.

B. Substrate network replication

The first scenario generator presented here represents a very

straightforward idea: Take any given SN, duplicate the topol-

ogy, and replace all resources with demands. Use the resulting

network as a VNR. Effectively, this creates a scenario, where

the VNE algorithm tries to “embed an SN into itself”. The

solution to this VNE problem is, of course, trivial. Surpris-

ingly, although the approach seems very obvious, no similar

experiments have been mentioned in the VNE literature, so

far. Still, it is worthwhile to check whether VNE algorithms

are actually able to find the trivial solution. And, with a few

small extensions, this scenario generator can already provide

interesting insights into algorithm behavior.

1) Description of the scenario generator: The scenario

generator presented here generates a given number of VNRs

from any previously generated SN. Each generated VNR is

topologically an exact copy of the SN. Demands in each VNR

are scaled proportionally to the corresponding SN resources

such that the total demand meets a predefined fraction of the

available substrate resources. E.g., with ten VNRs, and each

demand consuming 5% of its respective resource, exactly 50%

of all substrate resources will be occupied in the optimal case.

An example is shown in Fig. 8. The SN is replicated

twice, yielding two identical VNRs. Demands are scaled to

50% of their respective substrate resource for each VNR,

such that the sum of all demands of both VNRs matches

the sum of all resources in the SN. It is, of course, trivial

to see that an embedding exists for this scenario, and that any

successful embedding of both VNRs consumes all available

SN resources. While the solution is not necessarily unique

(in this case due to symmetry—the VNRs could be mirrored

horizontally and/or vertically), it is clear that no better solution

can exist.

Data: A pre-generated SN

Data: Number m of VNRs to generate

Data: Fraction f of SN resources to be demanded

Result: A set of m VNRs matching the SN in topology,

such that at least a fraction f of each SN resource

will be required for a successful embedding

while Not enough VNRs generated do

Copy topology of SN into new VNR;

for Each resource r in the SN do
Generate a respective demand d in the VNR such

that d = (r · f )/m
end

end
Algorithm 1: A scenario generator for SN replication

Pseudocode for this scenario generator is shown as Al-

gorithm 1. Based on the generated SN, a number m of

VNRs is created by copying the topology from the SN and

assigning node and link demands in direct proportion to their

respective substrate resources. Demands are scaled by a factor

f . In the simplest case, a single VNR can be created as a

perfect replication of the substrate network (with all resources

converted to demands). As part of a scenario generation chain,

this element will be denoted as: [SN Repl (m, f )]

This approach allows for precise control in two different

dimensions: First, how many resources of the SN should

be spent in the ideal case? This is easy to realize by just

scaling virtual demands, respectively. For example, in order

to generate a “load” of 20% for the SN, f is set to 0.2, and

thus each demand in each VNR computes as the value of the

respective substrate resource times 0.2, divided by the total

number of VNRs. This allows to tune the resource scarcity

of a particular scenario very precisely, making it possible to

study the behavior of VNE algorithms in the face of varying

resource scarcity levels.

Second, over how many VNRs should these resources be

distributed in the optimal case? This can be controlled easily

by the factor m. For example, to subdivide resources into ten

different demands, m is set to 10, and thus each resource hosts

ten demands in the optimal case. Thus, it becomes possible to

study the behavior of algorithms when the granularity of the

virtual demands increases.

Regarding VNRs that are topologically identical to the SN,

there may be the problem that the internal data structures

inadvertently give away the perfect solution to the problem.

Indeed, a very naïve VNE algorithm that simply assigns virtual

node i to substrate node i and performs shortest path mapping

for the virtual links, would achieve a perfect score in these

scenarios unless further measures are taken. For evaluation it

is therefore advisable to randomize the order of virtual nodes

in each VNR before embedding takes place.
2) Evaluation: To demonstrate the application of the new

scenario generation element, it was implemented in the
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ALEVIN simulator and experiments were performed with

three different VNE algorithms:

• The vnmFlib algorithm (cf. Lischka and Karl [49]);

• The D-ViNE algorithm (cf. Chowdhury et al. [27]);

• The RW-MM-SP algorithm (cf. Cheng et al. [24]).

The experimentation machine was a AMD Opteron 4180

with 12 cores (only one core was used, however) and 8GB

of RAM. The scenario generation chain was set up such that

the SN was generated like in a conventional case, whereas the

VNRs were generated with the new element:

[WS]—[CPUS]—[BWS]—[SN Repl]

Two experiments were run: first, the number of VNRs m

was varied and the influence on the algorithm runtime was

measured. Second, the load parameter f was varied and the

effect on algorithm runtime and the acceptance ratio (i. e., the

number of embedded VNRs divided by the total number of

VNRs) was measured. For each individual parameter setting,

30 runs were performed with different random seeds. Results

are shown as notched box plots, using the standard interpre-

tation of a box plot indicating the median, 95% confidence

interval, upper and lower quartiles and outliers.

The results of the first experiment are shown in Fig. 9. Here,

the load scaling factor f was set to 1, such that all generated

scenarios were perfectly solvable scenarios. The number m of

VNRs was varied from 5 to 25 in increments of 5, adding

the special case of a single VNR. It can be seen that all

three algorithms appear to have a linear runtime dependency

on the fragmentation of resources. The more virtual networks

there are, the longer the algorithms take. Acceptance ratio is

not depicted for this experiment—however, it should be noted

that with only a single VNR all algorithms found the correct

embedding. For 25 VNRs, results are shown below.

Fig. 10 and Fig. 11 show the behavior of the algorithms

when the load parameter f is varied. Here, the number m of

VNRs was set to 25 and the load parameter f was varied

between 0.1 and 1.1 in increments of 0.1. The last case of

1.1 was included to see the effect of scenarios which by

definition cannot be solved completely. In this experiment,

the three algorithms show distinct behavior. For vnmFlib, the

runtime increases up to a load of about 0.8. This is correlated

with its acceptance ratio, which decreases proportionally,

indicating that this algorithm takes significantly longer when

it is unsuccessful in embedding a VNR. While D-ViNE shows

a similar decreasing acceptance ratio, there is no significant

effect on algorithm runtime (though it should be noted that

runtime for this algorithm was very high overall, compared

to the other two algorithms). The RW-MM-SP algorithm is

interesting here, as it manages to almost perfectly identify

the artificial scenario as easy, and finds solutions very fast

in almost all cases. This algorithm is also significant in that it

quickly identifies the last VNR as impossible to embed when

f is set to 1.1, therefore finishing slightly faster in that case.

3) Properties of the scenario generator: The scenario

generator is straightforward to implement in any simulation

environment. It has two control parameters: the number m of

VNRs, and the fraction f of desired load on the SN. These

two factors can be influenced independently from one another.

Thus, unlike in conventional scenario generators, it is

now possible to investigate the influence of resource scarcity

without changing the demand granularity, and vice versa,

thereby highlighting particular aspects of VNE algorithms.

One obvious drawback of this scenario generator is that the

topology of the generated VNRs is always identical to the

given SN. Although it enables a new type of evaluation, the

investigated scenarios remain artificial and will be deemed un-

realistic in most contexts. As a remedy, a means for generating

scenarios with random VNR topologies is discussed next.

C. Iterative VNR subtraction

While the previously discussed scenario generator provides

an easy way to generate random scenarios with perfect solu-

tions, it is obviously limited with regard to the topology of

the VNRs. One can argue that scenarios where all VNRs will

always have the same topology as the SN are hardly repre-

sentative. But do alternatives exist? Indeed, there are more

elaborate possibilities for scenario generators that produce

perfectly solvable scenarios, one of which is presented in this

section. The discussed scenario generator produces perfectly

solvable scenarios with VNRs of variable size. Here, the

algorithm concept is described first, followed by an evaluation

with common VNE algorithms. Finally, the properties of the

generated VNRs are analyzed.

1) Description of the scenario generator: The generation of

scenarios with random VNR topologies is somewhat more in-

volved than simply replicating the SN topology. It is necessary

to understand how the combination of node and link demands

makes a seemingly straightforward problem more intricate.

Therefore, after giving a short overview of the concept for

the scenario generator, the problem of orphaned links is

discussed, before details of the scenario generator along with

a pseudocode implementation are presented.

a) Overall concept: The scenario generator tries to gen-

erate a set of VNRs from a given SN by repeatedly extracting

a random subgraph from the SN. All extracted subgraphs are

converted to VNRs. This is repeated until the SN is “empty”.

Care is taken, that the generated VNRs are actually connected

networks. An example is shown in step 1 of Fig. 12: A VNR

is extracted randomly from the SN. The resulting remainder

becomes the SN of step 2.

Regarding nodes, random problem generation can be

performed similar to bin packing problems, setting virtual

node demands to a random fraction of the respective

substrate node (cf. [50] for a bin packing example).

However, the inclusion of links complicates the generation

somewhat. In particular, a scenario generator has to take care

to exhaust link resources in line with node resources.

b) Problem of orphaned links and its solution: In terms

of nodes, the scenario generation process appears simple, at

first: For each new VNR one can select a random subset of

connected, non-empty nodes and subtract a random fraction of

the remaining node resources on each of them. If demands and

resources are integral, this process is guaranteed to terminate

at some point, occupying all node resources of the SN.

Links, however, pose a problem for this approach. If all

resources of a node are consumed, but one of its adjacent
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(a) vnmFlib (b) D-ViNE (c) RW-MM-SP

Fig. 9. Runtime dependency on number of VNRs m (f = 1.0)

(a) vnmFlib (b) D-ViNE (c) RW-MM-SP

Fig. 10. Runtime dependency on load parameter f (m = 25)

(a) vnmFlib (b) D-ViNE (c) RW-MM-SP

Fig. 11. Acceptance ratio dependency on load parameter f (m = 25)

links has resources left, these resources cannot be consumed

without creating a multi-hop link. In general, this can lead to

scenarios, where the a priori solution is not optimal, anymore.

Such a situation occurs when the example in Fig. 12

is continued. Three VNRs are generated iteratively for this

scenario, until the SN has no more resources left. In the

first step, one of the substrate nodes is already completely

occupied. However, some incident links still have resources

left. These links cause in the second and third step one hidden

hop per generated VNR (depicted with a dot in the figure).

While the scenario is valid and the VNRs can be embedded

in the SN, there is actually a more optimal solution that leaves

some of the SN resources unused. This is shown in Fig. 13.

A tighter packing of the VNRs during embedding causes

underutilization of the two links at the left side of the SN.

In order to solve this problem, the scenario generator has

to make sure that, if a node becomes completely saturated,

all its incident links will be saturated, as well. One strategy

to achieve this goal is to set the demand for a virtual link

in dependency of the demand of its incident virtual nodes.

First, all nodes adjacent to a saturated node have to become

part of the current VNR if they have resources left. For all

substrate links which are incident to nodes that host virtual

nodes in the VNR, a virtual link is created. Then, for every

virtual link the percentage by which the two incident virtual

nodes saturate their respective substrate node is computed.

This gives two values: rsource and rdest, for source node and

destination node, respectively. The remaining resources on the

substrate link are then saturated by the higher one of those

two values max(rsource,rdest). This ensures that no orphaned
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Fig. 13. An optimal solution for the previous example. Resource occupation

for nodes and links is represented as:
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links remain, as any substrate link incident to a completely

saturated substrate node will in turn be saturated, as well.

c) Scenario generation details: The scenario generator

discussed here applies this concept to avoid orphaned links.

It maintains three main data structures during the creation

of each VNR. First, a candidate list, C, that contains all

substrate nodes that are adjacent to the currently created partial

VNR. Second, an urgent list, U , that contains substrate nodes

that are adjacent to a substrate node that has already been

saturated by the currently created partial VNR. Finally, the

scenario generator keeps track of previously assigned nodes

by maintaining a mapping list, M, which contains tuples of

already assigned substrate nodes and virtual nodes.

Data: A pre-generated SN

Result: A set of n VNRs of varying size, such that the

resulting scenario will be perfectly solvable

while SN , ∅ do

Initialize new (empty) VNR;

M = ∅,U = ∅;

Initialize C with random node from SN;

while U , ∅ or C , ∅ do

if U , ∅ then

Pick SNode from U with resource res;

else
Pick random SNode from C with resource

res;

end

Create new VNode with random demand

dem ≤ res;

Calculate SNode ratio rSNode =
dem
res

;

M ←M ∪ {(SNode,V Node)};

Occupy dem on SNode;

Add VNode to VNR;

Initialize N : Set of all nodes adjacent to SNode;

while N , ∅ do

Pick neighbor SNeigh from N ;

if SNeigh ∈ M then

Set rmax = max(rSNode ,rSNeigh );

Create new VLink with bandwidth

bwdem = bwres · rmax ;

Add VLink to VNR;

Occupy bwdem on respective SLink;

else

if rSNode = 1 then

U ← U ∪ {SNeigh};

else

C ← C ∪ {SNeigh};

end

end

end

end

end

Reset SN;
Algorithm 2: A scenario generator producing random VNRs

The scenario generator is sketched out as Algorithm 2. It

starts by creating a new VNR. This VNR is initialized by
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(a) Runtime (b) Acceptance ratio (c) Revenue / Cost ratio

Fig. 14. Evaluation results for vnmFlib and RW-MM-SP

randomly selecting any non-empty node in the SN, creating a

corresponding virtual node that consumes a random fraction

of the remaining resources of the substrate node, and adding

that node to the VNR. The demand of the generated virtual

node is marked as occupied on the substrate node.

The scenario generator then adds nodes that are adjacent to

the selected substrate node to a node candidate list. In general,

the candidate list consists of all nodes that can still be added

as virtual nodes to the VNR—i. e., all non-empty nodes that

have not yet been used for the current VNR but are directly

connected to nodes that have already been used.

Now, assuming the urgent list is empty and the candidate list

is not, the scenario generator will randomly select a node from

the candidate list and generate a corresponding virtual node in

the same way as discussed above. For all substrate links that

connect the current substrate node to previously used substrate

nodes, a corresponding virtual link is generated. The demand

for the link is set to the maximum of the demand ratio of the

source node and the demand ratio of the destination node.This

ensures that if a substrate node is occupied by 100%, adjacent

substrate links will also be fully occupied.

If the substrate node is fully occupied after the virtual node

was generated, all adjacent nodes that have no corresponding

virtual nodes in the VNR, yet, are added to the urgent list,

instead of the candidate list. These nodes are processed with

higher priority, as they now have to be part of the currently

generated VNR. Otherwise, those nodes are added to the

candidate list (provided they are not already part of it).

The scenario generator continues with the next node. If the

urgent list is empty, the next node is taken at random from

the candidate list, and the same procedure ensues. Once the

candidate list is empty, the VNR is added to the scenario, and

generation continues with the next VNR.

This process is repeated until all nodes and links in the

SN are fully occupied. At this point, the generated VNRs

are guaranteed to saturate the SN completely, and a solution

is guaranteed to exist, just by reversing the steps taken. To

complete the scenario, the marked occupations are removed

from the SN, and SN and the generated VNRs are combined

to form the new scenario. As a chain element, this generator

will be denoted as: [ItSN Sub]

The VNRs generated by this approach are random sub-

graphs of the provided SN. With each iteration, the generated

VNRs becomes smaller—while the first generated VNR covers

the whole SN topology (provided the SN is fully connected),

the last generated VNR only covers the remainder of the

previous operations, likely only containing a single node.

In other words: contrary to both the conventional approach

and the previous approach, this scenario generator generates

random networks of highly varying size. It is interesting to

see, on the one hand, how well VNE algorithms cope with

this kind of scenario and, on the other hand, to investigate and

characterize the types of networks generated by this random

process. These issues are discussed next.

2) Evaluation: Again, for demonstration of the new sce-

nario generation element, it was implemented in ALEVIN and

used for a series of experiments. The same environment as in

section V-B2 was used. The scenario generation chain was

set up again such that a conventional Waxman network was

generated as SN. From this network, the VNRs were then

formed with the new element:

[WS]—[CPUS]—[BWS]—[ItSN Sub]

For this series of experiments, the D-ViNE algorithm was

excluded, as it suffered from excessive runtime (runs were

stopped after taking more than 30 minutes per scenario).

Fig. 14 shows the results of these experiments. It can be

seen that, while vnmFlib and RW-MM-SP achieve comparable

values for the acceptance ratio, vnmFlib is significantly faster

in this case. It should be noted that the generation element

produces perfectly solvable scenarios—therefore, unlike with

scenarios generated by a conventional scenario generator, it is

known that an acceptance ratio of 100% is achievable.

As an additional metric, the commonly used “Revenue /

Cost” ratio (i. e., the ratio between the sum of all realized

demands and the sum of all consumed resources) was used

to provide further insight. Again, both algorithms performed

similar, achieving results in the vicinity of 0.5. This indicates

that, on average, twice as many resources were consumed

than demands realized. This hints at significant optimization

potential, since similar to the acceptance ratio the optimal

value for this metric is known to be 1.0 due to the scenario

being perfectly solvable.
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Fig. 15. Virtual nodes per VNR as generated by iterative VNR subtraction

3) Algorithm properties: Obviously, the scenario generator

described here produces scenarios that are very different to

scenarios described in VNE literature. In particular, the gen-

erated VNRs now depend on the SN, whereas in conventional

approaches the VNRs were generated independently of the SN.

To show the differences, here two scenario generation chains

will be compared side by side. The scenario generation chains

used here are on the one hand one that generates scenarios

similar to those found in current VNE literature:

[WS]—[CPUS]—[BWS]—[WV ]—[CPUV ]—[BWV ]

This chain is compared with the same chain used in the

evaluation above:

[WS]—[CPUS]—[BWS]—[ItSN Sub]

With each chain, 1000 scenarios were generated. For each

scenario an SN with 100 nodes was generated with a Waxman

topology generator. For the VNRs, the conventional scenario

generator used Waxman topologies, generating 20 VNRs

with 10 nodes each. These values are similar or equal to

those found in common VNE literature. For the iterative VNR

subtraction approach, no further parameters are needed.

A first, obvious difference lies in the generated number

of virtual nodes per VNR. In the conventional approach,

the number is a parameter to be set by the user. Here, this

number can vary wildly. In particular, due to the problem of

orphaned links, it is not easily possible to have the scenario

generator generate VNRs with a fixed number of virtual nodes.

Fig. 15 shows the distribution of nodes per VNR5. What is

striking is the large number of small to very small networks—

i.e., networks with only one or two nodes. Almost 40% of

all networks consist of isolated nodes that form a network

of their own. This is an effect that is caused at the end of

the generation process, when there are only few resources left

in the SN and the scenario generator fails to find potential

neighbors for newly generated virtual nodes.

One can argue that the large number of trivial networks

is a drawback for the scenario generator. However, it is

informative to have a look at the distribution of node degrees

and to compare them to the results of a conventional scenario

generator and to the initial distribution of node degrees in the

SN. This comparison is depicted in Fig. 16. One can identify

the inclination of the iterative VNR subtraction process to

5The distribution of links per VNR, though not shown here, has a similar
characteristic

Fig. 16. Comparison of node degrees in the generated VNRs for iterative
VNR subtraction and a conventional scenario generator

Fig. 17. Comparison of demanded CPU cycles (node demands) for iterative
VNR subtraction and a conventional scenario generator

generate small networks by the higher probability to generate

nodes of degree zero. What is surprising, though, is the fact

that the Waxman-based approach produces more nodes that

are also unconnected. Almost 15% of all nodes (n.b. “nodes”,

not “networks” as before) have degree zero. In other words:

A significant number of VNRs generated by a conventional

scenario generator will be unconnected, unless the topology

is fixed explicitly. In contrast, the novel scenario generator

proposed here produces scenarios that are guaranteed

to be connected6. Comparing to the SN, it is clear that

the node degree distribution of the iterative VNR subtraction

process matches the original SN characteristics better than the

conventional approach.

Fig. 17 shows another interesting difference between a con-

ventional scenario generator and the iterative VNR subtraction

process presented here. Whereas in the conventional approach

node demands are distributed equally between a specified

minimum and maximum, the scenario generator discussed here

shows the characteristics of an exponential falloff with a large

number of very small demands (almost one quarter of all

demands have a value of 1) and a long tail of large demands7.

Finally, an interesting aspect is the number of VNRs that is

generated by the scenario generator. Like with the number of

virtual nodes per VNR, the total number of VNRs generated

will vary for different scenarios. In contrast, the conventional

6It should be noted that the scenario generation chain approach makes

it easy to define chain elements that solve either of the two problems by

eliminating unconnected networks or removing isolated nodes.
7Again, link resources, though not shown here, have similar characteristics
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Fig. 18. Number of VNRs generated

approach lets the user decide how many VNRs to generate. For

the investigated parameter set, the distribution of the number

of VNRs is shown in Fig. 18. The distribution approximately

reflects a normal distribution with an arithmetic mean of about

16.5 VNRs per scenario. This is in comparison to 20 VNRs set

for the conventional approach. The iterative VNR subtraction

process generates networks with a significantly higher number

of nodes, and therefore will generate less networks overall,

even though isolated nodes are considered to be a VNR of

their own for this scenario generator.

Overall, one can conclude that, while the scenario generator

discussed here certainly produces scenarios that are quite

different to those generated by a conventional approach, they

provide quite interesting additional insights and may be used

to exhibit particular properties of VNE algorithms. This can be

used either to perform more detailed evaluations or to fine-tune

the behavior of a particular VNE algorithm. The generation of

perfectly solvable scenarios thus does not negate the need for

conventional scenarios, but rather complements the evaluation

with more focused experiments.

VI. CONCLUSION AND FUTURE WORK

Virtual Network Embedding is an important problem for

network virtualization. The evaluation of algorithms at-

tempting to provide optimized resource allocations for virtual

networks is, therefore, of high interest. This paper introduced

concepts to better control randomness in evaluation scenarios,

producing scenarios with a solution that is known a priori to

the experimenter. This enables experimenters for the first time

to precisely measure the quality of an embedding produced

by a VNE algorithm. To facilitate this, a new architectural

pattern for scenario generation was presented and imple-

mented as open source in the publicly available ALEVIN

VNE simulation environment. Moreover, two generation ele-

ments producing perfectly solvable scenarios were discussed,

implemented, and analyzed. The type of generated scenarios

can complement a more conventional generation approach,

allowing for more diverse evaluation of VNE algorithms.

The proposed scenario generation approach focuses on

a conceptually simple VNE model. Extending this model

and the generators such that a more varied set of VNE

problems can be generated represents important future

work. Also, the extension to online evaluation should

provide interesting additional insight.
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