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Abstract How is communicative gesture behavior in robots

perceived by humans? Although gesture is crucial in social

interaction, this research question is still largely unexplored

in the field of social robotics. Thus, the main objective of

the present work is to investigate how gestural machine be-

haviors can be used to design more natural communication

in social robots. The chosen approach is twofold. Firstly,

the technical challenges encountered when implementing a

speech-gesture generation model on a robotic platform are

tackled. We present a framework that enables the humanoid

robot to flexibly produce synthetic speech and co-verbal

hand and arm gestures at run-time, while not being lim-

ited to a predefined repertoire of motor actions. Secondly,

the achieved flexibility in robot gesture is exploited in con-

trolled experiments. To gain a deeper understanding of how
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communicative robot gesture might impact and shape hu-

man perception and evaluation of human-robot interaction,

we conducted a between-subjects experimental study using

the humanoid robot in a joint task scenario. We manipulated

the non-verbal behaviors of the robot in three experimen-

tal conditions, so that it would refer to objects by utilizing

either (1) unimodal (i.e., speech only) utterances, (2) con-

gruent multimodal (i.e., semantically matching speech and

gesture) or (3) incongruent multimodal (i.e., semantically

non-matching speech and gesture) utterances. Our findings

reveal that the robot is evaluated more positively when non-

verbal behaviors such as hand and arm gestures are dis-

played along with speech, even if they do not semantically

match the spoken utterance.

Keywords Multimodal interaction and conversational

skills · Non-verbal cues and expressiveness · Social

human-robot interaction · Robot companions and social

robots

1 Introduction

One of the main objectives of social robotics research is to

design and develop robots that can engage in social envi-

ronments in a way that is appealing and familiar to human

interaction partners. However, interaction is often difficult

because inexperienced users do not understand the robot’s

internal states, intentions, actions, and expectations. Thus, to

facilitate successful interaction, social robots should provide

communicative functionality that is both natural and intu-

itive. The appropriate level of such communicative function-

ality strongly depends on the appearance of the robot and

attributions thus made to it. Given the design of humanoid

robots, they are typically expected to exhibit human-like

communicative behaviors, using their bodies for non-verbal
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expression just as humans do. Representing an important

feature of human communication, co-verbal hand and arm

gestures are frequently used by human speakers to illustrate

what they express in speech [24]. Crucially, gestures help to

convey information which speech alone cannot provide, as

in referential, spatial or iconic information [11]. At the same

time, human listeners have been shown to be well-attentive

to information conveyed via such non-verbal behaviors [7].

Moreover, providing multiple modalities helps to dissolve

ambiguity typical of unimodal communication and, as a con-

sequence, to increase robustness of communication. Thus,

it appears reasonable to equip humanoid robots that are

intended to engage in natural and comprehensible human-

robot interaction with speech-accompanying gestures.

1.1 Gesture in Human Communication

Gesture is a phenomenon of human communication that

has been studied by researchers from various disciplines for

many years. A multiplicity of hand, arm and body move-

ments can all be considered to be gestures, and although

definitions and categorizations vary widely, much gesture

research has sought to describe the different types of ges-

ture, e.g., [15, 24]. McNeill [24], for example, categorizes

four main types of gesture based on semiotics: (1) icon-

ics, i.e., gestures representing images of concrete entities

and/or actions; (2) metaphorics, i.e., gestures whose picto-

rial content presents abstract ideas rather than concrete ob-

jects; (3) deictics, i.e., pointing gestures; and (4) beats, i.e.,

hand movements performed along with the rhythmical pul-

sation of speech without conveying semantic information. In

his later work, however, McNeill [25] claims that the search

for categories actually seems misled: since the majority of

gestures are multifaceted, it is more appropriate to think in

terms of combinable dimensions rather than categories. In

this way, dimensions can be combined without the need for

a hierarchy. Unlike task-oriented movements like reaching

or object manipulation, human gestures are partly derived

from an internal representation of ‘shape’ [16], which par-

ticularly applies to iconic or metaphoric gestures. Such char-

acteristic shape and dynamical properties enable humans to

distinguish gestures from subsidiary movements and to per-

ceive them as meaningful [42].

In this paper, we use the term gesture to refer specifi-

cally to representational gestures [12], i.e., movements that

co-express the content of speech by pointing to a referent

in the physical environment (deictic gestures) or gestures

depicting a referent with the motion or shape of the hands

(iconic gestures). Other types of gesture such as beat ges-

tures (movements that emphasize the prosody or structure

of speech), emblems (movements that convey convention-

alized meanings) and turn-taking gestures (movements that

regulate interaction between speakers) fall outside the scope

of the present work.

Fig. 1 The goal of the present work is to realize speech and non-verbal

behavior generation for the physical Honda humanoid robot (right) by

transferring an existing virtual agent framework as employed for the

agent Max (left) and to subsequently evaluate it in controlled experi-

ments of human-robot interaction

1.2 Gesture Behavior for Artificial Communicators

To endow a humanoid robot with communicative co-verbal

gestures, it requires a large degree of flexible control espe-

cially with regards to shape properties of the gesture. At

the same time, adequate timing and natural appearance of

these body movements are essential to add to the impres-

sion of the robot’s liveliness. Since the challenge of mul-

timodal behavior realization for artificial humanoid bodies

has already been explored in the context of virtual conversa-

tional agents, our approach builds upon an existing solution

from this research area [35, 42]. The Articulated Commu-

nicator Engine (ACE) [17] implements the speech-gesture

production model that was originally designed for the vir-

tual human agent Max and is now used as the underlying

action generation framework for the Honda humanoid robot

(Fig. 1). Based on the implementation of such a speech and

gesture production model for humanoid robot gesture [36],

we exploit the achieved flexibility in communicative robot

behavior in a controlled experimental study to investigate

how humans experience a humanoid robot that performs

gestures during interaction. This way, we try to shed light

onto human perception and understanding of gestural ma-

chine behaviors and how these can be used to design more

natural communication in social robots.

The rest of this paper is organized as follows. We first

discuss related work in Sect. 2, showing that not much re-

search has focused on the generation and evaluation of robot

gesture. In Sect. 3, we describe our multimodal behavior re-

alizer, the Articulated Communicator Engine (ACE), which

implements the speech-gesture production model originally

designed and implemented for the virtual human agent Max

and is now used for the Honda humanoid robot (Fig. 1). We

then describe our approach to a robot control architecture

employing ACE for producing gestural hand and arm move-

ments for the humanoid robot in Sect. 4. Subsequently, ges-

ture representations realized in our controller framework are
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presented, evaluated and discussed in Sect. 5. We further de-

scribe the empirical study conducted to evaluate robot ges-

ture in a human-robot interaction scenario and present an

evaluation and discussion of results in Sect. 6. Finally, we

conclude and give an outlook of future work in Sect. 7.

2 Related Work

Two research areas are relevant to the present work: firstly,

in the area of computer animation, researchers have devel-

oped frameworks to realize multimodal communication be-

havior in virtual conversational agents; secondly, in the field

of robotics, researchers have explored various approaches

to generate non-verbal behaviors along with speech in hu-

manoid robots. The challenges are similar in that both re-

search areas demand a high degree of control and flexibility

so that human-like motion can be adapted to a system with

non-human kinematics. The levels of complexity encoun-

tered in each field, however, are not equivalent. Although

the range of different body types found in virtual embod-

ied agents is manifold and hence challenging, character an-

imation has less restrictive motion than even the most state-

of-the-art humanoid robots [33]. For example, animation of

virtual agents reduces or even eliminates the problems of

handling joint and velocity limits; in a robot body, however,

these have to be explicitly addressed given real physical re-

strictions.

2.1 Virtual Agents

In contrast to the research field of robotics, the challenge

of generating speech and co-verbal gesture has already been

tackled in various ways within the domain of virtual human

agents. Some of the earliest work includes that of Cassell et

al. who presented the REA system [5] in which a conversa-

tional humanoid agent operates as a real estate salesperson.

A more recent approach is that of the interactive expressive

system Greta [31] which is able to communicate using ver-

bal and non-verbal modalities. Even in the domain of virtual

conversational agents, however, most existing systems sim-

plify matters by using lexicons of words and canned non-

verbal behaviors in the form of pre-produced gestures [9].

In contrast, the ACE framework underlying the virtual agent

Max [17] builds upon an integrated architecture in which

the planning of both content and form across both modali-

ties is coupled [18], thereby taking into account the mean-

ing conveyed in non-verbal utterances. For this reason, our

proposed approach benefits from transferring a sophisticated

multimodal behavior scheduler from a virtual conversational

agent to a physical robot.

In addition to the technical contributions presented in the

area of embodied conversational agents, there has also been

active work in evaluating complex gesture models for the

animation of virtual characters. Several studies have inves-

tigated and compared the human perception of traits such

as naturalness in virtual agents. In one such study [19], the

conversational agent Max communicated by either utilizing

a set of co-verbal gestures alongside speech, typically by

self-touching or movement of the eyebrows, or by utilizing

speech alone without any such accompanying gestures. Hu-

man participants were then invited to rate their perception

of Max’s behavioral-emotional state, for example, its level

of aggressiveness, its degree of liveliness, etc. Crucially, the

results of the study suggested that virtual agents are per-

ceived in a more positive light when they are able to produce

co-verbal gestures alongside speech (rather than acting in a

speech-only modality). In [2] Bergmann et al. modeled the

gestures of Max based on real humans’ non-verbal behav-

ior and subsequently set out to question the communicative

quality of these models via human participation. The main

finding was that Max was perceived as more likable, compe-

tent and human-like when gesture models based on individ-

ual speakers were applied, as opposed to combined gestures

of a collection of speakers, random gestures, or no gestures.

2.2 Robotics

Although much of the robotics research has been dedicated

to the area of gesture recognition and analysis, only few

approaches have pursued both the generation of humanoid

robot gesture and the investigation of human perception of

such robot behavior. Within the few existing approaches that

are actually dedicated to gesture synthesis, the term “ges-

ture” has been widely used to denote object manipulation

tasks rather than non-verbal communicative behaviors. For

example, Calinon and Billard [4] refer to the drawing of

stylized alphabet letters as gestures in their work. Many re-

searchers have focused on the translation of human motion

for gesture generation in various robots, usually aiming at

imitation of movements captured from a human demonstra-

tor, e.g., [3]. Miyashita et al. [27] and Pollard et al. [33]

present further techniques for limiting human motion of up-

per body gestures to movements achievable by a variety of

different robotic platforms. These models of gesture synthe-

sis, however, mainly focus on the technical aspects of gener-

ating robotic motion that fulfills little or no communicative

function. In addition, they are limited in that they do not

combine generated non-verbal behaviors with further output

modalities such as speech.

Only a few approaches in robotics incorporate both

speech and gesture synthesis; however, in most cases the

robots are equipped with a set of pre-recorded gestures that

are not generated on-line but simply replayed during human-

robot interaction, as seen in [8] or [40]. Moreover, a majority

of approaches focusing on gesture synthesis for humanoid

robots are limited to the implementation and evaluation of a
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single type of gesture, typically deictic (e.g., [32, 41]) or em-

blematic gestures (e.g., [13]) instead of providing a general

framework that can handle all types of gesture. The com-

munication robot presented in [1] is one of the few systems

in which different types of gesture are actually generated

on-line. These mainly consist of arm movements and point-

ing gestures performed synchronously with eyes, head, and

arms, and are accompanied by speech to make the robot ap-

pear livelier. However, all aforementioned approaches are

realized on platforms with less complex robot bodies which,

for example, comprise fewer degrees of freedom (DOF),

have limited mobility, and perform body movements in a

rather jerky fashion (as seen in [1]). Moreover, many of these

robots expose only little or no humanoid traits.

As stated in [26], however, the appearance of a robot can

be just as important as its behavior when evaluating the ex-

perience felt by human interaction partners. In other words,

the robot’s design is crucial if we are to eventually study the

effect of robot gesture on humans. MacDorman and Ishig-

uro [22] have researched human perception of robot appear-

ance as based on different levels of embodiment, with an-

droid robots representing the most anthropomorphic form.

Although an innovative approach, android robots only fea-

ture certain hard-coded gestures and thus still lack any real-

time gesture-generating capability. Moreover, findings pre-

sented in [38] suggest that the mismatch between the highly

human-like appearance of androids and their mechanical,

less human-like movement behavior may lead to increased

prediction error in the brain, possibly accounting for the ‘un-

canny valley’ phenomenon [28]. Thus, a major advantage

of using the Honda humanoid robot as a research platform

lies in its humanoid, yet not too human-like appearance and

smooth, yet not completely natural movement behavior. Al-

though the Honda robot cannot mimic any facial expression,

it is favorable for us to use such a robot, as the focus of the

present work lies on hand and arm gestures. This way, the

perception of the robot’s gestural arm movements can be as-

sessed as the primary non-verbal behavior.

2.3 Evaluation of Robot Gesture

Despite the interesting implications of the evaluation stud-

ies conducted with virtual agents, we must be cautious

when transferring the findings from the domain of animated

graphical characters to the domain of social robots. Firstly,

the presence of real physical constraints can alter the per-

ceived level of realism. Secondly, given the greater degree

of embodiment that is possible in a real-world system, inter-

action with a robot is potentially richer; human participants

could, for example, walk around or even touch a real robot.

This makes the interaction experience more complex and is

naturally expected to affect the outcome of the results.

Fig. 2 Behavior generation pipeline adapted from Reiter and Dale

[34, 36]

One of the few models that resembles our approach in

that it attempts to generate and evaluate a multitude of ges-

ture types for the Honda humanoid robot was presented by

Ng-Thow-Hing et al. [30]. Their proposed model recon-

structs the communicative intent through text and parts-of-

speech analysis to select appropriate gestures. The evalua-

tion of the system, however, was merely undertaken using

several video-based studies.

We argue that, in order to obtain a representative assess-

ment of robot gesture and the human perception thereof,

it is necessary to evaluate such non-verbal behavior in ac-

tual interaction scenarios. As gesture scope and space can

only be accurately observed and assessed in a true interac-

tion, we decided to conduct an experimental study using our

speech-gesture synthesis model implemented on the Honda

humanoid robot. Since the evaluation of the effects and

acceptance of communicative robot gesture is still largely

unexplored, we attempt to investigate whether multimodal

robot behavior, i.e., displaying gesture along with speech,

is desired by human interaction partners and favored over

unimodal communication.

3 Integrated Model of Speech-Gesture Production

Computational approaches to synthesizing multimodal be-

havior can be modeled as three consecutive tasks [34]

(Fig. 2): firstly, determining what to convey (i.e., content

planning); secondly, determining how to convey it (i.e., be-

havior planning); finally, conveying it (i.e., behavior realiza-

tion). Addressing the third task of this behavior generation

pipeline, the Articulated Communicator Engine (ACE) oper-

ates at the behavior realization layer, yet the overall system

used by the virtual agent Max also provides an integrated

content planning and behavior planning framework [18].

The present work focuses on ACE which forms the starting

point for an interface endowing the humanoid robot with

similar multimodal behavior.
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Fig. 3 A feature-based

MURML specification for

multimodal utterances

3.1 Utterance Specification

Within the ACE framework, utterance specifications can be

described in two different ways using the Multimodal Ut-

terance Representation Markup Language (MURML [20]).

Firstly, verbal utterances together with co-verbal gestures

can be specified as feature-based descriptions in which the

outer form features of a gesture (i.e., the posture of the

gesture stroke) are explicitly described. Gesture affiliation

to dedicated linguistic elements is determined by matching

time identifiers. Figure 3 illustrates an example of a feature-

based MURML specification for speech-gesture production.

Secondly, gestures can be specified as key-frame anima-

tions in which each key-frame specifies a part of the over-

all gesture movement pattern describing the current state

of each joint. Speed information for the interpolation be-

tween every two key-frames and the corresponding affilia-

tion to parts of speech is obtained from assigned time iden-

tifiers. Key-frame animations in ACE can be defined either

manually or derived from motion capturing data from a hu-

man demonstrator, allowing the animation of virtual agents

in real-time. In our present work we focus on the genera-

tion of feature-based utterance descriptions, although key-

frame animations—and therewith captured human motion—

can also be realized on the robot using the same interface.

3.2 Gesture Motor Control

Gesture motor control is realized hierarchically in ACE:

during higher-level planning, the motor planner is provided

with timed form features as annotated in the MURML spec-

ification. This information is then passed on to indepen-

dent motor control modules. The idea behind this functional-

anatomical decomposition of motor control is to break down

the complex control problem into solvable sub-problems.

ACE [17] provides specific motor planning modules for the

arms, the wrists, and the hands which, in turn, instantiate

local motor programs (LMPs). These are used to animate

required sub-movements. LMPs operate within a limited set

of DOF and over a designated period of time. For the motion

of each limb, an abstract motor control program (MCP) co-

ordinates and synchronizes the concurrently running LMPs,

gearing towards an overall solution to the control problem.

The top-level control of the ACE framework, however, does

not attend to how such sub-movements are controlled. To en-

sure an effective interplay of the LMPs involved in a MCP,

the planning modules arrange them in a controller network

which defines their potential interdependencies for mutual

(de-)activation. LMPs are able to transfer activation between

themselves and their predecessors or successors to allow for

context-dependent gesture transitions. Thus, they can acti-

vate or deactivate themselves at run-time depending on feed-

back information on current movement conditions.

3.3 Speech Synthesis

Speech output is generated using the open source text-to-

speech synthesis system MARY (Modular Architecture for

Research on speech sYnthesis) [39]. It features a modular

design and an XML-based internal data representation. Nu-

merous languages including English and German are sup-

ported. A number of settings allow for an adjustment of var-

ious voice features. For further details on MARY see [39].

3.4 On-line Scheduling of Multimodal Utterances

The concept underlying the multimodal production model

acts on an empirically suggested assumption [24] referred

to as a segmentation hypothesis [17]. It claims that the pro-

duction of continuous speech and gesture is organized in

successive segments. Each of these segments represents a

single idea unit referred to as a chunk of speech-gesture pro-

duction. A chunk, in turn, consists of an intonation phrase

and a co-expressive gesture phrase, concertedly conveying

a prominent concept. Levelt [21] defines intonation phrases

to represent units over which the phonological structure of

continuous speech is organized. With respect to gestures,

Kendon [14] describes gesture phrases as units of gestu-

ral movement comprising one or more subsequent phases:

preparation, stroke, retraction, hold.
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Fig. 4 Blackboards running

through a sequence of

processing states for

incremental production of

multimodal chunks [17]

Accordingly, in our model incremental production of

successive coherent chunks is realized by processing each

chunk on a separate ‘blackboard’ running through a se-

quence of states (Fig. 4). Timing of gestures is achieved

on-line by the ACE engine as follows. Within a chunk,

synchrony is generally achieved by adapting the gesture to

structure and timing of speech. To do this, the ACE sched-

uler retrieves timing information about the synthetic speech

at the millisecond level and defines the start and the end of

the gesture stroke accordingly. These temporal constraints

are automatically propagated down to each single gesture

component. A more detailed overview of the internal plan-

ning process within ACE can be found in [17]. The second

aspect of scheduling, namely, the decision to skip prepara-

tion or retraction phases, results from the interplay of motor

programs at run-time. Motor programs monitor the body’s

current movement state and are autonomously activated to

realize the planned gesture stroke as scheduled. Whenever

the motor program of the following gesture takes over the

control of the effectors from the preceding program, the re-

traction phase turns into a transition into the next gesture.

Such on-line scheduling results in fluent and continuous

multimodal behavior.

4 Robot Control Architecture

In an effort to enable a humanoid robot to flexibly produce

speech and co-verbal gesture at run-time, a given robot con-

trol architecture needs to combine conceptual representation

and planning provided by ACE with motor control prim-

itives for speech and arm movements for the robot. This,

however, poses a number of challenges including the ca-

pacity to adequately account for certain physical proper-

ties, e.g., motor states, maximum joint velocity, strict self-

collision avoidance, and variation in DOF. In light of ACE

being originally designed for a virtual rather than physical

platform, these challenges must be met when transferring

the ACE framework to the Honda humanoid robot, whose

upper body comprises a torso with two 5DOF arms and

1DOF hands, as well as a 2DOF head [10].

Fig. 5 Different hand shapes used for hand gesture generation on the

Honda humanoid robot [36]

Although ACE provides movement descriptions in joint

space to animate the body of a virtual agent, we only extract

task space information when generating the corresponding

robot trajectory. This allows us to circumvent the correspon-

dence problem [29], which arises due to body dissimilarity

when mapping movements from one agent’s body to a dif-

ferent agent’s body. The information obtained at the task

space level includes the wrist position and orientation as

well as the designated hand shape, which is forwarded to

the robot motion control module to instantiate the actual

robot movement. Problematically, given the small number

of DOF in its hands, the humanoid robot is more limited in

performing single finger movements than a virtual charac-

ter. We counter this limitation by specifying three basic hand

shapes that can be utilized by the robot. A variety of finger

constellations derived from the ACE body model can then

be mapped onto them. Hand gestures in which the hands

are open or closed, and pointing gestures are directly trans-

ferable. Any hand gesture employing more than the index

finger is modeled using an open hand shape. Figure 5 dis-

plays the three different hand shapes used for hand gesture

generation on the Honda humanoid robot.

The problem of inverse kinematics (IK) of the arm is

solved on the velocity level using the robot’s whole body

motion (WBM) controller framework [6]. The WBM frame-

work allows to control all DOF of the humanoid robot based

on given end-effector targets. It provides a flexible method

to control upper body movement by only specifying relevant

task dimensions selectively in real-time, yet while generat-

ing smooth and natural movement. Redundancies are opti-

mized with regard to joint limit avoidance and self-collision
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avoidance. For more details on WBM control for the Honda

humanoid robot see [6].

After solving inverse kinematics for the internal body

model provided for WBM control, the joint space descrip-

tion of the designated trajectory is applied to the real robot.

A bi-directional interface using both efferent actuator con-

trol signals and afferent sensory feedback is used to mon-

itor possible deviations of actual robot motor states from

the kinematic body model provided by ACE. This is real-

ized by a feedback loop that updates the internal model of

the robot in the WBM controller as well as the kinematic

body model coupled to ACE at a sample rate r. This pro-

cess synchronizes two competing sample rates in order that

successful integration can ensue: firstly, that of the ACE en-

gine, and secondly, that of the WBM software controlling

the robot. For this purpose, a number of alternative mapping

rates could be employed:

1. sampling only at target positions: ACE sends only the

end positions or orientations of movement segments and

delegates the robot movement generation entirely to the

robot’s WBM controller;

2. sampling at each n-th frame: ACE sends control parame-

ters at a fixed rate to the robot’s WBM controller;

3. adaptive sampling rate: ACE “tethers” WBM using dif-

ferent sampling rates, ranging from one sample per frame

to taking only the end positions, depending on the com-

plexity of the trajectory.

If the trajectory is linear, then we can expect that strategy

1 above would serve as the best mechanism since only dis-

tance information would likely be required. If, on the other

hand, the trajectory is complex, we can expect that strategy 2

would be optimal, since a sequence of small movement vec-

tors would likely be required to guide the robot controller.

If, however, the gesture is formed from different types of

sub-movements as possible in our framework, e.g., a linear

trajectory for gesture preparation with a curved trajectory

for the stroke, we can expect that the combined approach

of strategy 3 using an adaptive sampling rate would become

optimal.

In our current set-up, we employ the second method with

a maximal sampling rate, i.e., each successive frame of the

movement trajectory is sampled and transmitted to the robot

controller (n = 1). Given a frame rate of 20 frames per

second (flexibly adjustable with ACE), this can result in a

large number of sample points which, in turn, ensures that

the robot closely follows the possibly complex trajectory

planned by ACE. Results presented in the following sec-

tion were obtained with this method. Alternatively, using

the third strategy would allow for adjusting the sampling

rate depending on the trajectory’s complexity, which may

well vary from simple straight movements (e.g., for gesture

preparation) to complex curved shapes for the gesture stroke

phase. Whether or not this strategy leads to improved results

for the generation of robot gesture in combination with ACE

is a point of future investigation.

A main advantage of our approach to robot control is the

trajectory formulation in terms of effector targets and their

respective orientations in task space. On this basis, it is fairly

straightforward to derive a joint space description for the

Honda humanoid robot by using the standard WBM con-

troller. Alternatively, joint angle values could be extracted

from ACE and directly mapped onto the robot body model.

However, being a virtual agent application, ACE does not

entirely account for physical restrictions such as collision

avoidance, which may lead to joint states that are not feasi-

ble on the robot. Therefore, by solving IK using the robot’s

internally implemented WBM controller, we ensure a safer

generation of robot posture. Furthermore, studies in which

participants’ gaze was eye-tracked while observing hand and

arm movements provide evidence that humans mostly track

the hand or end-point, even if the movement is performed

with the entire arm [23]. Thus, the form and meaning of a

gesture can be conveyed even with a deviation from original

joint angles.

Having implemented an interface that couples ACE with

the perceptuo-motor system of the Honda robot, the control

architecture outlined in Fig. 6 is now used as the underly-

ing action generation framework for the humanoid robot. It

combines conceptual representation and planning with mo-

tor control primitives for speech as well as hand and arm

movements of a physical robot body. Further details of the

implementation are presented in [35] and [36].

5 Technical Results

Results were produced in a feedforward manner whereby

commands indicating the wrist position and hand orienta-

tion of the ACE body model were transmitted in real-time to

the robot at a sample rate of 20 frames per second. Figure 7

illustrates the multimodal output generated in our current

framework using the MURML utterance presented in Fig. 3.

The robot is shown next to a panel which displays the current

state of the internal robot body model and ACE kinematic

body model, respectively, at each time step. In addition,

speech output is transcribed to illustrate the words spanning

different segments of the gesture movement sequence, indi-

cating temporal synchrony achieved between the two modal-

ities. It is revealed that the physical robot is able to perform

a generated gesture fairly accurately but with some inertial

delay compared to the internal ACE model. This observa-

tion is supported by Fig. 8, in which each dimension of the

wrist position for the ACE body model and the robot is plot-

ted against time. Further results illustrating the difference in

motion speed between the two platforms as observed during

the performance of various gestures are presented in [35].
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Fig. 6 Robot control architecture for the realization of multimodal behavior

Despite the general limitation in motion speed, these

findings substantiate the feasibility of the proposed ap-

proach. Arbitrary MURML-based speech-gesture represen-

tations—as well as key-frame animation descriptions of

gestures, optionally derived from human motion capturing

data—can be realized using the current framework. Exten-

sive tests with multiple various gesture representations (in-

cluding both one-armed and two-armed movements) per-

formed on the robot further revealed that neglecting joint

angle information as generated in ACE does not impair the

overall shape of a gesture. Hence, controlling the robot via

task space commands turns out to be an adequate and safe

way to generate arm movements for the robot.

Although Fig. 7 suggests acceptable temporal synchrony

between both output modalities, synchronization of speech

and gesture does not yet appear to be optimal. Tests us-

ing long sentences in speech as well as utterances with the

speech affiliate situated at the beginning of the sentence re-

vealed that movement generation tends to lag behind spoken

language output. Consequently, we need to explore ways to

handle the difference in time required by the robot’s physi-

cally constrained body in comparison to the kinematic body

model in ACE. Our idea for future work is to tackle this

challenge by extending the cross-modal adaptation mech-

anisms provided by ACE with a more flexible multimodal

utterance scheduler. This will allow for a finer mutual adap-

tation between robot gesture and speech. In the current im-

plementation, the ACE engine achieves synchrony within a

chunk mainly by gesture adaptation to structure and timing

of speech, obtaining absolute gesture time information at

the phoneme level. Improved synchronization requires the

incorporation of a forward model to predict the estimated

time needed by the robot for gesture preparation. Addition-

ally, predicted values must be controlled at run-time and, if

necessary, adjusted based on constantly updated feedback

information on the robot state.
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Fig. 7 Example of a multimodal utterance realized with the current framework from the specification given in Fig. 3; for comparison, the physical

robot, internal robot body model, and the kinematic ACE body model are shown (left to right, top-down, sampled every four frames (0.16 s)) [36]

Fig. 8 Plots of x-, y- and z-coordinate respectively of the wrist positions of the ACE body model (solid) and the physical robot (dotted) during

gesture execution [36]

6 Empirical Evaluation: Unimodal Versus Multimodal

Robot Behavior in HRI

In order to gain a deeper understanding of how commu-

nicative robot gesture may impact and shape human expe-

rience in human-robot interaction (HRI), we conducted a

between-subjects experimental study using the Honda hu-

manoid robot. For this purpose, we designed a suitable sce-

nario for gesture-based HRI and identified benchmarks to

empirically evaluate the developed framework. The study

scenario comprised a joint task that was to be performed

by a human participant in collaboration with the humanoid

robot. Our main motivation for choosing a task-based inter-

action was to realize a largely controllable yet meaningful

interaction which would allow for a measurable compari-

son of participants’ reported experiences. In the given task,

the robot referred to various objects by utilizing either uni-

modal (speech only) or multimodal (speech and gesture)

utterances, based on which the participant was expected to

perceive, interpret and perform an according action.

6.1 Hypothesis

Based on findings resulting from gesture research in human-

human as well as human-agent interaction we developed the

following hypothesis for gesture-based human-robot inter-

action:

Participants who are presented with multimodal instruc-

tions by the robot (using speech and gesture) will evaluate

the robot more positively than those who are presented with

unimodal information by the robot (using only speech).

6.2 Experimental Design

The experiment was set in a kitchen environment in which

the humanoid played the role of a household robot. Partici-

Author's personal copy



210 Int J Soc Robot (2012) 4:201–217

pants were told that they were helping a friend move house

and were tasked with emptying a cardboard box of kitchen

items, each of which had to be placed in its designated lo-

cation. The box contained nine kitchen items whose stor-

age placement is not typically known a priori (unlike plates,

e.g., which are usually piled on top of each other). Specifi-

cally, they comprised a thermos flask, a sieve, a ladle, a vase,

an eggcup, two differently shaped chopping boards and two

differently sized bowls. The cardboard box containing the

kitchen items used in the experiment is displayed in Fig. 9.

Fig. 9 Cardboard box containing kitchen items used in the experimen-

tal study

The objects were to be removed from the box and ar-

ranged in a pair of kitchen cupboards (upper and lower cup-

board with two drawers). For this, the participant was al-

lowed to move freely in the area in front of the robot, typi-

cally walking between the cardboard box with items and the

kitchen cupboards. Given the participant’s non-familiarity

with the friend’s kitchen environment, the robot was made to

assist the human with the task by providing information on

where each item belongs. A table situated beside the kitchen

cupboard was provided for the case that the participant did

not understand where the item had to be placed. A sketch of

the experimental set-up is shown in Fig. 10.

Conditions We manipulated the robot’s non-verbal behav-

ior in three experimental conditions:

• In Condition 1, the unimodal (speech-only) condition, the

robot presented the participant solely with a set of nine

verbal instructions to explain where each object should be

placed. The robot did not move its body during the whole

interaction; no gesture or gaze behaviors were displayed.

• In Condition 2, the congruent multimodal (speech-

gesture) condition, the robot presented the participant

with the identical set of nine verbal instructions used in

condition 1. In addition, they were accompanied by a to-

tal of 21 corresponding gestures explaining where each

object should be placed. Speech and gesture were seman-

tically matching, e.g., the robot said “put it up there” and

pointed up. Simple gaze behavior supporting hand and

arm gestures (e.g., looking right when pointing right) was

displayed during the interaction.

• In Condition 3, the incongruent multimodal (speech-

gesture) condition, the robot presented the participant

Fig. 10 Sketch of the

experimental set-up in the lab
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Fig. 11 Example of a

multimodal two-chunk utterance

delivered by the robot during

interaction

Fig. 12 Example of a multimodal three-chunk utterance delivered

by the robot during interaction. Three different types of gesture are

used (left to right): iconic gesture illustrating the shape of the vase;

pantomimic gesture conveying the act of opening the cupboard; deictic

gesture pointing at designated position [37]

with the identical set of nine verbal instructions used

in condition 1. Again, in addition, they were accompa-

nied by a total of 21 gestures, out of which ten ges-

tures (47.6%) semantically matched the verbal instruc-

tion, while the remaining eleven gestures (52.4%) were

semantically non-matching, e.g., the robot occasionally

said “put it up there” but pointed downwards. The reason

for combining semantically non-matching gestures with

matching ones in this condition was to avoid a complete

loss of the robot’s credibility after a few utterances. Sim-

ple gaze behavior supporting hand and arm gestures (e.g.,

looking right when pointing right) was displayed during

the interaction.

Verbal Utterances In order to keep the task solvable un-

der all three conditions, we decided to design the spoken

utterances in a self-sufficient way, i.e., the gestures used in

the multimodal conditions contained illustrative information

that was not indispensable to solving the task. Each instruc-

tion presented by the robot typically consisted of two or

three continuously connected utterance chunks. Based on

the definition provided in [17], each chunk refers to a single

idea unit represented by an intonation phrase and, optionally

in a multimodal utterance, by an additional co-expressive

gesture phrase. The verbal utterance chunks were based on

the following syntax:

– Two-chunk utterance:

<Please take the [object]>

<and place it [position+location].>

Example: Please take the thermos flask and place it on

the right side of the upper cupboard.

– Three-chunk utterance:

<Please take the [object],>

<then open the [location]>

<and place it [position].>

Example: Please take the eggcup, then open the right

drawer and place it inside.

Examples of a multimodal two-chunk and a three-chunk ut-

terance delivered by the robot are illustrated in Figs. 11 and

12 respectively.

Gestures In the multimodal conditions, the robot used

three different types of gesture along with speech to indi-

cate the designated placement of each item:

• Deictic gestures, e.g., to indicate positions and locations

• Iconic gestures, e.g., to illustrate the shape/size of objects
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Table 1 Dependent measures used to evaluate the quality of presentation

Measure Questionnaire item Scale

Gesture quantity “The amount of gestures performed by the robot were. . .” 1 = too few, 5 = too many

Gesture speed “The execution of gestures was. . .” 1 = too slow, 5 = too fast

Gesture fluidity “The execution of hand and arm movements was fluid.” 1 = not appropriate, 5 = very appropriate

Speech-gesture content “The robot’s speech and gesture were semantically matching (content).” 1 = not appropriate, 5 = very appropriate

Speech-gesture timing “The robot’s speech and gesture were well synchronized (timing).” 1 = not appropriate, 5 = very appropriate

Naturalness “The combined use of speech and gesture appeared. . . ” 1 = artificial, 5 = natural

• Pantomimic gestures, e.g., hand movement using a ladle

or opening cupboard doors.

Examples of the three gesture types are displayed in Fig. 12.

Robot Control and Behavior During the study, the Honda

humanoid robot was partly controlled using a Wizard-of-Oz

technique to ensure minimal variability in the experimen-

tal procedure. The experiment room was partitioned with a

curtain such that the robot and kitchen environment were lo-

cated at one end and the wizard operating the control com-

puter was located at the other end, outside the participant’s

field of view.

The robot’s speech was identical across conditions. It was

generated using the text-to-speech system MARY [39] set

to a neutral voice. To avoid uncertainties, neither speech

recognition nor active vision were used during the experi-

ment. Instead, the experimenter initiated the robot’s interac-

tion behavior from a fixed sequence of pre-determined ut-

terances. Once triggered, a given utterance was generated

autonomously at run-time. The ordering and generation of

this sequence remained identical across conditions and ex-

perimental runs.

The robot delivered each two-chunk or three-chunk in-

structional utterance as a singular one-shot expression with-

out any significant breaks in the delivery process. Successive

chunks indicating object, position and location were deliv-

ered contiguously in the manner of natural speech. More-

over, in the co-verbal gesture conditions, gestures became

confluent with the utterance process. Participants were in-

structed to indicate when they had finished placing an item

and were ready for the following item by saying “next”.

6.3 Dependent Measures

Based on the participants’ answers to a post-experiment

questionnaire using a five-point Likert scale for each item,

we investigated two main aspects of the reported interac-

tion experience: firstly, the perceived quality of presentation

was measured using six questionnaire items; secondly, the

perception of the robot was assessed based on eight char-

acteristics covered by additional questionnaire items. Tables

Table 2 Dependent measures used to evaluate the perception of the

robot

Measure Questionnaire item Scale

Sympathetic “Please assess to which

extent the following

characteristics apply to the

robot: [. . . ]”

1 = not appropriate,

5 = very

appropriate
Competent

Lively

Active

Engaged

Friendly

Communicative

Fun-loving

1 and 2 give an overview of the dependent measures, ques-

tionnaire items, and scales used, respectively, for each eval-

uation category.

6.4 Participation

A total of 60 people (30 female, 30 male) participated in the

experiment, ranging in age from 20 to 62 years (M = 31.12,

SD = 10.21). All participants were native German speakers

who were recruited at Bielefeld University and had never be-

fore participated in a study involving robots. Based on five-

point Likert scale ratings (1 = very little, 5 = very much),

participants were identified as having negligible experience

with robots (M = 1.22, SD = 0.45), while their computer

and technology know-how was moderate (M = 3.72, SD =

0.90). Participants were randomly assigned to one of the

three different experimental conditions (i.e., 20 participants

per condition), while maintaining gender- and age-balanced

distributions.

6.5 Experimental Procedure

Participants were first given a brief written scenario and task

description to read outside the experimental lab. They were

then brought into the experiment room where the experi-

menter verbally reiterated the task description to ensure the

participants’ familiarity. Participants were given the oppor-

tunity to ask any clarifying questions. The experimenter then
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Table 3 Mean values for the rating of presentation quality in the three

conditions (standard deviations in parentheses)

Cond. 1 Cond. 2 Cond. 3

Unimodal Congruent Incongruent

Gesture quantity 1.90 (.99) 2.80 (.62) 3.00 (.56)

Gesture speed 2.85 (.37) 2.95 (.22)

Gesture fluidity 3.25 (.97) 3.95 (1.05)

Speech-gesture content 3.65 (1.04) 3.30 (1.26)

Speech-gesture timing 3.90 (.79) 4.05 (1.10)

Naturalness 3.20 (1.06) 3.30 (1.13)

left the participant to begin the interaction with the robot. At

the beginning of the experiment, the robot greeted the par-

ticipant and gave a verbal introduction to the task. It then

presented the participant with individual utterances as de-

scribed in the experimental design, each of which was trig-

gered by the experimenter sitting at a control terminal. The

participant attempted to follow the uttered instructions by

placing each item into its designated location. At the end of

the interaction, the robot thanked the participant for helping

and bid them farewell.

In the unimodal (speech-only) condition all utterances in-

cluding the greeting and farewell were presented verbally; in

the multimodal (speech-gesture) conditions, all utterances

including the greeting and farewell were accompanied by

co-verbal gestures.

After completing the task, participants filled out a post-

experiment questionnaire that recorded their demographic

background and, based on a five-point Likert scale, mea-

sured their affective state, evaluation of the task and inter-

action, and perception of the robot. Upon completion of

the questionnaire, the participants were de-briefed and re-

ceived a chocolate bar as a thank-you. The questionnaire

data was collated and analyzed, the results are presented and

discussed in the following.

6.6 Results and Discussion

Questionnaire data was analyzed regarding the effect of ex-

perimental conditions on assessment of presentation quality

and robot perception.

Quality of Presentation We investigated the perceived

quality of presentation with regard to gesture, speech, and

content. Mean values and standard deviations are summa-

rized in Table 3. Note that for condition 1 (unimodal) only

gesture quantity was measured, since participants in this

condition were not presented with any non-verbal behav-

ior by the robot and thus could not rate the quality of the

robot’s gestures.

With regard to gesture quantity, the overall mean value

for the two gesture conditions was M = 2.90 (SD = 0.59).

Table 4 Mean values for the rating of robot perception in the three

conditions based on a 5-point Likert scale (standard deviations in

parentheses); +
= p ≤ 0.10, ∗

= p ≤ 0.05, ∗∗
= p ≤ 0.01, ∗∗∗

= p ≤

0.001

Cond. 1 Cond. 2 Cond. 3

Unimodal Congruent Incongruent

Sympathetic 3.60 (1.05) 4.20 (.95)+ 4.15 (1.09)

Competent 3.85 (.93) 4.26 (.87) 3.75 (1.16)

Lively 2.52 (.84) 3.12 (.97)* 3.32 (.76)**

Active 2.35 (.88) 3.20 (1.11)** 3.45 (.76)***

Engaged 3.25 (1.29) 3.60 (1.35) 4.15 (.88)*

Friendly 4.15 (1.04) 4.35 (1.31) 4.60 (.68)

Communicative 3.00 (1.08) 3.15 (1.31) 3.60 (1.05)+

Fun-loving 1.95 (.83) 2.65 (1.23)* 2.70 (1.30)*

This means, participants were quite satisfied with the gesture

rate. For the unimodal condition, participants rated gesture

quantity as rather low (M = 1.90, SD = 0.99), which can

be attributed to the lack of non-verbal behavior displayed by

the robot.

For the multimodal conditions, gesture quality was fur-

ther measured based on five attributes (overall mean value

and standard deviation for the two gesture conditions in

parentheses): gesture speed (M = 2.90, SD = 0.30), ges-

ture fluidity (M = 3.60, SD = 1.06), semantic matching of

speech and gesture (M = 3.48, SD = 1.14), temporal match-

ing of speech and gesture (M = 3.97, SD = 0.95), and natu-

ralness (M = 3.25, SD = 1.08). In both gesture conditions,

the five quality attributes were rated with mean values be-

tween 2.8 and 4.1 on five-point Likert-scales, indicating that

participants were generally satisfied with the quality of ges-

tures performed by the robot.

Perception of the Robot We assessed how the humanoid

robot was perceived by participants using eight character-

istics. To test our hypothesis we conducted independent-

samples t-tests with 95% confidence intervals as follows:

first, we compared questionnaire data from condition 1 with

condition 2 (unimodal vs. congruent multimodal); second,

we compared data from condition 1 with condition 3 (uni-

modal vs. incongruent multimodal). Mean values for the

robot’s perception scales in the three different conditions are

listed together with their standard deviation values in Table 4

and are visualized in Fig 13. Items showing statistically sig-

nificant effects in multimodal gesture conditions compared

to the unimodal speech-only condition are marked with as-

terisks (*).

On average, all qualities were rated higher, i.e., more pos-

itively, in the multimodal gesture conditions, with a lower

mean value for ‘competent’ in the incongruent speech-

gesture condition being the exception. These results support
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Fig. 13 Mean values of the

dependent measures rating

participants’ perception of the

robot

our hypothesis and suggest that the inclusion of gestural be-

havior casts the robot in a more positive light than in the

speech-only condition.

Comparing condition 1 (unimodal) with condition 2

(congruent multimodal), the three characteristics ‘lively’

(t (38) = −2.09, p = 0.044), ‘active’ (t (38) = −2.70,

p = 0.01) and ‘fun-loving’ (t (38) = −2.12, p = 0.041)

are observed to be significantly higher in the congruent

with-gesture condition than in the unimodal condition using

speech only. In addition, a comparison of the characteristic

‘sympathetic’ between conditions 1 and 2 is shown to be sig-

nificant at the 10% level (t (38) = −1.90, p = 0.065), with

higher mean values in the congruent multimodal condition.

When comparing condition 1 (unimodal) with condition

3 (incongruent multimodal), the four characteristics ‘lively’

(t (38) = −3.17, p = 0.003), ‘active’ (t (38) = −4.25,

p = 0.000), ‘engaged’ (t (38) = −2.58, p = 0.014) and

‘fun-loving’ (t (32.16) = −2.18, p = 0.037) are found to

be rated significantly higher in the multimodal condition.

In addition, comparing the characteristic ‘communicative’

between condition 1 and 3 shows a significant effect at the

10% level (t (38) = −1.79, p = 0.082), with higher mean

values in the incongruent multimodal condition.

An additional comparison of data from condition 2 with

condition 3 (congruent vs. incongruent multimodal) showed

no significant effect of experimental conditions. However,

with the exception of dependent measures ‘sympathetic’ and

‘competent’, our analyses indicated a trend towards higher

mean values in the incongruent multimodal condition.

The significantly higher rating of ‘lively’ and ‘active’

in the two multimodal conditions can be attributed to the

robot’s gestural movements, since the robot appears com-

paratively stiff in the speech-only condition. The ratings

of the characteristics ‘fun-loving’, ‘engaged’, ‘sympathetic’

and ‘communicative’ suggest that human-like non-verbal

behaviors including gestures actually trigger a more posi-

tive response within the human participant. The results fur-

ther reveal that even a robot that occasionally makes incor-

rect gestures is still more favorable than one that performs

no hand and arm gestures at all. In fact, on average the

robot is evaluated as more lively, active, engaged, friendly,

communicative and fun-loving in the incongruent speech-

gesture condition compared with the congruent condition.

This suggests that a robot’s non-verbal communicative be-

havior can even trigger a stronger positive response within

the human participant when it is not ‘perfect’. Overall, the

results demonstrate that co-verbal gestures performed by a

humanoid robot lead to an enhanced human-robot interac-

tion experience, i.e., the robot is generally rated more posi-

tively when it displays non-verbal behaviors. These findings

support our approach to endow social robots with commu-

nicative gestural behavior.
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7 Conclusion and Future Work

We presented a robot control architecture which enables the

Honda humanoid robot to generate gestures and synchro-

nized speech at run-time, while not being limited to a pre-

defined repertoire of motor actions. The present framework

builds upon a speech and gesture production model for vir-

tual human agents. Representing a sophisticated multimodal

scheduler, the Articulated Communicator Engine (ACE) al-

lows for an on-line production of flexibly planned behav-

ior representations. Our framework combines conceptual,

XML-based representation and planning with motor control

primitives for speech and arm movements.

Meeting strict temporal synchrony constraints will

present a main challenge to our framework in the future.

Evidently, the generation of finely synchronized multimodal

utterances proves to be more demanding when realized on

a robot with a physically constrained body than for an ani-

mated virtual agent, especially when communicative signals

must be produced at run-time. Currently, the ACE engine

achieves synchrony mainly by gesture adaptation to struc-

ture and timing of speech, obtaining absolute time infor-

mation at phoneme level. To tackle this new dimension of

requirements, however, the cross-modal adaptation mecha-

nisms applied in ACE have to be extended to allow for a

finer mutual adaptation between robot gesture and speech.

For this, afferent feedback provided by our robot control ar-

chitecture needs to be integrated into a more sophisticated

scheduler.

In order to investigate how humans perceive representa-

tional hand and arm gestures performed by the robot during

a task-related interaction, we evaluated our technical frame-

work in an experimental study using the Honda humanoid

robot. Our findings reveal that the perception and evalua-

tion of the robot is rated more positively when it displays

non-verbal behaviors in the form of co-verbal gestures along

with speech. This is also true for hand and arm gestures that

do not semantically match the information content conveyed

via speech, suggesting that a humanoid robot that generates

gestures—even if in part they are semantically ‘incorrect’—

is still more favorable than one that performs no gestures at

all. In fact, on average the robot is evaluated as more lively,

active, engaged, friendly, communicative and fun-loving in

the incongruent speech-gesture condition compared with the

congruent condition. This suggests that the robot’s non-

verbal communicative behavior triggers a stronger positive

response within the human participant when it is not ‘per-

fect’ and thus potentially less predictable. These implica-

tions should be further elucidated in subsequent studies to

point out the direction for future social robotics research that

is dedicated to the design of acceptable behaviors for artifi-

cial communicators.

In the study presented, the robot’s gaze behavior was

modeled in a very simplistic way in the multimodal con-

ditions; robot gaze in the speech-only condition was static

throughout the interaction. These design choices were made

on purpose to direct the participants’ attention to the hand

and arm movements performed by the robot in the speech-

gesture conditions. As a consequence, however, the robot’s

gazing behavior did not appear very natural during the in-

teraction, since the robot did not follow the human inter-

action partner with its gaze. In future studies, it will be

desirable to investigate the impact and interaction of the

robot’s gaze in combination with gestural hand and arm

movements.

Despite some limitations, our results do nonetheless sug-

gest that a robot presenting social cues in the form of co-

verbal hand and arm gestures, as generated with our frame-

work, is perceived in a more positive way than a robot whose

sole means of communication is limited to a single modal-

ity, namely speech. These findings contribute to an advance-

ment in human-robot interaction and give new insights into

human perception and understanding of gestural machine

behaviors. Specifically, they shed light on how humans per-

ceive and interpret utterances in relation to different com-

munication modalities. Our findings suggest that human-like

behavior in a humanoid robot has a positive impact on the

way humans perceive the robot in an interaction. Ultimately,

these results will allow us to design and build better artificial

communicators in the future.
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