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Abstract

Background: Machine learning (ML) has made a significant impact in medicine and cancer research; however, its

impact in these areas has been undeniably slower and more limited than in other application domains. A major

reason for this has been the lack of availability of patient data to the broader ML research community, in large part

due to patient privacy protection concerns. High-quality, realistic, synthetic datasets can be leveraged to accelerate

methodological developments in medicine. By and large, medical data is high dimensional and often categorical.

These characteristics pose multiple modeling challenges.

Methods: In this paper, we evaluate three classes of synthetic data generation approaches; probabilistic models,

classification-based imputation models, and generative adversarial neural networks. Metrics for evaluating the quality

of the generated synthetic datasets are presented and discussed.

Results: While the results and discussions are broadly applicable to medical data, for demonstration purposes we

generate synthetic datasets for cancer based on the publicly available cancer registry data from the Surveillance

Epidemiology and End Results (SEER) program. Specifically, our cohort consists of breast, respiratory, and non-solid

cancer cases diagnosed between 2010 and 2015, which includes over 360,000 individual cases.

Conclusions: We discuss the trade-offs of the different methods and metrics, providing guidance on considerations

for the generation and usage of medical synthetic data.
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Background

Increasingly, large amounts and types of patient data

are being electronically collected by healthcare providers,

governments, and private industry. While such datasets

are potentially highly valuable resources for scientists,

they are generally not accessible to the broader research

community due to patient privacy concerns. Even when

it is possible for a researcher to gain access to such data,

ensuring proper data usage and protection is a lengthy

process with strict legal requirements. This can severely

delay the pace of research and, consequently, its transla-

tional benefits to patient care.
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To make sensitive patient data available to others, data

owners typically de-identify or anonymize the data in a

number of ways, including removing identifiable features

(e.g., names and addresses), perturbing them (e.g., adding

noise to birth dates), or grouping variables into broader

categories to ensure more than one individual in each cat-

egory [1]. While the residual information contained in

properly anonymized data alone may not be used to re-

identify individuals, once linked to other datasets (e.g.,

social media platforms), they may contain enough infor-

mation to identify specific individuals. Efforts to deter-

mine the efficacy of de-identification methods have been

inconclusive, particularly in the context of large datasets

[2]. As such, it remains extremely difficult to guaran-

tee that re-identification of individual patients is not a

possibility with current approaches.
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Given the risks of re-identification of patient data and

the delays inherent in making such data more widely

available, synthetically generated data is a promising alter-

native or addition to standard anonymization procedures.

Synthetic data generation has been researched for nearly

three decades [3] and applied across a variety of domains

[4, 5], including patient data [6] and electronic health

records (EHR) [7, 8]. It can be a valuable tool when real

data is expensive, scarce or simply unavailable. While in

some applications it may not be possible, or advisable, to

derive new knowledge directly from synthetic data, it can

nevertheless be leveraged for a variety of secondary uses,

such as educative or training purposes, software testing,

and machine learning and statistical model development.

Depending on one’s objective, synthetic data can either

entirely replace real data, augment it, or be used as a

reasonable proxy to accelerate research.

A number of synthetic patient data generation meth-

ods aim to minimize the use of actual patient data

by combining simulation, public population-level statis-

tics, and domain expert knowledge bases [7–10]. For

example, in Dube and Gallagher [8] synthetic electronic

health records are generated by leveraging publicly avail-

able health statistics, clinical practice guidelines, and

medical coding and terminology standards. In a related

approach, patient demographics (obtained from actual

patient data) are combined with expert-curated, publicly

available patient care patterns to generate synthetic elec-

tronic medical records [9]. While the emphasis on not

accessing real patient data eliminates the issue of re-

identification, this comes at the cost of a heavy reliance on

domain-specific knowledge bases and manual curation.

As such, these methods may not be readily deployable to

new cohorts or sets of diseases. Entirely data-drivenmeth-

ods, in contrast, produce synthetic data by using patient

data to learn parameters of generative models. Because

there is no reliance on external information beyond the

actual data of interest, these methods are generally disease

or cohort agnostic, making themmore readily transferable

to new scenarios.

Synthetic patient data has the potential to have a real

impact in patient care by enabling research on model

development to move at a quicker pace. While there exists

a wealth of methods for generating synthetic data, each

of them uses different datasets and often different evalua-

tion metrics. This makes a direct comparison of synthetic

data generationmethods surprisingly difficult. In this con-

text, we find that there is a void in terms of guidelines or

even discussions on how to compare and evaluate differ-

ent methods in order to select the most appropriate one

for a given application. Here, we have conducted a sys-

tematic study of several methods for generating synthetic

patient data under different evaluation criteria. Each met-

ric we use addresses one of three criteria of high-quality

synthetic data: 1) Fidelity at the individual sample level

(e.g., synthetic data should not include prostate cancer in

a female patient), 2) Fidelity at the population level (e.g.,

marginal and joint distributions of features), and 3) pri-

vacy disclosure. The scope of the study is restricted to

data-driven methods only, which, as per the above discus-

sion, do not require manual curation or expert-knowledge

and hence can be more readily deployed to new appli-

cations. While there is no single approach for generating

synthetic data which is the best for all applications, or even

a one-size-fits-all approach to evaluating synthetic data

quality, we hope that the current discussion proves use-

ful in guiding future researchers in identifying appropriate

methodologies for their particular needs.

The paper is structured as follows.We start by providing

a focused discussion on the relevant literature on data-

driven methods for generation of synthetic data, specifi-

cally on categorical features, which is typical in medical

data and presents a set of specific modeling challenges.

Next, we describe the methods compared in the current

study, along with a brief discussion of the advantages and

drawbacks of each approach. We then describe the eval-

uation metrics, providing some intuition on the utility

and limitation of each. The datasets used and our experi-

mental setup are presented. Finally, we discuss our results

followed by concluding remarks.

Related work

Synthetic data generation can roughly be categorized into

two distinct classes: process-driven methods and data-

driven methods. Process-driven methods derive synthetic

data from computational or mathematical models of an

underlying physical process. Examples include numerical

simulations, Monte Carlo simulations, agent-based mod-

eling, and discrete-event simulations. Data-driven meth-

ods, on the other hand, derive synthetic data from gen-

erative models that have been trained on observed data.

Because this paper is mainly concerned with data-driven

methods, we briefly review the state-of-the-art methods

in this class of synthetic data generation techniques. We

consider three main types of data-driven methods: Impu-

tation based methods, full joint probability distribution

methods, and function approximation methods.

Imputation based methods for synthetic data genera-

tion were first introduced by Rubin [3] and Little [11]

in the context of Statistical Disclosure Control (SDC),

or Statistical Disclosure Limitation (SDL) [4]. SDC and

SDL methodologies are primarily concerned with reduc-

ing the risk of disclosing sensitive data when performing

statistical analyses. A general survey paper on data pri-

vacy methods related to SDL is Matthews and Harel

[12]. Standard techniques are based on multiple impu-

tation [13], treating sensitive data as missing data and

then releasing randomly sampled imputed values in
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place of the sensitive data. These methods were later

extended to the fully synthetic case by Raghunathan,

Reiter and Rubin [14]. Early methods focused on continu-

ous data with extensions to categorical data following [15].

Generalized linear regression models are typically used,

but non-linear methods (such as Random Forest and neu-

ral networks) can and have been used [16]. Remedies for

some of the shortcomings with multiple imputation for

generating synthetic data are offered in Loong and Rubin

[17]. An empirical study of releasing synthetic data under

the methods proposed in Raghunathan, Reiter and Rubin

[14] is presented in Reiter and Drechsler [18]. Most of the

SDC/SDL literature focuses on survey data from the social

sciences and demography. The generation of synthetic

electronic health records has been addressed in Dube and

Gallagher [8].

Multiple imputation has been the de facto method for

generating synthetic data in the context of SDC and SDL.

While imputation based methods are fully probabilistic,

there is no guarantee that the resulting generative model

is an estimate of the full joint probability distribution of

the sampled population. In some applications, it may be

of interest to model this probability distribution directly,

for example if parameter interpretability is important. In

this case, any statistical modeling procedure that learns a

joint probability distribution is capable of generating fully

synthetic data.

In the case of generating synthetic electronic health

care records, one must be able to handle multivariate

categorical data. This is a challenging problem, particu-

larly in high dimensions. It is often necessary to impose

some sort of dependence structure on the data [19]. For

example, Bayesian networks, which approximate a joint

distribution using a first-order dependence tree, have

been proposed in Zhang et al. [20] as a method for

generating synthetic data with privacy constraints. More

flexible non-parametric methods need not impose such

dependence structures on the distributions. Examples of

Bayesian non-parametric methods for multidimensional

categorical data include latent Gaussian process methods

[21] and Dirichlet mixture models [22].

Synthetic data has recently attracted attention from the

machine learning (ML) and data science communities for

reasons other than data privacy.Many state-of-the-artML

algorithms are based on function approximation meth-

ods such as deep neural networks (DNN). These models

typically have a large number of parameters and require

large amounts of data to train. When labeled data sets are

impossible or expensive to obtain, it has been proposed

that synthetically generated training data can complement

scarce real data [23]. Similarly, transfer learning from syn-

thetic data to real data to improve ML algorithms has also

been explored [24, 25]. Thus data augmentation methods

from the ML literature are a class of synthetic data gen-

eration techniques that can be used in the bio-medical

domain.

Generative Adversarial Networks (GANs) are a popu-

lar class of DNNs for unsupervised learning tasks [26].

In particular, they produce two jointly-trained networks;

one which generates synthetic data intended to be similar

to the training data, and one which tries to discriminate

the synthetic data from the true training data. They have

proven to be very adept at learning high-dimensional,

continuous data such as images [26, 27]. More recently

GANs for categorical data have been proposed in Camino,

Hammerschmidt and State [28] with specific applications

to synthetic EHR data in Choi et al. [29].

Finally, we note that several open-source software pack-

ages exist for synthetic data generation. Recent examples

include the R packages synthpop [30] and SimPop [31], the

Python package DataSynthesizer [5], and the Java-based

simulator Synthea [7].

Methods

Methods for synthetic data generation

In this paper we investigate various techniques for syn-

thetic data generation. The techniques we investigate

range from fully generative Bayesian models to neural

network based adversarial models. We next provide brief

descriptions of the synthetic data generation approaches

considered.

Sampling from independentmarginals

The Independent marginals (IM) method is based on

sampling from the empirical marginal distributions of

each variable. The empirical marginal distribution is

estimated from the observed data. We next summa-

rize the key advantages (+) and disadvantages (-) of this

approach.

+ This approach is computationally efficient and the

estimation of marginal distributions for different

variables may be done in parallel.

- IM does not capture statistical dependencies across

variables, and hence the generated synthetic data may

fail to capture the underlying structure of the data.

This method is included in our analysis solely as a simple

baseline for other more complex approaches.

Bayesian network

Bayesian networks (BN) are probabilistic graphical mod-

els where each node represents a random variable, while

the edges between the nodes represent probabilistic

dependencies among the corresponding random vari-

ables. For synthetic data generation using a Bayesian net-

work, the graph structure and the conditional probability
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distributions are inferred from the real data. In BN, the

full joint distribution is factorized as:

p(x) =
∏

v∈V

p(xv|xpa(v)) (1)

where V is the set of random variables representing the

categorical variables and xpa(v) is the subset of parent

variables of v, which is encoded in the directed acyclic

graph.

The learning process consists of two steps: (i) learning

a directed acyclic graph from the data, which expresses

all the pairwise conditional (in)dependence among the

variables, and (ii) estimating the conditional probability

tables (CDP) for each variable via maximum likelihood.

For the first step we use the Chow-Liu tree [19] method,

which seeks a first-order dependency tree-based approxi-

mation with the smallest KL-divergence to the actual full

joint probability distribution. The Chow-Liu algorithm

provides an approximation and cannot represent higher-

order dependencies. Nevertheless, it has been shown to

provide good results for a wide range of practical prob-

lems.

The graph structure inferred from the real data encodes

the conditional dependence among the variables. In addi-

tion, the inferred graph provides a visual representation of

the variables’ relationships. Synthetic data may be gener-

ated by sampling from the inferred Bayesian network. We

next summarize the key advantages and disadvantages of

this approach.

+ BN is computationally efficient and scales well with

the dimensionality of the dataset.

+ The directed acyclic graph can also be utilized for

exploring the causal relationships across the variables.

- Even though the full joint distribution’s factorization,

as given by Eq. (1), is general enough to include any

possible dependency structure, in practice,

simplifying assumptions on the graphical structure

are made to ease model inference. These assumptions

may fail to represent higher-order dependencies.

- The inference approach adopted in this paper is

applicable only to discrete data. In addition, the

Chow-Liu heuristic used here constructs the directed

acyclic graph in a greedy manner. Therefore, an

optimal first-order dependency tree is not guaranteed.

Mixture of product of multinomials

Any multivariate categorical data distribution can be

expressed as a mixture of product of multinomials

(MPoM) [22],

p(xi1 = c1, . . . , xip = cp) =

k
∑

h=1

νh

p
∏

j=1

ψ
(j)
hcj

(2)

where xi = (xi1, . . . , xip) represents a vector of p cate-

gorical variables, k is the number of mixture components,

νh is the weight associated with the h-th mixture compo-

nent, and ψ
(j)
hcj

= Pr(xij = cj|zi = h) is the probability

of xij = cj given allocation of individual i to cluster h,

where zi is a cluster indicator. Although any multivariate

distribution may be expressed as in (2) for a sufficiently

large k, proper choice of k is troublesome. To obtain k

in a data-driven manner, Dunson and Xing [22] proposed

a Dirichlet process mixture of product multinomials to

model high-dimensional multivariate categorical data.We

next summarize the key advantages and disadvantages of

this approach.

+ Theoretical guarantees exist regarding the flexibility

of mixture of product multinomials to model any

multivariate categorical data.

+ The Dirichlet process mixture of product of

multinomials is a fully conjugate model and efficient

inference may be done via a Gibbs sampler.

- Sampling based inference can be very slow in high

dimensional problems.

- While extending the model to mixed data types (such

as continuous and categorical) is relatively

straightforward, theoretical guarantees do not exist

for mixed data types.

Categorical latent Gaussian process

The categorical latent Gaussian process (CLGP) is a gen-

erative model for multivariate categorical data [21]. CLGP

uses a lower dimensional continuous latent space and

non-linear transformations for mapping the points in the

latent space to probabilities (via softmax) for generating

categorical values. The authors employ standard Normal

priors on the latent space and sparse Gaussian process

(GPs) mappings to transform the latent space. For model-

ing clinical data related to cancer, the model assumes that

each patient record (a data vector containing a set of cate-

gorical variables) has a continuous latent low-dimensional

representation. The proposedmodel is not fully conjugate,

but model inference may be performed via variational

techniques.

The hierarchical CLGP model [21] is provided below:

xnq
iid
∼ N

(

0, σ 2
x

)

Fdk
iid
∼ GP(0,Kd)

fndk = Fdk(xn), umdk = Fdk(zm)

ynd ∼ Softmax(fnd)

for n ∈[N] (the set of naturals between 1 and N), q ∈[Q],

d ∈[D], k ∈[K], m ∈[M], covariance matrices Kd, and

where the Softmax distribution is defined as,



Goncalves et al. BMCMedical ResearchMethodology          (2020) 20:108 Page 5 of 40

Softmax(y = k; f) = Categorical

(

exp(fk)

exp(lse(f))

)

, (3)

lse(f) = log

(

1 +

K
∑

k′=1

exp(fk′)

)

(4)

for k = 0, ...,K and with f0 := 0. Each patient is rep-

resented in the latent space as xn. For each feature d, xn
has a sequence of weights (fnd1, ..., fndK ), corresponding

to each possible feature level k, that follows a Gaussian

process. Softmax returns a feature value ynd based on

these weights, resulting in the patient’s feature vector

yn = (yn1, ..., ynD). Note that CLGP does not explicitly

model dependence across variables (features). However,

the Gaussian process explicitly captures the dependence

across patients and the shared low-dimensional latent

space implicitly captures dependence across variables.

We next summarize the key advantages and disadvan-

tages of this approach.

+ Like BN and MPoM, CLGP is a fully generative

Bayesian model, but has richer latent non-linear

mappings that allows for representation of very

complex full joint distributions.

+ The inferred low-dimensional latent space in CLGP

may be useful for data visualization and clustering.

- Inference for CLGP is considerably more complex

than other models due to its non-conjugacy. An

approximate Bayesian inference method such as

variational Bayes (VB) is required.

- VB for CLGP requires several other approximations

such as low-rank approximation for GPs as well as

Monte Carlo integration. Hence, the inference for

CLGP scales poorly with data size.

Generative adversarial networks

Generative adversarial networks (GANs) [26] have

recently been shown to be remarkably successful for gen-

erating complex synthetic data, such as images and text

[32–34]. In this approach, two neural networks are trained

jointly in a competitive manner: the first network tries

to generate realistic synthetic data, while the second one

attempts to discriminate real and synthetic data generated

by the first network. During the training each network

pushes the other to perform better. A widely known limi-

tation of GANs is that it is not directly applicable for gen-

erating categorical synthetic datasets, as it is not possible

to compute the gradients on latent categorical variables

that are required for training via backpropagation. As clin-

ical patient data are often largely categorical, recent works

like medGAN [29] have applied autoencoders to trans-

form categorical data to a continuous space, after which

GANs can be applied for generating synthetic electronic

health records (EHR). However, medGAN is applicable

to binary and count data, and not multi-categorical data.

In this paper we adopt the multi-categorical extension

of medGAN, called MC-MedGAN [28] to generate syn-

thetic data related to cancer. We next summarize the key

advantages and disadvantages of this approach.

+ Unlike POM, BN and CLGP, MC-MedGAN is a

generative approach which does not require strict

probabilistic model assumptions. Hence, it is more

flexible compared to BN, CLGP and POM.

+ GANs-based models can be easily extended to deal

with mixed data types, e.g., continuous and

categorical variables.

- MC-MedGAN is a deep model and has a very large

number of parameters. Proper choice of multiple

tuning parameters (hyper-parameters) is difficult and

time consuming.

- GANs are known to be difficult to train as the process

of solving the associated min-max optimization

problem can be very unstable. However, recently

proposed variations of GAN such as Wasserstein

GANs, and its variants, have significantly alleviated

the problem of stability of training GANs [35, 36].

Multiple imputation

Multiple imputation based methods have been very pop-

ular in the context of synthetic data generation, especially

for applications where a part of the data is considered sen-

sitive [4]. Among the existing imputation methods, the

Multivariate Imputation by Chained Equations (MICE)

[37] has emerged as a principled method for masking sen-

sitive content in datasets with privacy constraints. The key

idea is to treat sensitive data as missing data. One then

imputes this “missing” data with randomly sampled val-

ues generated from models trained on the nonsensitive

variables.

As discussed earlier, generating fully synthetic data

often utilizes a generative model trained on an entire

dataset. It is then possible to generate complete syn-

thetic datasets from the trained model. This approach

differs from standard multiple imputation methods such

as MICE, which train on subsets of nonsensitive data

to generate synthetic subsets of sensitive data. In this

paper we use a variation of MICE for the task of fully

synthetic data generation. Model inference proceeds as

follows.

1) Define a topological ordering of the variables.

2) Compute the empirical marginal probability

distribution for the first variable.

3) For each successive variables in the topological order,

learn a probabilistic model for the conditional

probability distribution on the current variable given

the previous variables, that is, p(xv|x:v), which is done

by regressing the v-th variable on all its predecessors

as independent variables.
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In the sampling phase, the first variable is sampled from

the empirical distribution and the remaining variables are

randomly sampled from the inferred conditional distribu-

tions following the topological ordering. While modeling

the conditional distributions with generalized linear mod-

els is very popular, other non-linear techniques such as

random forests and neural nets may be easily integrated in

this framework.

For the MICE variation used here, the full joint proba-

bility distribution is factorized as follows:

p(x) =
∏

v∈V

p(xv|x:v) (5)

where V is the set of random variables representing the

variables to be generated, and p(xv|x:v) is the conditional

probability distribution of the v-th random variable given

all its predecessors. Clearly, the definition of the topologi-

cal ordering plays a crucial role in the model construction.

A common approach is to sort the variables by the number

of levels either in ascending or descending order.

We next summarize the key advantages and disadvan-

tages of this approach.

+ MICE is computationally fast and can scale to very

large datasets, both in the number of variables and

samples.

+ It can easily deal with continuous and categorical

values by properly choosing either a Softmax or a

Gaussian model for the conditional probability

distribution for a given variable.

- While MICE is probabilistic, there is no guarantee

that the resulting generative model is a good estimate

of the underlying joint distribution of the data.

- MICE strongly relies on the flexibility of the model

for the conditional probability distributions and also

the topological ordering of the directed acyclic graph.

Evaluation metrics

To measure the quality of the synthetic data generators,

we use a set of complementary metrics that can be divided

into two groups: (i) data utility, and (ii) information disclo-

sure. In the former, the metrics gauge the extent to which

the statistical properties of the real (private) data are cap-

tured and transferred to the synthetic dataset. In the latter

group, themetricsmeasure howmuch of the real datamay

be revealed (directly or indirectly) by the synthetic data.

It has been well documented that increased generaliza-

tion and suppression in anonymized data (or smoothing in

synthetic data) for increased privacy protection can lead

to a direct reduction in data utility [38]. In the context

of this trade-off between data utility and privacy, evalu-

ation of models for generating such data must take both

opposing facets of synthetic data into consideration.

Data utility metrics

In this group, we consider the followingmetrics:Kullback-

Leibler (KL) divergence, pairwise correlation difference,

log-cluster, support coverage, and cross-classification.

The Kullback-Leibler (KL) divergence is computed

over a pair of real and synthetic marginal probability mass

functions (PMF) for a given variable, and it measures

the similarity of the two PMFs. When both distributions

are identical, the KL divergence is zero, while larger val-

ues of the KL divergence indicate a larger discrepancy

between the two PMFs. Note that the KL divergence is

computed for each variable independently; therefore, it

does not measure dependencies among the variables. The

KL divergence of two PMFs, Pv andQv for a given variable

v, is computed as follows:

DKL(Pv‖Qv) =

|v|
∑

i=1

Pv(i) log
Pv(i)

Qv(i)
, (6)

where |v| is the cardinality (number of levels) of the cate-

gorical variable v. Note that the KL divergence is defined

at the variable level, not over the entire dataset.

The pairwise correlation difference (PCD) is intended

to measure howmuch correlation among the variables the

different methods were able to capture. PCD is defined as:

PCD(XR,XS) = ‖Corr(XR) − Corr(XS)‖F , (7)

where XR and XS are the real and synthetic data matri-

ces, respectively. PCD measures the difference in terms

of Frobennius norm of the Pearson correlation matrices

computed from real and synthetic datasets. The smaller

the PCD, the closer the synthetic data is to the real data

in terms of linear correlations across the variables. PCD is

defined at the dataset level.

The log-cluster metric [39] is a measure of the sim-

ilarity of the underlying latent structure of the real and

synthetic datasets in terms of clustering. To compute this

metric, first, the real and synthetic datasets are merged

into one single dataset. Second, we perform a cluster anal-

ysis on the merged dataset with a fixed number of clusters

G using the k-means algorithm. Finally, we calculate the

metric as follows:

Uc(XR,XS) = log

⎛

⎝

1

G

G
∑

j=1

[

nRj

nj
− c

]2
⎞

⎠ , (8)

where nj is the number of samples in the j-th cluster, nRj
is the number of samples from the real dataset in the j-th

cluster, and c = nR/
(

nR + nS
)

. Large values ofUc indicate

disparities in the cluster memberships, suggesting differ-

ences in the distribution of real and synthetic data. In our

experiments, the number of clusters was set to 20. The

log-cluster metric is defined at the dataset level.

The support coverage metric measures how much of

the variables support in the real data is covered in the
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synthetic data. The metric considers the ratio of the cardi-

nalities of a variable’s support (number of levels) in the real

and synthetic data. Mathematically, the metric is defined

as the average of such ratios over all variables:

Sc(XR,XS) =
1

V

V
∑

v=1

|Sv|

|Rv|
(9)

whereRv and Sv are the support of the v-th variable in the

real and synthetic data, respectively. At its maximum (in

the case of perfect support coverage), this metric is equal

to 1. This metric penalizes synthetic datasets if less fre-

quent categories are not well represented. It is defined at

the dataset level.

The cross-classification metric is another measure of

howwell a synthetic dataset captures the statistical depen-

dence structures existing in the real data. Unlike PCD,

in which statistical dependence is measured by Pearson

correlation, cross-classification measures dependence via

predictions generated for one variable based on the other

variables (via a classifier).

We consider two cross-classification metrics in this

paper. The first cross-classification metric, referred to as

CrCl-RS, involves training on the real data and testing on

hold-out data from both the real and synthetic datasets.

This metric is particularly useful for evaluating if the sta-

tistical properties of the real data are similar to those of

the synthetic data. The second cross-classification metric,

referred to as (CrCl-SR), involves training on the syn-

thetic data and testing on hold-out data from both real

and synthetic data. This metric is particularly useful in

determining if scientific conclusions drawn from statisti-

cal/machine learningmodels trained on synthetic datasets

can safely be applied to real datasets. We next provide

additional details regarding the cross-classification met-

ric CrCl-RS. The cross-classification metric CrCl-SR is

computed in a similar manner.

The available real data is split into training and test sets.

A classifier is trained on the training set (real) and applied

to both test set (hold out real) and the synthetic data. Clas-

sification performancemetrics are computed on both sets.

CrCl-RS is defined as the ratio between the performance

on synthetic data and on the held out real data. Figure 1

presents a schematic representation of the cross classifica-

tion computation. Clearly, the classification performance

is dependent on the chosen classifier. Here, we consider a

decision tree as the classifier due to the discrete nature of

the dataset. To perform the classification, one of the vari-

ables is used as a target, while the remaining are used as

predictors. This procedure is repeated for each variable as

target, and the average value is reported. In general, for

both cross-classificationmetrics, a value close to 1 is ideal.

Disclosuremetrics

There are two broad classes of privacy disclosure risks:

identity disclosure and attribute disclosure. Identity or

membership disclosure refers to the risk of an intruder

correctly identifying an individual as being included in

the confidential dataset. This attack is possible when the

attacker has access to a complete set of patient records.

In the fully synthetic case, the attacker wants to know

whether a private record the attacker has access to was

used for training the generative model that produced

Fig. 1 Schematic view of the cross-classificationmetric computation. It consists of the following steps: (1) real data is split into training and test sets;

(2) classifier is trained on the training set; (3) classifier is applied on both test set (real) and synthetic data; and (4) the ratio of the classification

performances is calculated



Goncalves et al. BMCMedical ResearchMethodology          (2020) 20:108 Page 8 of 40

the publicly available synthetic data. Attribute disclosure

refers to the risk of an intruder correctly guessing the

original value of the synthesized attributes of an individ-

ual whose information is contained in the confidential

dataset. In the “Experimental analysis on SEER’s research

dataset” section, we will show results for both privacy dis-

closure metrics. Next, we provide details on how these

metrics are computed.

In membership disclosure [29], one claims that a

patient record xwas present in the training set if there is at

least one synthetic data sample within a certain distance

(for example, in this paper we have considered Hamming

distance) to the record x. Otherwise, it is claimed not to

be present in the training set. To compute the member-

ship disclosure of a given method m, we select a set of

r patient records used to train the generative model and

another set of r patient records that were not used for

training, referred to as test records. With the possession

of these 2r patient records and a synthetic dataset gen-

erated by the method m, we compute the claim outcome

for each patient record by calculating its Hamming dis-

tance to each sample from the synthetic dataset, and then

determining if there is a synthetic data sample within a

prescribed Hamming distance. For each claim outcome

there are four possible scenarios: true positive (attacker

correctly claims their targeted record is in the training

set), false positive (attacker incorrectly claims their tar-

geted record is in the training set), true negative (attacker

correctly claims their targeted record is not in the train-

ing set), or false negative (attacker incorrectly claims their

targeted record is not in the training set). Finally, we com-

pute the precision and recall of the above claim outcomes.

In our experiments, we set r=1000 records and used the

entire set of synthetic data available.

Attribute disclosure [29] refers to the risk of an

attacker correctly inferring sensitive attributes of a patient

record (e.g., results of medical tests, medications, and

diagnoses) based on a subset of attributes known to the

attacker. For example, in the fully synthetic data case, an

attacker can first extract the k nearest neighboring patient

records of the synthetic dataset based on the known

attributes, and then infer the unknown attributes via a

majority voting rule. The chance of unveiling the private

information is expected to be low if the synthetic gen-

eration method has not memorized the private dataset.

The number of known attributes, the size of the synthetic

dataset, and the number of k nearest neighbors used by

the attacker affect the chance of revealing the unknown

attributes. In our experiments we investigate the chance

that an attacker can reveal all the unknown attributes,

given different numbers of known attributes and several

choices of k.

In addition to membership and attribute attacks, the

framework of differential privacy has garnered a lot of

interest [40–42]. The key idea is to protect the informa-

tion of every individual in the database against an adver-

sary with complete knowledge of the rest of the dataset.

This is achieved by ensuring that the synthetic data does

not depend too much on the information from any one

individual. A significant amount of research has been

devoted on designing α-differential or (α, δ)-differential

algorithms [43, 44]. An interesting direction of research

has been in converting popular machine learning algo-

rithms, such as deep learning algorithms, to differentially

private algorithms via techniques such as gradient clip-

ping and noise addition [45, 46]. In this paper, we have not

considered differential privacy as ametric.While the algo-

rithms discussed in this paper such as MC-MedGAN or

MPoM may be modified to introduce differential privacy,

that is beyond the scope of this paper.

Experimental analysis on SEER’s research dataset

In this section we describe the data used in our exper-

imental analysis. We considered the methods previ-

ously discussed, namely Independent Marginals (IM),

Bayesian Network (BN), Mixture of Product of Multino-

mials (MPoM), CLGP, MC-MedGAN, and MICE. Three

variants of MICE were considered: MICE with Logistic

Regression (LR) as classifier and variables ordered by the

number of categories in an ascending manner (MICE-

LR), MICE with LR and ordered in a descending man-

ner (MICE-LR-DESC), and MICE with Decision Tree as

classifier (MICE-DT) in ascending order. MICE-DT with

descending and ascending order produced similar results

and only one is reported in this paper for brevity.

Dataset variable selection

A subset of variables from the public research SEER’s

dataset1 was used in this experiment. The variables were

selected after taking into account the characteristics of the

variables and their temporal availability, as some variables

were more recently introduced as compared to others.

Two sets of variables were created: (i) a set of 8 vari-

ables with a small number of categories (small-set);

and (ii) a larger set with ∼40 variables (large-set)

that includes variables with a large number (hundreds)

of categories. We want to see the relative performances

of the different synthetic data generation approaches on

a relatively easy dataset (small-set) and on a more

challenging dataset (large-set).

The SEER’s research dataset is composed of sub-

datasets, where each sub-dataset contains diagnosed cases

of a specific cancer type collected from 1973 to 2015.

For this analysis we considered the sub-datasets from

patients diagnosed with breast cancer (BREAST), respi-

ratory cancer (RESPIR), and lymphoma of all sites and

1https://seer.cancer.gov/data/

https://seer.cancer.gov/data/
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Table 1 Two sets of variables from SEER’s research dataset

Feature set Variables

small-set AGE_DX, BEHO3V, DX_CONF, GRADE, LATERAL,
PRIMSITE∗ , SEQ_NUM, SEX

large-set AGE_DX, BEHO3V, CS1SITE, CS2SITE, CS3SITE,
CS4SITE† , CS5SITE† , CS6SITE† , CS7SITE†◦ , CS15SITE†◦ ,
CSEXTEN, CSLYMPHN, CSMETSDX,
CSMETSDXBR_PUB, CSMETSDXB_PUB,
CSMETSDXLIV_PUB, CSMETSDXLUNG_PUB,
CSMTEVAL, CSRGEVAL, CSTSEVAL, CSVCURRENT,
CSVFIRST, DX_CONF, GRADE, HISTO3V, LATERAL,
MAR_STAT, NHIADE, NO_SURG, PRIMSITE, RACE1V,
REC_NO, REG, REPT_SRC, SEQ_NUM, SEX, SURGSITF,
TYPE_FU, YEAR_DX, YR_BRTH

small-set contains variables with low levels; while large-set contains a

large number of variables including a few with large number of levels. ∗variable

PRIMSITE is only considered for BREAST dataset as it has a large number of levels for

LYMYLEUK and RESPIR. † indicates that the variable is not present in the LYMYLEUK

dataset. ° indicates that the variable is not present in the RESPIR dataset

leukemia (LYMYLEUK). We used data from cases diag-

nosed between 2010 and 2015 due to the nonexistence

of some of variables prior to this period. The number of

patient records in the BREAST, RESPIR, and LYMYLEUK

datasets are 169,801; 112,698; and 84,132; respectively.We

analyze the performance of the methods on each dataset

separately. Table 1 presents the variables selected. A pre-

processing step in some cases involves splitting a more

complex variable into two variables, as some variables

originally contained both categorical and integer (count)

values.

The number of levels (categories) in each variable is

diverse. In the small-set feature set the number of cat-

egories ranges from 1 to 14, while for the large-set

it ranges from 1 to 257. The number of levels for each

variable in presented Tables 2 and 3.

Figure 2 depicts the histogram of some variables in

the BREAST small-set dataset. Noticeably, the lev-

els’ distributions are imbalanced and many levels are

underrepresented in the real dataset. For example, vari-

able DX_CONF mostly contains records with the same

level, and LATERAL only has records with 2 out of 5

possible levels. This imbalance may inadvertently lead to

disclosure of information in the synthetic dataset, as the

methods are more prone to overfit when the data has a

smaller number of possible record configurations.

Implementation details and hyper-parameter selection

When available we used the code developed by the authors

of the paper proposing the synthetic data generation

method. For CLGP, we used the code from the authors’

GitHub repository [47]. For MC-MedGAN, we also uti-

lized the code from the authors [48]. For the Bayesian

networks, we used two Python packages: pomegranate

[49] and libpgm [50]. All other methods were imple-

mented by ourselves. The hyper-parameter values used

for all methods were selected via grid-search. The selected

values were those which provided the best performance

for the log-cluster utility metric. This metric was used as

it is the only metric, in our pool of utility metrics, that

measures the similarity of the full real and synthetic data

distributions, and not only the marginal distributions or

only the relationship across variables. The range of hyper-

parameter values explored for all methods is described

below.

Hyper-parameter values

To select the best hyper-parameter values for each

method, we performed a grid-search over a set of can-

didate values. Below we present the set of values tested.

Bayesian networks and Independent Marginals did not

have hyper-parameters to be selected.

MPoM: The truncated Dirichlet process prior uses 30

clusters (k=30), concentration parameter α=10, and

10,000 Gibbs sampling steps with 1,000 burn-

in steps, for both small-set and large-set.

For the grid-search selection, we tested k =

[ 5, 10, 20, 30, 50], and k = 30 led to the best log-

cluster performance.

CLGP: We used 100 inducing points and 5-dimensional

latent space for small-set; and 100 inducing

points and 10-dimensional latent space for the

large-set. Increasing the number of inducing

points usually leads to a better utility performance,

but the computational cost increases substantially.

Empirically, we found that 100 inducing points pro-

vides an adequate balance between utility perfor-

mance and computational cost. For the small-set,

the values tested for the latent space size was [2, 3, 4,

5, 6] dimensions; and for the large-set [5, 10, 15]

dimensions.

MC-MedGAN: We tested two variations of model con-

figuration used by the authors in the original paper.

The variations were a smaller model (Model 1) and

a bigger model (Model 2), in terms of number of

parameters (See Table 4). The bigger model is more

Table 2 Number of levels in each categorical variable for the feature set small-set

AGE_DX BEHO3V DX_CONF GRADE LATERAL PRIMSITE SEQ_NUM SEX

BREAST 11 2 9 5 5 9 10 2

LYMYLEUK 12 1 9 5 7 - 14 2

RESPIR 12 2 8 5 6 - 11 2
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Table 3 Number of levels in each categorical variable in the

feature set large-set

BREAST LYMYLEUK RESPIR

AGE_DX 11 12 12

BEHO3V 2 1 2

CS15SITE 7 - -

CS1SITE 7 12 100

CS2SITE 7 6 8

CS3SITE 56 13 10

CS4SITE 5 - 10

CS5SITE 4 - 8

CS6SITE 8 - 9

CS7SITE 12 - -

CSEXTEN 37 39 91

CSLYMPHN 36 21 23

CSMETSDX 9 12 31

CSMETSDXBR_PUB 4 4 4

CSMETSDXB_PUB 4 4 4

CSMETSDXLIV_PUB 4 4 4

CSMETSDXLUNG_PUB 4 4 4

CSMTEVAL 8 4 8

CSRGEVAL 8 6 8

CSTSEVAL 8 8 8

CSVCURRENT 5 5 5

CSVFIRST 10 11 10

DX_CONF 9 9 8

GRADE 5 5 5

HISTO3V 102 100 169

LATERAL 5 7 6

MAR_STAT 7 7 7

NHIADE 9 9 9

NO_SURG 8 8 8

PRIMSITE 9 257 29

RACE1V 29 28 30

REC_NO 7 11 9

REG 9 9 9

REPT_SRC 8 8 8

SEQ_NUM 10 14 11

SEX 2 2 2

SURGSITF 7 7 7

TYPE_FU 2 2 2

YEAR_DX 6 6 6

YR_BRTH 96 111 112

Dash ’-’ indicates that the variable (row) was not considered for that dataset

(column) as the variable is not existent for that cancer type

flexible and in theory can capture highly non-linear

relations among the attributes, and provide better

continuous representation of the discrete data, via an

autoencoder. On the other hand, the smaller model is

less prone to overfit the private data.We also noticed

that a proper definition for the learning rate, both

the pre-trained autoenconder and GAN, is crucial

for the model performance. We tested both mod-

els with learning rate of [1e-2, 1e-3, 1e-4]. We then

selected the best performing model for each feature

set considering the log-cluster utility metric. “Model

1" performed better for small-set and “Model 2"

for large-set. The best value for learning rate

found was 1e-3.

MICE-DT: The decision tree uses Gini split criterion,

unlimited tree growth, minimum number of sam-

ples for node splitting is 2, and minimum number of

samples in a leaf node is 1.

Results

We evaluated the methods described in Section ‘Methods’

on the subsets of the SEER’s research dataset. To con-

serve space we only discuss results for the BREAST cancer

dataset. Tables and figures for LYMYLEUK and RESPIR

are shown at the end of the corresponding sections.

From our empirical investigations, the conclusions drawn

from the breast cancer dataset can be extended to the

LYMYLEUK and RESPIR datasets. Unless stated other-

wise, in all the following experiments, the number of

synthetic samples generated is identical to the number of

samples in the real dataset: BREAST = 169,801; RESPIR =

112,698; and LYMYLEUK = 84,132.

On the small-set

From Table 5, we observe that many methods succeeded

in capturing the statistical dependence among the vari-

ables, particularly MPoM, MICE-LR, MICE-LR-DESC,

and MICE-DT. Synthetic data generated by these meth-

ods produced correlation matrices nearly identical to the

one computed from real data (low PCD). Data distribu-

tion difference measured by log-cluster is also low. All

methods showed a high support coverage. As seen in

Fig. 2, BREAST small-set variables have only a few

levels dominating the existing records in the real dataset,

while the remaining levels are underrepresented or even

nonexistent. This level imbalance reduces the sampling

space making the methods more likely to overfit and,

consequently, exposes more real patient’s information.

Figure 3 shows the distribution of some of the utility

metrics for all variables. KL divergences, shown in Fig. 3c,

are low for the majority of the methods, implying that the

marginal distributions of real and synthetic datasets are
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Fig. 2 Histogram of four BREAST small-set variables from the real dataset. Levels’ distributions are clearly imbalanced

Table 4 MC-MedGAN configurations tested

Hyper-parameter Model 1 Model 2

Autoencoder Code size 64 128

Encoder hidden size 256, 128 512, 256, 128

Decoder hidden size 256, 128 512, 256, 128

GAN Generator hidden
layers

64, 64 128, 128, 128, 128

Discriminator
hidden size

256, 128 512, 256, 128

# of genera-
tor/discriminator
steps

2/1 3/1

For both models we used batch size of 100 samples, trained the autoencoder for

100 epochs and the GAN for 500 epochs. We applied L2-regularization on the neural

network weights (weight decay) with λ=1e-3, and temperature parameter

(Gumbel-Softmax trick) τ = 0.66. We tested learning rates of [1e-2, 1e-3, 1e-4]

equivalent. KL divergences for MC-MedGAN is reason-

ably larger compared to the other methods, particularly

due to the variable AGE_DX (Fig. 4c).

Regarding CrCl-RS in Fig. 3a, we observe that all meth-

ods are capable of learning and transferring variable

dependencies from the real to the synthetic data. MPoM

presented the lowest variance while MC-MedGAN has

the largest, implying that MC-MedGAN is unable to

capture the dependence of some of the variables. From

Fig. 4a, we identify AGE_DX, PRIMSITE, and GRADE

as the most challenging variables for MC-MedGAN.

AGE_DX and PRIMSITE are two of the variables with

the largest set of levels, with 11 and 9, respectively. It

suggests that MC-MedGAN potentially faces difficulties

on datasets containing variables with a large number of

categories.
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Table 5 Average and std of data utility metrics computed on BREAST small-set

PCD ↓ Log-Cluster ↓ CrCl-RS (1) CrCl-SR (1) Supp. Coverage ↑

Method

IM 0.73 (0.0) -5.38 (0.87) 0.96 (0.0) 1.0 (0.0) 0.99 (0.01)

BN 0.28 (0.01) -8.38 (1.12) 0.99 (0.0) 1.0 (0.0) 0.98 (0.01)

MPoM 0.03 (0.01) -10.5 (0.46) 1.0 (0.0) 1.0 (0.0) 1.0 (0.01)

CLGP 0.17 (0.01) -7.8 (0.65) 0.99 (0.01) 1.0 (0.01) 1.0 (0.0)

MC-MedGAN 0.76 (0.01) -3.17 (0.1) 1.0 (0.01) 0.75 (0.0) 0.95 (0.01)

MICE-LR 0.07 (0.01) -8.34 (0.29) 0.99 (0.0) 1.0 (0.0) 1.0 (0.0)

MICE-LR-DESC 0.06 (0.01) -9.36 (0.49) 0.99 (0.0) 1.0 (0.0) 1.0 (0.01)

MICE-DT 0.02 (0.0) -11.61 (0.3) 1.01 (0.0) 1.0 (0.0) 0.99 (0.01)

CrCl-RS and CrCl-SR are the cross-classification metric computed on real → synthetic (RS) and synthetic → real (SR), respectively. Metrics were computed from 10

synthetically generated datasets. The symbols on the right side of metric’s name indicate: ↑ the higher the better, ↓ the lower the better, and (1) the closer to one the better

Fig. 3 Data utility performance over all variables presented as boxplots on BREAST small-set. a CrCl-RS, b CrCl-SR, c KL divergence for each

attribute, and d support coverage
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Fig. 4 Heatmaps displaying CrCl-RS, CrCl-SR, KL divergence, and support coverage average computed over 10 independently generated synthetic

BREAST small-set

From Fig. 3b, we clearly note that the synthetic data gen-

erated by MC-MedGAN does not mimic variable depen-

dencies from the real dataset, while all other methods

succeeded in this task. Looking at the difference between

CrCl-RS and CrCl-SR, one can infer how close the real and

synthetic data distributions are. Performing well on CrCl-

RS but not on CrCl-SR indicates that MC-MedGAN only

generated data from a subspace of the real data distribu-

tion that can be attributed to partial modal collapse, which

is a known issue for GANs [51, 52]. This hypothesis is cor-

roborated by the support coverage value of MC-MedGAN

that is the lowest among all methods.

Figure 5 shows the attribute disclosure metric com-

puted on BREAST cancer data with the small-set list

of attributes, assuming the attacker tries to infer four (top)

and three (bottom) unknown attributes, out of eight possi-

ble, of a given patient record. Different numbers of nearest

neighbors are used to infer the unknown attributes, k=[1,

10, 100]. From the results, we notice that the larger the

number of the nearest neighbors k, the lower the chance of

an attacker successfully uncover the unknown attributes.

Using only the closest synthetic record (k=1) produced a

more reliable guess for the attacker. When 4 attributes are

unknown by the attacker, he/she could reveal about 70%

of the cases, while this rate jumps to almost 100% when

3 attributes are unknown. Notice that IM consistently

produced one of the best (lowest) attribute disclosures

across all cases, as it does not model the dependence

across the variables. MC-MedGAN shows significantly

low attribute disclosure for k=1 and when the attacker

knows 4 attributes, but it is not consistent across other

experiments with BREAST data. MC-MedGAN produced

the highest value for scenarios with k=10 and k=100.

Membership disclosure results provided in Fig. 6 for

BREAST small-set shows a precision around 0.5 for

all methods across the entire range of Hamming dis-

tances. This means that among the set of patient records

that the attacker claimed to be in the training set,
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Fig. 5 Attribute disclosure for distinct numbers of nearest neighbors (k). BREAST small-set. Top plot shows results for the scenario that an

attacker tries to infer 4 unknown attributes out of 8 attributes in the dataset. Bottom plot presents the results for 3 unknown attributes

based on the attacker’s analysis of the available syn-

thetic data, only 50% of them are actually in the train-

ing set. Regarding the recall, all the methods except

MC-MedGAN showed a recall around 0.9 for the small-

est prescribed Hamming distances, indicating that the

attacker could identify 90% of the patient records actu-

ally used for training. MC-MedGAN presented much

lower recall in these scenarios, therefore it is more effec-

tive in protecting private patient records. For larger

Hamming distances, as expected, all methods obtain a

recall of one as there will be a higher chance of having

at least one synthetic sample within the larger neigh-

borhood (in terms of Hamming distance). Therefore,

the attacker claims that all patient records are in the

training set.

Similarly to the analysis performed for the BREAST

dataset, Tables 6 and 7 reports performance of

the methods on LYMYLEUK and RESPIR datasets

using the small-set selection of variables. Figures

7, 8, 9, 10, 11, 12, 13, and 14 present utility and privacy
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Fig. 6 Precision and recall of membership disclosure for all methods. BREAST small-set. MC-MedGAN presents the best performance

Table 6 Average and std of data utility metrics computed over 10 independently generated synthetic datasets. LYMYLEUK

small-set

PCD ↓ Log-Cluster ↓ CrCl-RS (1) CrCl-SR (1) Supp. Coverage ↑

Method

IM 0.47 (0.01) -4.94 (0.24) 0.97 (0.0) 1.0 (0.0) 0.98 (0.01)

BN 0.2 (0.01) -6.24 (0.09) 0.99 (0.0) 1.0 (0.0) 0.98 (0.01)

PoM 0.03 (0.01) -9.78 (0.57) 1.0 (0.0) 1.0 (0.0) 1.0 (0.01)

CLGP 0.15 (0.01) -6.88 (1.2) 0.99 (0.01) 1.0 (0.01) 1.0 (0.0)

MC-MedGAN 0.56 (0.01) -2.29 (0.07) 0.9 (0.01) 0.79 (0.01) 0.94 (0.01)

MICE-LR 0.04 (0.01) -7.77 (0.36) 0.99 (0.0) 1.0 (0.0) 1.0 (0.0)

MICE-LR-DESC 0.02 (0.01) -7.06 (0.26) 0.99 (0.0) 1.0 (0.0) 0.98 (0.01)

MICE-DT 0.02 (0.0) -10.63 (0.32) 1.01 (0.0) 1.0 (0.0) 0.99 (0.01)
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Table 7 Average and std of data utility metrics computed over 10 independently generated synthetic datasets. RESPIR small-set

PCD ↓ Log-Cluster ↓ CrCl-RS (1) CrCl-SR (1) Supp. Coverage ↑

Method

IM 0.9 (0.0) -3.62 (0.14) 0.94 (0.0) 1.0 (0.0) 1.0 (0.01)

BN 0.24 (0.0) -7.47 (0.68) 0.98 (0.0) 1.0 (0.0) 0.99 (0.01)

PoM 0.03 (0.0) -10.47 (0.37) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

CLGP 0.13 (0.01) -7.63 (0.52) 1.0 (0.01) 1.0 (0.01) 1.0 (0.0)

MC-MedGAN 0.64 (0.01) -2.12 (0.06) 0.86 (0.01) 0.75 (0.01) 0.98 (0.01)

MICE-LR 0.06 (0.01) -8.3 (0.2) 0.99 (0.0) 1.0 (0.0) 1.0 (0.0)

MICE-LR-DESC 0.04 (0.01) -6.8 (1.2) 0.97 (0.0) 1.0 (0.0) 1.0 (0.01)

MICE-DT 0.02 (0.0) -11.25 (0.21) 1.01 (0.0) 1.0 (0.0) 0.99 (0.01)

Fig. 7 Data utility metrics performance distribution over all variables shown as boxplots on LYMYLEUK small-set
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Fig. 8Metrics performance distribution over all variables shown as boxplots on RESPIR small-set

methods’ performance plots for the LYMYLEUK and

RESPIR datasets.

On the large-set

The large-set imposes additional challenges to the

synthetic data generation task, both in terms of the num-

ber of the variables and the inclusion of variables with a

large number of levels. Modeling variables with too many

levels requires an extended amount of training samples

to properly cover all possible categories. Moreover, we

noticed that in the real data a large portion of the cat-

egories are rarely observed, making the task even more

challenging.

From Table 8 we observe that MICE-DT obtained sig-

nificantly superior data utility performance compared to

the competing models. As MICE-DT uses a flexible deci-

sion tree as the classifier, it is more likely to extract

intricate attribute relationships that are consequently

passed to the synthetic data. Conversely, MICE-DT is

more susceptible to memorizing the private dataset (over-

fitting). Even though overfitting can be alleviated by

changing the hyper-parameter values of the model, such

as the maximum depth of the tree and the minimum

number of samples at leaf nodes, this tuning process is

required for each dataset which can be very time consum-

ing. Using a MICE method with a less flexible classifier,

such as MICE-LR, can be a viable alternative.

It is also worth mentioning that the order of the vari-

ables in MICE-LR has a significant impact, particularly

in capturing the correlation of the variables measured

by PCD. MICE-LR with ascending order produced a

closer correlation matrix to the one computed in the

real dataset, when compared to MICE-LR with attributes

ordered in a descending manner. Our hypothesis is that by
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Fig. 9 Heatmaps displaying the average over 10 independently generate synthetic datasets of (a) CrCl-RS, (b) CrCl-SR, (c) KL divergence, and (d)

support coverage, at a variable level. LYMYLEUK small-set

positioning the attributes with a smaller number of levels

first, the initial classification problems are easier to solve

and will possibly better capture the dependence among

the attributes, and this improved performance will be car-

ried over to the subsequent attributes. This is similar to

the idea of curriculum learning [53].

Overall, CLGP presents the best data utility per-

formance on the larget-set, consistently capturing

dependence among variables (low PCD and CrCls close

to one), and producing synthetic data that matches the

distribution of the real data (low log-cluster). CLGP also

has the best support coverage, meaning that all the exis-

tent categories in the real data also appear in the synthetic

data. On the other extreme, MC-MedGAN was clearly

unable to extract the statistical properties from the real

data. As expected, IM also showed poor performance due

to its lack of variables’ dependence modeling.

As observed in the small-set variable selection, MC-

MedGAN performed poorly on CrCl-SRmetric compared

to CrCl-RS (Fig. 15) and only covered a small part of the

variables’ support in the real dataset. From Fig. 16a and b

we note that a subset of variables are responsible for MC-

MedGAN’s poor performance on CrCl-SR and CrCl-RS.

Figure 16b also indicates that MICE-LR-based generators

struggled to properly generate synthetic data for some

variables. We also highlight the surprisingly good results

obtained by BN on CrCl-RS and CrCl-SR metrics, consid-

ering the fact that BN approximates the joint distribution

using a simple first-order dependency tree.

Figure 17 shows the attribute disclosure for the BREAST

large-set dataset for several numbers of nearest

neighbors (k) and three different scenarios: when the

attacker seeks to uncover 10, 6, and 3 unknown attributes,

assuming she/he has access to the remaining attributes

in the dataset. Overall, all methods but MC-MedGAN

revealed almost 100% of the cases for values of k = 1,

when 3 attributes are unknown, but decrease to about 50%

when 10 attributes are unknown. Clearly, MC-MedGAN
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Fig. 10 Heatmaps displaying the average over 10 independently generate synthetic datasets of (a) CrCl-RS, (b) CrCl-SR, (c) KL divergence, and (d)

support coverage, at a variable level. RESPIR small-set

has the best attribute disclosure as a low percentage of the

unknown attributes of the real records are revealed. How-

ever, MC-MedGAN produces synthetic data with poor

data utility performance, indicating that the synthetically

generated data does not carry the statistical properties

of the real dataset. MC-MedGAN relies on continuous

embeddings of categorical data obtained via an autoen-

coder. We believe that the complexity and noisiness of

the SEER data makes learning continuous embeddings

of the categorical variables (while preserving their sta-

tistical relationships) very difficult. In fact, recent work

[54] has shown that autoencoders can induce a barrier to

the learning process, as the GAN will completely rely on

the embeddings learned by the autoencoder. Additionally,

works such as [55] have reported that while GANs often

produce high quality synthetic data (for example realistic

looking synthetic images), with respect to utility metrics

such as classification accuracy they often underperform

compared to likelihood based models. IM has the second

best attribute disclosure, more pronounced for k > 1,

but as already seen, also fails to capture the variables’

dependencies. The best data utility performing methods

(MICE-DT, MPoM, and CLGP) present a high attribute

disclosure.

For membership disclosure, Fig. 18, we notice that for

exact match (Hamming distance 0), some of the meth-

ods have a high membership disclosure precision, indi-

cating that from the set of patient records an attacker

claimed to be present in the training set, a high per-

centage of them (around 90% for MICE-DT) were cor-

rect (high precision). However, there were many true

records that the attacker inferred as negative (false

negative). This can be seen by the lower recall val-

ues. A conservative attacker can be successful here

for MICE-DT’s synthetic dataset. As discussed previ-

ously, MICE-DT is a more flexible model that provides

a high data utility performance, but is more prone to

release private information in the synthetic dataset. For
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Fig. 11 Attribute disclosure for LYMYLEUK small-set

Hamming distances larger than 6, the attacker claims

true for all patient records, as the Hamming distance

is large enough to always have at least one synthetic

sample within the distance threshold. It is worth men-

tioning that it is hard for an attacker to easily identify

the optimal Hamming distance to be used to maximize

its utility, except if the attacker has a priori access to

two sets of patients records, one of which is present

in the training set and the other is absent from the

training set.

Tables 9 and 10 report performance of the methods on

LYMYLEUK and RESPIR datasets using the large-set

selection of variables. Figures 19, 20, 21, 22, 23, 24, 25,

and 26 present utility and privacy methods’ performance

plots for the LYMYLEUK and RESPIR large-set

datasets.
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Fig. 12 Precision and recall for membership disclosure for LYMYLEUK small-set

Effect of varying synthetic data sample sizes on the

evaluation metrics

The size of the synthetic dataset has an impact on the

evaluation metrics, especially on the privacy metrics. For

example, a membership attack may be more difficult if

only a small synthetic sample size is provided. To assess

the impact of the synthetic data sample size on the eval-

uation metrics, we performed experiments with different

sample sizes of BREAST simulated data: 5,000; 10,000; and

20,000 samples. As a reference, the results provided so far

have considered a synthetic sample dataset of the same

size as the real dataset, which is approximately 170,000

samples for BREAST.

Table 11 presents the log-cluster, attribute disclosure,

and membership disclosure performance metrics for

varying sizes of synthetic BREAST small-set datasets.

We observe an improvement (reduction) of the log-cluster

performance with an increase in the size of the synthetic

data. A significant reduction is seen for MPoM, BN, and

all MICE variations. This is likely due to the fact that

with an increase in the size of the synthetic dataset, a bet-

ter estimate of the synthetic data distribution is obtained.

Models with lower utility metrics, such as IM and

MC-MedGAN, do not show large differences in perfor-

mance over the range of 5,000 to 170,000 synthetic sam-

ples. Similar behavior to log-cluster was also observed for

the other utility metrics, which are omitted for the sake of

brevity.

The impact of sample size on the privacy metrics on

the BREAST small-set are shown in Tables 12, and 13.

For attribute disclosure (Table 11), we note that for the

majority of the models a smaller impact on the privacy

metric is observed when a larger k (number of nearest

samples) is selected. For k = 1, flexible models such as



Goncalves et al. BMCMedical ResearchMethodology          (2020) 20:108 Page 22 of 40

Fig. 13 Attribute disclosure for RESPIR small-set

BN, MPoM and all MICE variations show a more than

10% increase in attribute disclosure over the range of 5000

to 170,000 synthetic samples. CLGP is more robust to

the sample size, increasing only by 3%. In terms of mem-

bership disclosure (Table 13), precision is not affected by

the synthetic sample size, while recall increases as more

data is available. All models show an increase of 10% in

recall over the range of 5,000 to 170,000 samples. This

increase can be attributed to the higher probability of

observing a similar real patient to a synthetic patient, as

more patient samples are drawn from the synthetic data

model.

We also ran similar experiments for the large-set

with 40 attributes. The results are shown in Tables 14, 15,

and 16. Similar conclusions as those drawn for the

small-setmay be drawn for the large-set.
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Fig. 14 Precision and recall for membership disclosure for RESPIR small-set

Table 8 Average and std of data utility metrics computed on the BREAST large-set

PCD ↓ Log-Cluster ↓ CrCl-RS (1) CrCl-SR (1) Supp. Coverage ↑

Method

IM 8.94 (0.01) -3.56 (0.12) 0.7 (0.0) 1.0 (0.0) 0.99 (0.0)

BN 4.88 (0.02) -4.51 (0.38) 0.94 (0.0) 1.0 (0.0) 0.99 (0.0)

MPoM 2.3 (0.01) -7.83 (0.38) 0.85 (0.0) 1.01 (0.0) 0.99 (0.0)

CLGP 0.69 (0.02) -8.2 (0.27) 0.95 (0.0) 1.02 (0.0) 1.0 (0.0)

MC-MedGAN – (–) -1.39 (0.0) 0.76 (0.05) 0.58 (0.0) 0.16 (0.0)

MICE-LR 1.31 (0.04) -5.77 (0.13) 0.87 (0.0) 1.07 (0.01) 0.99 (0.0)

MICE-LR-DESC 2.94 (0.07) -5.09 (0.14) 0.85 (0.0) 1.04 (0.0) 1.0 (0.0)

MICE-DT 0.14 (0.02) -11.14 (0.53) 1.01 (0.0) 1.0 (0.0) 0.99 (0.0)

CLGP presented the overall best performance. It was not possible to compute PCD metric for MC-MedGAN as the method generated at least one variable with a unique

value. The symbols on the right side of metric’s name indicate: ↑ the higher the better, ↓ the lower the better, and (1) the closer to one the better
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Fig. 15 Data utility performance shown as boxplots on BREAST large-set

Running time and computational complexity

Figure 27 shows the training time for each method on the

small-set and large-set of variables. For the range

of models evaluated in this paper, the training times run

from a fewminutes to several days. This is primarily due to

the diversity of the approaches and inferences considered

in this paper. For MPoM, we performed fully Bayesian

inference which involves runningMCMC chains to obtain

posterior samples, which is inherently costly. For CLGP,

we performed approximate Bayesian inference (varia-

tional Bayes) which is computationally light compared to

MCMC, however, inversion of the covariance matrix in

Gaussian processes is the primary computational bottle-

neck. The computation complexity of MC-MedGAN is

primarily due to increased training time requirements for

achieving convergence of the generator and the discrimi-

nator. The remaining approaches considered in this paper

are primarily frequentist approaches based on optimiza-

tion with no major computational bottle-necks. However,

for the generation of synthetic datasets, the computa-

tional running time is not utterly important, since the

models may be trained off-line on the real dataset for a

considerable amount of time, and the final generated syn-

thetic dataset can be distributed for public access. It is

far more important that the synthetic dataset captures

the structure and statistics of the real dataset, such that

inferences obtained on the synthetic dataset closely

reflects those obtained on the real dataset.
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Fig. 16 Heatmaps displaying the average over 10 independently generate synthetic datasets of (a) CrCl-RS, (b) CrCl-SR, (c) KL divergence, and (d)

support coverage, at a variable level on BREAST large-set

Edit checks

The SEER program developed a validation logic, known

as “edits”, to test the quality of data fields. The SEER

edits are executed as part of cancer data collection pro-

cesses. Edits trigger manual reviews of unusual values and

conflicting data items. The SEER edits are publicly avail-

able in a Java validation engine developed by Information

Management Services, Inc. (software2). All SEER data

released to the public passes edits as well as several other

quality measures.

There are approximately 1,400 SEER edits that check for

inconsistencies in data items. The edit checks are basi-

cally if-then-else rules designed by data standard setters.

Rules are implemented as small pieces of logic; each edit

returns a Boolean value (true if the edit passes, false if it

fails). For example, the edit that checks for inconsistent

2https://github.com/imsweb/validation

combinations of “Behavior" and “Diagnostic Confirma-

tion" variables is represented as: “If Behavior Code ICD-

O-3[523] = 2 (in situ), Diagnostic Confirmation[490] must

be 1,2 or 4 (microscopic confirmation)".

Our purpose for using this software is to show that

despite not explicitly encoding for these rules, they are

implicit in the real data used to train the models (since

that data passed these checks) and the models are able to

generate data that for the most part does not conflict with

these rules.

We ran the validation software on 10,000 synthetic

BREAST samples and the percentage of records that failed

in at least one of the 1400 edit checks are presented

in Table 17. All methods showed less than 1% of fail-

ures on the 10 variables set. As expected, IM has the

largest number of failures, as it does not take variables

dependence into account when sampling synthetic data.

MICE-DT, MPoM, and BN performed best. On the larger

https://github.com/imsweb/validation
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Fig. 17 Attribute disclosure for several values of nearest neighbors (k). BREAST large-set. Results show attribute disclosure for the case an

attacker seeks to infer 10, 6, and 3 unknown attributes, assuming she/he has access to the remaining attributes in the dataset

set, 40 variables, MC-MedGAN and MICE-DT show less

than 1% of failures. However, as previously discussed,

these two methods provided samples with high disclo-

sure probability, and also MC-MedGAN failed to capture

statistical properties of the data. We also observe that

BN presented less than 2% of failed samples. Results for

LYMYLEUK and RESPIR are not presented in the paper,

as some information required by the validation software

is not available in the public (research) version of the

SEER data.

It is also worth mentioning that, in practice, syntheti-

cally generated cancer cases that failed to pass at least one

edit check may simply be excluded from the final list of

cases to be released.

Discussion

High quality synthetic data can be a valuable resource for,

among other things, accelerating research. There are two

opposing facets to high quality synthetic data. On one

hand, the synthetic data must capture the relationships
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Fig. 18 Precision and recall of membership disclosure for all methods varying the Hamming distance threshold. BREAST large-set

Table 9 Average and std of performance metrics computed on 10 synthetic datasets generated from LYMYLEUK large-set

PCD ↓ Log-Cluster ↓ CrCl-RS (1) CrCl-SR (1) Supp. Coverage ↑

Method

IM 9.09 (0.01) -2.89 (0.08) 0.69 (0.0) 1.0 (0.01) 0.97 (0.01)

BN 1.59 (0.01) -9.1 (1.08) 0.94 (0.0) 1.0 (0.0) 0.98 (0.01)

PoM 1.45 (0.01) -7.58 (0.42) 0.86 (0.0) 1.0 (0.01) 0.99 (0.0)

CLGP 0.73 (0.02) -8.34 (0.94) 0.94 (0.01) 1.02 (0.01) 1.0 (0.0)

MC-MedGAN 22.9 (0.02) -1.42 (0.01) 0.45 (0.02) 0.47 (0.01) 0.38 (0.01)

MICE-LR 1.32 (0.02) -4.8 (0.16) 0.85 (0.0) 1.07 (0.0) 0.98 (0.0)

MICE-LR-DESC 2.38 (0.04) -3.55 (0.19) 0.82 (0.0) 1.05 (0.0) 0.99 (0.0)

MICE-DT 0.12 (0.02) -10.92 (0.33) 1.02 (0.0) 1.0 (0.0) 0.98 (0.01)

CLGP presented the overall best performance
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Table 10 Average and std of performance metrics computed on 10 synthetic datasets generated from RESPIR large-set

PCD ↓ Log-Cluster ↓ CrCl-RS (1) CrCl-SR (1) Supp. Coverage ↑

Method

IM 9.35 (0.0) -3.85 (0.1) 0.68 (0.0) 1.0 (0.0) 0.98 (0.0)

BN 4.59 (0.02) -4.13 (0.14) 0.91 (0.0) 1.0 (0.01) 0.98 (0.0)

PoM 1.66 (0.01) -6.56 (0.25) 0.85 (0.0) 1.01 (0.0) 0.99 (0.0)

CLGP 0.71 (0.02) -7.67 (0.56) 0.94 (0.0) 1.02 (0.0) 1.0 (0.0)

MC-MedGAN - (-) -1.39 (0.0) 0.74 (0.03) 0.56 (0.0) 0.15 (0.0)

MICE-LR 1.35 (0.03) -6.38 (0.15) 0.85 (0.0) 1.07 (0.0) 0.99 (0.0)

MICE-LR-DESC 2.9 (0.02) -7.15 (0.23) 0.85 (0.0) 1.05 (0.0) 0.99 (0.0)

MICE-DT 0.13 (0.01) -10.79 (0.78) 1.02 (0.0) 1.0 (0.0) 0.98 (0.0)

CLGP presented the overall best performance

Fig. 19 Data utility metrics shown as boxplots on LYMYLEUK large-set
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Fig. 20 Data utility metrics shown as boxplots on RESPIR large-set

across the various features in the real population. On the

other hand, the privacy of the subjects included in the real

data must not be disclosed in the synthetic data. Here, we

have presented a comparative study of different methods

for generating categorical synthetic data, evaluating each

of them under a variety of metrics that assess both aspects

described above: data utility and privacy disclosure. Each

metric evaluates a slightly different aspect of the data util-

ity or disclosure. While there is some redundancy among

them, we believe that in combination, they provide a more

complete assessment of the quality of the synthetic data.

For each method and each metric, we provided a brief dis-

cussion on their strengths and shortcomings, and hope

that this discussion can be helpful in guiding researchers

in identifying the most suitable approach for generating

synthetic data for their specific application.

The experimental analysis was performed on data from

the SEER research database on 1) breast, 2) lymphoma

and leukemia, and 3) respiratory cancer cases diagnosed

from 2010 to 2015. Additionally, we performed the same

experiments on two sets of categorical variables in order

to compare the methods under two challenge levels.

Specifically, in the first set, 8 variables were included

such that the maximum number of levels (i.e., number

of unique possible values for the feature) was limited

to 14. The larger feature set encompassed 40 features,

including features with up to over 200 levels. Increas-

ing the number of features and the number of levels

per features results in a substantially larger parameter

space to infer, which is aggravated by the absence or

limited number of samples representing each possible

combination.
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Fig. 21 Heatmaps displaying (a) CrCl-RS, (b) CrCl-SR, (c) KL divergence, and (d) support coverage average over 10 independently generated

synthetic datasets. LYMYLEUK large-set

From the experimental results on the two datasets of

distinct complexity, small-set and large-set, we

highlight the key differences:

• The small-set records have fewer and less

complex variables (in terms of the number of

sub-categories per variable) than the large-set.

Thus the learning problem is considerably easier and

this is observed in the metric CrCl-RS provided in

Tables 5 and 8, where the small-set performs

consistently better than the large-set across all

datasets (BREAST, LYMYLEUK, and RESPIR).
• SEER edit checks consist of a set of rules combined

via various logical operators. For the large-set,

the rules are significantly more complex and the

chances of failure are higher. This is observed in

Table 17, where the percentage of failure is higher for

the large-set compared to the small-set,

across all methods.

• As the dimensionality (as well as complexity, as some

of the variables have a larger number of

sub-categories) of the records in the large-set is

considerably higher than the records in the

small-set, in general, it is harder for an attacker

to identify the real patient records used for model

training. This is observed in Fig. 18, where to achieve

similar recall values for the membership attacks, the

Hamming neighborhood has to be considerably larger

for the large-set compared to the small-set.

The results showed that Bayesian Networks, Mix-

ture of Product of Multinomials (MPoM) and CLGP

were capable of capturing variables relationships,

considering the data utility metrics used for com-

parison. Surprisingly, the generative adversarial

network-based model MC-MedGAN failed to generate

data with similar statistical characteristics to the real

dataset.



Goncalves et al. BMCMedical ResearchMethodology          (2020) 20:108 Page 31 of 40

Fig. 22 Heatmaps displaying (a) CrCl-RS, (b) CrCl-SR, (c) KL divergence, and (d) support coverage average over 10 independently generated

synthetic datasets. RESPIR large-set

Conclusions

In this paper, we presented a thorough comparison of

existing methodologies to generate synthetic electronic

health records (EHR). For each method, the process is as

follows: given a set of private and real EHR samples, fit

a model, and then generate new synthetic EHR samples

from the learned model. By learning from real EHR sam-

ples, it is expected that the model is capable of extracting

relevant statistical properties of the data.

From the performed experimental analysis, we observed

that there is no single method that outperforms the oth-

ers in all considered metrics. However, a few methods

have shown the potential to be of great use in practice

as they provide synthetic EHR samples with the following

two characteristics: 1) statistical properties of the syn-

thetic data are equivalent to the ones in the private real

data, and 2) private information leakage from the model

is not significant. In particular, we highlight the meth-

ods Mixture of Product of Multinomials (MPoM) and

categorical latent Gaussian process (CLGP). Other

methods, such as the Generative Adversarial Network

(GAN), were not capable of generating realistic EHR

samples.

Future research directions include handling variable

types other than categorical, specifically continuous and

ordinal. A more in-depth investigation of the limitations

of GANs for medical synthetic data generation is also

required.
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Fig. 23 Attribute disclosure for LYMYLEUK large-set for the case 10, 6, and 3 attributes are unknown to the attacker
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Fig. 24 Precision and recall for membership disclosure for LYMYLEUK large-set
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Fig. 25 Attribute disclosure for RESPIR large-set for the case 10, 6, and 3 attributes are unknown to the attacker
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Fig. 26 Precision and recall for membership disclosure for RESPIR large-set

Table 11 LogCluster performance metric on several synthetic sample sizes

# of synthetic samples

5k 10k 20k ∼170k (all)

IM -5.072 -4.978 -5.118 -6.000

BN -6.747 -7.053 -7.533 -8.528

MPoM -7.106 -7.991 -8.739 -10.191

CLGP -6.991 -7.183 -7.360 -8.056

MC-MedGAN -3.177 -3.170 -3.238 -3.185

MICE-LR -6.924 -7.275 -7.797 -8.323

MICE-LR-DESC -7.232 -7.875 -8.422 -9.440

MICE-DT -7.141 -7.867 -8.863 -11.603

BREAST small-set. Values shown are the average performance over 10 independently generated synthetic samples
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Table 12 Attribute disclosure on several synthetic sample sizes

# of synthetic samples

5k 10k 20k ∼170k (all)

k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10

IM 0.591 0.255 0.642 0.239 0.625 0.284 0.669 0.325

BN 0.590 0.333 0.646 0.301 0.671 0.332 0.701 0.338

MPoM 0.621 0.314 0.658 0.310 0.688 0.311 0.730 0.350

CLGP 0.666 0.305 0.674 0.313 0.685 0.324 0.693 0.350

MC-MedGAN 0.518 0.341 0.531 0.391 0.514 0.392 0.575 0.443

MICE-LR 0.633 0.320 0.635 0.320 0.678 0.306 0.741 0.314

MICE-LR-DESC 0.620 0.314 0.663 0.320 0.705 0.358 0.721 0.323

MICE-DT 0.607 0.319 0.653 0.333 0.654 0.359 0.710 0.379

BREAST small-set. Values shown are the average performance over 10 independently generated synthetic samples

Table 13 Membership disclosure (Hamming distance=0.1, r=1000) on several synthetic sample sizes

# of synthetic samples

5k 10k 20k ∼170k (all)

Precision Recall Precision Recall Precision Recall Precision Recall

IM 0.491 0.842 0.493 0.905 0.493 0.927 0.497 0.97

BN 0.491 0.848 0.496 0.905 0.492 0.93 0.499 0.985

MPoM 0.492 0.872 0.496 0.906 0.498 0.942 0.499 0.99

CLGP 0.496 0.867 0.497 0.913 0.498 0.943 0.500 0.988

MC-MedGAN 0.488 0.585 0.486 0.627 0.482 0.651 0.491 0.751

MICE-LR 0.497 0.868 0.497 0.909 0.500 0.957 0.499 0.988

MICE-LR-DESC 0.489 0.854 0.496 0.909 0.494 0.94 0.500 0.991

MICE-DT 0.496 0.86 0.498 0.924 0.499 0.952 0.502 0.994

BREAST small-set. Values shown are the average performance over 10 independently generated synthetic samples

Table 14 Breast large-set. Log-cluster performance metric

# of synthetic samples

5k 10k 20k ∼170k (all)

IM -3.524 -3.583 -3.553 -3.550

BN -4.416 -4.489 -4.658 -4.539

MPoM -6.675 -7.132 -7.515 -7.753

CLGP -7.240 -7.632 -8.047 -8.235

MC-MedGAN -1.388 -1.388 -1.388 -1.388

MICE-LR -5.577 -5.605 -5.735 -5.862

MICE-LR-DESC -4.939 -5.009 -5.083 -5.173

MICE-DT -7.036 -7.713 -8.512 -10.593



Goncalves et al. BMCMedical ResearchMethodology          (2020) 20:108 Page 37 of 40

Table 15 Attribute disclosure performance metric when the attacker wants for uncover 5 unknown attributes. BREAST large-set

# of synthetic samples

5k 10k 20k ∼170k (all)

k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10

IM 0.931 0.876 0.946 0.886 0.955 0.887 0.971 0.883

BN 0.947 0.932 0.954 0.942 0.967 0.945 0.982 0.946

MPoM 0.952 0.945 0.964 0.950 0.967 0.949 0.981 0.951

CLGP 0.958 0.950 0.968 0.949 0.974 0.950 0.987 0.953

MC-MedGAN 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024

MICE-LR 0.948 0.936 0.960 0.944 0.966 0.948 0.986 0.959

MICE-LR-DESC 0.954 0.946 0.963 0.946 0.967 0.950 0.984 0.955

MICE-DT 0.959 0.952 0.973 0.954 0.983 0.957 0.998 0.972

Table 16 Membership disclosure (Hamming distance=0.2, r=1000) on several synthetic sample sizes

# of synthetic samples

5k 10k 20k ∼170k (all)

Precision Recall Precision Recall Precision Recall Precision Recall

IM 0.488 0.599 0.496 0.680 0.496 0.745 0.497 0.867

BN 0.497 0.863 0.496 0.918 0.497 0.918 0.498 0.966

MPoM 0.492 0.826 0.491 0.864 0.492 0.891 0.497 0.945

CLGP 0.492 0.880 0.493 0.903 0.498 0.937 0.500 0.981

MC-MedGAN 1.000 0.002 1.000 0.002 1.000 0.002 1.000 0.002

MICE-LR 0.491 0.842 0.497 0.884 0.493 0.912 0.498 0.964

MICE-LR-DESC 0.493 0.809 0.496 0.857 0.492 0.884 0.496 0.955

MICE-DT 0.496 0.899 0.498 0.936 0.499 0.955 0.502 0.996

BREAST large-set. Values shown are the average performance over 10 independently generated synthetic samples
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Fig. 27 Training time in minutes for all methods on BREAST dataset considering both small-set and large-set

Table 17 Percentage of SEER edit check failures: BREAST cancer with 10 and 40 variables

Method % of Failures

10vars 40vars

IM 0.53 (0.08) 6.2 (0.02)

BN 0.04 (0.01) 1.95 (0.09)

MPoM 0.01 (0.02) 4.04 (0.12)

CLGP 0.28 (0.08) 3.81 (0.22)

MC-MedGAN 0.14 (0.06) 0(0)

MICE-LR 0.12 (0.03) 4.15 (0.1)

MICE-LR-DESC 0.19 (0.05) 4.66 (0.04)

MICE-DT 0.0 (0.0) 0.06 (0.03)
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