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Quantum entanglement involving coherent superpositions of macroscopically distinct states is
among the most striking features of quantum theory, but its realization is challenging, since such
states are extremely fragile. Using a programmable quantum simulator based on neutral atom ar-
rays with interactions mediated by Rydberg states, we demonstrate the deterministic generation of
“Schrödinger cat” states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our
approach is based on engineering the energy spectrum and using optimal control of the many-body
system. We further demonstrate entanglement manipulation by using GHZ states to distribute en-
tanglement to distant sites in the array, establishing important ingredients for quantum information
processing and quantum metrology.

GHZ states constitute an important class of entangled
many-body states [1]. On the one hand, such states
provide an important resource for applications ranging
from quantum metrology [2] to quantum error correc-
tion [3]. On the other hand, these states are among the
most fragile many-body states, since a single error on any
one of the N qubits collapses the superposition result-
ing in a statistical mixture. Remarkably, despite their
highly entangled nature, GHZ states can be character-
ized by just two diagonal and two off-diagonal terms in
the N -particle density matrix. In contrast to quantify-
ing the degree of general entangled states in many-body
systems, which is extremely challenging [4–6], the GHZ
state fidelity (F > 0.5) constitutes an accessible witness
for N -partite entanglement [7]. For these reasons, GHZ
state creation can serve as an important benchmark to
characterize the quality of any given quantum hardware.
Such states have been previously generated using sys-
tems of nuclear spins [8, 9], individually controlled op-
tical photons [10–12], trapped ions [7, 13, 14], and su-
perconducting quantum circuits [15, 16, 33]. Large-scale
superposition states have also been generated in systems
of microwave photons [17] and atomic ensembles without
individual particle addressing [2].
In this Report we demonstrate the preparation of N -

particle GHZ states

|GHZN 〉 = 1√
2
(|0101 · · · 〉+ |1010 · · · 〉) (1)

in a one dimensional array of individually trapped neutral

87Rb atoms, where the qubits are encoded in an atomic
ground state |0〉 and in a Rydberg state |1〉. Our entan-
gling operation relies on the strong van-der-Waals inter-
action between atoms in states |1〉 and on engineering
the energy spectrum of the quantum many-body system
to allow for a robust quantum evolution from an initial
product state to a GHZ state. The basic ingredients for
the manipulation of atomic states, both for generating
and characterizing GHZ states, are illustrated in Fig. 1.
All the atoms are homogeneously coupled to a Rydberg
state |1〉 via a two-photon transition with an effective
coupling strength Ω(t) and detuning ∆(t) [18, 19]. In
addition, we use addressing beams to introduce local en-
ergy shifts δi on specific sites i along the array (Fig. 1A).
The resulting many-body Hamiltonian is

H

~
=

Ω(t)

2

N
∑

i=1

σ(i)
x −

N
∑

i=1

∆i(t)ni +
∑

i<j

V

|i− j|6
ninj (2)

where σ
(i)
x = |0〉〈1|i + |1〉〈0|i is the qubit flip oper-

ator, ∆i(t) = ∆(t) + δi is the local effective detun-
ing set by the Rydberg laser and the local light shift,
ni = |1〉〈1|i is the number of Rydberg excitations on
site i, and V is the interaction strength of two Rydberg
atoms on neighboring sites. The separation between ad-
jacent sites is chosen such that the nearest-neighbor in-
teraction V = 2π · 24MHz ≫ Ω results in the Rydberg
blockade [20–22], forbidding the simultaneous excitation
of adjacent atoms into the state |1〉.
To prepare GHZ states, we utilize arrays with an even
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FIG. 1. Experimental scheme and entanglement genera-
tion procedure. A, 87Rb atoms initially in a ground state
|0〉 =

∣

∣5S1/2, F = 2,mF = −2
〉

are coupled to a Rydberg state

|1〉 =
∣

∣70S1/2,mJ = −1/2
〉

by a light field with a coupling
strength Ω/(2π) ≤ 5MHz and a variable detuning ∆. Local
addressing beams at 840 nm target the edge atoms, reducing
the energy of |0〉 at those sites by a light shift δe. B, Many-
body energy gap spectrum of N = 8 atoms, including energy
shifts on the edge atoms. For positive detuning, the states
with one ground state atom on the edges are favored over
states with a Rydberg atom on both edges. An adiabatic
pathway connects the state |GN 〉 = |000 · · · 〉 with the two
GHZ components. Gray lines in the spectrum are energies
associated with antisymmetric states, which are not coupled
to the initial state by Hamiltonian (2). C, Method to control
the phase φ of GHZ states. Every other site of the array is
illuminated with a local addressing beam at 420 nm, which
imposes a negative differential light shift δp on the |0〉-|1〉
transition. The offset in state |0101 · · · 〉 relative to |1010 · · · 〉
leads to an evolving dynamical phase.

number N of atoms. For large negative detuning ∆ of
the Rydberg laser, the many-body ground state of the
Hamiltonian (2) is |GN 〉 = |0〉⊗N

. For large uniform
positive detuning ∆i = ∆, the ground state manifold
consists of N/2 + 1 nearly degenerate classical config-
urations with N/2 Rydberg excitations. These include
in particular the two target antiferromagnetic configura-
tions |AN 〉 = |0101 · · · 01〉 and

∣

∣AN

〉

= |1010 · · · 10〉 [23],
as well as other states with nearly identical energy (up to
a weak second-nearest neighbor interaction), with both

edges excited, such as |10010 · · · 01〉. To isolate a co-
herent superposition of states |AN 〉 and

∣

∣AN

〉

, we intro-
duce local light shifts δe using off-resonant laser beams at
840 nm, generated by an acousto-optic deflector (AOD),
which energetically penalize the excitation of edge atoms
(Fig. 1A), and effectively eliminate the contribution of
undesired components. In this case, the ground state for
positive detuning is given by the GHZ state (1) and there
exists, in principle, an adiabatic pathway that transforms
the state |GN 〉 into |GHZN 〉 by adiabatically increasing
∆(t) from negative to positive values (Fig. 1B).

In practice, the time necessary to adiabatically prepare
such a GHZ state grows with system size and becomes
prohibitively long for large N owing to small energy gaps
in the many-body spectrum. To address this limita-
tion, we employ optimal control methods to find laser
pulses that maximize the GHZ state preparation fidelity
while minimizing the amount of time necessary. Our
specific implementation, the Remote dressed Chopped-
RAndom Basis algorithm (RedCRAB) [24, 25], yields op-
timal shapes of the laser intensity and detuning for the
given experimental conditions [26]. For N ≤ 8 atoms,
we perform this optimization using δe/(2π) ≈ −4.5MHz
light shifts on the edge atoms. For larger systems of
N > 8, we found the preparation to be more robust by
increasing the edge light shifts to δe/(2π) ≈ −6MHz and
adding δ4,N−3/(2π) ≈ −1.5MHz light shifts on the third
site from both edges.

Our experiments are based on the optical tweezer plat-
form and experimental procedure that have been de-
scribed previously [19]. Following the initialization of
a defect-free N -atom array, the traps are switched off
while the atoms are illuminated with the Rydberg and
local light shift beams. The internal state of the atoms is
subsequently measured by imaging state |0〉 atoms recap-
tured in the traps, while Rydberg atoms are repelled by
the trapping light [27]. Fig. 2 demonstrates the result of
such experiments for a 20-atom array. After applying the
optimized pulse shown in Fig. 2B, we measure the proba-
bility of observing different patterns pn = 〈n| ρ |n〉 in the
computational basis, where ρ is the density operator of
the prepared state. Fig. 2A shows the measured prob-
ability to observe each of the 220 possible patterns in a
20-atom array. The states |A20〉 and

∣

∣A20

〉

clearly stand
out (blue bars) with a combined probability of 0.585(14)
and almost equal probability of observing each one.

To characterize the experimentally prepared state ρ,
we evaluate the GHZ state fidelity

F = 〈GHZN | ρ |GHZN 〉 = 1

2

(

pAN
+ pAN

+ cN + c∗N
)

(3)
where pAN

and pAN
are the populations in the target

components and cN =
〈

AN

∣

∣ ρ |AN 〉 is the off-diagonal
matrix element, which can be measured by utilizing the
maximal sensitivity of the GHZ state to a staggered mag-
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FIG. 2. Production of a 20-atom GHZ state. A, Probability of observing different patterns, showing a large population of the
two target patterns out of 220 = 1, 048, 576 possible states. Shown here are the directly measured (blue bars) and the corrected
values (orange bars) for the two target states after taking into account measured detection errors. Insets show fluorescence
images of the two target patterns, where red circles mark empty sites corresponding to atoms in state |1〉. B, Optimal control
pulse used for state preparation. C, Parity oscillations produced by acquiring a phase φ between the GHZ components. We
apply a staggered field with an energy shift of δp/(2π) = ±3.8MHz on all sites, followed by an operation Ux such that subsequent
parity measurements are sensitive to φ [26]. From the population measurement and the oscillation amplitude, we obtain a lower
bound on the 20-atom GHZ fidelity of F ≥ 0.542(18). Error bars denote 68% confidence intervals.

netic field. Specifically, evolving the systems with the

Hamiltonian Hp = ~δp/2
∑N

i=1(−1)iσ
(i)
z , the amplitude

cN acquires a phase φ at a rate of φ̇ = Nδp. Measuring
an observable that oscillates at this frequency provides a
lower bound on the coherence |cN | through the oscillation
contrast [26, 28]. In our experiments, the staggered field
is implemented by applying off-resonant focused beams
of equal intensity at 420 nm, generated by another AOD,
to every other site of the array (Fig. 1C), resulting in a lo-
cal energy shift δp [26]. Subsequently, we drive the atoms
resonantly, applying a unitary operation Ux in order to
change the measurement basis [26], such that a measure-

ment of the parity P =
∏

i σ
(i)
z becomes sensitive to the

phase of cN . Fig. 2C shows the measured parity as a
function of the phase accumulated on each atom in the
array, demonstrating the coherence of the created state.

To extract the entanglement fidelity for large atomic
states, we carefully characterized our detection process
used to identify atoms in |0〉 and |1〉, since it has a small
but finite error. We have independently determined the
probability to misidentify the state of a particle to be
p(1|0) = 0.0063(1), and p(0|1) = 0.0227(42) [26]. Us-
ing these numbers, we extract a corrected probability of
preparing states |A20〉 and

∣

∣A20

〉

to be 0.782(32) (orange
bars in Fig. 2A) and a corrected amplitude of oscillation
of 0.301(18) (orange points in Fig. 2C). In the popula-
tion measurement, we independently confirmed that the
14 most commonly observed incorrect patterns are fully
consistent with the correct target states with a single de-

tection error (Fig. S5A). From these measurements we
extract a lower bound for the 20-atom GHZ state fidelity
of F ≥ 0.542(18), certifying genuine 20-partite entangle-
ment.

This protocol was applied for multiple system sizes of
4 ≤ N ≤ 20, using 1.1µs control pulses optimized for
each N individually. Consistent with expected GHZ dy-
namics (Fig. 1C and [13]), the frequency of the measured
parity oscillations grows linearly with N (Fig. 3A). Ex-
tracting the GHZ fidelity from these measurements shows
that we surpass the threshold of F = 0.5 for all studied
system sizes (Fig. 3B). We further characterized the life-
time of the created GHZ state by measuring the parity
signal after a variable delay (Fig. 3C). These observations
are most consistent with Gaussian decay, while character-
istic lifetimes are reduced relatively slowly for increasing
system sizes, indicating the presence of a non-Markovian
environment [3, 14].

As an application of our entanglement manipulation
technique, we demonstrate its use for entanglement dis-
tribution between distant atoms. Specifically, we con-
sider the preparation of Bell states between atoms at the
two opposite edges of the array. Our approach is based on
first creating the GHZ state using the above procedure,
followed by an operation that disentangles all but two
target atoms. The latter is realized by shifting the tran-
sition frequencies of the two target edge atoms using two
strong, blue-detuned addressing beams at 420 nm. Sub-
sequently, we perform a reverse detuning sweep of the
Rydberg laser that effectively disentangles all atoms ex-
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FIG. 3. Quantifying entanglement for different system sizes. A, Parity oscillations measured on different system sizes. We
apply a staggered field with a shift of δp/(2π) = ±3.8MHz on all sites and observe a scaling of the phase accumulation rate
proportional to the system size N . B, Measured GHZ fidelity for different system sizes (Orange circles). Blue diamonds show
the result of simulations that account for dephasing during state preparation, decay from off-resonant photon scattering and
imperfect detection of coherence through parity oscillations [26]. Pale blue triangles show identical simulations for analytic
pulses of duration T = 1.1µs with a linear detuning sweep and Ω(t) = Ωmax[1 − cos12(πt/T )], which were used as an initial
guess for the RedCRAB optimization. The gray shaded area marks a region not measurable with our parity observable, see
text and [26] for details. C, Lifetime of the GHZ state coherence. For all system sizes N , we measure the state parity after a
variable delay following the GHZ state preparation, which decays to zero (inset). We fit the individual parity data to the tail
of a Gaussian decay curve, as we assume the dephasing has started during state preparation, i.e. before τ = 0. The gray line
shows a theoretical prediction with no free parameters accounting for known dephasing mechanisms in our system.

cept those at the edges. The resulting state corresponds
to a coherent superposition of two pinned excitations that
can be converted into a Bell state |Φ+〉 = (|00〉+|11〉)/

√
2

by applying a resonant π/2 pulse on the edge atoms
(Fig. 4A).

To demonstrate this protocol experimentally, we pre-
pare a GHZ-state of 8 atoms, and turn on the detuned
420 nm addressing beams on the edge atoms resulting in
a shift of δ1,8/(2π) = 6MHz. We then use an optimized
Rydberg laser pulse to distribute the entanglement, and
observe the patterns |00000000〉 and |10000001〉 with a
total probability of 0.729(9) after accounting for detec-
tion errors (Fig. 4B). We verify the coherence of the re-
mote Bell pair by applying an additional π/2 pulse with a
variable laser phase, and observe parity oscillations with
an amplitude of 0.481(24) (Fig. 4C). Combining these
results, we obtain the edge atom Bell state fidelity of
0.605(13).

Turning to the discussion of our experimental ob-
servations, we note that the optimal control provides
a substantial improvement over naive analytic pulses
(Fig. 3B), while bringing our protocol close to the speed
set by a more conventional protocol of building up en-
tanglement through a series of two-qubit operations [26].
In contrast, a simple linear detuning sweep only allows

for the creation of GHZ states for N ≤ 16 within a
fixed 1.1µs window (Fig. 3B), even under ideal con-
ditions. Our analysis reveals that the reason for this
improvement stems from diabatic excitations and de-
excitations in the many-body spectrum, related to the
recently proposed mechanisms for quantum optimization
speedup [26, 29, 30].

The measured entanglement fidelity is partially lim-
ited by imperfect qubit rotations used for parity mea-
surements. Specifically, the qubit rotation operation Ux

in our experiment is induced by an interacting Hamilto-
nian, which complicates this step. The resulting evolu-
tion can be understood in terms of quantum many-body
scars [19, 31], which gives rise to coherent qubit rota-
tions, even in the presence of strong interactions. The
deviations from an ideal parity measurement arises from
the Rydberg blockade constraint and long-range interac-
tions [26]. These grow with the system size, resulting in
finite fidelities even for a perfect initial GHZ state (gray
shaded area in Fig. 3B). Our quoted fidelity values do not
include the correction for this imperfection and represent
the lower bound on the actual GHZ state fidelities.

The entanglement generation, manipulation and life-
time are further limited by several sources of decoher-
ence. The finite temperature of the atoms leads to ran-



5

Reverse
sweep

¼
2

¼
2

1 2 3 4 5 6 7 8
Position

0

0.2

0.4

R
yd

b
er

g 
p

op
ul

at
io

n

State
prep. Distr. ¼

2

±±±²²±²²
Pattern

0

0.4

P
ro

b
.

0 ¼=2 ¼ 3¼=2 2¼

¼=2-pulse phase Á

-1

-0.5

0

0.5

1

E
d

ge
 a

to
m

 p
ar

ity Corrected

State
prep. Distr. ¼

2
(0) ¼

2
(Á)

A B

C

FIG. 4. Demonstration of entanglement distribution. A, Ex-
perimental protocol for N = 8. Edge atoms are addressed by
light shift beams and a reverse sweep of the Rydberg laser
detuning is performed to disentangle the bulk of the array,
leaving a Bell state

∣

∣Ψ+
〉

∝ |1 · · · 0〉 + |0 · · · 1〉 on the edge.
A π/2 pulse resonant only with the edge atoms is applied to
convert the state

∣

∣Ψ+
〉

to
∣

∣Φ+
〉

∝ |0 · · · 0〉+ |1 · · · 1〉. B, Mea-
sured Rydberg populations on each site after entanglement
distribution, where the probability for a single Rydberg ex-
citation is shared among the two edges. Inset: Probabilities
for different patterns on the edge atoms, which are consistent
with the Bell state

∣

∣Φ+
〉

. Blue bars indicate measured values,
while orange bars include corrections for detection errors. C,

Measurement of the Bell state coherence. GHZ entanglement
is distributed to the edges, a π/2 pulse is applied at laser
phase φ = 0, followed by a second π/2 pulse at varying phase
φ. The amplitude of the parity oscillation provides a lower
bound on the coherence of the Bell state, yielding a fidelity
of F ≥ 0.605(13).

dom Doppler shifts on every site as well as position fluctu-
ations that influence interaction energies. These thermal
dephasing mechanisms lead to a Gaussian decay of the
GHZ state coherence, which decreases with the system
size as 1/

√
N , in good agreement with our observations

(Fig. 3B). Additionally, off-resonant laser scattering in-
troduces a small rate of decoherence on each site in the
array. We find that numerical simulations of the state
preparation accounting for these imperfections predict a
higher GHZ fidelity than that obtained experimentally
(Fig. 3B and [26]). We can attribute this discrepancy
to several additional sources of errors. Laser phase noise
likely contributes to the finite fidelity of the state prepa-
ration. Drifts in the beam positions of the Rydberg lasers
can lead to changing light shifts, giving rise to uncon-
trolled detunings, while drifts in the addressing beam
positions can lead to an imbalance in the local energy
shifts and thereby in the populations of the two GHZ
components, limiting the maximum possible coherence.

This analysis highlights the utility of GHZ states for un-
covering sources of errors. We emphasize that all of these
known error sources can be mitigated via technical im-
provements [26].

Our experiments demonstrate a new promising ap-
proach for the deterministic creation and manipulation
of large-scale entangled states, enabling the certifica-
tion of genuine N -partite entanglement in system sizes
up to N = 20, the largest GHZ state demonstrated
to date. These results show the utility of this ap-
proach for benchmarking quantum hardware, demon-
strating that Rydberg atom arrays constitute a compet-
itive platform for quantum information science and en-
gineering. Specifically, the entanglement generation and
distribution could be potentially utilized for applications
ranging from quantum metrology and quantum network-
ing to quantum error correction and quantum compu-
tation. Our method can be extended by mapping the
Rydberg qubit states used here to ground-state hyper-
fine sublevels, such that the entangled atoms can remain
trapped and maintain their quantum coherence over very
long times [32]. This could enable the sophisticated ma-
nipulation of entanglement and realization of deep quan-
tum circuits for applications such as quantum optimiza-
tion [29, 30].

Note added: During the completion of our manuscript
we became aware of related work demonstrating GHZ
states of 18 superconducting qubits [33, 34].
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SUPPLEMENTARY MATERIALS

Experimental setup

The Rydberg excitations are enabled by a two-color
laser system at 420 nm and 1013 nm wavelength. The
420 nm light is derived from a frequency-doubled tita-
nium sapphire laser (M Squared SolsTiS 4000 PSX F)
locked to an ultrastable reference cavity (by Stable Laser
Systems).

The 1013 nm light is obtained from a high-power
fiber amplifier (ALS-IR-1015-10-A-SP by Azur Light Sys-
tems). The seed light is derived from a Fabry-Pérot laser
diode injection locked to an external cavity diode laser
(CEL002 by MOGLabs) stabilized to the same reference
cavity and filtered by the cavity transmission [35].

The detuning of both Rydberg lasers to the intermedi-
ate state

∣

∣6P3/2, F = 3,mF = −3
〉

is approximately 2π×
2GHz. The individual Rabi frequencies of the two Ryd-
berg lasers are Ω420/(2π) ≈ 174MHz and Ω1013/(2π) ≈
115MHz. This gives a two-photon Rabi frequency of
Ω = Ω420Ω1013/(2∆) ≈ 2π × 5MHz.

To drive the optimal control pulses, we modulate the
420 nm Rydberg laser with an acousto-optic modula-
tor (AOM) driven by an arbitrary waveform generator
(AWG, M4i.6631-x8 by Spectrum). We correct the non-
linear response of the AOM to the drive amplitude by a
feed-forward approach to obtain the target output inten-
sity pattern. Furthermore, the AOM efficiency changes
with changing frequency, which we compensate by feed-
ing forward onto the waveform amplitude to suppress the
intensity variations with frequency. In addition, the light
shift on the Rydberg transition from the 420 nm laser
can be as large as 2π× 4MHz. While the pulse intensity
changes, this light shift changes, modifying the detuning
profile. We therefore correct the frequency profile as a
function of the pulse intensity to compensate this shift.
These steps ensure that the experimentally applied pulse
is a faithful representation of the desired profile.

The local addressing beam patterns are generated by
two AODs (DTSX400-800 by AA Opto-electronic), each
driven by multiple frequencies obtained from an arbitrary
waveform generator (M4i.6631-x8 by Spectrum).

Optimal control

Optimal control was originally developed as a tool to
harness chemical reactions to obtain the largest amount
of desired products with given resources, and then intro-
duced in quantum information processing as a standard
way of designing quantum protocols and quantum de-
vices [36–39] as well as in manipulating quantum many-
body systems to exploit complex phenomena [25, 40–48].
Quantum optimal control theory identifies the optimal

shape of a time-dependent control pulse to drive a quan-
tum many-body system to accomplish given task, e.g.
state preparation or quantum gate implementation. The
quality of the transformation is certified by a Figure of
Merit (FoM) that can be calculated or measured, e.g. the
fidelity of the final state with respect to the target one,
the final occupation, or the energy.

In this work, the optimization is achieved through
RedCRAB, the remote version of the dressed Chopped
RAndom Basis (dCRAB) optimal control via a cloud
server [25, 40, 47]. Within the optimization, control
fields such as the Rabi coupling Ω(t) are adjusted as
Ω(t) = Ω0(t) + f(t), where Ω0(t) is an initial guess func-
tion obtained from physical intuition or existing sub-
optimal solutions. The correcting function f(t) is ex-
panded by randomized basis functions. In this work,
we chose a truncated Fourier basis. Thus, f(t) =
Γ(t)

∑nc

k=1[Ak sin(ωkt)+Bk cos(ωkt)], where ωk = 2π(k+
rk)/τ are randomized Fourier frequencies with rk ∈
[−0.5, 0.5], τ is the final time, and Γ(t) is a fixed scal-
ing function to keep the values at initial and final times
unchanged, i.e., Γ(0) = Γ(τ) = 0. The optimization task
is then translated into a search for the optimal combina-
tion of {Ak, Bk} with a given rk to maximize the fidelity
between the target state and the time evolved state at
τ . It can be solved by iteratively updating {Ak, Bk} us-
ing a standard Nelder-Mead algorithm [49]. In the basic
version of the CRAB algorithm, all rk are fixed and the
local control landscape is explored for all nc frequencies
simultaneously. This leads to a restriction in the number
of frequencies that can be efficiently optimised. Using the
dressed CRAB (dCRAB) algorithm, only one Fourier fre-
quency ωk is optimised at a time. We then move on to
ωk+1 after a certain number of iterations of the CRAB
routine. This enables the method to include an arbitrar-
ily large number of Fourier components and deriving the
solutions without – whenever no other constraints are
present – being trapped by local optima [24].

In the RedCRAB optimization, the server generates
and transmits a trial set of controls to the client user, who
will then evaluate the corresponding FoM and communi-
cates the feedback information to the server finishing one
iteration loop (Fig. S1). The optimization continues it-
eratively and the optimal set of controls, as well as the
corresponding FoM are derived. In the RedCRAB opti-
mization, the user can either evaluate the FoM by numer-
ical calculation, namely open-loop optimization, or by
experimental measurement, which is called closed-loop
optimization. In this work, open-loop optimization was
carried out only. The resulting controls could later serve
as the initial guess for a future closed-loop optimization.
This last step would ensure that the resulting controls are
robust, since all unknown or not modelled experimental
defects and perturbations would automatically be cor-
rected for.

For the open-loop optimization of the pulse, we con-



8

FIG. S1. RedCRAB optimization loop. The remote dCRAB
server generates and transmits a trial set of controls to the
user, who evaluates the corresponding performance in terms
of a FoM and sends the feedback information to the server,
concluding one iteration loop. In the next loop, the server
tends to generate an improved set of controls based on previ-
ous feedback information. The optimization continues until it
converges. The FoM evaluation can be achieved either by nu-
merical calculation (open-loop optimization) or experimental
measurement (closed-loop optimization).

strained the preparation time to 1.1µs and allowed the
detuning ∆/(2π) to vary between −20MHz and 20MHz,
while Ω/(2π) could vary between 0− 5MHz. The result-
ing pulses are shown in Fig. S2.

Optimal control dynamics

To gain insight into the timescales required to prepare
a GHZ state in our setup, we can compare our optimal
control protocol with a minimal quantum circuit consist-
ing of a series of two-qubit gates that would achieve the
same task. In this circuit, a Bell pair is created in the
middle of the array using the Rydberg blockade, which
for our maximal coupling strength of Ω/(2π) = 5MHz
takes 100 ns/

√
2. The entanglement can be spread to

the two atoms adjacent to this Bell pair by simultane-
ously applying local π pulses of 100 ns to those sites. A
sequence of nine of these pulses on the outgoing pairs of
atoms leads to the same GHZ state we prepare. This gate
sequence requires approximately 1µs, which is within
10% of the total evolution time required in our optimal
control sequence, which builds up the entanglement in
parallel.

In addition, it is interesting to compare this required
evolution time with a naive (unoptimized) parameter

ramp that adiabatically connects the initial state to the
GHZ state, for example Ω(t) = Ωmax[1 − cos12(πt/T )]
with a linear detuning sweep. Numerical simulations
show that such a sweep requires a total evolution time
of > 3µs to reach similar fidelities as the optimal con-
trol pulse for N = 20. To understand the origin of the
speedup through optimal control, we numerically simu-
late the corresponding evolution and analyze the popu-
lation of the instantaneous energy eigenstates (Fig. S3).
The optimal control dynamics can be divided into three
different regions: (I) A fast initial quench, (II) a slow
quench, and (III) a fast final quench. Even though the
change in the Hamiltonian parameters in region (I) is
rather rapid, the system remains mostly in the instan-
taneous ground state, with negligible populations of the
exited states, since the energy gap is large. In contrast, in
region (II) the parameters change slows down, reflecting
the fact that the energy gap becomes minimal. Unlike the
adiabatic case however, one can observe nontrivial popu-
lation dynamics, with a temporary population of excited
states. Importantly, the optimal control finds a path in
the parameter space such that the population is recap-
tured in the ground state at the end of region (II). This
suggests that it actively uses diabatic transitions that go
beyond the adiabatic principle. Finally, in region (III)
the gap is large again, such that the system can follow
the instantaneous ground state even for a fast change of
the parameters. This mechanism is related to the re-
cently discussed speedup in the context of the quantum
approximate optimization algorithm (QAOA) [29, 30].

Quantifying detection errors

The many-body dynamics involving coherent excita-
tion to Rydberg states occurs during a few-microsecond
time window in which the optical tweezers are turned
off. After the coherent dynamics, the tweezers are turned
back on, and atoms in the ground state |0〉 are recap-
tured. However, there is a small but finite chance of los-
ing these atoms. To quantify this error, we perform the
GHZ state preparation experiment while disabling the
420 nm Rydberg pulse. This keeps all atoms in state |0〉,
and we measure the loss probability to find a 0.9937(1)
detection fidelity.
Atoms in state |1〉 on the other hand have a small

chance of being misidentified as being in state |0〉, as
these atoms can decay prematurely from the Rydberg
state to the ground state and get recaptured by the tweez-
ers. This error probability can be measured by prepar-
ing atoms at sufficiently large distances as to be non-
interacting and applying a calibrated π pulse to transfer
all atoms to |1〉 and measure the probability of recaptur-
ing them. However, part of this signal is given by the π
pulse infidelity, i.e. a small fraction of atoms which did
not get excited to |1〉 in the first place.
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FIG. S3. Dynamics of an optimized 20-atom GHZ state
preparation. A, Optimized control parameters Ω(t) and ∆(t)
for N = 20 atoms. B, Energy eigenvalues of instantaneous
eigenstates of the Hamiltonian relative to the ground state
energy. The population in each energy eigenstate is color
coded on a logarithmic scale. C, Probability in each instan-
taneous eigenstate as the initial state evolves under the time-
dependent Hamiltonian. The probability is dominated by the
ground state and a few excited states. The time evolution
is computed by exact numerical integration of Schrödinger’s
equation, and 100 lowest energy eigenstates are obtained by
using Krylov subspace method algorithms. For computa-
tional efficiency, we only consider the even parity sector of
the Hamiltonian with no more than three nearest neighbor-
ing Rydberg excitations owing to the Rydberg blockade.

To quantify the π pulse fidelity, we note that a Rydberg
atom that decays and is recaptured can decay either into
the F = 2 or F = 1 ground states with branching ratios
α and β, respectively (α+β = 1). Because our initial op-

tical pumping of atoms into |0〉 has high fidelity > 0.998,
the final population of F = 1 atoms should be given only
by Rydberg atom decay/recapture events. Following a
π pulse to excite all atoms to the Rydberg state, the fi-
nal measured population in F = 1 is p1 = p × β, where
p is the total decay and recapture probability of a Ry-
dberg atom. Meanwhile, the final measured population
in F = 2 is p2 = p × α + ǫ, which includes both decay
events from Rydberg atoms as well as residual popula-
tion ǫ left from an imperfect π pulse. Experimentally,
we separately measure the total recaptured ground state
population (p1 + p2), as well as the F = 1 population
p1 only (by a resonant push-out of F = 2 atoms). We
additionally can vary the overall recapture probability p
by changing the depth of the tweezers that we recapture
atoms in, which changes the repulsive force exerted by
the optical tweezers on Rydberg atoms [27]. We measure
p1 and (p1 + p2) at four different total recapture proba-
bilities to extract the π pulse infidelity as ǫ = 0.006(3)
(Fig. S4). From these measurements, we conclude a Ry-
dberg detection fidelity of 0.9773(42).

Detection errors of |0〉 can be mitigated by implement-
ing ground-state cooling in the tweezers [50, 51], which
reduces the probability of loss after releasing the atoms.
The detection fidelity of |1〉 can be improved by using
Rydberg states with a longer radiative lifetime, actively
ionizing the Rydberg atoms by electric or optical fields,
or by pulling them away from the trapping region with
electric field gradients.

Correcting for detection errors

The small imperfections in state detection of single
qubits leads to a prominent effect on the analysis of large
systems. The probability for a single detection error is
sufficiently low that multiple errors per chain are very
unlikely, and we observe that the reduction in probabil-
ity of observing the correct GHZ pattern is dominated
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FIG. S4. Quantifying detection errors. A, Measurement
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points) as a function of the tweezer depth upon recapture.
B, Recaptured populations in all ground state levels. The
intersection with the horizontal axis gives an estimate of the
atoms that were not excited to the Rydberg state, bounding
the π pulse fidelity.

by these errors, as opposed to excitations of the system
(Fig. S5A). This conclusion is further confirmed by not-
ing that near-ideal correlations extend across the entire
system (Fig. S6).

For the datasets presented in which we correct for these
detection errors, we use the following procedure:

Coherences: The coherences are extracted from the
amplitude of parity oscillations. Each point in the par-
ity oscillation is analyzed from the measured distribution
of the number of excitations in the system. We encode
this measured probability distribution in the vector W,
where Wn is the probability to observe exactly n excita-
tions in the system (0 ≤ n ≤ N). The true probability
distribution of excitation numbers, prior to the effect of
detection errors, is denoted V. Detection errors trans-
form this distribution according to a matrix M , where
Mmn encodes the probability that a state with n excita-
tions will be detected as having m excitations. Each ma-
trix element is calculated using combinatoric arguments
from the measured detection fidelities. We determine the
true distribution V as the one that minimizes the cost
function |MV−W|2. (Fig. S5B). This procedure is sim-
ilar to applying the inverse matrix M−1 to the measured
distribution W, but is more robust in the presence of sta-
tistical noise on the measured distribution. Error bars on
the corrected values are evaluated by random sampling
of detection fidelities, given our measured values and un-
certainties.

Populations: We carry out a similar procedure to
correct the population data; however, we are inter-
ested in assessing the probability of two particular tar-
get states, which are defined not only by their number
of excitations but also by their staggered magnetizations

Mn =
∑N

i=1(−1)i〈σ(i)
z 〉. Our procedure therefore oper-

ates by grouping all possible microstates according to
their common staggered magnetization and number of
excitations (Fig. S5C). For N particles, there are in gen-

eral (N/2 + 1)2 such groups. As before, we denote the
measured distribution with respect to these groups as
W. We construct a detection error matrix M that re-
distributes populations between groups according to the
measured detection error rates. We optimize over all pos-
sible true distributions to find the corrected distribution
V that minimizes the cost function |MV − W|2. Af-
ter this correction, we sum the populations in the two
groups that uniquely define the two target GHZ compo-
nents with a staggered magnetization of ±N , and N/2
excitations.

Bounding the GHZ state coherence

We expand an experimental GHZ-like density matrix
in the following form

ρ =α1 |AN 〉〈AN |+ α2

∣

∣AN

〉〈

AN

∣

∣

+
(

β |AN 〉
〈

AN

∣

∣+ β∗
∣

∣AN

〉

〈AN |
)

+ ρ′
(1)

where |AN 〉 = |0101 · · · 〉 and
∣

∣AN

〉

= |1010 · · · 〉 are the
target GHZ components, αi characterizes the diagonal
populations in these states (0 ≤ αi ≤ 1), β charac-
terizes the off-diagonal coherence between these states
(0 ≤ |β| ≤ 1/2), and ρ′ contains all other parts of the
density matrix. The GHZ fidelity of state ρ is given by:

F = 〈GHZN | ρ |GHZN 〉 = α1 + α2

2
+ Re(β) (2)

To measure the coherence |β|, we implement a stag-
gered magnetic field to which the target GHZ state is
maximally sensitive:

Hst =
~δ

2

N
∑

i=1

(−1)iσ(i)
z (3)

Applying Hst to the system for time T results in uni-
tary phase accumulation U(T ) = exp (−iHstT/~). We
then apply a unitary U to the system and measure in the
computational basis. From repeated measurements, we
calculate the expectation value of the global parity oper-

ator P =
∏

i σ
(i)
z as a function of the phase accumulation

time T . Denote the time-dependent expectation value
E(T ), where −1 ≤ E(T ) ≤ 1.
We show that if E(T ) has a frequency component that

oscillates at a frequency of Nδ, then the amplitude of
this frequency component sets a lower bound for |β|. Im-
portantly, this holds for any unitary U used to detect the
phase accumulation.
Proof: The expectation value E(T ) can be written

explicitly as the expectation value of the time-evolved
observable P → U †(T )U†PUU(T ). In particular,

E(T ) = Tr[ρU†(T )U†PUU(T )]

=
∑

n

〈n| ρU†(T )U†PUU(T ) |n〉 (4)
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circles denote atoms in |0〉 and filled circles denote atoms in state |1〉. Blue domains mark regions where a single detection
error has likely occurred. Red domains mark true domain walls, where the antiferromagnetic order is broken. Following the
correct GHZ patterns, the 14 most observed patterns are consistent with a single detection error. B, Distribution of number of
excitations measured for two different times of the parity oscillation for a 20-atom array, with the upper (lower) plot showing
a net positive (negative) parity. Blue bars show measured values, orange bars show the reconstructed parent distribution,
and red bars denote the parent distribution after adding simulated errors to compare to the measured values. C, Staggered
magnetization Mn extracted from the measurement of GHZ populations for 20 atoms. The vertically split bars with different
shading denote different occurrences of number of excitations.
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∑

i g
(2)(i, i+ d) decay only very slowly throughout the array.

where |n〉 labels all computational basis states. Since the
phase accumulation Hamiltonian Hst is diagonal in the
computational basis, the basis states |n〉 are eigenvectors
of U(T ) with eigenvalues denoting the phase accumula-
tion. Specifically,

Hst |n〉 =
~δ

2
Mn |n〉 ⇒ U(T ) |n〉 = e−iδTMn/2 |n〉 (5)

where Mn is the staggered magnetization of state |n〉 de-
fined earlier. The staggered magnetization of the state
|AN 〉 is maximal: MAN

= N , and the staggered mag-
netization of

∣

∣AN

〉

is minimal: MAN
= −N . Note that

all other computational basis states have strictly smaller
staggered magnetizations. Inserting an identity operator
in Eq. (4):

E(T ) =
∑

n,m

〈n| ρ |m〉〈m|U(T )†U†PUU(T ) |n〉

=
∑

n,m

e−iδT (Mn−Mm)/2 〈n| ρ |m〉〈m| U†PU |n〉
(6)

The highest frequency component comes from the
states with maximally separated staggered magnetiza-
tion, |n〉 = |An〉 and |m〉 =

∣

∣An

〉

. Separating out this
frequency component as F (T ), we obtain:

F (T ) =2Re
[

e−iNδT 〈AN | ρ
∣

∣AN

〉〈

AN

∣

∣U†PU |AN 〉
]

=2Re
[

βe−iNδT
〈

AN

∣

∣U†PU |AN 〉
] (7)

We note that the parity matrix element is bounded
as 0 ≤

∣

∣〈AN |U†PU|AN 〉
∣

∣ ≤ 1. Furthermore, the ma-
trix element is real-valued and positive for the unitary U
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considered in the experiment. Fitting F (T ) to an oscil-
lation with amplitude C ≥ 0 and phase φ according to
F (T ) = C cos(NδT −φ), we produce our lower bound for
the off-diagonal coherence β:

|β| ≥ C/2; arg(β) = φ (8)

Parity detection

The ideal observable to measure GHZ phase is the par-

ity Px =
∏

i σ
(i)
x . However, the presence of Rydberg in-

teractions and the Rydberg blockade prevents us from
rotating all qubits such that we can measure in this ba-
sis. Instead, in this work we generate a unitary Ux =

exp
(

−iΩt/2
∑

i σ
(i)
x − iHintt/~

)

by resonantly driving

all atoms in the presence of these interactions given by
Hint for a fixed, optimized time (Fig. S7), and subse-

quently measure the parity P =
∏

i σ
(i)
z in the computa-

tional basis. While it is not obvious that this observable
is suitable, we can understand the parity oscillations in
the picture of weakly interacting spin-1 particles defined
on dimers of neighboring pairs of sites.
For two adjacent sites, we can define eigenstates of a

spin-1 Sz operator as |◦•〉 = |−〉, |◦◦〉 = |0〉, and |•◦〉 =
|+〉. In this notation, the antiferromagnetic GHZ state
we prepare is given by a ferromagnetic GHZ state in the
spin-1 basis:

|GHZN 〉 = 1√
2
(|+++ · · · 〉+ |− − − · · · 〉) (9)

We must express all operations on the GHZ state in this
new notation. In particular, the transverse field of the

form ~Ω/2
∑

i σ
(i)
x applied to individual atoms gets trans-

formed to an operation ~Ω/
√
2
∑

j S
(i)
x on all dimers.

Furthermore, the staggered field ~δ/2
∑

i(−1)iσ
(i)
z we ap-

ply to individual atoms to rotate the GHZ phase is equiv-

alent to an operation of the form ~δ
∑

j S
(j)
z acting on

individual dimers.
The parity operator in the single-qubit basis P =

∏

i σ
(i)
z can be transformed into the dimer basis as

P =
∏

j

(

− |+〉〈+|j − |−〉〈−|j + |0〉〈0|j
)

(10)

by noting that the three dimer states are eigenstates of
P, i.e. P |±〉 = − |±〉 and P |0〉 = |0〉.

Assuming we begin from a GHZ state, applying a rota-
tion on all dimers for a duration given by Ωt = π/

√
2 sat-

urates the difference in P between GHZ states of opposite
phase. This shows that such a protocol would be optimal
if the dimer approximation were exact. However, interac-
tions between dimers cannot be neglected. In particular,
the Rydberg blockade suppresses configurations of the
form |· · · −+ · · · 〉 owing to the strong nearest-neighbor
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FIG. S7. Parity signal measured as a function of the time the
operation Ux is applied. The total time includes delays in the
AOM response and the finite laser pulse rise time.

interaction V , and neighboring dimers of the same type
such as |· · · ± ± · · · 〉 have a weak interaction given by the
next-to-nearest neighbor interaction strength V2 = V/26.
We can thus express the interactions in the system as

Hint

~
=

N−1
∑

j=1

V2 |+〉〈+|j |+〉〈+|j+1 + V2 |−〉〈−|j |−〉〈−|j+1

+ |+〉〈+|j |−〉〈−|j+1

(11)
An exact simulation of the dimer rotation under the in-
teraction Hamiltonian (11) shows that both these interac-
tion effects reduce the parity contrast by a small amount.
In the recently discussed context of quantum many-body
scars [19, 31, 52, 53], these effects of residual interactions
lead of small deviations from a stable periodic trajectory
through phase space.

Staggered field calibration

To apply the staggered field (3), we address each of
the even sites in the array with a focused off-resonant
laser beam at 420 nm. However, the unitary in question
requires a staggered field with opposite sign on every site.
We compensate for the missing acquired phase on the
sites in between the addressed ones by shifting the phase
of the Rydberg laser. The intensity of each addressing
beam is measured by applying a spin-echo sequence with
an addressing pulse of variable duration to determine the
light shift on the Rydberg transition. We correct for
inhomogeneous intensities so that all atoms are subject
to the same light shift.

We measure and calibrate the staggered field by mea-
suring the effect of the field on each atom individually.
To do so, we alternately rearrange the atoms to form dif-
ferent subsets of the 20-atom system that are sufficiently
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staggered field by applying local addressing beams on the odd
sites in the array. The right panel shows a positive staggered
field by instead applying local addressing beams on the even
sites in the array. Phase is accumulated on each site at a rate
of 2π × 3.8 MHz.

far apart to avoid interactions between them. In this con-
figuration, every atom is then subject to a π/2 rotation
about the x-axis, followed by the staggered field for vari-
able duration, then a π/2 rotation about the y-axis, to
distinguish positive from negative phase evolution. With
an additional π rotation about the y-axis, we perform a
spin echo to mitigate effects of dephasing. The outcome
of this protocol is shown in Fig. S8 and demonstrates
the implementation of the staggered magnetic field. By
switching the local addressing beams to the opposite set
of alternating sites, we switch the sign of the staggered
field, enabling the measurement of both positive and neg-
ative phase accumulation.

Measured GHZ fidelities

For each system size N , we measure the GHZ pop-
ulations and the GHZ coherence by parity oscilla-
tions (Figs. 2, 3 of the main text). We correct the raw
measurements to estimate the true GHZ fidelity before
the effect of detection errors. All measured values are
shown in table S1. Error bars on raw populations rep-
resent a 68% confidence interval for the measured value.
Error bars on the raw coherences are fit uncertainties
from the parity oscillations. Error bars on the corrected
values include propagation of the uncertainty in the es-
timation of the detection fidelities.

Experimental Imperfections

We identify a number of experimental imperfections
that to varying degrees can limit the coherent control of
our atomic system.

1. Atomic temperature: The atom temperature
of ∼ 10µK leads to fluctuating Doppler shifts in
the addressing lasers of order ∼ 2π × 43 kHz, as
well as fluctuations in atomic position that leads to
variation in Rydberg interactions strengths. These
fluctuations are included in the simulations shown
in the main text Figure 3. These effects can be
dramatically reduced by improved atomic cooling,
most notably by sideband cooling within the opti-
cal tweezers to the motional ground state [50, 51].

2. Laser scattering: The two-photon excitation
scheme to our chosen Rydberg state leads to off-
resonant scattering from the intermediate state,
6P3/2. This scattering rate has a timescale of
50 − 100µs for the two laser fields, and can be re-
duced by higher laser powers and further detuning
from the intermediate state.

3. Rydberg state lifetime: The 70S Rydberg state
has an estimated lifetime of 150 µs [54], limited
both by radiative decay and blackbody-stimulated
transitions. This effect could be mitigated by se-
lecting a higher Rydberg state with a longer life-
time or by cryogenic cooling of the blackbody en-
vironment.

Additional error sources that may limit our coherence
properties include laser phase noise, which can be miti-
gated by better laser sources and stabilization schemes,
and fluctuations in local addressing beam intensities and
positions, which can be addressed by active feedback on
the beam positions and improved thermal and mechani-
cal stability of the setup.
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