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The cortical surface is organized into a large number of cortical

areas; however, these areas have not been comprehensively mapped

in the human. Abrupt transitions in resting-state functional connect-

ivity (RSFC) patterns can noninvasively identify locations of putative

borders between cortical areas (RSFC-boundary mapping; Cohen

et al. 2008). Here we describe a technique for using RSFC-boundary

maps to define parcels that represent putative cortical areas. These

parcels had highly homogenous RSFC patterns, indicating that they

contained one unique RSFC signal; furthermore, the parcels were

much more homogenous than a null model matched for parcel size

when tested in two separate datasets. Several alternative parcella-

tion schemes were tested this way, and no other parcellation was as

homogenous as or had as large a difference compared with its null

model. The boundary map-derived parcellation contained parcels that

overlapped with architectonic mapping of areas 17, 2, 3, and 4.

These parcels had a network structure similar to the known network

structure of the brain, and their connectivity patterns were reliable

across individual subjects. These observations suggest that RSFC-

boundary map-derived parcels provide information about the location

and extent of human cortical areas. A parcellation generated using

this method is available at http://www.nil.wustl.edu/labs/petersen/

Resources.html.

Keywords: cortical areas, functional connectivity, parcellation, resting state

Introduction

The cortical surface of the brain is organized into a large
number of interacting cortical areas (Sejnowski and Church-
land 1989). Accurate identification of these cortical areas is
a major goal of modern systems neuroscience, as it would
provide substantial benefits to many areas of neuroscientific
investigation. For example, identification and functional char-
acterization of visual areas in the macaque has provided a de-
tailed hierarchical wiring diagram of the primate visual system
that has greatly aided our understanding of visual processing
(Felleman and Van Essen 1991). Identifying human cortical
areas would be a critical first step toward the same sort of com-
prehensive characterization of information flow within the
brain’s various processing systems. Additionally, identification
of cortical areas would greatly improve investigations of brain
function using graph theory (Bullmore and Sporns 2009),
because such areas could serve as rationally defined, neuro-
biologically based network “nodes” (Wig et al. 2011; Power
et al. 2013). Finally, identified areas can serve as a priori
regions of interest (ROIs) for the analysis of functional neuroi-
maging data. Averaging data within predefined areas would
improve signal-to-noise (SNR) and reduce multiple compari-
son problems in statistical testing.

Identification of distinct cortical areas is based on observing
dissociations in one or more critical underlying brain proper-
ties, including functional responses, topography, architec-
tonics, and connectivity (Felleman and Van Essen 1991;
Carmichael and Price 1994, 1996). In the macaque, decades of
research using these modalities have provided a reasonable
first-order approximation of a complete cortical areal parcella-
tion (Lewis and Van Essen 2000; Paxinos et al. 2000; Saleem
et al. 2007; Van Essen et al. 2012; Markov et al. 2014). Although
a limited number of similar areal dissociations have been
identified in humans (e.g., Brodmann 1909; Öngür et al. 2003;
Schleicher et al. 2005), the measurement of these brain proper-
ties often relies either on invasive neural recordings or on
postmortem examinations of brain tissue, both of which are
difficult to obtain for large expanses of cortex in humans. As
such, definitions of cortical areas in humans have lagged
behind those in other primates.

Advances in functional neuroimaging techniques offer the
potential for noninvasive in vivo recording of brain activity. In
principle, cortical areas may be dissociated by their differential
responses to specific task conditions (Petersen et al. 1988).
However, application of this approach to the cortex broadly
has been challenging, as most tasks recruit large networks of
coactivated areas. This lack of specificity makes it difficult to
identify fine dissociations between adjacent and functionally
related areas using a necessarily limited task set.

Recently, a functional magnetic resonance imaging (fMRI)
technique called resting-state functional connectivity (RSFC) has
emerged that may provide one modality for noninvasive parcel-
lation of human cortex. RSFC relies on the observation that, in
the absence of any task, spatially distant regions of cortex
exhibit highly correlated patterns of blood oxygenation level-
dependent (BOLD) activity (Biswal et al. 1995) that are both
spatially structured (Beckmann et al. 2005; Power et al. 2011;
Yeo et al. 2011) and relatively reliable across individuals
(Damoiseaux et al. 2006; Shehzad et al. 2009). While the precise
significance of RSFC is uncertain, accumulating evidence sug-
gests that regions exhibiting RSFC correlations are also function-
ally coactive during tasks (Fox and Raichle 2007; Smith et al.
2009; Biswal et al. 2010). In this view, these correlations ob-
served during the resting state at least partly reflect the statistical
history of regional coactivation (Dosenbach et al. 2007). RSFC
correlations also appear to be at least partly constrained by
structural connections, though regions with no direct structural
connections can also be functionally connected, likely via indir-
ect pathways (Vincent et al. 2007; Honey et al. 2009). Taken to-
gether, this evidence suggests that RSFC measurements reflect
some combination of both a region’s function, in a manner not
limited to any one task, and its direct and indirect connectivity.
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RSFC data may be used to perform areal parcellation via a
recently proposed approach known as boundary mapping
(Cohen et al. 2008; Wig, Laumann, Petersen 2014). The bound-
ary mapping approach relies on the observation that RSFC pat-
terns can abruptly change from one cortical location to a
proximate location, mirroring the abrupt changes in function
or connections that form the basis of cortical area discrimin-
ation in nonhuman primates (Felleman and Van Essen 1991);
these locations of abrupt change may thus represent boundar-
ies between cortical areas. The boundary mapping technique
has previously been used to identify transition zones in limited
sections of cortex, including left lateral parietal cortex (Nelson,
Cohen, et al. 2010; Barnes et al. 2012) and parts of frontal
cortex (Cohen et al. 2008; Nelson, Dosenbach, et al. 2010;
Hirose et al. 2012, 2013), as well as in the whole brain (Wig,
Laumann, Cohen, et al. 2014; Wig, Laumann, Petersen 2014).
Boundaries identified in this way have been shown to (1) Sep-
arate regions with functionally discrete task activation time
courses (Nelson, Cohen, et al. 2010); (2) match functional acti-
vation patterns; (3) correspond well with system-level divi-
sions, but also further subdivide those systems; and (4) match
architectonically defined areal borders between V1 and V2
(Wig, Laumann, Petersen 2014). In summary, boundaries iden-
tified using this technique are reasonable candidates for
borders between cortical areas. However, no previous work
has either used these boundaries to identify cortical areas, or
evaluated the resulting cortical areas. Here we present a
method for identifying and evaluating putative cortical areas
from group-average RSFC-boundary maps.

A parcellation that accurately represents cortical areas of the
brain should have, among others, several properties. First, each
parcel should generally be homogenous, in that it should have a
similar functional connectivity pattern at all points within the
parcel (Craddock et al. 2012; Shen et al. 2013). Second, a parcel-
lation that accurately represents cortical areas should contain
parcels that overlap known human cortical areas that have been
well described with cytoarchitectonics (e.g., Fischl et al. 2008).
Third, a parcellation that accurately represents cortical areas
should have a large scale network structure that is consistent
with the known network structure of the brain (Power et al.
2011; Wig et al. 2011; Yeo et al. 2011). Finally, parcels that
accurately represent cortical areas in group-average data should
serve as reasonable a priori ROIs in individual subjects.
While the known interindividual variability in areal extent (e.g.,
Amunts et al. 2000) means that cortical area locations in individ-
ual subjects are unlikely to precisely match parcels identified
from group-average data, these group-average parcels should
still represent the central tendency of the group. Thus, for any
given parcel, the functional connectivity patterns across subjects
should reflect that level of reliability.

We note that some of these criteria—particularly parcel
homogeneity and overlap with architectonics—are likely to fail
for a minority of cortical areas. For example, some cortical areas
are topographically organized (e.g., somatotopy in somatomo-
tor cortex), such that subregions within the area have different
functional responses (Rao et al. 1995), including different RSFC
responses (Long et al. 2014). These functional dissociations
would likely either reduce the observed RSFC homogeneity of a
parcel representing the area, or result in the delineation of sub-
areal parcels within a single cortical area. These are unavoidable
limitations of any RSFC-based technique.

In this study, we constructed a set of parcels derived from a
group-average RSFC-boundary map that represent putative
cortical areas. We assessed the homogeneity of these parcels,
and we compared those homogeneities against an appropriate
null model. We additionally assessed the homogeneity of these
boundary map-derived parcels using an independent dataset,
collected on a different scanner model at a different institution.
Furthermore, we compared the homogeneity of the boundary
map-derived parcellation with the homogeneities of several
other alternative parcellations (Brodmann 1909; Tzourio-
Mazoyer et al. 2002), including other candidate approaches for
performing whole-brain areal partitioning using RSFC data
(Power et al. 2011; Yeo et al. 2011; Craddock et al. 2012; Shen
et al. 2013). Each of these sets of parcel homogeneities was
also compared with a tailored null model, all within the inde-
pendent dataset. We also identified boundary map-derived
parcels that overlapped with several known human architec-
tonic areas. We further identified the network structure of the
boundary map-derived parcellation and compared this struc-
ture with the network structure identified using all gray matter
points in the brain. Finally, we assessed the level of intersub-
ject reliability of subject-level RSFC patterns from these bound-
ary map-derived parcels.

Methods

For a graphical summary of the methods, see Figure 1.
We acquired two independent datasets: Dataset 1, which we used to

create an RSFC-boundary map and generate parcels; and Dataset 2,
which we used to compare the boundary map-derived parcellation
against other putative areal parcellations.

Dataset 1

Subjects

Data were collected from 120 healthy young adult subjects during
relaxed eyes–open fixation (60 females, mean age = 25 years, age
range = 19–32 years). All subjects were native speakers of English and
right-handed. Subjects were recruited from the Washington University
community and were screened with a self-report questionnaire to
ensure that they had no current or previous history of neurological or
psychiatric diagnosis. Informed consent was obtained from all sub-
jects. The study was approved by the Washington University School of
Medicine Human Studies Committee and Institutional Review Board.

Data Acquisition

Structural and functional MRI data were obtained with a Siemens MAG-
NETOM Trio Tim 3.0-T Scanner (Erlangen, Germany) and a Siemens
12-channel Head Matrix Coil. A T1-weighted sagittal magnetization-
prepared rapid acquisition gradient-echo (MP-RAGE) structural image
was obtained [time echo (TE) = 3.08 ms, time repetition, TR(partition)
= 2.4 s, time to inversion (TI) = 1000 ms, flip angle = 8°, 176 slices with
1 × 1 × 1 mm voxels; Mugler and Brookeman 1990]. An auto align pulse
sequence protocol provided in the Siemens software was used to align
the acquisition slices of the functional scans parallel to the anterior
commissure–posterior commissure plane of the MP-RAGE and cen-
tered on the brain. This plane is parallel to the slices in the Talairach
atlas (Talairach and Tournoux 1988).

During functional MRI data acquisition, subjects were instructed to
relax while fixating on a black crosshair that was presented against a
white background. Functional imaging was performed using a BOLD
contrast-sensitive gradient-echo echo-planar imaging (EPI) sequence
(TE = 27 ms, flip angle = 90°, in-plane resolution = 4 × 4 mm). Whole-
brain EPI volumes (MR frames) of 32 contiguous, 4-mm-thick axial
slices were obtained every 2.5 s. A T2-weighted turbo spin-echo
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structural image (TE = 84 ms, TR = 6.8 s, 32 slices with 1 × 1 × 4 mm
voxels) in the same anatomical planes as the BOLD images was also ob-
tained to improve alignment to an atlas. The number of volumes collected
from subjects ranged from 184 to 729 (mean = 336 frames, 14.0 min).

Dataset 2

Subjects

Data were collected from 108 healthy young adult subjects during
relaxed eyes–open fixation (69 females, mean age = 21 years, age range
= 18–33 years). Subjects were recruited from the Dartmouth College com-
munity and were screened with a self-report questionnaire to ensure that
they had no neurological problems, were not using psychoactive medica-
tions, and had normal or corrected-to-normal vision. Participants were
given course credit or monetary compensation in exchange for their par-
ticipation and were provided informed consent in accordance with the
guidelines set by the Committee for the Protection of Human Subjects at
Dartmouth College. These subjects were selected as the subjects with
minimal in-scan head motion from a larger cohort of 746 subjects.

Data Acquisition

Structural and functional MRI data were obtained with a Philips
Achieva 3.0-T scanner and a 32-channel phased array coil. A
T1-weighted sagittal MP-RAGE structural image was obtained (TE = 4.6
ms, TR = 9.9 ms, flip angle = 8°, 160 slices with 1 × 1 × 1 mm voxels).

During functional MRI data acquisition, subjects were instructed to
relax while fixating on a white crosshair that was presented against a
black background. Functional imaging was performed using a BOLD
contrast-sensitive gradient-echo echo-planar sequence (TE = 35 ms,
flip angle = 90°, in-plane resolution = 3 × 3 mm, sense factor = 2).
Whole-brain EPI volumes (MR frames) of 36 3.5-mm-thick axial slices
were obtained every 2.5 s with 0.5 mm skip between slices. Two 5 min
runs (240 volumes total) were collected from each subject.

Further analysis of both datasets was identical, except where noted.

Preprocessing

Functional images were first processed to reduce artifacts (Miezin et al.
2000). These steps included (1) Correction of odd versus even slice
intensity differences attributable to interleaved acquisition without gaps,
(2) correction for head movement within and across runs, and (3) across-
run intensity normalization to a whole-brain mode value of 1000. Atlas
transformation of the functional data was computed for each individual
using the MP-RAGE scan. Each run was then resampled to an isotropic
3-mm atlas space (Talairach and Tournoux 1988), combining movement
correction and atlas transformation in a single cubic spline interpolation
(Lancaster et al. 1995; Snyder 1996). All subsequent operations were
performed on the atlas-transformed volumetric time series.

Functional Connectivity Processing

Additional preprocessing steps to reduce spurious variance unlikely to
reflect neuronal activity were executed as recommended in Power et al.
(2014). RSFC preprocessing was performed in two iterations. In the

first iteration, the processing steps were (1) demeaning and detrending,
(2), multiple regression including: whole-brain, ventricular and white
matter signals, and motion regressors derived by Volterra expansion
(Friston et al. 1996), and (3) a band-pass filter (0.009 Hz < f < 0.08 Hz).

Following the initial RSFC preprocessing iteration, temporal masks
were created to flag motion-contaminated frames. Motion-contami-
nated volumes were identified by frame-by-frame displacement (FD,
described in Power et al. 2012). Volumes with FD > 0.2 mm (Dataset
1)/FD > 0.25 mm (Dataset 2; different thresholds were used based on
observations of different motion “noise floors” in the two datasets, fol-
lowing Power et al. 2012), as well as uncensored segments of data
lasting fewer than 5 contiguous volumes, were flagged for removal. In
Dataset 1, these masks censored 16 ± 14% (range: 0.7–66%) of the data
across subjects; on average, subjects retained 279 ± 107 volumes
(range: 151–719). In Dataset 2, these masks censored 8 ± 2% (range:
4–12%) of the data across subjects; on average, subjects retained
221 ± 5 volumes (range: 212–230).

The data were then reprocessed in a second iteration, incorporating
the temporal masks described above. This reprocessing was identical
to the initial processing stream, but ignored censored data. Finally,
the data were interpolated across censored frames using least squares
spectral estimation (Power et al. 2014) of the values at censored
frames, so that continuous data can be passed through (4) a band-pass
filter (0.009 Hz < f < 0.08 Hz) without contaminating frames near high
motion frames (Power et al. 2012; Carp 2013). It should be noted that,
even following this processing, censored frames are still ignored
during the final correlation calculations between time courses.

Surface Processing and CIFTI Creation

Surface generation and sampling of functional data to anatomical sur-
faces followed a similar procedure as described in Glasser et al. (2013).
First, following volumetric registration, anatomical surfaces were gen-
erated from each subject’s MP-RAGE image using FreeSurfer’s default
recon-all processing pipeline (version 5.0). This pipeline included
brain extraction, segmentation, generation of white matter and pial sur-
faces, inflation of the surfaces to a sphere, and surface shape-based
spherical registration of the subject’s “native” surface to the fsaverage
surface (Dale and Sereno 1993; Dale et al. 1999; Fischl et al. 1999;
Ségonne et al. 2004, 2005). The fsaverage-registered left and right
hemisphere surfaces were then brought into register with each other
(Van Essen et al. 2012) and resampled to a resolution of 164 000 verti-
ces using Caret tools (Van Essen et al. 2001). Finally, each subject’s
surface was downsampled to a 32 492 vertex surface (fs_LR 32k),
which allowed for analysis in a computationally tractable space while
still oversampling the underlying resolution of BOLD data used in sub-
sequent analyses. The above procedure results in a surface space that
allows for quantitative analysis across subjects. A script for this proced-
ure is available on the Van Essen Lab website (Freesurfer_to_fs_LR
Pipeline, http://brainvis.wustl.edu/wiki/index.php/Caret:Operations/
Freesurfer_to_fs_LR).

Surface processing of the BOLD data proceeded through the follow-
ing steps. First, the BOLD volumes are sampled to each subject’s indi-
vidual “native” midthickness surface (generated as the average of the

Figure 1. Visual outline of analysis methods.
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white and pial surfaces) using the ribbon-constrained sampling pro-
cedure available in Connectome Workbench 0.84 that samples data
from voxels within the gray matter ribbon (i.e., between the white and
pial surfaces; Glasser and Van Essen 2011). Voxels with a time series
coefficient of variation 0.5 SDs higher than the mean coefficient of vari-
ation of nearby voxels (within a 5-mm sigma Gaussian neighborhood)
are excluded from the volume to surface sampling, as described in
Glasser et al. (2013). Once sampled to the “native” surface, time courses
were deformed and resampled from the individual’s “native” surface to
the 32k fs_LR surface. Finally, the time courses were smoothed along
the 32k fs_LR surface using a Gaussian smoothing kernel (σ = 2.55).

These surfaces are then combined with volumetric subcortical and
cerebellar data into the Connectivity Informatics Technology Initiative
(CIFTI) format using Connectome Workbench (Glasser et al. 2013),
creating full brain time courses that exclude nongray matter tissue.
Subcortical (including accumbens, amygdala, caudate, hippocampus,
pallidum, putamen, and thalamus) and cerebellar voxels were selected
based on a mask generated by finding the modal assignment of voxels
by Freesurfer segmentation across all subjects. Volumetric data were
smoothed within this mask with a Gaussian kernel (σ = 2.55) before
being combined with the surface data.

BoundaryMap Generation

RSFC-boundary mapping identifies transitions in resting-state correla-
tions across the cortical surface. The original approach described in
Cohen et al. (2008) applied 2D image processing tools to BOLD data
sampled from patches on a flattened cortical surface. The current im-
plementation performs all calculations directly on a closed surface top-
ology and applies to the entire cortical surface. The RSFC-Boundary
Mapping procedure is implemented using Connectome Workbench
and Matlab (Version 7.14, Mathworks, Inc., Sherborn, MA, USA) and
follows a similar sequence as described in Wig, Laumann, Petersen
(2014) with some notable distinctions that will be highlighted below.

For each subject, the time course of each surface vertex was corre-
lated with that from every other surface vertex and subcortical voxel in
the CIFTI space. Each correlation map was transformed using Fisher’s
r-to-z transformation. For each hemisphere, the subject’s RSFC map
similarity matrix was created by calculating the pairwise spatial corr-
elations between all vertex’s RSFC correlation maps, producing a
32k × 32k matrix. To find positions where RSFC similarity exhibited
abrupt changes, the first spatial derivative was computed using the
“cifti-gradient” function in Connectome Workbench. This resulted in
32k gradient maps for each hemisphere. These gradient maps were
then averaged across subjects. At this point, instead of using nonmaxi-
ma suppression to identify boundaries in the gradient maps, as in Wig,
Laumann, Petersen (2014), we used the “watershed by flooding” algo-
rithm (Beucher and Lantuejoul 1979), implemented using custom
Matlab scripts. This standard image segmentation procedure defines
regions in the gradient maps by starting from local minima (vertices
with values smaller than of their neighbors that were <3 vertices away)
and iteratively growing until reaching locations that could ambiguously
be assigned to more than one region. These boundary locations iden-
tify putative boundaries in the gradient maps. Finally, the 32k bound-
ary maps from each hemisphere were averaged to indicate the
frequency with which a given vertex was identified as a boundary.

BoundaryMap Reliability

To determine the reliability of the boundary maps, we calculated the
degree of spatial correlation between the boundary maps from the
two datasets as an overall measure of reliability. To further determine
whether the strongest boundaries in particular were highly reliable, we
then thresholded the two boundary maps to retain the top quartile of
boundary values (i.e., retaining the cortical vertices most likely to be
boundaries) and assessed the overlap of the two thresholded boundar-
ies by calculating Dice’s coefficient.

Parcel Creation

Parcels were created from the Dataset 1 boundary map only using
custom Matlab scripts. We identified all local minima on the boundary

map image as seeds to be used for parcel creation. Parcels were grown
from these seeds using the “watershed by flooding” procedure de-
scribed above, such that parcels were allowed to expand outward from
the seed until they either reached a height threshold on the boundary
map or met another parcel. This resulted in a large number of parcels
tiling the cortical surface (>1000), with one-vertex wide borders (i.e.,
the watershed zones) separating them. Pairs of parcels were then
merged together based on the values of the boundary map in the
border vertices between the parcels, which represent the local change
in connectivity patterns, and therefore can be considered a measure of
the dissimilarity of the parcels. If the median boundary value between
two parcels was below a threshold, then the parcels were considered
not sufficiently dissimilar and were merged together. We visually ex-
amined multiple border thresholds, and the optimal threshold that cap-
tured all major divisions in the boundary map image appeared to be at
the 60th percentile of the values in the boundary map (see Supplemen-
tary Fig. 3 for parcellations resulting from other threshold values). As
areas of the cortex with very high boundary map values are likely to be
transition zones between parcels rather than parcels themselves, we
then eliminated all parcels and portions of parcels in vertices with high
boundary map values (defined as the top quartile of values in the
boundary map).

This procedure produced an anatomically plausible number of
parcels that visually appeared to fit the contours of the boundary map.
Parcels in low-SNR areas (defined as regions with mean BOLD signal
<750, consisting primarily of orbitofrontal cortex and anterior ventral
lateral temporal lobe; see Ojemann et al. 1997; Wig, Laumann, Petersen
2014), which are likely to be noisy and unreliable, were excluded from
further analysis. Finally, we eliminated parcels containing fewer than
15 cortical vertices (∼30 mm2) because the effective resolution of the
BOLD data (originally 4 × 4 × 4 mm, then upsampled and smoothed on
the surface) suggested that accurate identification and evaluation of
objects of that small might be dubious.

Parcel Evaluation

The parcel creation procedure outlined above creates parcels based on
strong boundaries that indicate large differences in connectivity pat-
terns between adjacent cortical regions. However, a parcel that accur-
ately represents a cortical area should not only be distinct from its
neighbors but, in most cases (i.e., nontopographic regions), it should
also have a single, consistent connectivity pattern across the parcel—in
other words, its connectivity pattern should be homogenous within
the parcel. Thus, the degree to which the created parcels are homogen-
ous can serve as a quality metric of the parcellation (Craddock et al.
2012; Shen et al. 2013). We assessed the homogeneity of the parcella-
tion using the following technique: for each parcel, we computed the
average whole-brain connectivity pattern of each vertex in the parcel
across subjects in Dataset 1. We then entered the connectivity patterns
from all vertices in a parcel into a principal components analysis. The
homogeneity of the parcel was calculated as the percent of total vari-
ance across all vertices’ connectivity patterns that can be explained by
the first (largest) principal component. A higher homogeneity value in-
dicates that the connectivity patterns of vertices within the parcel can
be better described by a single connectivity pattern. We then averaged
the homogeneity values across parcels to determine the overall homo-
geneity of the whole parcellation. Compared with other metrics of
parcel homogeneity, this novel metric has the advantage of being
highly interpretable: The homogeneity of a parcel represents the
percent of variance in the parcel explained by the most common con-
nectivity pattern. Homogeneity analyses conducted with a previously
devised homogeneity metric (average z-transformed pairwise correla-
tions between all vertex connectivity patterns within a parcel, from Crad-
dock et al. 2012) yielded very similar results (Supplementary Fig. 11).

However, we note that any metric of parcel homogeneity is likely to
be dependent on parcel size, with smaller parcels being intrinsically
more homogenous. To illustrate this fact, consider that a large, perfectly
homogenous parcel could be divided in half, and both halves would
still be perfectly homogenous. Furthermore, a direct comparison of
the homogeneities of the large and small parcels would not indicate
one scheme as superior to the other, even though the large perfectly
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homogenous parcel is much more likely to represent a single cortical
area. Even in a purely random parcellation scheme, randomly placed
small parcels are more likely to contain a single connectivity pattern
than randomly placed large parcels, which will more often span mul-
tiple cortical areas. Thus, any homogeneity-based evaluation of a par-
cellation must be compared with a null model—it should consider not
only how homogenous the parcels are, but also whether they are more
homogenous than would be expected from randomly placed parcels of
the same size and shape. Thus, we assessed the degree to which a par-
cellation was more homogenous than a null model consisting of many
parcellations with randomly placed parcels of the same size, shape, and
relative position to each other.

To create such random parcellations, we rotated each hemisphere of
the original parcellation a random amount around each of the x, y, and
z axes on the spherical expansion of the 32k fs_LR cortical surface.
This procedure randomly relocated each parcel while maintaining the
relative positions of parcels to each other. Each parcel was then slightly
dilated or contracted to adjust for vertices gained or lost due to the non-
uniform vertex density across the surface of the sphere, thus maintain-
ing the same number of vertices within the rotated parcel while
approximately maintaining the same shape. Random rotation was re-
peated 1000 times to generate distributions of average homogeneities
calculated from randomly placed versions of each tested parcellation.
Notably, in any random rotation, some parcels will inevitably be
rotated into the medial wall (where no data exist) or into low-SNR
regions (where we believe the homogeneity of data to be particularly
low). The homogeneity of a parcel rotated into one of these regions
was not calculated; instead, we assigned this parcel the average homo-
geneity of all random versions of the parcel that were rotated into valid
(high-SNR) cortical regions.

The average homogeneity of the original parcellation was compared
with the homogeneities of the set of rotated parcellations. We assessed
(1) the number of rotated parcellations that had worse average homo-
geneity than the original parcellation and (2) the difference between the
original parcellation homogeneity and the distribution of random homo-
geneities, calculated as a Z-score [(original homogeneity−mean of
random homogeneities)/standard deviation of random homogeneities].

Comparison of Parcel Homogeneity Against Alternative

Parcellations

We compared the homogeneities of boundary-derived parcels against
those of several alternative parcellations, created using a variety of
methods (and excluding all parcels in low-SNR regions). These alterna-
tive parcellations included “Power ROIs”: A set of functional ROIs
derived from a combination of meta-analytic and functional connectiv-
ity analyses (Power et al. 2011); “Craddock”: A parcellation created by
the NCUT method (Craddock et al. 2012); “Shen”: A parcellation
created using a multiclass spectral clustering approach to the NCUT cri-
terion (Shen et al. 2013); “Power communities”: A parcellation created
using the Infomap community detection technique (Power et al. 2011);
“Yeo”: A parcellation created using a signal clustering technique (Yeo
et al. 2011); “Brodmann”: A parcellation created from canonical Brod-
mann areas (Brodmann 1909); and “AAL”: A parcellation created from
the Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al.
2002). Each parcellation was sampled to the cortical surface where
necessary, and parcels containing <15 cortical vertices outside of
low-SNR regions were eliminated from further analysis. For parcella-
tion approaches with multiple solutions (the Craddock and Shen par-
cellations), we selected the solution with the number of parcels most
similar to the boundary map-derived parcellation. We repeated these
analyses for all other available Craddock and Shen parcellations with at
least 50 parcels; these produced similar results to the chosen parcella-
tion (Supplementary Figs 8 and 9). Table 1 provides additional details
for each of these parcellations.

To ensure that the boundary map-derived parcellation created using
Dataset 1 was not advantaged by being tested in the same dataset, we
tested all parcellations’ homogeneity using Dataset 2. For each parcella-
tion scheme, we evaluated homogeneity using Dataset 2, and com-
pared it with the homogeneity of randomly rotated versions of the
parcellation.

Comparison of Parcels with Known Cytoarchitectonic Areas

If the boundary-derived parcellation created above is an accurate
representation of the cortical areas in the brain, then it should contain
parcels that are similar to known human cytoarchitectonic areas.
We visually compared the boundary map-derived parcels to the prob-
abilistic borders of areas 17, 1, 2, 3 (combining 3a and 3b), 4 (combin-
ing 4a and 4p), and hOc5 that were mapped to the 32k fs_LR by Van
Essen et al. (2012) (publicly available through the SumsDB database,
http://sumsdb.wustl.edu:8081/sums/index.jsp) based on cytoarchitec-
tonic mapping by Fischl et al. (2008).

Identification of Parcel Network Structure

If the boundary-derived parcels created above are accurate representa-
tions of the cortical areas in the brain, then the network structure of
the temporal correlations between these parcels should be highly
similar to previously published descriptions of the network structure
of the temporal correlations between all gray matter voxels.

Closely following Power et al. (2011), we assessed the network
structure of the parcel-wise graph using the Infomap algorithm
(Rosvall and Bergstrom 2008). In each subject, we calculated the
average time course of each parcel from Dataset 1, and cross-correlated
these time courses to form the parcel-wise correlation matrix. These
correlation matrices were then Fisher-transformed and averaged across
subjects. The resulting average correlation matrix was thresholded at a
variety of correlation thresholds calculated to create connection matri-
ces with specific degrees of sparseness (ranging from 1 to 3% of all
possible connections surviving the threshold, in steps of 0.1%). Fur-
thermore, connections passing these thresholds were removed if the
geodesic distance along the cortex between the centroids of the con-
nected parcels was <20 mm. The resulting connection matrices at each
threshold were then evaluated using the Infomap algorithm, which as-
signed parcels to communities at each correlation threshold based on
the maximization of within-community random walks in the connec-
tion matrix. Communities with 5 or fewer parcels were eliminated from
consideration, and those parcels were considered unassigned.

We then collapsed across Infomap thresholds using a “consensus”
procedure, with the goal of incorporating information both from more
sparse thresholds, in which smaller networks were likely to emerge,
and more dense thresholds, in which more parcels were likely to be
successfully assigned. In this procedure, each node was given the com-
munity assignment it had at the sparsest possible threshold at which it
was successfully assigned. The node assignments were “cleaned up”
by removing small communities that were only present at one thresh-
old. This procedure is nearly identical to the method used to collapse
previously published voxel-wise community assignments (Power et al.
2011) across thresholds to create a single network map (the “Power
communities”map described above). We note that this procedure does
not attempt to comprehensively describe all features of the network,
and may be especially poor at capturing nonhierarchical network fea-
tures (which do occur infrequently). Rather, it provides a single,
summary view of the brain’s networks.

We assessed the overlap between the consensus parcel-wise network
communities and the surface-mapped voxel-wise Power consensus com-
munities described above. Overlap was calculated as the number of cor-
tical vertices that had the same community identity in both parcel- and
voxel-wise Infomap analyses divided by the total number of vertices that
were assigned to a community in both analyses.

Use of Parcels in Individual Subjects

Ideally, the boundary-derived parcellation could be used to interrogate
individual subject data. However, applying a group-level parcellation
to individual subjects should only be performed if there is reasonable
confidence that the parcellation truly does reflect the central tendency
of the overall group, such that data in a given parcel from an individual
will tend to look like the average data in that parcel across individuals.
Thus, to determine whether the parcellation derived from the group
boundary map could also be used to investigate individual subjects, we
examined how reliably individual subjects’ parcel connectivity maps
looked like the group-average parcel connectivity maps.
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For each parcel in each Dataset 1 subject, we calculated the whole-
brain subject-level connectivity pattern of the parcel by extracting the
parcel’s mean time course in that subject’s data and correlating it
against the time courses from every other gray matter point in the
brain. We then averaged the Fisher’s Z-transformed correlation pat-
terns across subjects. Finally, we calculated the spatial correlation
between the group-average Fisher-transformed connectivity pattern
for that parcel and all of the Fisher-transformed subject-level con-
nectivity patterns for the same parcel. This analysis produced a
subject-group similarity (i.e., spatial correlation value) for each parcel
in each subject.

We then explored two dimensions of variability in connectivity pat-
terns: at the subject level and at the parcel level. First, we examined
whether some subjects tended to be more or less similar to the group
average than others, and whether the degree of similarity was related
to the quantity of data remaining for each subject after motion correc-
tion. This was done by averaging similarity scores across parcels, for
each subject, and then plotting these subject average scores against the
number of uncensored time points in each subject’s resting-state scan.
Second, we examined whether some parcels’ subject-specific connect-
ivity patterns tended to be more or less similar to the group average
than others. This was done by averaging similarity scores across sub-
jects, for each parcel. Parcels with low average similarity scores can be
considered unreliable for use in cross-subject analysis.

Results

Boundary Map Characteristics

Visually, the group boundary map (Fig. 2) appears very similar
to our previously published boundary map (Wig, Laumann,
Petersen 2014), though close examination indicates that the
present boundary map appears cleaner, with sharper boundar-
ies, and lower minimum boundary values. Comparison of his-
tograms of the values in the current boundary map and the
previously published boundary map (Supplementary Fig. 1)
supports this observation, as the value distribution of the
current map is markedly shifted to the left, suggesting a reduc-
tion in measurement noise in the map.

Boundary Map Reliability

Boundary maps from the two datasets appeared visually very
similar. When thresholded at the top quartile of boundary map

values, the boundary maps from the two datasets overlapped
closely (Supplementary Fig. 2), with a Dice’s coefficient of 0.71.

Parcel Creation

The parcel creation procedure produced 422 cortical parcels
(206 in the left hemisphere and 216 in the right hemisphere;
Fig. 3). Of these parcels, 356 (178 in each hemisphere) parcels
were at least partly (≥15 vertices, ∼30 mm2) outside low-SNR
areas (Wig, Laumann, Petersen 2014). The remaining 66
parcels were considered unreliable due to low SNR and were
excluded from further analysis.

Parcel Homogeneity

We calculated the homogeneity of each of these parcels within
Dataset 1. Homogeneity represents the degree to which the
parcel has a uniform connectivity pattern, and is thus a metric
of parcel quality. Parcel homogeneities are mapped onto the
brain as shown in Figure 3. Mean parcel homogeneity across
all parcels was 89.1 ± 5.8% (maximum 98.4% and minimum
61.2%).

We then compared the mean homogeneity of this parcella-
tion with a null model consisting of mean homogeneities from
1000 matched parcellations randomly rotated on the cortex.
We observed that the mean homogeneity of the boundary-
derived parcellation was much higher than any of the 1000 ran-
domly rotated null model parcellation homogeneities (Fig. 3);
the parcellation was thus significantly more homogenous than
random at P < 0.001. These null model parcellations had a
mean homogeneity of 85.6%, with a standard deviation of
0.29% across parcellations; the boundary-derived parcellation
had a homogeneity Z score of 12.07 (i.e., was 12.07 SD away
from the mean of the null model parcellations).

We further examined the relationship between parcel homo-
geneity and parcel size to determine whether the homogeneity
measure was dependent on parcel size. The homogeneities
of the real parcels (in red) and null model parcels (in gray,
medians in black) are plotted against parcel size in Figure 3. We
observed a close relationship between homogeneity and parcel
size that can be appreciated with the Lowess fit line plotted on

Table 1

Previously published parcellations compared against present boundary map-derived parcellation

Name Reference Number of parcels Notes

Power ROIs ROI centers from Power et al. (2011), with subcortical ROIs excluded; available
from http://www.nil.wustl.edu/labs/petersen/Resources_files/Consensus264.xls

226 (111 L, 115 R) 10 mm radius circles drawn around cortical locations.
ROIs based, in part, on the same dataset used to create
the boundary map.

Craddock Craddock et al. (2012); available from http://ccraddock.github.io/cluster_roi/ 353 (175 L, 178 R) Sampled from volume to surface.
Used 400-cluster parcellation generated by two-level group
clustering using temporal correlation.

Shen Shen et al. (2013); available from http://www.nitrc.org/frs/?group_id=51 213 (106 L, 107 R) Sampled from volume to surface.
Used 300-cluster parcellation.

Power
communities

Power et al. (2011); available from http://sumsdb.wustl.edu:8081/sums/index.jsp 103 (53 L, 50 R) Sampled from volume to surface.
“Consensus” procedure applied to collapse across multiple
thresholds.
Separate parcel created from each spatially contiguous community
cluster.

Yeo Yeo et al. (2011); available from http://sumsdb.wustl.edu:8081/sums/index.jsp 98 (49 R, 49 L) Used 17-cluster parcellation.
Separate parcel created from each spatially contiguous cluster.

Brodmann Brodmann (1909); available from http://sumsdb.wustl.edu:8081/sums/index.jsp 77 (39 L, 38 R) Sampled from volume to surface.

AAL Tzourio-Mazoyer et al. (2002); available from http://www.gin.cnrs.fr/AAL/
aal_for_SPM8.tar.gz

74 (36 L, 38 R) Sampled from volume to surface.
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top; this relationship was observed both for the boundary-
derived parcels (in red) and for the random-matched parcels
(in gray; mean homogeneities of random parcels in black).

In summary, parcels derived from boundary maps are
highly homogenous. Overall, this parcellation is also much
more homogenous than a null model consisting of randomly
replaced versions of the parcellation, suggesting that the
present parcels are well placed. We further established that the
homogeneity measure has a strong relationship with parcel
size, justifying our use of the present null model, which ac-
counts for parcel size and shape.

Comparison of Parcel Homogeneity Against Alternative

Parcellations

To demonstrate external validity of the parcellation, we evalu-
ated the homogeneity of the Dataset 1 boundary map-derived
parcels using data from Dataset 2. The mean homogeneity
across the boundary map-derived parcels was 87.4 ± 6.4%,
which was similar to, but slightly lower than, the homogene-
ities of the parcels derived from and tested in Dataset 1
(89.1 ± 5.8%, as stated above).

As above, we compared the homogeneities of the boundary
map-derived parcels with the null model consisting of randomly
rotated versions of the parcellations. Once again, the boundary
map-derived parcellation tested in Dataset 2 was more homo-
genous than any randomly rotated parcellation (P < 0.001); it
had a Z score of 10.91 compared with the distribution of
random parcellations.

We further evaluated the homogeneity of several alternative
parcellations using Dataset 2. Parcel homogeneities from these
alternative parcellations can be seen in Figure 4; average
homogeneities of each parcellation are listed in Table 2.

We then compared the homogeneities of each alternative
parcellation against the homogeneities of a null model consisting
of 1000 randomly placed versions of the parcellation. See
Table 2 for comparisons to the null model parcellations. The
Power ROIs, Yeo parcels, and Brodmann parcels were more
homogenous than any of their null model parcellations, while
the Shen parcellation and Power communities were significant-
ly better than the set of random parcellations, but not better
than all possible random parcellations. The Craddock and AAL
parcellations were not significantly more homogenous than
their null models.

Finally, we examined homogeneity versus parcel size rela-
tionships for the boundary map-derived parcellation, as well
as for each alternative parcellation (Supplementary Fig. 4). Re-
lationships between homogeneity and size were observed for
each parcellation and the null model of each parcellation,
though size–homogeneity relationships appeared weaker for
parcellations with less variance in parcel size, as would be ex-
pected. When the fit lines of all the parcellations and random
parcellations were plotted on the same scale (Supplementary
Fig. 5), it became evident that while all parcels exhibited
homogeneity decreases as size increased, the boundary map-
derived parcels had superior homogeneity even when parcel
size was taken into account.

Comparison of Parcels with Known Cytoarchitectonic

Areas

We observed a strong visual overlap between the boundary
map-derived parcels and several known cytoarchitectonic areas.
The left side of Figure 5 illustrates these overlaps on the left
hemisphere (see Supplementary Fig. 6 for right hemisphere
overlap). The architectonic boundary of area 17 almost perfectly
encompassed a single RSFC-defined parcel in both hemi-
spheres. In contrast, area hOc5 also appeared to correspond
with a single parcel in the left hemisphere, but that parcel ex-
tended significantly beyond the probabilistic border of the area.
In the right hemisphere, no parcel corresponded with area
hOc5. Area 1 did not correspond with any parcels, falling direct-
ly on top of a border between parcels in both hemispheres.

In both hemispheres, cytoarchitectonically defined areas 2, 3,
and 4 aligned well with a string of parcels running down the
pre- and postcentral gryri. Taken together, these strings of
parcels matched areas 3 and 4 almost perfectly, and overlapped
most of area 2, failing only to capture a ventral posterior section
of the area. Thus, we hypothesized that while the parcels do not
conform well to strict anatomical definitions of cortical areas,
they may be capturing some unknown functional subdivisions
within the areas.

One possible functional subdivision these parcels could
be capturing is the known somatotopic divisions within areas
2–4, in which dorsomedial somatomotor cortex receives
sensory input and projects motor output to the feet, dorsolat-
eral somatomotor cortex to the hands, and ventrolateral soma-
tomotor cortex to the mouth and tongue. We conducted a post

Figure 2. RSFC-boundary map from Dataset 1. Bright colors indicate locations where abrupt transitions in RSFC patterns were reliably found across many cortical vertices,
representing putative boundaries between cortical areas. Dim colors represent relatively stable RSFC patterns.
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hoc investigation of this possibility using results from a motor
fMRI task collected as part of the Human Connectome Project.
This task involved blocks of cued left or right finger tapping,
left or right toe squeezing, and tongue movement (see Barch
et al. 2013 for details). Preliminary findings from this task con-
ducted in 20 subjects were presented in Barch et al. (2013); the
present investigation used results from 219 subjects, analyzed
using the same procedures as in Barch et al. (2013). We thre-
sholded these data at a very high statistical threshold (arbitrar-
ily selected to be Z > 8.0, though similar results were observed
for any threshold between Z > 5.0 and Z > 10.0) and examined
the overlap between the task activations and the various
parcels in the pre- and postcentral gyri.

We observed that each task activation cluster very well-
matched multiple parcels in the pre- and postcentral gyri (left
hemisphere activations shown in Fig. 5, right; see Supplemen-
tary Fig. 6 for right hemisphere activations). The correspondence
was particularly clear for the hand and tongue activation clus-
ters. The left hemisphere (though not right hemisphere) foot
cluster extended anteriorly and posteriorly to the pre- and post-
central gyri. Importantly, the dorsal/ventral borders of each ac-
tivation cluster conformed very well to some of the parcel

borders that split the putative cytoarchitectonic areas into mul-
tiple parcels. This suggests that these borders represent differ-
ences in function within a topographically organized area that
are not captured by cytoarchitectonics.

Parcel Network Structure

We conducted community detection in the parcel-wise graph
across many density thresholds (see Supplementary Fig. 7 for
results from all thresholds), and we collapsed across thresholds
using a consensus procedure. There was a considerable visual
overlap between the cross-threshold consensus parcel-wise
communities (Fig. 6, top) and the Power communities (Fig. 6,
middle). Every community found in the Power communities
was also observed in the parcel-wise communities except for
one in the anterior medial temporal lobe. These included all of
the classic large scale RSFC networks/systems that have been
consistently identified using multiple techniques (community
detection, Power et al. 2011; independent components analysis,
Beckmann et al. 2005; Smith et al. 2009; signal clustering, Yeo
et al. 2011), such as Visual (dark blue in Fig. 6), Dorsal somato-
motor (light blue), Ventral somatomotor (orange), Auditory

Figure 3. Boundary map-derived parcels are both highly homogenous and more homogenous than a null model. Top: 422 cortical parcels were created from the Dataset 1 boundary
map. Bottom left: homogeneity of each parcel, calculated as the percent of the variance in RSFC patterns explained by the parcel’s first PCA eigenvariate. Green indicates a parcel is
>70% homogenous; red indicates >90% homogenous. Bottom middle: average homogeneity across parcels (red dot) was significantly higher than that across parcels of each null
model iteration (black dots). Bottom right: homogeneity of individual real parcels (red dots) was higher than that of null model parcels (gray dots) when plotted against parcel size.
Black dots indicate the median homogeneity across iterations for each null model parcel. Lowess fit lines in red and black emphasize the homogeneity–size relationship for the real
and null model parcels, respectively.
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(light purple), Default (red), Frontoparietal (yellow), Dorsal at-
tention (green), Cingulo-opercular (purple), Ventral attention
(teal), and Salience (black). They also included a number of less
well-known systems that have been identified only in more
recent investigations (Power et al. 2011; Yeo et al. 2011), such as
(1) A superior temporal sulcus-centered community (pink in
Fig. 6); (2) a community in the anterior and posterior lateral
frontal cortex, ventral inferior parietal lobule, and dorsomedial
prefrontal cortex (tan); (3) a community in retrosplenial and

ventral temporal cortex (white); and (4) a community in poster-
ior cingulate and ventral posterior precuneus (medium blue).
Meanwhile, only one community emerged in the parcels was not
found in the Power communities: A community in the marginal
sulcus and frontal eye fields (colored magenta in Fig. 6, top).

Overall, the overlap between the two methods was 71.2%.
Multiple parcels with 100% overlap were observed in medial
prefrontal, parietal, and occipital cortices, anterior and poster-
ior insulae, and pre- and postcentral gyri. In contrast, parcels
with poor overlap between the two methods were observed in
lateral occipital and retrosplenial cortex, marginal sulcus, and
frontal eye fields (Fig. 6, bottom).

Use of Parcels in Individual Subjects

We examined how similar the group-average parcel connec-
tivity patterns were to the connectivity patterns seeded from
the same parcel in each individual. Across all subjects and
parcels, the average Fisher-transformed spatial correlation
(Z(r)) between subject and group connectivity patterns was
0.57 ± 0.15. However, we observed that the average Z(r) across
parcels was not uniform across subjects, ranging from 0.34 to
0.69. We tested whether this variability was related to how
much data had been collected on a subject. We observed a

Figure 4. When tested in an independent dataset, the boundary map-derived parcellation is more homogenous than any other parcellation, and does better relative to its null model
than any other parcellation. Top: parcel homogeneities of each competing parcellation when tested in Dataset 2. Bottom: average homogeneity across parcels of each parcellation
(red dots) compared with the average homogeneity across parcels of each of 1000 null model iterations (black dots), which vary in homogeneity because of differing parcel sizes.
***indicates the parcellation was more homogenous than all of its 1000 null model iterations (i.e., P< 0.001); *indicates the parcellation was more homogenous than at least 950

of its null model iterations (P< 0.05).

Table 2

Average homogeneity and comparison of homogeneity against a null model for each parcellation

Parcellation Mean ± SD homogeneity
(tested in Dataset 2)

Number of null model
iterations with worse
homogeneity

Z-score relative
to null model

Boundary
map-derived

87.4 ± 6.4% 1000 (P< 0.001) 10.91

Power ROIs 83.0 ± 9.7% 1000 (P< 0.001) 3.29
Craddock 79.5 ± 10.4% 871 (P= 0.129) 1.12
Shen 74.6 ± 11.6% 960 (P= 0.040) 1.71
Power
communities

74.6 ± 15.7% 976 (P= 0.024) 1.97

Yeo 72.6 ± 14.9% 1000 (P< 0.001) 5.70
Brodmann 66.1 ± 14.0% 1000 (P< 0.001) 3.51
AAL 63.2 ± 11.7% 920 (P= 0.080) 1.38
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nonlinear relationship between the number of time points ana-
lyzed and the average subject-group Z(r) across parcels (Fig. 7,
left). The average Z(r) for 84 subjects with <300 uncensored
time points (12.5 min) ranged from 0.35 to 0.64, with 48 sub-
jects having a Z(r) <0.55, but the average Z(r) for 36 subjects
with >300 uncensored time points ranged from 0.56 to 0.68.

We also observed that subject-group Z(r)s were not uniform
across different parcels, ranging from 0.32 to 0.73 (Fig. 7, top
right). Specifically, parcels in medial occipital cortex, lateral
and medial parietal cortex, insular cortex, medial prefrontal
cortex, and pre/postcentral gyrus tended to have a Z(r) around
0.6 or above, with parietal Default mode parcels (posterior cin-
gulate/precuneus and angular gyrus) having the highest Z(r),

around 0.7. When analysis was restricted to the 36 subjects
with >300 time points, Z(r) values increased in 355 of 356
parcels; however, the spatial pattern of Z(r) across parcels did
not change (Fig. 7, bottom right). This suggests that including
subjects with insufficient data reduces the reliability of parcel
connectivity estimates globally rather than in specific parcels.

Discussion

In this study, we described a method for building discrete
parcels from RSFC-boundary maps. We also described a
homogeneity-based metric to evaluate the quality of the parcella-
tion, and we demonstrated that the boundary map-derived

Figure 5. Boundary map-derived parcels match known cortical areas and functional activation patterns. Left and middle: a variety of cytoarchitectonically defined cortical areas
(Fischl et al. 2008) were matched by boundary map-derived parcels. Area 17 overlapped very well with one parcel, whereas area hOc5 overlapped moderately well with another
parcel. Areas 2, 3, and 4 overlapped with several adjacent parcels. Right: parcel divisions within cytoarchitectonic areas 2, 3, and 4 corresponded with divisions between activation
clusters from motor movements of the right foot, right hand, and tongue (Barch et al. 2013).

Figure 6. The network structure of the boundary map-derived parcellation closely corresponds with the previously described network structure of the brain. Top: communities
identified with the Infomap community detection procedure using the boundary map-derived parcels as network nodes. See the text for names of each colored community. Middle:
the network structure of the brain calculated using every voxel as a network node (Power et al. 2011). Bottom: spatial overlap of the parcel- and voxel-wise community
assignments.
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parcels were highly homogenous. We found that the parcellation
was significantly more homogenous than size- and shape-
matched random parcellations in two independent datasets. We
also found that the boundary map-derived parcellation had
higher overall homogeneity and performed better relative to
random parcellations than a number of alternative parcellations.
We additionally observed a high degree of overlap between the
boundary map-derived parcels and several known cytoarchitec-
tonic areas, with subdivisions within the cytoarchitectonic areas
corresponding to functional differences. We further examined
the network structure of the boundary map-derived parcels, and
we found that it closely matched the previously described voxel-
wise structure of the brain. Finally, we observed that boundary-
derived parcel connectivity patterns were mostly reliable across
individual subjects.

There are good a priori reasons to believe that RSFC-boundary
maps have real utility for areal parcellation of human cortex.
First, RSFC-based techniques are noninvasive and can be applied
to any subject population that does not exhibit severe movement
during scanning. Second, RSFC is believed to represent some
combination of direct and indirect structural connectivity
(Vincent et al. 2007; Honey et al. 2009) and a statistical history of
functional coactivations (e.g., Dosenbach et al. 2007); as such, it
reflects some combination of a region’s function and connec-
tivity, which are two of the major measures proposed to dissoci-
ate cortical areas (Felleman and Van Essen 1991). Third, RSFC-
boundary maps, in particular, have been shown to not only iden-
tify where RSFC patterns change, but also to correspond with
task activation patterns and to known areal borders based on
architectonic divisions (Wig, Laumann, Petersen 2014). This
cross-modality validation indicates that strong RSFC boundaries
are very likely to index cortical area divisions in many cases.

Boundary Map-Based Parcellation Generates Parcels

That Conform to Cytoarchitectonic Areas

We observed that the boundary map-derived parcellation con-
tained parcels that had very strong overlap with the known
extent of area 17, as defined by Fischl et al. (2008) and
mapped to the cortical surface by Van Essen et al. (2012).
Other known cortical areas, such as somatomotor areas 2, 3,
and 4, were overlapped by a combination of several parcels.
These observations—that parcel borders conform to cytoarchi-
tectonically based estimates of human cortical areas—lend
substantial face validity to the parcellation.

However, the fact that somatomotor areas were subdivided
into multiple parcels suggests that the present parcellation does
not faithfully replicate all architectonic areas, but may instead
overparcellate some areas. We predicted that overparcellation
would be most likely to occur in topographically organized
architectonic areas, such as somatomotor cortex, that are known
to have subregions with dissociable functional responses
(Rao et al. 1995), including dissociable RSFC responses (Long
et al. 2014). Indeed, overparcellation based on function is the
most likely explanation for the subdivisions within somatomotor
areas, as we observed that at least some of those subdivisions
were functionally relevant, conforming to the boundaries
between different functional activation patterns resulting from
motor movements of different body parts. The present boundary
map-derived parcellation should thus be considered a functional
parcellation; as such, it provides complementary information
about brain organization that cannot be observed via anatomy.

In contrast, area hOc5 (also known as the middle temporal+
complex) was only moderately well matched by a too-large
parcel in the left hemisphere, and did not match any parcel in
the right hemisphere. This failure to parcellate the area may be

Figure 7. Group-average parcel connectivity is similar to subject-level connectivity, but this similarity varies across parcels and subjects. Left: the average Fisher-transformed
correlation between group- and subject-level parcel connectivity patterns for each subject, plotted against the number of time points in each subject’s resting-state data. Top right:
the average group–subject correlation for each parcel, averaged across all subjects. Bottom right: the average group–subject correlation for each parcel, averaged across subjects
with >300 time points (12.5 min) of resting-state data.
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related to the known individual variability in hOc5 (Malikovic
et al. 2007), which is greater than that of any other area investi-
gated here (Van Essen et al. 2012). Inconsistent locations of
cortical areas across subjects would reduce the likelihood that
the boundary mapping procedure can successfully identify the
area’s border.

In total, the boundary map-derived parcellation consisted of
422 discrete parcels. This number of parcels falls above the
range of 150–200 human cortical areas per hemisphere
estimated by Van Essen et al. (2012). It is possible that, like the
somatomotor cortex, various other architectonic cortical areas
may be functionally subdivided by the present parcellation,
resulting in an inflated number of parcels.

Boundary Map-Based Parcellation Generates Parcels

That Are Functionally Homogenous

Overall, the boundary-derived parcels had highly homogenous
RSFC patterns, with an average parcel homogeneity of almost
90%. This high degree of homogeneity in RSFC patterns
indicates that most parcels represented regions of uniform
BOLD signal, which is an expected characteristic of most cor-
tical areas.

Only a few parcels had low homogeneity (Fig. 3). Some of
these parcels—e.g., in medial and anterior inferior temporal
lobe, and in inferior insula—were near low-SNR areas, and may
have had somewhat degraded signal; thus, low homogeneity is
not surprising in these parcels. Other parcels—in right angular
gyrus, right occipital cortex, bilateral occipitotemporal cortex,
and left frontal eye fields—more likely represent local failures
of the RSFC-boundary mapping procedure, in which a true
border between cortical areas was not successfully delineated.

Homogeneity-Based Parcellation Evaluation Must

Account for Parcel Size and Shape

The boundary map-derived parcels were not only highly
homogenous, they were also much more homogenous than a
null model consisting of 1000 identical parcellations that were
randomly rotated into a new position on the cortical surface.
The use of a null model is necessary for true evaluation of a
parcellation, as the homogeneity measure of a given parcel is
strongly dependent on the parcel’s size (Fig. 3 and Supplemen-
tary Figs 4 and 5). A similar effect was reported by Craddock
et al. (2012), who found that the homogeneity of both
clustering-derived and random parcels varied strongly as a
function of the number of clusters specified (which will vary
inversely with parcel size). By examining homogeneities of
individual parcels, we show that this effect is specifically
driven by parcel size; this can be appreciated by examination
of the parcel size versus homogeneity plots of the randomly
rotated parcels (gray points in Fig. 3; black points represent
the mean homogeneity across rotations). As discussed in the
Methods section, this effect likely arises because small random-
ly placed parcels are more likely to fall within large homogen-
ous regions such as the medial posterior parietal cortex,
whereas large randomly placed parcels are more likely to
sprawl across multiple cortical areas. The effect of parcel size is
also likely constrained by the smoothness of the data, which is
affected by averaging across variable subjects, the application
of geodesic Gaussian smoothing during data processing, and
the intrinsic spatial autocorrelation of the BOLD signal. If
these explanations are correct, then a parcel’s homogeneity

will depend not only on its size, but also on the regularity of
the parcel’s shape, as an elongated parcel is more likely to
sprawl across multiple cortical areas and extend beyond the in-
trinsic smoothness of the data than a circular parcel with the
same surface area. This means that any appropriate null model
of homogeneity must account both for a parcel’s size and its
shape. Of previously published RSFC-based parcellation
approaches, only Craddock et al. (2012) compared their parcel-
lation to a null model; however, that null model was simply the
same number of randomly generated parcels. That null model
thus maintains the average parcel size, but it does not attempt
to match these sizes on a parcel-to-parcel basis or to maintain
the shape of parcels, as the present null model does.

Boundary Map-Derived Parcellation Performs Better

Than Alternative Parcellations

We tested the homogeneity of the boundary map-derived par-
cellation using a second dataset, such that the parcel creation
procedure was completely independent of the data in which it
was tested. We found that the parcellation was still highly
homogenous, and still much more homogenous than its null
model, suggesting that these boundary map-derived parcels re-
present a robust central tendency of the population and can be
applied to other datasets, even ones collected with different
sequences on different scanners. Further, the boundary map-
derived parcellation was both more homogenous than any other
putative areal-level parcellation tested, and was more homogen-
ous compared with its null model than any other parcellation
tested. This suggests that it better represents functionally homo-
genous cortical areas than any of the other parcellations.

Parcellations derived from network detection approaches
[the clustering-based approach proposed by Yeo et al. (2011)
and the community detection procedure described in Power
et al. (2011)] performed reasonably well when compared with
their null models (particularly the Yeo parcellation), suggest-
ing that these parcellations contain substantial information
about the structure in the data. However, the raw homogene-
ities of the parcels in this parcellation were only moderate.
This likely indicates that these approaches, which are designed
to identify large scale brain systems or networks, do not par-
cellate the brain finely enough to represent subsystem-level
distinctions between adjacent regions. Such distinctions, as de-
monstrated by Wig, Laumann, Petersen (2014), likely reflect
areal divisions in the brain, as they indicate where multiple
regions with similar but discrete connectivity patterns interact
within larger systems. The fact that such divisions are not re-
flected in the Yeo and Power parcellations indicates that those
parcellations are closer to system-level divisions of the brain
than true parcellations of cortical areas.

Parcellations based on the NCUT criterion (Craddock et al.
2012; Shen et al. 2013) were moderately homogenous;
however, the Shen parcellation was only marginally more
homogenous than its null model, whereas the Craddock par-
cellation was not more homogenous than its null model.
This poor performance on a homogeneity-based measure is
surprising, given that clustering techniques such as these are
designed to group similar signals together, which in theory
should produce homogenous parcels. Blumensath et al. (2013)
recently argued that parcels produced using the NCUT criter-
ion described in Craddock et al. (2012) are dependent pri-
marily on the specified cluster number rather than on the
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underlying data, as highly reproducible NCUT parcels could be
produced using random data. The present results are a further
demonstration that NCUT-derived parcels do not represent the
underlying data structure well.

The Brodmann parcellation (Brodmann 1909) had low
homogeneity, but was more homogenous than any of its null
model parcellations. This suggests that, like the Yeo and Power
parcellations, this parcellation does successfully represent
structure in the data, but is too underparcellated to represent
true cortical areas. This perspective agrees with modern at-
tempts to anatomically parcellate human cortex, which
frequently observe more fine-grained architectonic divisions
than those reported by Brodmann (e.g., Morris et al. 2000, ret-
rosplenial cortex; Öngür et al. 2003, orbitofrontal cortex;
Morosan et al. 2005, superior temporal gyrus; Caspers et al.
2006, inferior parietal cortex; Scheperjans et al. 2008, superior
parietal cortex; Kujovic et al. 2013, extrastriate visual cortex).

The AAL parcellation (Tzourio-Mazoyer et al. 2002) had the
lowest homogeneity of all parcellations and was not better
than its null model. Indeed, there was no expectation that the
AAL parcellation would represent the structure of RSFC data,
as previous work has indicated that AAL regions are worse
than RSFC-based parcellation schemes at representing cortical
areas (Craddock et al. 2012; Blumensath et al. 2013; Shen et al.
2013).

The Power ROIs (from Power et al. 2011) had both high
homogeneity and were significantly better than all null model
parcellations. These ROIs, which were derived partly from an
earlier, less precise version of the present boundary mapping
procedures, have been used in the field for a variety of pur-
poses, including investigation of motion-related artifacts
(Power et al. 2012), functional connectivity dynamics (Glerean
et al. 2012), task control processes (Cole et al. 2013), and defi-
cits related to neuropsychological disorders such as Autism
(Rudie et al. 2013), attention deficit hyperactivity disorder
(Eloyan et al. 2012), and schizophrenia and bipolar disorders
(Argyelan et al. 2014). The present results suggest that these
ROIs are reasonable estimates of cortical area centers, though
not of full cortical areas, as they do not attempt to define the
boundaries of areas.

One other RSFC-based whole-brain areal parcellation
scheme has recently been proposed (Blumensath et al. 2013),
but we were not able to compare this scheme against the
present boundary map-derived parcellation, as it was never
applied to group-average data. Blumensath et al. reported that
subject-level parcels could be created using a region growing
approach constrained by hierarchical clustering. Furthermore,
they reported that, compared with parcels derived using
the NCUT technique (Craddock et al. 2012), these parcels were
more reliable, better represented RSFC pattern transitions,
and better aligned with task activation patterns. However, it
is unclear if this method could produce reasonable group-
average parcels.

Parcel-Based Network Structure Corresponds with

Voxel-wise Network Structure

We used a community detection procedure (Infomap; Rosvall
and Bergstrom 2008) to identify the network structure of
boundary map-derived parcels, and we compared it with the
previously described network structure of the brain defined
using every voxel in the brain as a node (the “Power

communities” described above; Power et al. 2011). Every com-
munity found in the Power communities was also observed in
the parcel-wise communities except for one in the anterior
medial temporal lobe. These included a number of large,
highly replicated communities such as the Default, Frontopar-
ietal, and Cingulo-Opercular communities. They also included
smaller communities, such as a retrosplenial/temporal commu-
nity, a cingulate–precuneus community, and a superior tem-
poral lobe community, which have been identified only
recently using advanced network analysis techniques (Power
et al. 2011; Yeo et al. 2011). The observation that parcel-based
communities replicate both large, easily detected RSFC
systems and small, subtle RSFC systems indicates that the
present parcellation captures the overall network structure of
the brain in considerable detail. The fact that this detailed
structure is represented without the need for voxel-level granu-
larity suggests that the present parcellation is appropriate for
use in certain network analyses, such as graph theory analysis,
which benefit from a limited number of rational, neurobiologi-
cally based nodes in order to be interpretable (Wig et al. 2011;
Power et al. 2013).

One additional community was observed in the parcel-wise
analysis that has not been observed in previous work: A com-
munity in the marginal sulcus and frontal eye fields (magenta
in Fig. 6). These areas were incorporated into the Cingulo-
opercular and Dorsal attention systems, respectively, in the
Power communities. We are not aware of any work demon-
strating that these regions operate as a coherent unit; in con-
trast, it is well established that the frontal eye fields are a
central node of the Dorsal attention system (Corbetta and
Shulman 2002). Furthermore, we observed that this commu-
nity only emerged at relatively sparse thresholds; at more
dense thresholds, it was split and incorporated into Cingulo-
opercular and Dorsal attention communities, as in the Power
voxel-wise communities (Supplementary Fig. 7). We thus
speculate that this newly observed community may represent
an overseparation of existing communities rather than a real
brain system.

Most Group-Defined Parcels Reliably Represent

Individual Subject Connectivity, Especially for

High-Data Subjects

An important goal of this work is to create parcels representing
cortical areas that can be interrogated in individual subject
data. Conducting fMRI analysis in a parcel-wise fashion is an
ideal form of data reduction (Wig et al. 2011), as it involves
analyzing several hundred relatively independent, homogen-
ous parcel-averaged signals rather than 65 000+ noisy, nonin-
dependent voxel signals. In principle, applying these parcels
to subject-level task analysis would thus not only decrease
the need for multiple comparison correction, but would
greatly increase the power of the analysis, as averaging a
homogenous signal across a parcel would reduce noise levels.
We examined whether the boundary map-derived parcels
could be used for individual subject analysis. We found that,
on average, subject connectivity maps had high spatial correla-
tions to group-level maps, suggesting that, in general, extract-
ing and averaging subject-level data from a group-average
parcel is a valid approach.

However, we also observed that this degree of similarity was
not uniform across subjects and parcels. For a given subject,
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connectivity similarity with the group was observed to be
strongly and nonlinearly related to the amount of data the
subject retained after motion censoring: Subjects with greater
than 12.5 min of data had high average similarity to the group,
whereas those with <12.5 min of data were variable in how
similar they were to the group. This finding emphasizes the
need to acquire large amounts of data for reliable RSFC esti-
mates, which has been well characterized by Anderson et al.
(2011), who similarly demonstrated nonlinear effects of scan-
ning time on RSFC reliability. Specifically, they found that
reliability increased as 1/sqrt(scanning time). A similar rela-
tionship may be present in the current data, though we found
that fitting this curve to the scanning time/group similarity re-
lationship explained only about 33% of the variance in group
similarity, so we hesitate to draw any strong conclusions about
the nature of this effect.

A number of parcels were observed to have high homogen-
eity, indicating that the parcel was well formed in the group,
but nevertheless had relatively low subject-group similarity.
The most likely explanation for this phenomenon is interindi-
vidual variability in functional connectivity. Indeed, the loca-
tions of the most variable parcels—in lateral prefrontal cortex
and lateral temporal–occipital cortex (green and purple in
Fig. 3)—correspond to regions previously reported to have
particularly high intersubject variability in RSFC patterns
(Mueller et al. 2013). While most boundary map-derived
parcels are appropriate for subject-level data analysis, these
few parcels may be too variable for such a purpose. Ideally,
issues of intersubject variability could be avoided by creating
single-subject parcels from subject-level boundary mapping.
In theory, such subject-level parcels could then be matched
to each other for averaging or comparison across subjects;
this procedure would constitute an areal-level registration.
Blumensath et al. (2013) previously demonstrated that whole-
brain parcellations can be created at the individual subject level,
though in that work no attempt was made to match parcels to
each other across subjects, which would be needed for true
parcel-level cross-subject analysis. Future work may explore the
feasibility and utility of subject-level parcel matching.

Limitations

While this parcellation scheme is homogenous, replicates the
network structure of the brain well, and has similar connectiv-
ity patterns across individuals, it may not yet constitute a truly
reliable whole-brain parcellation. Most parcels are highly
homogenous, but some (e.g., in lateral occipital cortex) appear
to be inaccurate and/or underparcellated. Other regions may
be somewhat overparcellated. For example, while the parcella-
tion describes some subdivisions in somatomotor cortex that
correspond with functional activation patterns, other subdivi-
sions have no known functional relevance, and they divide the
motor and somatosensory strips into an arguably implausible
number of parcels. It is likely that more accurate parcellations
addressing these issues may be generated in the future as
higher resolution datasets with more per-subject time points
(such as the Human Connectome Project) become available.

It should also be noted that the present approach results in a
purely functional parcellation that, while containing substan-
tial information about the location and extent of anatomical
cortical areas, nevertheless does not perfectly converge with a
true anatomical areal parcellation. Indeed, the topological

functional organization of some cortical areas makes it unlikely
that specific anatomical area boundaries could ever be derived
from purely functional measures like RSFC. In their classic par-
cellation of macaque visual cortex, Felleman and Van Essen
(1991) remark that ideally, each cortical area should be uni-
quely identifiable using any of several modalities (connectivity,
architectonics, topographic organization, functional responses,
or behavioral consequences of lesions). In practice, they found
that not every area could be identified using every method;
often only one or two of these methods dissociated a specific
area. This suggests that comprehensive categorization of all
cortical areas in the human cortex will require further data
from additional modalities.

Conclusions

Here we demonstrate that parcels created from RSFC-boundary
maps overlap with known architectonic areas and have highly
homogenous connectivity patterns. We also demonstrate that
these parcels are far more homogenous than a null model in
two independent datasets, indicating that the parcellation not
only captures the structure of the data, but that it generalizes
across different subject pools, scanners, and scanning sequences.
Furthermore, no other parcellation tested was as homogenous or
had as large a homogeneity difference compared with its null
model. The proposed parcellation scheme thus appears to better
represent functional divisions within the human brain than any
other RSFC-based parcellation scheme yet published. A modified
version of this parcellation created by combining both datasets
(Supplementary Fig. 10) is publicly available at http://www.nil.
wustl.edu/labs/petersen/Resources.html.
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Supplementary material can be found at: http://www.cercor.oxford
journals.org/

Funding

This work was supported by the National Institutes of Health
(grant numbers NS061144 to S.E.P.; DA022582, MH059282,
HL114092, and AA021347 to W.M.K.; MH100872 to T.O.L; and
MH091657 to David Van Essen); the McDonnell Foundation
(Collaborative Action Award to S.E.P.); and the Simons Foun-
dation (Award 95177 to S.E.P.).

Notes

We would like to acknowledge Dr. Greg Burgess for analysis of the
motor mapping task from the Human Connectome Project, as well as
Matt Glasser for contributions to the procedures to generate cortical sur-
faces and map data to the surface. Conflict of Interest: None declared.

References

Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K. 2000.
Brodmann’s areas 17 and 18 brought into stereotaxic space—where
and how variable? NeuroImage. 11:66–84.

Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D. 2011.
Reproducibility of single-subject functional connectivity measure-
ments. AJNR Am J Neuroradiol. 32:548–555.

Argyelan M, Ikuta T, DeRosse P, Braga RJ, Burdick KE, John M, Kings-
ley PB, Malhotra AK, Szeszko PR. 2014. Resting-state fMRI connect-
ivity impairment in schizophrenia and bipolar disorder. Schizophr
Bull. 40:100–110.

Cerebral Cortex January 2016, V 26 N 1 301

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
6
/1

/2
8
8
/2

3
6
7
1
1
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu239/-/DC1
http://www.nil.wustl.edu/labs/petersen/Resources.html
http://www.nil.wustl.edu/labs/petersen/Resources.html
http://www.nil.wustl.edu/labs/petersen/Resources.html
http://www.nil.wustl.edu/labs/petersen/Resources.html
http://www.nil.wustl.edu/labs/petersen/Resources.html
http://www.nil.wustl.edu/labs/petersen/Resources.html
http://www.nil.wustl.edu/labs/petersen/Resources.html
http://www.nil.wustl.edu/labs/petersen/Resources.html
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu239/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu239/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu239/-/DC1


Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL, Corbet-
ta M, Glasser MF, Curtiss S, Dixit S, Feldt C et al. 2013. Function in
the human connectome: task-fMRI and individual differences in be-
havior. NeuroImage. 80:169–189.

Barnes KA, Nelson SM, Cohen AL, Power JD, Coalson RS, Miezin FM,
Vogel AC, Dubis JW, Church JA, Petersen SE et al. 2012. Parcellation
in left lateral parietal cortex is similar in adults and children. Cereb
Cortex. 22:1148–1158.

Beckmann CF, DeLuca M, Devlin JT, Smith SM. 2005. Investigations
into resting-state connectivity using independent component ana-
lysis. Philos Trans R Soc Lond B Biol Sci. 360:1001–1013.

Beucher S, Lantuejoul C. 1979. Use of watersheds in contour detection.
Presented at the international workshop on image processing: real-
time edge and motion detection/estimation. Rennes, France.

Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, Beckmann
CF, Adelstein JS, Buckner RL, Colcombe S et al. 2010. Toward dis-
covery science of human brain function. Proc Natl Acad Sci.
107:4734–4739.

Biswal BB, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional con-
nectivity in the motor cortex of resting human brain using echo-
planar MRI. Magn Reson Med. 34:537–541.

Blumensath T, Jbabdi S, Glasser MF, Van Essen DC, Ugurbil K, Behrens
TEJ, Smith SM. 2013. Spatially constrained hierarchical parcellation
of the brain with resting-state fMRI. NeuroImage. 76:313–324.

Brodmann K. 1909. Vergleichende Lokalisationslehre der Grosshirn-
rinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues.
Leipzig: Barth.

Bullmore E, Sporns O. 2009. Complex brain networks: graph theoretic-
al analysis of structural and functional systems. Nat Rev Neurosci.
10:186–198.

Carmichael ST, Price JL. 1994. Architectonic subdivision of the orbital
and medial prefrontal cortex in the macaque monkey. J Comp
Neurol. 346:366–402.

Carmichael ST, Price JL. 1996. Connectional networks within the
orbital and medial prefrontal cortex of macaque monkeys. J Comp
Neurol. 371:179–207.

Carp J. 2013. Optimizing the order of operations for movement scrub-
bing: comment on Power et al. NeuroImage. 76:436–438.

Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K.
2006. The human inferior parietal cortex: cytoarchitectonic parcel-
lation and interindividual variability. NeuroImage. 33:430–448.

Cohen AL, Fair DA, Dosenbach NUF, Miezin FM, Dierker D, Van Essen
DC, Schlaggar BL, Petersen SE. 2008. Defining functional areas in
individual human brains using resting functional connectivity MRI.
NeuroImage. 41:45–57.

Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS.
2013. Multi-task connectivity reveals flexible hubs for adaptive task
control. Nat Neurosci. 16:1348–1355.

Corbetta M, Shulman GL. 2002. Control of goal-directed and stimulus-
driven attention in the brain. Nat Rev Neurosci. 3:201–215.

Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS. 2012. A
whole brain fMRI atlas generated via spatially constrained spectral
clustering. Hum Brain Mapp. 33:1914–1928.

Dale AM, Fischl B, Sereno MI. 1999. Cortical surface-based analysis:
I. segmentation and surface reconstruction. NeuroImage. 9:179–194.

Dale AM, Sereno MI. 1993. Improved localizadon of cortical activity by
combining EEG and MEG with MRI cortical surface reconstruction:
a linear approach. J Cogn Neurosci. 5:162–176.

Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith
SM, Beckmann CF. 2006. Consistent resting-state networks across
healthy subjects. Proc Natl Acad Sci USA. 103:13848–13853.

Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosen-
bach RAT, Fox MD, Snyder AZ, Vincent JL, Raichle ME et al. 2007.
Distinct brain networks for adaptive and stable task control in
humans. Proc Natl Acad Sci. 104:11073–11078.

Eloyan A, Muschelli J, Nebel MB, Liu H, Han F, Zhao T, Barber AD, Joel
S, Pekar JJ, Mostofsky SH et al. 2012. Automated diagnoses of atten-
tion deficit hyperactive disorder using magnetic resonance
imaging. Front Syst Neurosci. 6:61.

Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing
in the primate. Cereb Cortex. 1:1–47.

Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BTT, Mohl-
berg H, Amunts K, Zilles K. 2008. Cortical folding patterns and pre-
dicting cytoarchitecture. Cereb Cortex. 18:1973–1980.

Fischl B, Sereno MI, Dale AM. 1999. Cortical surface-based analysis: II:
inflation, flattening, and a surface-based coordinate system. Neuro-
Image. 9:195–207.

Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat Rev
Neurosci. 8:700–711.

Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. 1996.
Movement-related effects in fMRI time-series. Magn Reson Med.
35:346–355.

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Anders-
son JL, Xu J, Jbabdi S, Webster M, Polimeni JR et al. 2013. The
minimal preprocessing pipelines for the Human Connectome
Project. NeuroImage. 80:105–124.

Glasser MF, Van Essen DC. 2011. Mapping human cortical areas in vivo
based on myelin content as revealed by T1- and T2-weighted MRI. J
Neurosci. 31:11597–11616.

Glerean E, Salmi J, Lahnakoski JM, Jääskeläinen IP, Sams M. 2012.
Functional magnetic resonance imaging phase synchronization as a
measure of dynamic functional connectivity. Brain Connectivity.
2:91–101.

Hirose S, Watanabe T, Jimura K, Katsura M, Kunimatsu A, Abe O,
Ohtomo K, Miyashita Y, Konishi S. 2012. Local signal time-series
during rest used for areal boundary mapping in individual human
brains. PLoS ONE. 7:e36496.

Hirose S, Watanabe T, Wada H, Imai Y, Machida T, Shirouzu I, Miyashi-
ta Y, Konishi S. 2013. Functional relevance of micromodules in the
human association cortex delineated with high-resolution FMRI.
Cereb Cortex. 23:2863–2871.

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R,
Hagmann P. 2009. Predicting human resting-state functional con-
nectivity from structural connectivity. Proc Natl Acad Sci.
106:2035–2040.

Kujovic M, Zilles K, Malikovic A, Schleicher A, Mohlberg H, Rottschy C,
Eickhoff SB, Amunts K. 2013. Cytoarchitectonic mapping of the
human dorsal extrastriate cortex. Brain Struct Funct. 218:157–172.

Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox PT. 1995.
A modality-independent approach to spatial normalization of tomo-
graphic images of the human brain. HumBrain Mapp. 3:209–223.

Lewis JW, Van Essen DC. 2000. Mapping of architectonic subdivisions
in the macaque monkey, with emphasis on parieto-occipital cortex.
J Comp Neurol. 428:79–111.

Long X, Goltz D, Margulies DS, Nierhaus T, Villringer A. 2014. Func-
tional connectivity-based parcellation of the human sensorimotor
cortex. Eur J Neurosci. 39:1332–1342.

Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms
M, Palomero-Gallagher N, Armstrong E, Zilles K. 2007. Cytoarchi-
tectonic analysis of the human extrastriate cortex in the region of
V5/MT+: a probabilistic, stereotaxic map of area hOc5. Cereb
Cortex. 17:562–574.

Markov NT, Ercsey-Ravasz MM, Gomes ARR, Lamy C, Magrou L, Vezoli
J, Misery P, Falchier A, Quilodran R, Gariel MA et al. 2014. A
weighted and directed interareal connectivity matrix for macaque.
Cereb Cortex. 24:17–36.

Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL. 2000.
Characterizing the hemodynamic response: effects of presentation
rate, sampling procedure, and the possibility of ordering brain ac-
tivity based on relative timing. NeuroImage. 11:735–759.

Morosan P, Schleicher A, Amunts K, Zilles K. 2005. Multimodal archi-
tectonic mapping of human superior temporal gyrus. Anat
Embryol. 210:401–406.

Morris R, Paxinos G, Petrides M. 2000. Architectonic analysis of the
human retrosplenial cortex. J Comp Neurol. 421:14–28.

Mueller S, Wang D, Fox MD, Yeo BTT, Sepulcre J, Sabuncu MR, Shafee
R, Lu J, Liu H. 2013. Individual variability in functional connectivity
architecture of the human brain. Neuron. 77:586–595.

Mugler JP III, Brookeman JR. 1990. Three-dimensional magnetization-
prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson
Med. 15:152–157.

302 Generation and Evaluation of Cortical Area Parcellation From Resting-State Correlations • Gordon et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
6
/1

/2
8
8
/2

3
6
7
1
1
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Nelson SM, Cohen AL, Power JD, Wig GS, Miezin FM, Wheeler ME,
Velanova K, Donaldson DI, Phillips JS, Schlaggar BL et al. 2010. A
parcellation scheme for human left lateral parietal cortex. Neuron.
67:156–170.

Nelson SM, Dosenbach NUF, Cohen AL, Wheeler ME, Schlaggar BL, Pe-
tersen SE. 2010. Role of the anterior insula in task-level control and
focal attention. Brain Struct Funct. 214:669–680.

Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME,
Conturo TE. 1997. Anatomic localization and quantitative analysis
of gradient refocused echo-planar fMRI susceptibility artifacts. Neu-
roImage. 6:156–167.

Öngür D, Ferry AT, Price JL. 2003. Architectonic subdivision of the human
orbital and medial prefrontal cortex. J Comp Neurol. 460:425–449.

Paxinos G, Huang X-F, Toga AW. 2000. The rhesus monkey brain in
stereotaxic coordinates. San Diego (CA): Academic Press.

Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. 1988. Positron
emission tomographic studies of the cortical anatomy of single-
word processing. Nature. 331:585–589.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012.
Spurious but systematic correlations in functional connectivity MRI
networks arise from subject motion. NeuroImage. 59:2142–2154.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel
AC, Laumann TO, Miezin FM, Schlaggar BL et al. 2011. Functional
network organization of the human brain. Neuron. 72:665–678.

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen
SE. 2014. Methods to detect, characterize, and remove motion arti-
fact in resting state fMRI. NeuroImage. 84:320–341.

Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE. 2013. Evi-
dence for hubs in human functional brain networks. Neuron.
79:798–813.

Rao SM, Binder JR, Hammeke TA, Bandettini PA, Bobholz JA, Frost JA,
Myklebust BM, Jacobson RD, Hyde JS. 1995. Somatotopic mapping
of the human primary motor cortex with functional magnetic reson-
ance imaging. Neurology. 45:919–924.

Rosvall M, Bergstrom CT. 2008. Maps of randomwalks on complex net-
works reveal community structure. Proc Natl Acad Sci USA.
105:1118–1123.

Rudie JD, Brown JA, Beck-Pancer D, Hernandez LM, Dennis EL,
Thompson PM, Bookheimer SY, Dapretto M. 2013. Altered func-
tional and structural brain network organization in autism. Neuro-
Image: Clinical. 2:79–94.

Saleem KS, Price JL, Hashikawa T. 2007. Cytoarchitectonic and
chemoarchitectonic subdivisions of the perirhinal and parahippo-
campal cortices in macaque monkeys. J Comp Neurol. 500:
973–1006.

Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K,
Amunts K, Zilles K. 2008. Probabilistic maps, morphometry, and
variability of cytoarchitectonic areas in the human superior parietal
cortex. Cereb Cortex. 18:2141–2157.

Schleicher A, Palomero-Gallagher N, Morosan P, Eickhoff SB, Kowalski
T, de Vos K, Amunts K, Zilles K. 2005. Quantitative architectural
analysis: a new approach to cortical mapping. Anat Embryol.
210:373–386.

Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B.
2004. A hybrid approach to the skull stripping problem in MRI.
NeuroImage. 22:1060–1075.

Ségonne F, Grimson E, Fischl B. 2005. A genetic algorithm for the top-
ology correction of cortical surfaces. In: Christensen GE, Sonka M,
editors. Information Processing in Medical Imaging. Presented at
the 19th International IPMI Conference. Glenwood Springs, CO,
USA: Springer. p. 393.

Sejnowski TJ, Churchland PS. 1989. Brain and cognition. In: Posner
MI, editor. Foundations of cognitive science. Cambridge (MA): MIT
Press. p. 888.

Shehzad Z, Kelly AMC, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee
SH, Margulies DS, Roy AK, Biswal BB et al. 2009. The resting brain:
unconstrained yet reliable. Cereb Cortex. 19:2209–2229.

Shen X, Tokoglu F, Papademetris X, Constable RT. 2013. Groupwise
whole-brain parcellation from resting-state fMRI data for network
node identification. NeuroImage. 82:403–415.

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini
N, Watkins KE, Toro R, Laird AR et al. 2009. Correspondence of the
brain’s functional architecture during activation and rest. Proc Natl
Acad Sci. 106:13040–13045.

Snyder AZ. 1996. Difference image versus ratio image error function
forms in PET-PET realignment. In: Myer R, Cunningham VJ, Bailey
DL, Jones T, editors. Quantification of brain function using PET.
San Diego (CA): Academic Press. p. 131–137.

Talairach J, Tournoux P. 1988. Co-planar stereotaxic atlas of the human
brain. New York: Thieme Medical Publishers, Inc.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O,
Delcroix N, Mazoyer B, Joliot M. 2002. Automated anatomical
labeling of activations in SPM using a macroscopic anatomical par-
cellation of the MNI MRI single-subject brain. NeuroImage.
15:273–289.

Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson
CH. 2001. An integrated software suite for surface-based analyses
of cerebral cortex. J AmMed Inform Assoc. 8:443–459.

Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T. 2012.
Parcellations and hemispheric asymmetries of human cerebral
cortex analyzed on surface-based atlases. Cereb Cortex.
22:2241–2262.

Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC,
Zempel JM, Snyder LH, Corbetta M, Raichle ME. 2007. Intrinsic
functional architecture in the anaesthetized monkey brain. Nature.
447:83–86.

Wig GS, Laumann TO, Cohen AL, Power JD, Nelson SM, Glasser MF,
Miezin FM, Snyder AZ, Schlaggar BL, Petersen SE. 2014. Parcellat-
ing an individual subject’s cortical and subcortical brain structures
using snowball sampling of resting-state correlations. Cereb Cortex.
24:2036–2054.

Wig GS, Laumann TO, Petersen SE. 2014. An approach for parcellating
human cortical areas using resting-state correlations. NeuroImage.
93:276–291.

Wig GS, Schlaggar BL, Petersen SE. 2011. Concepts and principles
in the analysis of brain networks. Ann N Y Acad Sci. 1224:
126–146.

Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,
Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR et al.
2011. The organization of the human cerebral cortex estimated
by intrinsic functional connectivity. J Neurophysiol. 106:
1125–1165.

Cerebral Cortex January 2016, V 26 N 1 303

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
6
/1

/2
8
8
/2

3
6
7
1
1
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2


