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SUMMARY

This research studies higher harmonics of Rayleigh surface waves propagating

in nickel base superalloys. Rayleigh waves are used because they carry most of the

energy and travel along the surface of a specimen where fatigue damage is typically

initiated. The energy concentration near the free surface leads to stronger nonlinear

effects compared to bulk waves. An ultrasonic piezoelectric transducer together with

a plastic wedge is used for the experimental generation of the Rayleigh wave. The

detection system consists of a laser heterodyne interferometer. Measurements are

performed to detect the fundamental wave as well as the second harmonic. The

amplitude ratio is related to the nonlinearity parameter β which is typically used to

describe changes in microstructure and investigate fatigue damage.

xiii



CHAPTER I

INTRODUCTION

Nonlinear ultrasonics, including the investigation of higher harmonics caused by non-

linear material behavior, has proven to be a useful technique to investigate the con-

dition of structural materials. Monitoring damage accumulation with nonlinear ul-

trasonics is a new approach in nondestructive evaluation (NDE) which has several

advantages when compared to conventional NDE techniques — instead of investigat-

ing the existence of individual macro-cracks using the scattered wavefield, nonlinear

ultrasonics has the potential to quantify distributed damage on the micro-scale, before

the formation of macro-cracks. Rather than waiting for a visible crack, assessment of

the early fatigue state is possible. There is enormous potential for the characterization

of mechanical and thermal damage such as fatigue, creep, corrosion and over-stress

conditions. In addition, nonlinear ultrasonics can help in developing a more funda-

mental understanding of the contribution of specific changes in microstructure to the

accumulation of material damage.

The generation of higher harmonic components in a stress wave propagating through a

structural material is a direct result of material nonlinearity (a nonlinear stress-strain

relationship) which can be caused by changes in material microstructure. In ultrason-

ics, these higher harmonics manifest themselves as as a distortion in the transmitted

waveform. To quantify the material nonlinearity, harmonic generation measurements

have been used to calculate the so-called nonlinearity parameter, β. Previous re-

searchers have shown that changes in β are much more sensitive to material changes

than linear ultrasonic properties such as group (or phase) velocity and attenuation.
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The reason for the low sensitivity of linear techniques is that the fracture process

is initiated at the micro-scale (typically at microscopic imperfections), and this mi-

croscopic length scale is much smaller than the typical wavelength of ultrasonic waves.

Several researchers have recently reported dramatic changes in the nonlinearity pa-

rameter β in damaged structural materials like high-temperature steel [12], alu-

minum [8, 18] and titanium [16]. These researchers have tried to associate these

changes in β with the formation of dislocations and persistent slip bands, precipi-

tates, vacancies and micro-cracks; theoretical derivations of this association are avail-

able in [8] and [7].

So far, most of the research in the area of nonlinear ultrasonics has been concerned

with one-dimensional, bulk longitudinal waves. Exceptions are the work of Deng et

al. [10], who observe cumulative second harmonic generation of Lamb-wave propaga-

tion and the research of Barnard et al. [3] and Blackshire et al. [5] who are considering

Rayleigh surface waves. There are three major advantages with using Rayleigh-type

surface waves: (i) There is no need for access to both sides of a component for the

transmission and detection of Rayleigh waves (one sided access is particularly useful

in field applications where two parallel surfaces and two sided access are limited); (ii)

Rayleigh waves energy is concentrated near the free surface of a component, which

can lead to stronger nonlinear effects compared to bulk waves (this second advantage

is additionally critical when considering that fatigue damage is typically initiated

on the free surface of a material); and (iii) Rayleigh waves propagate long distances

without significant loss of acoustic energy, thus making them ideal candidates for the

interrogation of large, complex components.

The primary objective of the current research is to demonstrate the effectiveness
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of combining contact wedge generation and non-contact interferometric detection to

quantitatively measure the higher harmonics of Rayleigh waves. Once this objec-

tive is achieved, a second objective is to investigate the dependence of these higher

harmonics on propagation distance (there is a well established analytical relationship

between amount of nonlinearity and propagation distance) and then to use the higher

harmonics of Rayleigh waves to quantitatively track accumulated micro-damage in a

structural material.

Since the second harmonic is directly related to the nonlinearity parameter β, it

provides a direct measure of the state of a material’s microstructure. This research

considers a nickel base superalloy, and tracks these higher harmonics as a function

of propagation distance and damage. In addition, this research quantifies the nonlin-

earity due to the experimental instrumentation, and develops a procedure to reduce

this spurious effect.

An outline of the thesis follows. Chapter 2 gives an overview of the fundamentals of

wave propagation and wave phenomena. In particular Rayleigh waves and their basic

features are described. In chapter 3, an introduction to nonlinear wave propagation

is presented. The derivation of the nonlinearity parameter β for longitudinal waves is

provided and a link to two-dimensional Rayleigh waves is shown. Chapter 4 presents

detailed information about the experimental setup and the associated instrumenta-

tion. The wedge method for Rayleigh wave generation is described and the working

principle of the laser heterodyne interferometer as a detection system is provided. The

experimental results are shown in Chapters 5 and 6 — Chapter 5 investigates the sys-

tem performance, especially its associated nonlinearities, while Chapter 6 determines

material nonlinearity in damaged and undamaged specimens.
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CHAPTER II

FUNDAMENTALS OF WAVE PROPAGATION

2.1 Cauchy’s Equations of Motion

Consider a collection of material particles occupying a volume V at time t bounded

by the surface S (see Figure 2.1). The momentum principle states that the time rate

of change of the total momentum of a given set of particles equals the vector sum of

all the external forces.

The rate of change of the total momentum of the given mass is (d/dt)
∫

ρvidV , where

d/dt is the material derivative of the integral. Then the momentum balance expressed

by the postulate is

∫

S

tidS +

∫

V

ρbidV =
d

dt

∫

V

ρvidV, (2.1)

where b are body forces and v denotes the velocity. Now one can substitute the

dV

S
V

ρbdV

tdS
dS

Figure 2.1: Momentum balance

Cauchy formula

ti = σijnj (2.2)
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in the equation above and transform the surface integral by using the divergence

theorem to obtain

∫

V

[σij,j + ρbi − ρv̇i]dV = 0. (2.3)

The Reynolds formula was used to transfer the material time derivative inside the

integral. Because this equation is valid for an arbitrary volume, one can write

σij,j + ρbi = ρv̇i (2.4)

which are Cauchy’s equations of motion. Moreover the moment of momentum prin-

ciple results in the symmetry of the stress tensor.

Sometimes it is more convenient to write the equations of motion only in terms of

the displacements ui. Applying Hooke’s law for a homogeneous, isotropic and linear

elastic medium

σij = λεkkδij + 2µεij , (2.5)

where εij is the strain tensor related to the displacements ui by

εij =
1

2
(ui,j + uj,i), (2.6)

one obtains Navier’s equation of motion

µui,jj + (λ+ µ)uj,ji = ρüi (2.7)

µ∇2u + (λ+ µ)∇∇ · u = ρü (2.8)

where µ and λ are the Lamé constants. Body forces are neglected in this derivation.

(2.8) is a coupled partial differential equation but it can be uncoupled using the

Helmholtz decomposition

u = ∇ϕ+ ∇×ψ. (2.9)
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(2.9) represents the three components of displacement u with the four functions

ϕ, ψ1, ψ2 and ψ3. To guarantee the uniqueness of the solution, an additional con-

straint

∇ ·ψ = 0 (2.10)

is needed. Substitution of (2.9) into the displacement equations of motion (2.8) leads

to two uncoupled wave equations expressed in terms of the displacement potentials

ϕ and ψ

∇2ϕ =
1

c2L
ϕ̈, ∇2ψ =

1

c2T
ψ̈, (2.11)

whereas cL represents the wave speed of the longitudinal wave (also called dilatational,

irrotational, pressure wave or P-wave) and cT the wave speed of the vertically and

horizontally polarized shear waves (also called transverse, rotational, distortional wave

or S-wave):

c2L =
λ+ 2µ

ρ
, c2T =

µ

ρ
. (2.12)

(2.11) is the general form of the wave equation, the potentials could also be replaced

by the displacements or the strains and the wave equation would still hold.

It is always the case that cL > cT. Both wave speed equations are expressed in terms

of material properties density ρ and the Lamé constants µ and λ. A relationship to

material properties Young’s modulus E and Poisson’s ratio ν is given by

λ =
Eν

(1 + ν)(1 − 2ν)
, (2.13)

µ =
E

2(1 + ν)
. (2.14)

2.2 Wave Phenomena

Wave phenomena discussed in this section are based on the plane wave assumption,

i. e., assuming a wave with constant properties (ε, σ, u) on a plane perpendicular to

6



its direction of propagation p (propagating vector). The mathematical representation

of a plane wave is

u = df(x · p − ct) , (2.15)

where d is the unit vector defining the direction of particle motion (displacement

vector), and c is either the longitudinal wave speed cL or the transverse wave speed

cT. By substituting (2.15) into (2.8), one obtains

(µ− ρc2)d + (λ+ µ)(p · d)p = 0 . (2.16)

Since p and d are two different unit vectors, it can be seen that the two possible

solutions that form the basis of wave propagation are either d = ±p or p · d = 0:

1) d = ±p leads to p · d = ±1. Inspection of (2.16) yields c = cL as defined

in (2.12). Since d and p are linearly dependent, this represents a particle

movement in the direction of propagation – a longitudinal or P-wave.

2) p ·d = 0 leads with (2.12) and (2.16) to c = cT. Hence, the direction of motion

is normal to the direction of propagation, and the wave is called a transverse

wave. If a two-dimensional plane of propagation is considered (for example, the

(x1, x2)-plane), a wave with an in-plane displacement (in the (x1, x2)-plane) is

called an SV-wave (vertically polarized), while a wave with out-of-plane dis-

placement (in the x3-direction) is called an SH-wave (horizontally polarized).

In a homogeneous, isotropic material, transverse and longitudinal wave speeds are

independent of frequency, therefore they are nondispersive.

2.2.1 Reflections of P and SV-Waves

The wave types derived so far propagate independently in an infinite media. As soon

as a finite media in the direction of propagation is considered, reflections and cou-

pling will occur. An incident P-wave, which is reflected at a stress free boundary
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(σ22 = 0 and σ21 = 0) normally causes both a reflected P- and SV-wave. Similarly, an

incident SV-wave generally causes both reflected SV- and P-waves. Figure 2.2 shows

the reflections of an incident P- and SV-wave.

PP

SV

x1

x2

θ0
θ1

θ2

(a)

P

SV SV

x1

x2

θ0

θ1

θ2

(b)

Figure 2.2: Wave reflections. (a) Reflection of a P-wave. (b) Reflection of a SV-wave.

The effect of a single incident wave-type producing two different waves (after reflection

from a boundary) is called mode conversion. The displacement field of a harmonic

wave in the x1, x2 plane (propagating in infinite media, plane-strain case) can be

expressed as

u(n) = And
(n) exp

[

ıkn(x1p
(n)
1 + x2p

(n)
2 − cnt)

]

, (2.17)

whereas n denotes the wave (longitudinal or transverse), kn = ω
cn

is called the

wavenumber of the wave n and the respective wave speeds are cn. Using these defini-

tions, and noting that the angular frequency ω is equal for the incident and reflected

waves, it is possible to determine the relationship between the angle of the incident

and the angles of the reflected waves (see Table 2.1). To obtain non-trivial amplitudes

An, the angles of incident and reflected waves, θ0, θ1 and θ2 as defined in Figure 2.2,

must satisfy Snell’s law:

k0 sin θ0 = k1 sin θ1 = k2 sin θ2 . (2.18)
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Table 2.1: Angle relations for reflection on a stress-free surface

incident θ0 reflected P θ1 reflected SV θ2
P θ1 = θ0 sin θ2 = (cT/cL) sin θ0
SV sin θ1 = (cL/cT) sin θ0 θ2 = θ0

Exceptions of mode conversion are the normal incidence with θ0 = 0 — in this case,

the waves are reflected as themselves, and if the angle θ0 is greater than a critical

angle

θcritical = arcsin
cT
cL
, (2.19)

then only a SV-wave is reflected. The P-wave portion of the reflected signal de-

generates into a Rayleigh surface wave, details about this specific two-dimensional

harmonic wave can be found in Section 2.3.

2.3 Rayleigh Waves

Rayleigh waves travel along the free surface of an elastic half space and decay ex-

ponentially with depth. On the free boundary these waves cancel the stresses which

they produce. Viktorov [27] and Achenbach [1] provide details about the derivations

and properties of Rayleigh waves. Moreover Viktorov [27] and Rose [22] describe ap-

plications of Rayleigh wave propagation in ultrasonic nondestructive evaluation. In

addition excitation methods are explained and compared.

The well-known equation for the phase velocity of Rayleigh waves can be derived

starting with the potentials

ϕ = Ae−kqzeik(x−ct) (2.20)

φ = Be−kszeik(x−ct), (2.21)

where q =
√

1 − ( c
cL

)2, s =
√

1 − ( c
cT

)2, c = ω
k

and A, B are arbitrary constants.

Using the wave equations (2.11) and applying stress-free boundary conditions lead to
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the following characteristic equation

(

2 − C2
R

C2
S

)2

− 4

√

(

1 − C2
R

C2
L

)(

1 − C2
R

C2
S

)

= 0, (2.22)

which is the Rayleigh equation showing that the phase velocity of Rayleigh waves

does not depend on the wave number, therefore Rayleigh waves are nondispersive.

An approximate solution can be obtained as

CR≈CS
0.87 + 1.12ν

1 + ν
(2.23)

where ν is the Poisson’s ratio.

In general the Rayleigh wave speed is less than the phase velocity of the longitudinal

or the shear wave. Essentially the Rayleigh wave is a combination of body waves.

The particle motion of a propagating Rayleigh wave is elliptical in nature because the

displacements along the x and z axis are phase-shifted by π/2 (see Figure 2.3). The

vertical displacement is typically 1.5 times greater than the horizontal component at

the surface and the elliptical motion is counter clockwise for a wave traveling along

the positive x-direction (a water wave would rotate clockwise). At a depth of around

0.2 times the wavelength, the direction of particle rotation changes.

x

z

Particle Motion

Direction of wave propagation

Wavelength λ

Figure 2.3: Particle motion during propagation of a Rayleigh surface wave

Achenbach [1] also provides numerical details about variations of the displacements

with depth. He plots the relative displacement over the ratio of the distance from

the free surface and the wavelength and he concludes that the relative displacements

10



almost vanishes for a distance of more than 1.5 times the wavelength. These results

are important for the sample thickness used in the present research.

Another feature of Rayleigh waves is the energy concentration near the free surface.

Therefore surface cracks and damage disturbing the traveling wave can be detected.

Especially ultrasonic techniques are able to use Rayleigh wave propagation as a means

of nondestructive evaluation. Another field of application is seismology where the

Rayleigh wave is used to explain high damage of a wave which propagates far distances

and still carries most of the energy.

Because the Rayleigh wave follows the surface around, curves can also be used to

inspect areas that other waves might have difficulty reaching.

If one considers an interface between two materials instead of an elastic half space,

similar derivations lead to the so-called Stonely wave propagating along interfaces.

A thin layer on top of a half space with different elastic properties leads to Love

waves. Considering a half-space made of ideal fluid, a Rayleigh-type surface wave

propagation is not possible.
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CHAPTER III

NONLINEAR WAVE PROPAGATION

Higher harmonics are related to the so called nonlinearity parameter, β. This chapter

gives a theoretical background in one dimensional nonlinear wave propagation and

the derivation of this nonlinearity parameter. Contribution from lattice elasticity and

dislocation dipoles are considered. Moreover the relation to the experimental deter-

mination of the second harmonic is shown. A difference between wave propagation

in linear and nonlinear medium can be found in Figure 3.1.

Section 3.2 provides a link to nonlinear wave propagation in two-dimensional Rayleigh

waves.

tωsin tA ωsin1 tωsin
tA ωsin1

tA ω2sin2

tnAn ωsin

linear medium nonlinear medium

Figure 3.1: Linear and nonlinear wave propagation in solids

3.1 Nonlinearity Parameter β

According to [2], the fundamental wave will distort as it propagates, therefore the

second and higher harmonics will be generated. Particularly the lattice anharmonic-

ity and dislocation structures contribute to the nonlinearity parameter. A detailed

derivation of β can be found in [7], this section summarizes the main steps and gives

an introduction in nonlinear wave propagation.
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A longitudinal stress perturbation σ associated with a propagating ultrasonic wave

produces a longitudinal strain

ε = εe + εpl (3.1)

in the material where εpl is the plastic strain component associated with the motion

of dislocation in the dipole configuration.

The relation between the stress perturbation and elastic strain can be written in the

nonlinear form of Hooke’s law (quadratic nonlinear approach)

σ = Ae
2εe +

1

2
Ae

3ε
2
e + ... (3.2)

or

εe =
1

Ae
2

σ − 1

2

Ae
3

(Ae
2)

3
σ2 + ... (3.3)

where Ae
2 and Ae

3 are the Huang coefficients.

According to [7], the relation between the stress perturbation and the plastic strain

εpl can be obtained from a consideration of dipolar forces. For edge dislocation pairs

with opposite polarity, one can write

Fx = − Gb2

2π(1 − ν)

x(x2 − y2)

(x2 + y2)2
(3.4)

where b is the Burgers vector, ν is Poisson’s ratio, G is the shear modulus and x,

y are the Cartesian coordinates of one dislocation in the pair relative to the other.

At equilibrium, y=h, where h is the dipole height and the total shear force per unit

length on the dipole is

Fx + bRσ = 0 (3.5)

where R is the Schmid factor along slip planes.

Also the relation between εpl and the relative dislocation displacement ξ = x − h is

13



given by

εpl = ΩΛdpbξ (3.6)

where Ω is a conversion factor and Λdp is the dipole density.

Using these relationships among Fx, σ, εpl, ξ and an expansion of (3.4) in a power

series in x with respect to h leads to the following equation

σ = Adp
2 εpl +

1

2
Adp

3 ε
2
pl + ... (3.7)

where Adp
2 = − G

4πΩRΛdph2(1−ν)
and Adp

3 = G
4πΩ2RΛ2

dp
h3(1−ν)b

. The inverse relation is

εpl =
1

Adp
2

σ − 1

2

Adp
3

(Adp
2 )3

σ2 + ... (3.8)

(3.2) and (3.8) in (3.1) results in

ε =

(

1

Ae
2

+
1

Adp
2

)

σ − 1

2

(

Ae
3

(Ae
2)

3
+

Adp
3

(Adp
2 )3

)

σ2 + ... (3.9)

or the inverse relation

σ = Ae
2

[

ε− 1

2

(

Ae
3

Ae
2

+
Adp

3 (Ae
2)

2

(Adp
2 )3

)

ε2 + ...

]

. (3.10)

The wave equation with respect to the Lagrangian coordinate X is given as

ρ
∂2ε

∂t2
=

∂2σ

∂X2
. (3.11)

(3.10) in (3.11) gives

∂2ε

∂t2
− c2

∂2ε

∂X2
= −c2β

[

ε
∂2ε

∂X2
+

(

∂ε

∂X

)2
]

(3.12)

where c = (Ae
2/ρ)

1/2 and β = βe +βdp with βe = −Ae
3

Ae
2

and βdp =
16πΩR2Λdph3(1−ν)2(Ae

2
)2

G2b
.

In the literature, the Huang coefficients are often written in terms of higher elastic

constants, that is Ae
1 = C1 where C1 is equal to the initial stress. Moreover, Ae

2 =

C1 + C11 and Ae
3 = 3C11 + C111. Assuming zero initial stress, the portion of β
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describing the nonlinearity contribution from lattice elasticity can be expressed as

βe = −
(

3 + C111

C11

)

.

Assuming a purely sinusoidal input wave of the form ε0sin(ωt − kX), a solution to

(3.12) is

ε = ε0sin(ωt− kX) − 1

4
βkε20Xsin[2(ωt− kX)]. (3.13)

Therefore β can be described by the amplitudes A1 and A2 of the fundamental fre-

quency and the second harmonic respectively as

β =
4k

X

A2

A2
1

(3.14)

which permits the experimental determination of the nonlinearity parameter.

Similar expressions can be obtained for displacements instead of strains.

Starting with Newton’s law, one can write

ρ
∂2u

∂t2
=

∂2σ

∂X2
. (3.15)

(3.10) in (3.15) results in the displacement based nonlinear wave equation

∂2u

∂t2
= c2

[

1 − β
∂u

∂X

]

∂2u

∂X2
. (3.16)

Assuming an input wave of the form u0cos(kX −ωt), a solution to equation (3.16) is

u =
1

8
βk2u2

0X + u0cos(kX − ωt) − 1

8
βk2u2

0Xcos[2(kX − ωt] + ... (3.17)

Again, β can be expressed by the amplitudes A1 and A2 of the fundamental frequency

and the second harmonic respectively which leads to the following expression for β:

β = 8
A2

A2
1

c2

ω2X
(3.18)

or

β =

(

A2

A2
1

)

2c2

Xf 2π2
. (3.19)

15



The nonlinearity parameter β depends on the amplitudes of the fundamental wave as

well as the second harmonic, the wave speed, the propagation distance and frequency.

If the amplitude of the second harmonic is determined experimentally using a certain

frequency and propagation distance, β can be determined.

3.2 Nonlinear Wave Propagation in Rayleigh Waves

The derivation of β mentioned above is only valid for longitudinal waves. This re-

search deals with two-dimensional Rayleigh waves which makes the derivation of the

nonlinearity parameter considerably more difficult, although it is obvious that the

nonlinearity should depend on the amplitude ratio A2

A2

1

. A modeling approach for non-

linear Rayleigh wave propagation can be found in [26], [21] or [14].

Generally speaking, Rayleigh waves are a superposition of bulk waves. Especially

longitudinal waves are sensitive with respect to the generation of higher harmonics

whereas shear waves are seen as a wave-type without significant potential for higher

harmonic generation in ultrasonic waves. Following this idea, Rayleigh waves should

have a similar behavior than longitudinal waves with respect to nonlinear wave prop-

agation.

Measurements of higher harmonics in propagating Rayleigh waves are therefore the

critical step in determining nonlinearity in a certain material. The harmonic ratio A2

A2

1

is used to quantify nonlinear material behavior and is therefore needed to compare

specimens with different damage and fatigue states. In the following, the harmonic

ratio A2/A
2
1 is called β ′. Because material damage is particularly initiated at the sur-

face, a Rayleigh wave propagating along a damaged specimen is expected to exhibit

more nonlinearity compared to the undamaged sample.
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Whereas the dimensionless nonlinearity parameter β stays constant for different prop-

agation distances, the amplitude of the second harmonic changes linearly with the

propagation distance as required for a quadratic nonlinearity. Because of this infor-

mation, two different sets of measurements can be conducted:

1.) An increase in propagation distance should result in higher amplitudes of the sec-

ond harmonic (and note that the dimensionless nonlinearity parameter should stay

constant using the same specimen).

2.) The harmonic ratio or β ′ should increase when the material is more and more

damaged or fatigued.

Because the amplitude of higher harmonics are considerably smaller than the one

of the fundamental frequency, the major task is to come up with an experimental

setup which is sensitive enough to detect higher harmonics. A high signal-to-noise-

ratio (SNR) is needed, moreover the experimental setup (e.g. instrumentation) has

to be as linear as possible because only the material nonlinearities are of interest and

not the contribution of the instrumentation which can create spurious nonlinearities.

With a knowledge of the physics of nonlinear wave propagation, and being aware

of the fact that instrumentation has a high influence on nonlinear ultrasonic mea-

surements, one can start creating a reliable and convenient experimental setup.
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CHAPTER IV

EXPERIMENTAL PROCEDURE

The experimental procedure is described in the following sections. Two different

experimental setups are shown and explained in Section 4.1 and 4.2. Section 4.3

illustrates the different steps required to generate a Rayleigh wave. The detection

system is explained in Section 4.4. Finally, details about the specimens and the

material are provided.

4.1 Experimental Setup #1

The general experimental setup is illustrated in Figure 4.1. A Wavetek function

generator is used to generate a toneburst signal which is amplified with a 50 dB high

voltage amplifier (ENI Model 240L RF). The input voltage for the amplifier is limited

to 1 V, that’s the reason why the experiments with setup #1 are performed with an

input voltage of not more than 900 mV. An ultrasonic transducer with a center

frequency close to 5 MHz together with a plastic wedge excites the Rayleigh wave

propagating along the surface of the specimen. A laser heterodyne interferometer is

used as a point-like detection system. Details about the experimental systems are

given in the following sections.

Figure 4.2 shows the incident wave excited with the piezoelectric transducer as well

as the fundamental wave with the amplitude A1 and the second harmonic with the

amplitude A2 detected with the laser interferometer system. The frequency of the

second harmonic is two times higher than the one of the fundamental.
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Ch1 Ch2 Ch3 Ch4
Ch1 Ch2 Ch3 Ch4

Transducer on wedge

Specimen

PC

Oscilloscope

Toneburst

High voltage output

Triggering

Low voltage

High voltage

GPIB

40dB

Sync out

Fluid coupling

Laser Interferometer

Oscilloscope

Attenuator

Function Generator

Amplifier (ENI)

50 dB

Rayleigh Surface Wave

System

Figure 4.1: Experimental setup #1

u(0, t) = A0sin(ωt)
u(x, t) = A1sin(ωt− kx)

+A2sin[2(ωt− kx)]

Figure 4.2: Fundamental wave and second harmonic

19



4.1.1 Transducer

The experiments are conducted with an Ultran KC50-5-X PZT (lead zirconate ti-

tanate) ultrasonic transducer with a nominal frequency of 5 MHz. According to the

data sheet provided by the Ultran Group, the bandwidth at -6 dB is 6.3 MHz and

the bandwidth center frequency is 3.7 MHz with a peak frequency of 4.225 MHz.

Because this transducer is broadband in nature, one can use this transducer for a

driving frequency of 5 MHz.

To check the data, a simple experiment is performed to see the efficiency of this

transducer. A second receiving transducer (Ultran KC50-5) is held firmly against the

transmitting transducer and a face-to-face measurement is conducted. The frequency

is changed and the change in amplitude is investigated, the amplitude is normalized

to get a dimensionless magnitude. Figure 4.3 shows the efficiency plot. One can

see that the magnitude decreases considerably after the maximum peak which is not

surprising because the receiving transducer has also a resonance frequency below 5

MHz. Nevertheless measurements at 5 MHz can still be performed because of the

broadband nature of the transmitting PZT-transducer. Although the efficiency plot

shows that the properties of the transducer at 5 MHz are not quite sufficient, one

can see at other experiments that this transducer has still a better performance and

reliability than other commercial transducers.

Section 5.5.5 deals with nonlinear behavior of transducers and provides a comparison

between two different PZT-transducers.

4.1.2 Function Generator

A Wavetek function generator provides toneburst signals at the desired frequency.

Moreover the number of cycles and the signal type can be adjusted. Only sinusoidal

signals are generated in this research. Moreover the input voltage for the amplifier

can be changed with this function generator. Most of the measurements using setup
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Figure 4.3: Efficiency plot of the transducer

#1 are conducted with 800 mV input.

4.1.3 Amplifier

The amplification factor of the high voltage amplifier (ENI) is 50 dB. Such a con-

ventional power amplifier introduces inherent nonlinearities to the electrical signal,

especially odd order harmonics are generated. This is a limiting factor, details about

the nonlinearity of the electrical equipment are described in chapter 5.5.4.

With the function generator described above, one can use up to 1 V as an input for

the amplifier, therefore up to 316 V can be generated which is the limit for the present

50 dB amplification.

4.2 Experimental Setup #2

This section describes an improved experimental setup. The 50 dB amplifier is re-

placed by a Ritec high power amplifier (RAM-10000, Ritec Advanced Measurement
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System) which was particularly designed for nonlinear acoustic measurements. Sev-

eral advantages can be pointed out using this gated high power amplifier: The voltage

and amplification factor is much higher in comparison to conventional commercial am-

plifiers (theoretically the output voltage can go up to 1000 V). High voltage is required

to detect higher harmonics with relatively small amplitudes which is the case for sur-

face wave propagation in combination with laser detection. The higher the input

signal, the easier higher harmonics can be detected. Moreover this amplifier gener-

ates a negligible second harmonic and the odd order harmonics are barely affected,

therefore it is an ideal means to create high voltage for nonlinear acoustic measure-

ments. Figure 4.4 provides a detailed plot of the experimental setup #2. The Ritec

Ch1 Ch2 Ch3 Ch4
Ch1 Ch2 Ch3 Ch4

Transducer on wedge

Specimen

PC

Oscilloscope

Toneburst

High voltage output

Triggering

Low voltage

High voltage

GPIB

40dB

Sync out

Fluid coupling

Laser Interferometer

Oscilloscope

Attenuator

Function Generator

High Power

Amplifier (RAM-10000)

Rayleigh Surface Wave

System
4dB Pad
50Ω Termination

Figure 4.4: Experimental setup #2

amplifier is used as triggering source (sync out), an 80 MHz Agilent 33250A func-

tion/arbitrary waveform generator generates the toneburst signal. The input voltage

for the Ritec high power amplifier is varied from 1 to 1.13 V, then the signal is am-

plified and the ultrasonic transducer is driven with 5 MHz. To match the impedance
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between the high voltage output of the amplifier and the transducer and to suppress

the excessive transient content in the generated toneburst, a 50Ω termination and a

4dB pad are used. The transducer and the detection system are the same as for the

conventional setup #1.

4.3 Generation of Rayleigh Surface Waves

The excitation of a Rayleigh surface wave is described in the following. Especially

the design and the efficiency of a surface wave generation is pointed out.

4.3.1 Wedge Method

There are several techniques available for the excitation of ultrasonic Rayleigh waves.

According to Rose [22], a normal beam transducer excitation can be used for gen-

erating surface waves. He also proposed a periodic array or comb transducer and a

mediator technique. The most common technique, the wedge method, will be pre-

sented in this chapter (see Figure 4.5).

Transducer

φR

CLW

Plastic Wedge

θ

Figure 4.5: Wedge technique

This method is based on a plastic wedge which is coupled to the surface of the solid

or specimen. For an appropriate acoustic coupling, oil or cement glues are available.

Details about couplants can be found in Section 5.3.2. A piezoelectric transducer is

bonded on the sloping surface of the wedge, so that a longitudinal wave can propagate
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through the wedge material. This longitudinal wave hits the boundary of the solid

and wedge under a certain angle. To generate a surface wave, this angle has to satisfy

the Rayleigh Wave excitation condition, which is based on Snell’s law (Figure 4.6)

sinφ2C1 = sinφ1C2 (4.1)

where C1 and C2 are wave velocities and φ1 and φ2 the incident and refraction angles.

1

2

φ1(φR)

φ2

C1(CLW )

C2(CR)

Figure 4.6: Snell’s law for angle beam analysis

For the present wedge method, C1 is the longitudinal wave velocity CLW of the wedge

material and C2 is the Rayleigh wave speed CR of the specimen. In the case of a

longitudinal incident wave, φ2 = 90◦, or sinφ2 = 1, so that the critical angle φR for a

Rayleigh wave excitation can be computed as

sinφR =
CLW

CR
. (4.2)

CLW must be smaller than CR, that’s the reason why the wedge material is made of

plastic like plexiglas where the wave speed is low.

Generally not only a Rayleigh wave will be generated because the transducer is not

able to excite a perfectly plane wave. The shape of the beam is rather a Gaussian

distribution, therefore the transducer beam does not remain in a cylinder. Instead

the beam spreads out as it propagates through the material so that not the whole

beam hits the surface at the critical angle. Because of this there will also be some

bulk waves generated in the specimen, although the Rayleigh surface wave carries
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most of the energy.

The effect described above is called beam divergence or ultrasonic diffraction. In

general, the maximum sound pressure is always found along the centerline of the

transducer, therefore it is usually called the acoustic axis. The beam strength dimin-

ishes as it spreads outwards.

To decrease these effects, it is useful to design the wedge in a way that the propa-

gation distance of the longitudinal wave through the wedge material is as short as

possible.

Moreover, the wedge design can be improved in increasing the angle θ in Figure 4.5

to slightly over 90◦, so that the reflected waves can propagate to the upper parts of

the wedge without interfering the incident longitudinal waves which are used for the

conversion into Rayleigh waves.

According to [27], the most efficient excitation can be realized when the leading edge

of the piezoelectric transducer coincides with the projection of the wedge to the slop-

ing surface (Figure 4.5), but this is only true if the transducer is able to generate

a plane wave. Because of the beam divergence mentioned above, it is more efficient

if not the leading edge of the transducer, but the acoustic axis coincides with the

projection of the wedge to the sloping surface. Then a clean Rayleigh wave can be

excited with the starting point at the leading edge of the wedge.

Ruiz et al. [23] found out that there is a dispersion effect in Rayleigh waves even in

nondispersive media on the order of 0.1 percent, particularly because of beam diffrac-

tion, but for higher frequencies and a high input voltage these effects are negligible

(no diffraction correction is needed) and the propagating Rayleigh wave approaches

a true plane wave.

The wedge method is suitable for an application where the Rayleigh wave propagates
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only in one direction (like in the present research), especially then it is a highly effi-

cient excitation method because the energy only goes in this particular direction of

wave propagation.

To calculate the Rayleigh wave speed of the specimen, one has to determine both the

longitudinal and shear wave velocity. According to Achenbach [1], CR can then be

computed numerically from (2.22).

An alternative way to excite the surface wave would be a laser source instead of

a plastic wedge - transducer combination. Of course, geometrical effects could be in-

vestigated readily, but a laser source is basically a broadband pulse and waves would

propagate in all directions. Only if the geometry of the specimen is very simple, a

laser source will give conclusive results about geometrical effects, otherwise it would

make the observation of wave propagation considerably more difficult. The other

disadvantage of the laser source is that the whole frequency bandwidth is involved in

the measurements. In this research a particular input frequency is needed to detect

higher harmonics, therefore a broadband source is not effective.

4.3.2 Wedge Material and Design

Before the longitudinal wave propagating through the wedge material converts into a

Rayleigh wave on the surface of the specimen, several energy losses and disturbances

must be considered. First of all the propagation distance through the wedge is a lim-

iting factor. As mentioned above, not the whole beam coming from the transducer

contributes to the Rayleigh wave. If the distance between the transducer surface and

the specimen is too long, more and more body waves will propagate in the specimen,

consequently the Rayleigh wave will carry less energy.

Moreover, the plastic material of the wedge has a relatively high attenuation. That
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is, next to the propagation distance, the wedge material itself is important for the ef-

ficiency of the Rayleigh wave generation. The less attenuation in the wedge material,

the more energy will go into the Rayleigh wave. According to Ginzel [11], polystyrene

has the lowest attenuation (attenuation coefficient of 0.2 dB/mm at 5 MHz), followed

by plexiglas (attenuation coefficient of 0.6 dB/mm at 5 MHz). Because of this dif-

ference in the attenuation properties and the importance of the wedge material for

the Rayleigh wave generation, both the attenuation coefficient of polystyrene and

plexiglas are determined. The experimental results are shown in this section.
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(b) Phase velocity in polystyrene

Figure 4.7: Phase velocities in polystyrene and plexiglas

To determine the attenuation coefficient, the longitudinal wave velocity of the wedge

material has to be known. Because the plastic material is dispersive, the longitudinal

wave speed is frequency dependent. According to Sachse and Pao [24], the phase

velocity of waves in dispersive media can be calculated based on the phase spectral

analysis of a broadband pulse. In this technique, the phase function of a Fourier-

analyzed pulse is evaluated. The advantage of this technique is that the phase velocity

is directly obtainable from the experimental data.

The results for polystyrene and plexiglas are shown in Figure 4.7. Now the attenuation

coefficient can be calculated easily. The results are shown in Figure 4.8.

The results for the plexiglas material are not surprising, the attenuation coefficient at
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(b) Attenuation coefficient in polystyrene

Figure 4.8: Attenuation coefficients in polystyrene and plexiglas

5 MHz is between 0.5 dB/mm and 0.6 dB/mm, but the results for the polystyrene are

completely different from the data mentioned in [11]. A reason for this discrepancy

could be differences in the available polystyrene materials.

From Figure 4.8 it is clear that the attenuation coefficient at 5 MHz for the plexiglas

is lower than the one for polystyrene. Therefore plexiglas is used as wedge material

for the experiments which are described in the next sections.

In addition to the wedge material, the wedge design can be improved to decrease

undesired reflections which could disturb the generation of the Rayleigh wave. As

mentioned above, the angle θ (see Figure 4.5) can be increased slightly over 90◦. Be-

sides another angle ϑ can be introduced to decrease the propagation distance through

the wedge material. Figure 4.9 shows the improved wedge design. Finally appropriate

acoustic coupling plays an important role, especially using the wedge method to ex-

cite Rayleigh waves. The interfaces between transducer, wedge and specimen can be

coupled using oil or glue. Usually oil is used in through-transmission measurements

where a simple fixture can be designed to hold both transducers and specimen. For

the wedge method both oil and glue are used and a comparison is provided in Section

5.3.2.
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Figure 4.9: Improved wedge design

4.3.3 Critical Angle for a Nickel Base Superalloy

In this section the surface wave generation in a nickel base specimen in combination

with a plexiglas wedge is presented. First of all, the longitudinal wave speed CLW in

the wedge material (see Figure 4.7 and 4.9) and both the longitudinal and shear wave

velocities CL and CS in the high temperature alloy are determined experimentally.

For the wedge material, CLW = 2789 m
sec

, and for the nickel base superalloy, CL =

6168 m
sec

andCS = 3307 m
sec

, so that the Rayleigh wave speed can be computed from (2.22),

hence CR = 3066.1 m
sec

.

From (4.2) follows φR = 64.5◦, therefore the critical angle for the metal-plexiglas

combination is determined. Now the wedge is machined carefully in order to obtain

the required critical angle. Of course not only the angle itself is important, but also

the quality and tolerance of the surface between the wedge and the nickel base spec-

imen and between the transducer and wedge. Therefore these surfaces are polished

carefully after machining.

Figure 4.10 shows typical incident angles (provided by the transducer company Pana-

metrics) for the mode conversion using angle beam transducers. The angle for a

Rayleigh wave excitation is approximately the same as the critical angle calculated

in this section.
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Figure 4.10: Relationship between incident angle and mode conversion using angle
beam transducers

4.4 Detection System

To detect the fundamental and the second harmonic of the Rayleigh surface wave, a

broadband and highly sensitive detection system is needed. In the present study, a

single probe heterodyne interferometer is used.

Laser detection has several advantages compared to a detection system using a wedge-

transducer combination like Barnard et al [3]. First of all, a laser detection provides

absolute measurements of out-of-plane surface velocities without any of the mechan-

ical resonance associated with piezoelectric transducers. Therefore no difficult cal-

ibration procedure is needed. Additionally, both the fundamental and the second

harmonic can be measured simultaneously because of the broadband nature of the

laser. With the wedge technique described in [3], one has actually two critical angles

because according to Snell’s law, the critical angle for measuring the second har-

monic differs from the one for the fundamental. A solution to this problem could be

an adjustable angle but consequently a calibration technique would be important to

obtain correct results. This calibration is missing in [3]. Other advantages and also

disadvantages of the laser detection system can be found in [6]. In this section the

working principle of a laser detection system is described.
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Figure 4.11: Laser Detection

4.4.1 Laser Interferometer System

The heterodyne interferometer uses the Doppler effect to determine the absolute par-

ticle velocity on the surface of the specimen. Figure 4.11 shows the experimental

setup, similar to Bruttomesso et al. [6] and Hurlebaus [13] (extended to a dual probe

interferometer).

The present laser interferometer works with a 2 Watt Argon Laser with a wavelength

of 514nm which creates a vertically polarized light. This beam passes through an

acousto-optic modulator (AOM) which splits the beam into the so called object and

reference beam. Generally speaking, an AOM consists of an activated piezocrystal

bonded on a quartz or Bragg cell and splits the incident beam into an infinite number

of separate beams, although only the zero- and first-order beams carry about 95 % of

the power from the original beam. Next to the beam splitting the AOM has another

function, it shifts the frequency of either the reference beam (zero-order) or the ob-

ject beam (first-order) due to the beat frequency of the piezocrystal. In the present
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experiment the frequency shift of the reference beam is 40 MHz.

Now the unshifted object beam passes through a polarizing beam splitter, vertically

polarized light is reflected while horizontally polarized light passes through. The re-

flected component travels towards the object, on the way it is circularly polarized by

a λ/4-plate, focused by a lens and is reflected off the specimen or object surface. At

this point the frequency of the object beam is also shifted because of the Doppler

effect caused by the surface velocity. On its way back towards the photodiode, this

beam is rotated from circular to horizontal polarization by the λ/4-plate, passes the

PBS and hits the nonpolarized beam splitter (NPBS).

Now the way of the reference beam is described. After reflecting at two mirrors, a

λ/2-plate rotates the reference beam into 45◦ polarized light, which is a superposition

of horizontally and vertically polarized light. Then the beam hits the NPBS where

it is recombined with the object beam. After leaving the beam splitter cube, finally

the intensity of the light can be converted into voltage signals by the photodiodes.

Instrumentation is used to analyze the modulation of the output signal. Using a FM

discriminator, it is possible to obtain the surface velocity of the specimen. Such a

FM discriminator compensates the shift due to the beat frequency mentioned above.

Therefore only the frequency shift due to the Doppler effect can be determined (see

Hurlebaus [13] for details). After the demodulation, the signal is low pass filtered with

10 MHz to reduce the noise level. Then the signal is discretized by an oscilloscope

with a sampling frequency of 100 MHz. Via GPIB the oscilloscope is connected to a

PC.

With the laser interferometer system and the equipment mentioned above, it is pos-

sible to average the signal to get a higher signal-to-noise ratio. The noise is random

and because of this it cancels out if the number of averaged signals is high enough.

According to [20], averaging of signals reduces the standard deviation by σ=1√
N

if un-

correlated noise is considered where N is the number of signals.
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Throughout this research, 1000 signals are averaged during the acquisition with the

oscilloscope, the signal-to-noise level is therefore sufficient. This is particularly im-

portant if nonlinear ultrasonic measurements are performed because the detection of

higher harmonics requires a clean signal. The amplitude of higher harmonics are very

low in comparison to the fundamental. If the noise level in the signal is too high, it

will be impossible to detect higher harmonics.

The amplitudes of the measured signals are given in Volts whereas the laser de-

tection is based on the surface velocity. The relationship between the voltage and the

velocity is given by

v =
λU

2k
= 1.00078U (4.3)

where k is a constant (k = 0.257V/MHz), λ is the wave length of the argon laser

(λ = 514.4nm), U is the output voltage and v is the particle velocity.

In general interferometry can work with optically rough surfaces, although with much

reduced sensitivity and speckle problems, therefore the specimens used in the present

research are as reflective as possible and are polished if necessary.

More details about laser ultrasound can be found in [25].

4.5 Specimen

The specimens used in this research are shown in Figure 4.12. Specimen 1 and 2 have

a more complicated geometry than specimen 3 and 4 which are essentially rectangular

bars. The sample thickness is the same (t=4.7 mm).

The material is a nickel base superalloy and has superior strength at high tempera-

tures. Therefore it is typically used in hot sections of gas turbines, rocket engines or

nuclear reactors. Nickel base superalloys were developed in the early 1960’s and had

their first applications in cast or powder metallurgy forms. Next to the remarkable
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chemical and structural homogeneity, it has excellent strength and toughness proper-

ties but poorer creep capability which restricts applications at highest temperatures.

Nowadays these alloys can be found in jet engines operating in the intermediate tem-

perature regime.

182

t=4.7

50 13

(a) Specimen 1 and 2

t=4.7

14

128

(b) Specimen 3, 4 and 5

Figure 4.12: Geometry of the specimens. Measures are given in mm

The attenuation in this material is very small and can therefore be neglected. Other-

wise attenuation would be competitive to the cumulative measurement of the second

order harmonic. One can say that this material is naturally very linear and homoge-

neous, a detection of higher harmonics is considered as a difficult task.

Table 4.1 provides material properties of the described superalloy.

Table 4.1: Material properties of a nickel base superalloy

Material ρ[ kg
m3 ] cL [m

s
] cT [m

s
] E[GPA] ν σy[MPa]

Nickel base superalloy 7861 6168 3307 213.65 0.298 1041.1
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Table 4.2: Specimens with varying surface conditions used in this research

Sample: Surface

condition:
Test:

Specimen 1 Machined Higher harmonics vs. propagation distance

Specimen 2a Sanded, lapped Higher harmonics vs. propagation distance
Investigation of a damaged sample

Specimen 2b Sanded, lapped, Comparison of oxidized and unoxidized
oxidized surfaces

Specimen 3 Lapped, polished Investigation of different damage states

Specimen 4 Lapped, polished High-cycle fatigue test

Specimen 5 Lapped, polished Low-cycle fatigue test

The two specimens shown in Figure 4.12 are used in different sets of measurements

with varying surface conditions. Table 4.2 summarizes and labels the different samples

to avoid confusion later in this research.
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CHAPTER V

EXPERIMENTAL RESULTS -

QUANTIFICATION OF SYSTEM

PERFORMANCE AND NONLINEARITY

The experimental generation and detection of a Rayleigh wave is described in the first

section. Moreover different frequencies and different input signals are considered. Sig-

nal processing and the definition of higher harmonics in Rayleigh waves are provided

in Section 5.2. Improvements and changes in the wedge design are emphasized in

Section 5.3. Besides different coupling methods for the interface between wedge and

specimen are investigated.

The last section of this chapter deals with nonlinear ultrasonic measurements. Several

sets of experiments are described, and the propagation distance of the Rayleigh wave

along the surface of the specimen is changed. Both the conventional setup #1 and

the improved setup #2 are used and compared.

5.1 Generation and Detection of a Rayleigh Wave

As described in Section 4.3, the generation of a Rayleigh surface wave is realized with

the wedge method where a plastic wedge with a critical angle is used to convert a

longitudinal wave propagating through the plastic material into a surface wave. De-

tails about the experimental setup can be found in Section 4.1 and 4.2, setup #1

is used for this set of measurements. Figure 5.1 shows a typical signal in the time

domain. The amplitude is directly related to the out-of-plane surface velocity and is

given in Volts. A 5-cycle, toneburst signal is used to drive the 5 MHz transducer.
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The signal is amplified with a 50 dB high voltage amplifier. As mentioned earlier, the

input voltage for this amplifier should not exceed 1 V. In most of the experiments,

an input voltage of 800 mV is used, hence the input signal is amplified to 253 V. Of

course, not the whole voltage drives the transducer, but losses in the electrical circuit

are hard to quantify.

The sinusoidal toneburst signal is detected with the laser interferometer system de-

scribed in Section 4.4. In this case a 3 MHz input frequency is used because the

ultrasonic transducer used in this experiment has a resonance frequency of about

3 MHz, therefore the peak-to-peak amplitude is expected to be at a maximum at

3 MHz. Note that this input is only used to detect and identify the arrival of the

Rayleigh waves.
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Figure 5.1: Time signal for a toneburst with 5 cycles and 3 MHz

Figure 5.1 shows the arrival of the detected signal of the input sinusoidal wave at
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slightly more than 3 ms (t1 in Figure 5.1). The question is now if this measured

peak is a Rayleigh wave. Because both the propagation distance and the Rayleigh

wave speed in the material of the specimen are known (see section 4.3.3), one can

estimate the arrival time of the toneburst signal. First of all the propagation distance

of the longitudinal wave in the wedge material is 2.8 cm, then this longitudinal wave

converts into a Rayleigh wave and propagates 7 cm along the surface until it reaches

the detection point. The estimated arrival time of the toneburst signal is therefore

t = tL + tR =
0.028m

2789m
s

+
0.07m

3066m
s

= 0.033ms. (5.1)

This result is consistent with the measured arrival time in Figure 5.1. A slight time

delay of the sinusoidal wave is expected because of the interface between the wedge

and specimen, but all in all, it is clear that a Rayleigh wave propagates with this

wedge design. The smaller peaks at later arrival times might be reflections off the

hole and the free end of the specimen, the geometry of the sample (Specimen 1) can

be found in Figure 4.12. The first reflection occurs at time t2. From Figure 5.1, it is

obvious that this reflection does not affect the toneburst signal starting at time t1.

As long as the toneburst signal of interest is between t1 and t2, geometrical effects

can be neglected.

Other wave propagation possibilities are longitudinal and shear waves which travel

with a different wave speed. Because laser detection is used, one can only measure

out-of-plane waves, therefore only longitudinal and SV waves are possible. As men-

tioned in Section 4.3.3, the shear wave speed is higher than the one of the Rayleigh

wave meaning that SV waves would arrive earlier than the wave measured in this

experiment. The other possibility is that a longitudinal wave goes straight through

the material of the specimen and reflections at the other side or wall of the relatively

thin specimen would occur (skip effect) but even then the arrival of the sinusoidal

wave would be a lot earlier because the wave speed of the longitudinal wave is about

two times higher than the Rayleigh wave speed. The estimated arrival time would be
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0.02 ms.

5.1.1 Frequency

From (3.18), one can see that the amplitude of the second harmonic depends on the

frequency, the relation is even quadratic, meaning that the magnitude of the second

harmonic increases with a higher frequency. In the literature one often find experi-

ments with a 5 MHz input signal to detect the second harmonic at 10 MHz and so on.

Barnard et al. [3] and Blackshire et al. [5] for instance use this frequency for similar

measurements. The laser detection system of the present research is linear up to 10

MHz [13], therefore the limit for the input frequency is about 5 MHz.

Using the same setup as in the preceding section, the amplitude of the signal decreases

for a higher frequency. This is because the driving frequency is not the resonance fre-

quency of the transducer anymore. For nonlinear measurements it is quite important

to increase the frequency though because if the amplitude of higher harmonics is too

low, the information will disappear below the noise level.

Because information at higher frequencies are considered, the low-pass filter of the

laser detection system is changed from a 10 MHz to a 20 MHz filter. All the following

plots show input signals with a frequency of 5 MHz. Moreover the number of cycles

is increased from 5 to 25 cycles, details about different number of cycles can be found

in Section 5.3.3. Figure 5.2 shows a typical signal with a frequency of 5 MHz and 25

cycles.

Of course the sample thickness plays also an important role because the theoretical

derivations of Rayleigh waves are based on an elastic half space and the specimen

used at the measurements is relatively thin. As mentioned in Section 2.3, the relative

displacements vanish if the distance from the free surface of the specimen is high in

comparison to the wavelength. The sample thickness is 4.73 mm, the wavelength can
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Figure 5.2: Time signal and FFT of a toneburst signal with 25 cycles and 5 MHz

be calculated from

λ =
CR

f
. (5.2)

For a frequency of 5 MHz, the wavelength is therefore 0.613 mm. This result means

that the sample thickness is almost eight times higher than the wavelength. Even for a

frequency of 3 MHz the sample thickness is still four times higher than the wavelength.

It can be assumed that theoretically almost no displacement can be observed at the

bottom of the specimen meaning that the Rayleigh wave is not disturbed by these

displacements or reflections from the other surface. Otherwise a Lamb wave would

be generated instead of a Rayleigh wave.

5.2 Signal Processing and Definition of Higher

Harmonics

To detect higher order harmonics it is important to do signal processing. A Discrete

Fourier Transform (DFT) or a Fast Fourier Transform (FFT) is necessary to sepa-

rate the small higher order harmonics from the fundamental wave in the frequency

domain.

To make sure that only the steady-state part of the toneburst signal is used, a very
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careful windowing (Hanning window, see Figure 5.3 showing a typical time signal

measured with setup #2) is applied to the time signal. Only the datapoints within
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Figure 5.3: Time signal with applied Hanning window

the steady-state part are selected and then transformed in the frequency domain

where the information about higher harmonics becomes visible.

The use of a Hanning window gives the best results because of the lowest numer-

ical noise, suppression of side lobes and a stable signal containing many cycles, thus

there is no risk to cut off important information from the beginning or the end of the

window. With a rectangular window higher harmonics seem to be hidden under the

noise level. Details about toneburst signals and the number of cycles can be found in

Section 5.3.3. For a long steady-state part of the signal, the resolution turns out to

be good enough. Of course, the resolution in the frequency domain would be better

if the window is taken over the whole signal but for the present research it is more
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convenient to select only the toneburst signal, then a comparison between different

samples and propagation distances is allowed.

More details about signal processing can be found in [17] and [20].

As mentioned above, one can see the higher harmonics in the frequency domain. To

allow a comparison between different propagation distances and samples, the mag-

nitude of the FFT is normalized meaning that the magnitude of the fundamental is

always 1. Figure 5.4 shows the proposed normalization procedure for the magnitudes

of higher harmonics. First, the absolute values in the frequency domain are consid-

ered and the peak at the fundamental frequency is named as A′
1, whereas the absolute

amplitude of the 2nd harmonic is called A′
2. The harmonic ratio or β ′ is defined as

A′
2/(A

′
1)

2. Now one can normalize these absolute values with respect to the amplitude

of the fundamental frequency.

5.3 Improvements and Specifications for the Gen-

eration of Rayleigh Waves

Possible improvements for efficient Rayleigh wave generation are carried out in this

section. The experimental setup #1 is used to investigate changes in wedge designs

(Section 5.3.1), couplants (Section 5.3.2) and different number of cycles (section 5.3.3).

Plots are provided in each section to show how the amplitude of the measured time-

signal changes.

5.3.1 Different Wedge Designs

The amplitude of the detected signal can be increased using an improved wedge de-

sign. Details about the wedge design are mentioned earlier in Section 4.3.2. Especially

a smooth and flat wedge surface which is attached on the specimen shows a lot of

improvement, the amplitude of the signal increases considerably (when compared to

Figure 5.2, for example), Figure 5.5 shows the result.
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Figure 5.4: Frequency domain including the absolute and normalized values of the
fundamental and higher harmonics
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Figure 5.5: Time signal and FFT of a toneburst signal with 25 cycles, 5 MHz and
an improved wedge design

Moreover the area or especially the length of this interface is increased, and in addition

to that, the glue is used more carefully to get an improved coupling at the interface

between wedge and specimen.

5.3.2 Coupling

In general a couplant is a material that facilitates the transmission of ultrasonic

energy if an interface exists. Because of the acoustic impedance mismatch between

air and solids (like the test specimen or the wedge), nearly all of the energy is reflected

and very little is transmitted into the test material. The couplant displaces the air

and makes it possible to get more sound energy into the specimen so that a usable

ultrasonic signal can be obtained. A thin film of oil, glycerin or water (fluid coupling),

or glue is used at the interfaces in contact ultrasonic testing.

The interface between the wedge and the steel specimen is a highly sensitive part of

wave propagation. Of course there are different losses and even scattering, so it is

very hard to predict or model the wave propagation at this interface.

Cement glue has the advantage that no additional fixture is needed to hold the wedge,

therefore the position of specimen and wedge can be varied without problems. Besides

44



the glue is a reliable coupling once it is fixed. All the measurements so far were

conducted using cement glue.

The disadvantage of this glue is that not the whole interface is coupled properly, you

can see several scatterers or even air bubbles on the side after the glue is hardened.

Especially if one wants to replace the glue or change the wedge position, a completely

new interface is created, comparisons between different sets of experiments seem to

be difficult, although this glue is still a convenient and cheap way to attach the plastic

wedge on the steel specimen.

Laser detection

Specimen

Oil as couplant

Fixture to hold wedge

Figure 5.6: Fixture to hold wedge on specimen using oil as couplant

To avoid the problems mentioned above, oil can be used as couplant. Of course, a

fixture is needed to hold the wedge firmly, although this fixture is not complicated

if the wedge is cut so that two parallel surfaces are created. Figure 5.6 shows such

a fixture where basically two plates are pressed on the wedge and specimen. Now a

clean and pure interface can be seen, no scatterers or air bubbles disturb the wave

propagation. The signal of the improved setup can be seen in Figure 5.7. The

amplitude increases again, besides it is easier to change the wedge position along

the specimen which is a big advantage, especially for measurements with different

propagation distances.

Another interface exists between the plastic wedge and the ultrasonic transducer

which is bonded on the sloping surface of the wedge. A fixture which could hold

the transducer would be very complicated to realize, oil as coupling is therefore not

practical. In this case the cement glue mentioned above seems to be the best way to
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Figure 5.7: Time signal and FFT of a toneburst signal with 25 cycles, 5 MHz and
an improved coupling using oil and a fixture (compared to Figure 5.5)

get an appropriate coupling. Because the transducer stays the same for different sets

of measurements, there is no need to replace the transducer or the position, therefore

it is convenient to use glue as couplant.

5.3.3 Number of Cycles

With the function generator, almost any desired number of sinusoidal cycles can be

generated, so this section provides a comparison between different number of cycles.

Figures 5.8 and 5.9 show a zoomed portion of the time signal, these plots come from

the same experiment, only the number of the cycles is changed from 5 to 25.

One can usually distinguish three different parts of the detected toneburst signal: A

transient part can be seen at the beginning of the signal, the frequency of this portion

depends on the properties of the ultrasonic transducer. With the present transducer

the frequency of the transient part is about 3 MHz which seems to be the same as the

resonance frequency. This frequency remains constant, even if the driving frequency

of the transducer is changed.

The second portion of the detected signal is the so called steady-state part where the

frequency is the same as the driving frequency of the transducer. This is the real
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signal where all the information is saved and used to calculate the magnitudes of the

higher harmonics.

The last portion of the signal consists of ringing effects. Because the piezoelectric

transducer is a mechanical system, vibrations occur which result in an exponential

decay of the amplitude. Of course these ringing effects are not desirable, but in

comparison to the steady-state portion of the signal, the magnitude is relatively small.
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Figure 5.8: Toneburst with 5 cycles

Figure 5.8 shows a typical signal of a toneburst with 5 cycles. It can be seen readily

that the transient and ringing part of the signal are relatively high where the steady

state part is still visible but small. A toneburst signal with 25 cycles can be found in

Figure 5.9. The steady state part of the signal is dominant, therefore it is relatively

easy to window this particular part of the signal which makes the signal processing

easier. Moreover the driving frequency of the transducer is dominant in comparison
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Figure 5.9: Toneburst with 25 cycles

to the frequency of the transient part.

All in all 25 cycles appear to be a sufficient number of cycles. This is also the number

Blackshire et al. [5] are using in similar experiments.

The improvements mentioned above lead to a peak-to-peak amplitude of about 0.2

V using the experimental setup #1, which is still not very high, but with respect to

the peak-to-peak amplitude without these improvements (see figure 5.2), an increase

of 400 % could be achieved.

5.4 Amplitude of the Fundamental and Genera-

tion of a Plane Wave

Applying all the improvements described in the previous sections and using the ex-

perimental setup #2, a peak-to-peak voltage in the time-domain signal of about 1
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V is achieved which is considered as very high with respect to the sensitive point-

like laser detection system used in this research. Of course the Ritec amplifier of

setup #2 is the reason for this big increase in the amplitudes. With the conven-

tional amplifier, a voltage up to 0.25 V (peak-to-peak) was measured. Figure 5.10

compares the maximum amplitude for each of the two experimental setups. The

Rayleigh wave propagation distance is 6.5 cm for setup #1 and 4.7 cm for setup #2.

Another interesting feature is that the output voltages stay about constant for the
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Figure 5.10: Maximum amplitude for each of the two experimental setups

different propagation distances meaning that there is no geometrical spreading (the

amplitude would decrease with propagation distance with the factor of
√
r, where r is

the propagation distance) visible using the experimental setup #2. This observation

means that a plane Rayleigh surface wave is generated. Figure 5.11 shows the almost

constant magnitude of the peak-to-peak voltage from the time signal.

With the conventional experimental setup (setup #1) it was not clear if a plane wave

is generated or if geometrical spreading or even geometrical effects occur. The im-

proved experimental setup (setup #2) solves this problem or uncertainty, therefore a

reliable comparison between different propagation distances and damage states with

respect to nonlinear wave propagation and higher harmonics is allowed .
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Figure 5.11: Peak-to-peak voltage from the time signal for different propagation
distances

With the maximum peak-to-peak voltage of 1 V and all the improvements mentioned

above, it is possible to start looking at higher harmonics and nonlinear wave propa-

gation. Especially the experimental setup #2 has the potential to enable nonlinear

acoustic measurements.

5.5 Dependence of Higher Harmonics on Propa-

gation Distance

The following sections describe measurements and experimental results of nonlinear

wave propagation, the theoretical background is provided in chapter 3. As one can

see from (3.18), the amplitude of the second harmonic depends on the propagation

distance, and the relation is linear. Moreover the amplitude ratio A2

A2

1

is proportional

to the dimensionless nonlinearity parameter β and should be an indicator of material
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nonlinearity for a certain specimen. This section describes the experimental detection

of the second harmonic and its relation to the propagation distance. Details about

the specimen and its properties can be found in Section 4.5, Specimen 1 is used in

the following.

The experimental setup used in this first set of measurements is explained in Section

4.2, this setup is referred as the improved setup #2 in the following. A toneburst with

25 cycles and an input voltage of 1.12 V is generated by a function generator, after-

wards this sinusoidal signal is amplified with a gated high power amplifier and drives

the ultrasonic transducer with 5 MHz. The transducer is attached on the sloping

surface of a plastic wedge which was machined in a way that a Rayleigh surface wave

is excited propagating along the surface of the nickel base superalloy sample. The

wedge is attached on the specimen using a fixture and oil as couplant. The detection

side consists of the laser interferometer system explained in section 4.4.

As mentioned in section 4.4, 1000 signals are averaged to get a high signal-to-noise

ratio (SNR). Because the amplitudes of the higher harmonics are very small in com-

parison to the fundamental, a clean signal in the time domain is needed.

The dependence of higher harmonics on propagation distance is the most reliable

way but also the most difficult way to measure nonlinearity in a certain specimen and

an indicator if the experimental system works properly. To ensure that the higher

harmonics are not generated by the experimental system itself, one has to test the

system linearity and the repeatability of the experimental procedure.

5.5.1 System Linearity

To check the system linearity, one can change the input voltage and detect the funda-

mental and second harmonic using the same specimen, the same propagation distance
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and experimental setup to make sure that the measured higher harmonics are an in-

dicator of material nonlinearity and not spurious nonlinearity due to the instrumen-

tation. To sum up one can say that quadratic-type material nonlinearity is measured

while system linearity is proven indirectly.

In this case the input drive level varies from 1.05 V to 1.13 V (this is the voltage before

amplification). If the experimental setup is linear, one will see a linear relationship

between the amplitude of the 2nd harmonic A′
2 (which is the transformed amplitude

of the FFT algorithm, see figure 5.4 for further explanations) and the squared am-

plitude of the fundamental A′
1
2. Figure 5.12 shows such a plot for a Rayleigh wave

propagation distance of 4.7 cm using Specimen 1. A linear relationship is clearly

visible for different input voltages.
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Figure 5.12: System linearity for the improved experimental setup (setup #2)

One can see that the system is linear especially for higher input voltages. To obtain
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the highest possible amplitude and a linear electrical circuit, the measurements de-

scribed in the following pages are conducted with an input voltage of 1.12 V. The

limit of the Ritec high power amplifier is around 1.14 V.

5.5.2 Repeatability

Because interfaces are involved in these ultrasonic measurements, one has to investi-

gate if these interfaces contribute to the measured nonlinearity and if a repeatability

of the measurements can be achieved. To gain information about the influence of the

interface-changes between wedge and specimen, one can conduct a simple experiment

where the wedge and couplant are removed, attached again and the measurements

are repeated. Figure 5.13 shows the linear relation between A′
2 and (A′

1)
2 for the

two measurements. Of course the propagation distance is kept constant (4cm) and
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Figure 5.13: System linearity and repeatability for two different datasets with the
same propagation distance using setup #2

different input voltages are used. One can see at the plot that the slope for the two
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different datasets is nearly constant meaning that the measurements are repeatable

and that the replacement of the wedge and couplant has no dominant influence on

the results.

5.5.3 Nonlinear Ultrasonic Measurements

Now the influence of the propagation distance on the magnitude of the second har-

monic is investigated. The propagation distance is varied from 3.3 to 4.7 cm. A

fixture is designed to move the specimen together with the attached wedge in a re-

peatable and reliable way, so that the interface (oil as couplant) between the wedge

and specimen stays the same for different propagation distances. In addition to that

the alignment for the laser detection can be improved and facilitated. The results are

shown in Figures 5.14, 5.15, 5.16, 5.17 and 5.18.
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Figure 5.14: FFT of a toneburst signal with 25 cycles, 5 MHz and a propagation
distance of 3.3 cm using setup #2

Figure 5.19 summarizes the results mentioned and shown above. As one can see from

the linear curve fitting, it is clear that the amplitude of the second harmonic increases

54



5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Frequency [MHz]

N
or

m
al

iz
ed

m
ag

n
it

u
d
e

Figure 5.15: FFT of a toneburst signal with 25 cycles, 5 MHz and a propagation
distance of 3.6 cm using setup #2
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Figure 5.16: FFT of a toneburst signal with 25 cycles, 5 MHz and a propagation
distance of 4 cm using setup #2
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Figure 5.17: FFT of a toneburst signal with 25 cycles, 5 MHz and a propagation
distance of 4.4 cm using setup #2
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Figure 5.18: FFT of a toneburst signal with 25 cycles, 5 MHz and a propagation
distance of 4.7 cm using setup #2
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Figure 5.19: Higher harmonics over propagation distance for the improved experi-
mental setup (setup #2)

linearly with propagation distance.

In comparison to the conventional setup, the normalized amplitudes of the second

harmonic (normalized with the amplitude of the fundamental frequency) are even

higher since the instrumentation has less contribution to the higher harmonic gen-

eration. The reason for this is the higher signal-to-noise ratio using the improved

experimental setup, the second harmonic is well above the noise-level and can be

fully detected. The increase in amplitude of the normalized second order harmonic is

therefore not surprising.

The third order harmonic or rather the peak at 15 MHz is investigated as well and its

amplitude stays about the same. The material induced third order harmonic seems

to be well below the third order harmonic from the instrumentation, otherwise a

57



linear relationship between third order harmonic and propagation distance would be

observed. The relatively small peaks at 15 MHz also show that the influence of the

instrumentation (especially the high power amplifier) is low, a comparison between

the measured signals is therefore allowed.

Looking at the time signal, a waveform can be observed at time t=0 as shown in

Figure 5.20. Usually a trigger signal can be seen which looks rather like a pulse, but

in this case a clear toneburst is visible.
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Figure 5.20: Time signal of a toneburst with 25 cycles, 5 MHz and a propagation
distance of 4 cm

The explanation for this phenomenon is the bleed-through from the strong high power

amplifier generating a toneburst at t=0 which is dominant in comparison to the

regular trigger signal. This bleed-through does not affect the detected toneburst

signal of the Rayleigh wave, therefore it can be neglected.
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5.5.4 Nonlinear Ultrasonic Measurements and Problems Using the Con-

ventional Setup #1

The experimental setup used in this set of measurements is explained in section 4.1,

this setup is referred as the conventional experimental setup #1 in the following. The

experimental procedure is basically the same as described above except that no fixture

is used to change the propagation distance without changing the interface between

wedge and specimen meaning that the wedge is moved relative to the specimen to

enable measurements at different propagation distances.

A toneburst with 25 cycles and an input voltage of 800 mV is generated by a function

generator, afterwards this sinusoidal signal is amplified with 50 dB and drives the

ultrasonic transducer with 5 MHz.

Now different propagation distances are considered. Figure 5.21 shows a zoomed plot

of the frequency domain for a propagation distance of 5.3 cm where peaks at 10 or

15 MHz can be seen.
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Figure 5.21: FFT of a toneburst signal with 25 cycles, 5 MHz and a propagation
distance of 5.3 cm using setup #1
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Figure 5.22 shows a signal for a propagation distance of 6.5 cm, Figure 5.23 provides

a plot for a propagation distance of 3.7 cm. The alignment during the laser detection

is almost the same for this set of measurements. The ratio between the normalized

amplitude of the second order harmonic and the fundamental is around 2:1000.
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Figure 5.22: FFT of a toneburst signal with 25 cycles, 5 MHz and a propagation
distance of 6.5 cm using setup #1

As mentioned earlier, the amplitude of the second harmonic has a linear relation to

the propagation distance. Figure 5.24 shows the result of the measurements with

three different propagation distances. It is clear that the second harmonic increases

linearly with an increasing propagation distance which is the expected result. The

longer the wave propagates, the more nonlinearity is added to the signal, therefore

the second harmonic increases.

Theoretically the Rayleigh wave is a plane wave without loosing energy in the di-

rection of propagation as mentioned in Section 5.4. Comparing the time signals
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Figure 5.23: FFT of a toneburst signal with 25 cycles, 5 MHz and a propagation
distance of 3.7 cm using setup #1
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Figure 5.24: Normalized amplitude of the 2nd harmonic vs. propagation distance
using setup #1
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measured with setup #1, a variance of the peak-to-peak voltage from 0.18 V to 0.25

V is visible. For some reason, the output voltage of the detected signal propagating

6.5 cm (which is the largest propagation distance) is even higher than the one for

the shortest propagation distance. A reasonable explanation is missing at this time.

Probably geometrical effects affect the measured signal, especially if the propagation

distance is very long.

Since the peaks in the frequency domain at 10 MHz are very small compared to

the fundamental and large peaks at higher order harmonics can be seen as well, one

has to be careful if the 10 MHz peak is really the amplitude of the second harmonic.

Especially nonlinearity of the instrumentation is also added to the signal. To obtain

more information about instrumentation nonlinearity, the input signal is investigated

in the frequency domain which can be found in Figure 5.25. 25 cycles and an input

voltage of 800 mV are generated by the Wavetek function generator, then the signal is

amplified using the same 50 dB amplifier used for the nonlinear measurements. The

signal is shown at the oscilloscope right before it goes to the ultrasonic transducer,

then the FFT algorithm is used to get the information in the frequency domain.

One can see that high peaks at frequencies of higher harmonics occur, the dominant

peak is at 15 MHz. According to Maess [15], this behavior is typical for electrical

devices like the 50 dB amplifier. Electrical equipment tends to generate odd order

harmonics, but also a peak at 10 MHz can be seen. The question is now if the peaks

at 10 MHz, investigated during the nonlinear ultrasonic measurements, are really am-

plitudes of the second harmonic or rather due to the instrumentation. Even though

the piezoelectric transducer acts like a band-pass filter so that the instrumentation

nonlinearity is filtered out partially, there is still a contribution from the instrumen-

tation to the nonlinearity parameter. To sum up, one can say that the peak at 10

MHz (see Figures 5.21, 5.22, 5.23) consists of the second harmonic and the nonlinear
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Figure 5.25: FFT of the input signal

portion of the equipment.

According to the literature, there is also a linear relationship between the third or-

der harmonic and the propagation distance, but as you can see from the plots, this

relationship is not observed. As mentioned above, the peak at 15 MHz is highly in-

fluenced by the instrumentation, in particular by the amplifier.

Besides the laser detection system behaves linearly up to 10 MHz, but because the 3rd

order harmonic is at 15 MHz, nonlinearity could be already in the system due to the

laser interferometer. Even with an amplifier designed for nonlinear measurements, it

is therefore quite difficult to obtain consistent results for a linear dependence of the

3rd order harmonic on propagation distance, unless it is excited sufficiently above the

instrumentation nonlinearity.

As in the preceding section, one can check the system linearity of the experimental

setup — a linear relationship between the amplitude of the 2nd harmonic A′
2 and the
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Figure 5.26: Amplitude of the second harmonic versus the squared amplitude of the
fundamental wave for different input voltages

squared amplitude of the fundamental A′
1
2 for different input voltages. Figure 5.26

shows such a plot for setup #1 with an input voltage which varies from 400 mV to 900

mV (this is the voltage before amplification). The data is based on the measurement

with a propagation distance of 5.3 cm. For instance, Figure 5.21 shows the signal with

an input voltage of 800 mV. From Figure 5.26, it is clear that a linear relationship

is not visible. Especially the amplifier tends to generate a high nonlinearity to the

setup. Therefore an amplifier designed for nonlinear ultrasonic measurements (such

as RAM-10000 used in setup #2) is needed because only then, the amplitude of the

second harmonic can be detected in an accurate way without any disturbances due

to the experimental setup. Another possibility to get better results would be a high

voltage band-pass filter which can be used after the amplifier and right before the

input signal goes in the transducer. The disadvantages of such a filter are that it is

relatively expensive and it attenuates (≈ 6dB) the high voltage signals.
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Despite all the uncertainties mentioned above, the plot showing the linear increase

of the amplitude of the second harmonic with propagation distance (Figure 5.24) is

still conclusive because a system nonlinearity would affect the signal at 10 MHz in

the same way for all the propagation distances. Even if not only the second har-

monic is measured, a linear increase of the amplitude should still be visible. But the

measurements are neither reliable nor repeatable because the system nonlinearity is

dominant and especially if one wants to compare different specimens with different

damage states, one has to come up with a better experimental setup for nonlinear ul-

trasonic measurements. It is obvious from Section 5.5 that the experimental setup #2

fulfills these requirements, therefore it is used in the following chapter to investigate

and quantify material nonlinearity.

5.5.5 Transducer Nonlinearity

Especially the amplifier particularly designed for nonlinear acoustic measurements

(RAM-10000) leads to improvements concerning system linearity and efficiency. It

is also interesting to see how a different transducer affects the experimental results.

A second PZT-transducer (transducer #2) is attached on the wedge the same way

as before and a nonlinear ultrasonic measurement is performed for a Rayleigh wave

propagation distance of 3.8 cm; Specimen 2a is used for this measurement. Figure 5.27

compares the two different transducers in showing the Fourier spectrum. A large peak

at 10 MHz is visible for transducer #2. This means that this particular transducer

induces a high nonlinearity, therefore the peak at 10 MHz is not the real second

harmonic from the material one is looking for, but rather the nonlinear transducer

behavior. It is obvious that transducer #1 (which has been used so far) is the better

choice for nonlinear measurements. Throughout the measurements it has turned out

that this particular commercial PZT-transducer is relatively linear.
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(a) Transducer #1
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(b) Transducer #2

Figure 5.27: Comparison of two different PZT-transducers, Rayleigh wave propaga-
tion distance of 3.8 cm
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CHAPTER VI

EXPERIMENTAL RESULTS -

QUANTIFICATION OF MATERIAL

NONLINEARITY

Different surface conditions and damage states with respect to higher harmonics and

nonlinear wave propagation are compared in this chapter. It has been shown in chap-

ter 5 that the experimental setup #2 is effective for nonlinear acoustic measurements,

therefore it is used for the experiments described in this Chapter.

6.1 Surface Effects

Because Rayleigh waves travel along the surface of the specimen and because of the

sensitivity of nonlinear ultrasonic measurements, it is important to know how a cer-

tain surface condition affects the detection of higher harmonics.

So far only a machined specimen has been used to detect nonlinearity in the mater-

ial. A clear linear increase of the second harmonic with propagation distance could

be seen. Now a second specimen (Specimen 2, see Table 4.2) of the same material

(nickel base superalloy) is used to investigate surface conditions: First, the specimen

is polished, sanded and lapped and nonlinear ultrasonic measurements are performed.

Surprisingly the normalized amplitude of the second harmonic stays almost constant

for different propagation distances, although one can see a trend that the second har-

monic increases linearly with propagation distance at a lower level (Figure 6.1). A

reasonable explanation could be that the sanding and lapping of the surface removed

the nonlinear effects measured with the other specimens so far.

67



3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
0

0.5

1

1.5

2

2.5
x 10

−3

Undamaged, lapped
   linear

Propagation distance [cm]

N
or

m
al

iz
ed

2n
d

h
ar

m
on

ic

Figure 6.1: Second harmonic over propagation distance for a lapped and sanded
specimen

Another interesting surface condition is an oxide layer on the surface of the specimen.

In technical applications nickel base superalloys are common materials in the high

temperature regime, therefore the surface is usually oxidized. It is important to see

if this oxide layer has influence on the nonlinear effects and in particular the second

harmonic.

To create an oxidized surface, one can simply put the sanded, polished and unoxi-

dized specimen in a large keith furnace and heat it up with 10◦C/min to 634◦C and

hold it for 600 min. Afterwards an oxide layer is clearly visible and the nonlinear

ultrasonic measurement is repeated for a propagation distance of 4.5 cm because at

this particular propagation distance the surface is relatively reflective and shiny and

the laser detection is feasible. The result for the normalized amplitude of the second

harmonic is compared to the unoxidized specimen in Figure 6.2.
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Figure 6.2: Second harmonic for different surface conditions

It is obvious that there is basically no difference in the amplitude of the second har-

monic, therefore one can conclude that an oxide layer does not affect the nonlinear

ultrasonic measurements. Moreover this conclusion is useful for investigating and

analyzing fatigue tests: High temperature fatigue tests result in oxidized and dam-

aged surface conditions and so far it was not clear if an oxide layer generates higher

harmonics or if the contribution due to oxidization can be neglected.

Dirty and oxidized surfaces are very common in technical applications. Because

such an oxide layer does not seem to contribute to the material nonlinearities, a

comparison between specimens with different surface conditions is allowed. Nonlinear

ultrasonic measurements appear to be a robust technique to detect higher harmonics

and therefore accumulated fatigue damage in field applications and not only in the

laboratory.
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6.2 Damage Assessment by Nonlinear Ultrasonic

Measurements

So far, only undamaged samples and the dependence of higher harmonics on propaga-

tion distance have been investigated. As mentioned earlier in Chapter 3, dislocations

contribute to material nonlinearity and changes in microstructure. To examine the

influence of dislocations on the generation of higher harmonics, this section deals with

damaged and fatigued samples. Typically, fatigue damage is initiated at the surface,

therefore a propagating Rayleigh wave is expected to generate higher harmonics (sec-

ond order in particular).

In metallic alloys dislocation contribution to the material nonlinearity is considerably

larger than the contribution due to lattice anharmonicity [8]. Especially cyclic load-

ing promotes the formation of dislocation dipoles which results in increased levels of

harmonic energy generation.

Section 6.2.1 and 6.2.2 investigate the influence of damage on higher harmonic genera-

tion whereas Section 6.2.3 and 6.2.4 present the results of a high-cycle and a low-cycle

fatigue test.

6.2.1 Combined Loading - Monotonic Above Yield, Followed by Fatigue

To see if the developed experimental technique is able to detect damage, an undam-

aged, polished and lapped specimen is compared with a highly damaged one with

respect to the generation of the second harmonic.

A MTS (Material Testing System) testing-machine with a force capacity of 100 kN

is used to apply a load on the Specimen 2a leading to a stress level above yield

(130% yield stress), and then 1000 cycles close to yield are applied. Figure 6.3 sum-

marizes the results that compare the undamaged and damaged state showing that

there is a significant increase in the second harmonic. It is obvious that the second

harmonic increases with damage. Surprisingly, the magnitude stays almost constant
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for the different propagation distances. An explanation could be that the damage

is very localized and its affect is averaged out with increasing propagation distance.

It is important to note the overall increase in the normalized second harmonic from

undamaged to damaged states.
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Figure 6.3: Second harmonic for different damage states

6.2.2 Monotonic Loading

To investigate damage accumulation and the dependence of the nonlinearity parame-

ter β ′ on plastic deformation, a new set of specimens are used (Specimen 3). The

geometry is similar to Specimens 1 and 2, except that this specimen consists only of

the gage section, it is essentially a rectangular bar with the same sample thickness

and width than used before. The geometry of Specimen 3 can be found in Figure 4.12.

Because the second harmonic and the harmonic ratio (or β ′) increases with plastic de-

formation, a monotonic loading above yield is applied. The load is increased with 200

lbf/sec to an absolute end level which is equivalent to 115 % of the yield stress. Then
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the specimen is unloaded with the same rate and nonlinear ultrasonic measurements

are performed the same way as described earlier. The Rayleigh wave propagation

distance is kept constant as 3.2 cm. The same procedure is repeated for a load equiv-

alent to 125 %, 135 % and 145 % of yield stress (145 % of yield stress is close to the

ultimate strength of the material), the results can be found in Figure 6.4. Moreover
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Figure 6.4: Normalized harmonic ratio β ′ vs. damage state, Rayleigh wave propa-
gation distance of 3.2 cm + comparison with bulk-wave measurements

the results for Rayleigh waves are compared with nonlinear bulk-wave (longitudinal

wave) measurements for the same specimen [9]. These bulk-wave measurements are

absolute and through the thickness of the material.

A large increase in β ′ with increasing stress and strain is visible. The trend is the

same for longitudinal waves and the nonlinearity parameter β, although the harmonic

ratio using Rayleigh waves seem to be more sensitive to plastic deformation.

The levels of β ′ (and β) after 125 % yield could be explained by the macroscopic

damage on the surface of the specimen.
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6.2.3 High-Cycle Fatigue Test

In the literature several definitions of high-cycle and low-cycle fatigue tests can be

found. Usually one refers to a high-cycle fatigue test (HCF) when the cyclic stress

is below yield, meaning that many cycles have to be applied to damage the material

whereas a low-cycle fatigue test (LCF) induces plastic deformation even in the begin-

ning of the fatigue test.

For the present HCF test, the cyclic stress is held constant at 96 % of yield stress

and the frequency of cyclic loading is 1 Hz. Nonlinear ultrasonic measurements are

performed at different damage or fatigue states. A plot for β ′ over fatigue life is shown

in Figure 6.5. 100 % of fatigue life means that the specimen failed (200000 cycles for

the present HCF test).
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Figure 6.5: Normalized harmonic ratio β ′ over fatigue life for a high-cycle fatigue
test and a Rayleigh wave propagation distance of 3.2 cm

There are no obvious conclusions available in this plot. Surprisingly, the value for β ′
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drops in the beginning, then it increases as expected for a fatigue life of 25 and 50 %

but the value drops again for a fatigue life of 75 %. An explanation for this last drop

in β ′ could be a microscopic surface crack with a crack tip larger than the wavelength

of the second harmonic wave meaning that such a crack could cancel or delete the

propagation of higher harmonics. The decrease of β ′ at the beginning of the HCF

could be a result of the variability of the experimental setup — the transducer be-

havior possibly changed before the HCF was started. Moreover the interface between

wedge and specimen changed after every fatigue step to refresh the couplant. It has

been shown in section 5.5.2 that the measurements are still repeatable, but of course

one has to take a certain variance into consideration.

6.2.4 Low-Cycle Fatigue Test

This section provides the results of a low-cycle fatigue (LCF) test. Strain-controlled

loading is applied to ensure that the cyclic stress is above yield strength. The fre-

quency of cyclic loading is 0.5 Hz. Figure 6.6 shows the normalized harmonic ratio, β ′,

as a function of fatigue life. As mentioned earlier, 100% of fatigue life means that the

specimen failed. This specimen (Specimen 5) failed after 12600 cycles. The Rayleigh

wave propagation distance is 4.1 cm and for each measurement, three different input

voltages are used and the measured values of β ′ are averaged.

From Figure 6.6 it is obvious that the value for β ′ increases with fatigue life, then the

value drops for a fatigue life of 87 %. As mentioned in Section 6.2.3, this could be

the result of a surface crack with a crack tip larger than the wavelength of the second

harmonic. Barnard et al. [3] observed the same phenomenon for a low-cycle fatigue

test.

For practical field applications, it is suggested that a linear and nonlinear surface wave
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Figure 6.6: Normalized harmonic ratio β ′ over fatigue life for a low-cycle fatigue test

measurement is performed simultaneously so that the linear measurement monitors

surface crack initiation while the nonlinear measurement evaluates material degrada-

tion.

75



CHAPTER VII

CONCLUSION AND POSSIBLE

IMPROVEMENTS

This research demonstrates that contact wedge generation and non-contact interfer-

ometric detection are an efficient way to quantitatively measure higher harmonics

in Rayleigh waves. The influence of the instrumentation on higher harmonics is in-

vestigated and an experimental setup is developed with a high system linearity to

minimize spurious nonlinearities.

It is shown that in a nickel based superalloy, the second harmonic increases linearly

with propagation distance. The level of the second harmonic changes for different

surface conditions. A lapped and polished surface leads to a lower level of nonlinear-

ity (the magnitude of the second harmonic) when compared to a machined surface,

whereas an oxide layer shows no significant increase in nonlinearity.

Furthermore, the higher harmonics of Rayleigh waves are used to track micro-damage

caused by applied load (the micro-damage is most likely associated with the accu-

mulation of dislocations). It is shown that plastic deformation results in a significant

increase in the second harmonic and the harmonic ratio β ′. This harmonic ratio β ′

of Rayleigh waves seems to be more sensitive to plastic deformation than the nonlin-

earity parameter β for longitudinal waves.

A fatigue test with loading below yield (as realized in a high-cycle fatigue test) shows

no conclusive results whereas a low-cycle fatigue test shows a consistent increase in

the harmonic ratio, β ′, as a function of fatigue life until β ′ drops before the failure of
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the specimen.

Throughout this research, the efficiency and the system linearity of the generation

side are seen as the keys to obtaining reliable experimental results with respect to

nonlinear wave propagation in Rayleigh waves.

A high input voltage is needed to generate the higher harmonics; these higher har-

monics are small compared to the amplitude of the fundamental frequency. The

gated high power amplifier used for experimental setup #2 fulfills the requirement

of producing high voltage with a high system linearity for input voltage and trigger.

This high voltage goes directly to the transmitting transducer which is not designed

for nonlinear acoustic measurements meaning that the transducer itself has already a

certain nonlinearity. A possible improvement would be a LiNbO3 single-plate trans-

ducer which is seen as a highly linear transmitting transducer. Admittedly, it is not

easy to attach this single-plate transducer on the plastic wedge with appropriate cou-

plant and electrodes, that’s the reason why it was not realized in this research but

it is clear that LiNbO3-crystals (as described in [4] and [28]) have great potential in

nonlinear acoustic measurements.

Additionally, a high voltage filter could be used right after the amplification to ensure

that the transducer is only driven with the fundamental frequency and not with the

frequencies of higher order harmonics due to instrumentation.

Oil as couplant between the wedge and specimen (together with a fixture to hold the

wedge firmly against the specimen) led to an improvement in efficiency compared to

cement glue as couplant. The same improvement is expected for the interface between

transducer and wedge, but because of the sloping surface of the wedge and shortage of

space, it is hard to design a fixture to hold the transducer, that’s why fluid coupling

haven’t been realized so far. To overcome this shortcoming, a thread could be applied
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to the transducer or a small device could be designed which is attached on the sides

of the wedge with the capability of pressing the transducer on the wedge.

A FFT-algorithm is used as a way to separate the higher harmonics in Rayleigh

waves from the fundamental frequency in the frequency domain. So far, only the

transformed magnitudes are compared and analyzed. To obtain the true values of

higher harmonics, one has to transform backwards or use a pulse inversion technique

where the second harmonic can be fully extracted from the fundamental by superpos-

ing two waveforms with a phase-shift of 180◦ (details can be found in the Appendix).

Once having true values of higher harmonics, one can calculate a similar dimensionless

nonlinearity parameter than the one for longitudinal waves for further comparisons

between Rayleigh and bulk waves with respect to nonlinear wave propagation.

To obtain confidence intervals and error bars, nonlinear acoustic measurements have

to be repeated for several samples. In this research, confidence intervals and statistical

analysis are missing.
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APPENDIX A

PULSE INVERSION TECHNIQUE

The second harmonic signal is small and very hard to extract from the fundamental.

So far, the fast Fourier technique has been applied to separate the fundamental wave

from higher harmonics in the frequency domain. Because of the large Rayleigh wave

propagation distance throughout this research one could use a toneburst with many

cycles to obtain a big and dominant steady-state portion of the signal. But if the

propagation distance is small and only a short waveform can propagate, one has to

come up with a more appropriate technique to extract the second harmonic compo-

nent. Another disadvantage of the FFT is the fact that one only obtains transformed

magnitudes in the frequency domain and not the real values.

The pulse inversion method is a way to solve the problems mentioned above. Ohara et

al. [19] describe higher harmonic measurement by pulse inversion for the evaluation

of amorphous diffusion bonding. The concept of pulse inversion consists of digital

signal processing superposing two transmitted waves with a phase shift of 180◦. The

180◦ difference of the fundamental is equal to a 360◦ difference of the second harmonic

wave, hence the second harmonic can be extracted by superposing each transmitted

waveform.

The two transmitted waveforms can be written as

u1 = A1sin(ωt− kx) + A2sin2(ωt− kx) (A.1)

u2 = A1sin(ωt− kx+ π) + A2sin2(ωt− kx+ π). (A.2)

Superposing equation A.1 and A.2 results in

u = u1 + u2 = 2A2sin2(ωt− kx), (A.3)
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thus the second harmonic component with a doubled amplitude is obtained.

Figure A.1 shows the extracted 2nd harmonic signal for a Rayleigh wave propaga-

tion distance of 4.6 cm along a unfatigued specimen. Although the signal is small
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Figure A.1: Superposed waveform or extracted 2nd harmonic

compared to the fundamental, it is clearly visible and the pulse inversion technique

is applied successfully. A comparison of the time signal with respect to the measured

voltage shows that the absolute magnitude of the extracted signal is about 1 % of its

fundamental.

Nevertheless the fundamental wave is still involved in the extracted signal because

one can also see a 5 MHz-peak (fundamental frequency) in the frequency spectrum

(see figure A.2) and not only the frequency of the 2nd harmonic. A rectangular win-

dow has been applied to the extracted time signal (note that the rectangular window

was not sufficient before). To filter out the portion of the fundamental frequency, one
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has to come up with a correlation technique to make sure that the two superposed

signals start at exactly the same time.
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Figure A.2: FFT of the extracted time signal
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