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GENERATION AND PROPAGATION OF INTERFACES
IN REACTION-DIFFUSION SYSTEMS

XINFU CHEN

Abstract. This paper is concerned with the asymptotic behavior, as e \ 0,
of the solution (ue, Ve) of the second initial-boundary value problem of the
reaction-diffusion system:

J uÇ-eAu* = \f{uc,ve) = ±[ue(l -ue2)-ve],

\ vf - Ave = ue - yve

where y > 0 is a constant. When v € (-2\/3/9, 2\/3/9), / is bistable in
the sense that the ordinary differential equation ut = f(u, v) has two stable
solutions u = h-(v) and u = h+(v) and one unstable solution u = ho(v),
where h-(v), h(¡(v), and h+(v) are the three solutions of the algebraic equa-
tion f(u, v) = 0. We show that, when the initial data of v is in the interval
(-2%/3/9, 2\/3/9), the solution (ue, ve) of the system tends to a limit (u, v)
which is a solution of a free boundary problem, as long as the free boundary
problem has a unique classical solution. The function « is a "phase" function
in the sense that it coincides with h+(v) in one region Q+ and with h-(v)
in another region Í2_ . The common boundary (free boundary or interface) of
the two regions Í2_ and Í2+ moves with a normal velocity equal to ^(v),
where 3^(') is a function that can be calculated. The local (in time) existence
of a unique classical solution to the free boundary problem is also established.
Further we show that if initially «(•, 0) - hQ{v(-, 0)) takes both positive and
negative values, then an interface will develop in a short time 0(e\ Ine|) near
the hypersurface where u(x, 0) - ho{v(x, 0)) = 0.

1.  INTRODUCTION

This paper is concerned with the interfacial phenomena in the reaction-
diffusion system

(1.1) ut — eAu +-f(u, v),

;i.2) vt = Av + g(u,v)

Received by the editors September 28, 1990.
1991 Mathematics Subject Classification. Primary 35B25; Secondary 35B40, 35R35, 35K45,

35K50.
Key words and phrases. Reaction-diffusion systems, generation of interface, propagation of

interface.
This work was completed when the author was a graduate student at the University of Minnesota.

The author thanks Professor Avner Friedman for his direction of this work and the Alfred P. Sloan
Doctoral Dissertation Fellowship for its financial support during the 1990-1991 academic year.

© 1992 American Mathematical Society
0002-9947/92 $1.00+ $.25 per page

877

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



878 XINFU CHEN

with

(1.3) f(u,v) = F(u)-v,       F(u) = u(l-u2),
(1.4) g(u,v) = u-yv,

where y > 0 is a constant and e > 0 serves as a small parameter.
The system ( 1.1 ), ( 1.2) models the propagation of chemical waves in excitable

media where u is a propagator and v is a controller (see Fife and Tyson [21]
for a physical description of this system; Ohta, Mimura, and Kobayashi [28]
also used this system to describe an activator-inhibitor model).

The assumption that e is small means that the propagator u diffuses quite
slowly while its reaction takes place much faster. When v e (-2\/3/9, 2v/3/9),
the algebraic equation f(u, v) = 0 has three solutions

u = h-(v),    u = h0(v),    and   u = h+(v),

where h-(v) < ho(v) < h+(v). In this paper, we are only interested in the case
when v e (-2-\/3/9, 2v/3/9). In this case, / is bistable in the sense that the
ordinary differential equation ut = f(u, v) has two stable solutions u = h-(v)
and u = h+(v) and one unstable solution u = h0(v). The bistable property of
/ and the smallness of e are essential to the so-called interfacial phenomenon
described below.

Starting with smooth initial data, the diffusion term eAu in (1.1) and the
variation of v from its initial data can be neglected for a short time, so that
equation (1.1) can be approximated by the ordinary differential equation ut =
\f(u, v(x, 0)), and therefore u(x, t) tends quickly to either h+(v(x, 0)) or
h-(v(x, 0)) according to the sign of u(x, 0) - ho(v(x, 0)). Thus, after a short
time, the space is partitioned into three regions: a region Q+ where u is almost
equal to h+(v), a region Q_ where u is almost equal to h-(v), and a "thin"
strip region Qq which links Q_ and Q+ . The region Qn is so thin that it
can be considered as a hypersurface, called interface. We refer to the above
process as the generation of the interface. Subsequently, if x is away from the
interface, the diffusion term eAu can still be neglected, and therefore u(x, t)
approximately equals h-(v(x, t)) or h+(v(x, t)) depending on which region
x belongs to, whereas v approximately solves (1.2) with g = g(h-(v), v) in
one region and g - g(h+(v), v) in the other region. On the other hand, near
the interface, the change in u is large, so that eAu is nonnegligible. In fact,
eAu will approximately balance the reaction term -\f, and their difference
is a force which will drive the interface to move; this motion is called the
propagation of the interface. The normal velocity of the motion of the interface
will be determined by the speed of a planar travelling wave solution of equation
(1.1).

It is well known that (1.1) has a planar travelling wave solution

u = u(x's~ct ,v\ ,       xe3?n, seSn~] c3ê", te 31,

where U = U(z, v) and c = ^"(v) form the unique solution of the nonlinear
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eigenvalue problem:
' Uzz(z,v) + cUz(z,v) + f(U(z,v),v) = 0   1ze3!x,

(1 5)        i   X{m^+°oU(z,v) = h+(v),
limz__00[/(z, v) = h-(v),

k U(0,v) = h0(v).

(For more detailed discussions of the above eigenvalue problem, see Aronson
and Weinberger [2, 3].)

Fife and Hsiao [19] considered the one-dimensional Cauchy problem for
equation (1.1) where v is a known function of x. They proved that starting
with smooth initial data u(x, 0) satisfying u(x, 0) > hç,(v(x)) when x > 0,
and u(x, 0) < ho(v(x)) when x < 0, the solution of (1.1) approximates the
function U((x - ¿;(i))/e, v(Ç(t)) as e —> 0, where U(z, v) is the solution of
(1.5) and x = ¿;(i) is a function determined by the motion law

n6) U(t) = T(vm))),       t>0,
U(0) = o.

When v = 0, equation ( 1.1 ) is known as the Allen-Cahn equation [ 1 ]. Its one-
dimensional case has been extensively studied by Bronsard-Kohn [6], Carr-Pego
[7, 8], Fusco [23], Fusco-Hale [24], and the references therein. Recently, some
results for the Allen-Cahn equation have been extended to higher dimensions.
Here the mean curvature K of the interface takes a role in the propagation of
the interface. Formal derivation shows that the normal velocity of the inter-
face is eK (see, for example, Allen-Cahn [1], Rubinstein-Sternberg-Keller [30],
and Fife [18]). Rigorous proofs were recently given by Bronsard-Kohn [5],
DeMottoni-Schatzman [14, 15], Evans-Soner-Souganidis [16], and the author
[9]. The method in [9] is based on the construction of comparison functions
and is flexible enough to be extended to the system (1.1), (1.2), as we shall do
in this paper.

For the system ( 1.1 ), ( 1.2), X.-Y. Chen [ 10] has recently proven the generation
of the interface. Concerning the propagation of the interface, he derived an e-
dependent free boundary problem, proved its local (in time) existence (for any
fixed e > 0), and then formally showed that the solution of the free boundary
problem approximates the solution of (1.1), (1.2). The free boundary problem
is to find a function ve and a free boundary (interface) P which separates
32n into two disjoint regions Qe_(t) and Q%(t) at each time t > 0, such that
(1.7)

'vf-Avt = g(h+(vt),vt)xai + g(h-(iie),ve)xa-_,       xe3ln, t>0,
j/p = T~(ve) + eK£,
vc(x,0) = y/(x),       xe3?n,

, T£(0) = {xe 3ên\y>(x) = h0(y/(x))},       xe3?n,

where Xa stands for the characteristic function of the set A, and Ip and
Ke are respectively the normal velocity and the mean curvature of the free
boundary P ; the function ue is defined by ue = h+(ve)xsi'+ + h-(v£)xçi*_ .

The present work is an extension of [ 10]. We shall prove the local existence of
a unique solution to the free boundary problem (1.7) with e = 0, which we shall
call the limit free boundary problem. Then we shall show that the solution of
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the limit free boundary problem approximates the solution of the system (1.1),
(1.2). In order to prove this, we need to establish a theorem on the generation
of the interface which is a refined version of the one given by Chen [10].

It is worth mentioning that there is a significant difference for the free bound-
ary problem (1.7) between the case e > 0 and the case e = 0. The second
equation in (1.7) is parabolic (in local coordinates) when e > 0, but, when
e = 0, it is a Hamilton-Jacobi equation, a fully nonlinear first order PDE which
requires stronger smoothness assumptions on the function ^(v(x, t)) in order
to ensure a unique classical solution.

Our method for proving the uniqueness of the classical solution of the limit
free boundary problem can be applied also to the free boundary problem (1.7)
(for e > 0) to derive its uniqueness (existence was already established in [10]).

The special forms of / and g in (1.3) and (1.4) are introduced only for con-
venience. In fact, our method applies also to the case when / = f(u, v, x, t)
and g = g(u, v , x, t). The essential assumption is that / is bistable and that
/ and g are monotone in v and u respectively.

Our method also applies to the Cauchy problem, i.e., to the initial value
problem (1.1), (1.2) with Q = 32n .

The extension of our results to the case of an arbitrary time interval remains
open. Although the Hamilton-Jacobi equations (e.g., the second equation in
problem (1.7) with "V(v(x, t)) being a known function) have been extensively
studied and many global existence results have been established [4, 11, 17, 29,
32] (and the references therein), we cannot get the global asymptotic behavior
of the system (1.1), (1.2) since our argument strongly relies on the regularity of
the solution of the limit free boundary problem.

The plan of this paper is as follows. In §2 we formally derive the equations
of the limit free boundary problem and state our main results. In §3 we estab-
lish the law of the generation of the interface (a weaker version of which has
been established in [10]). Next, in §§4 and 5, we shall establish the existence,
uniqueness, and regularity of the solution of the limit free boundary problem.
Finally in §6 we use a comparison lemma for the parabolic system (1.1), (1.2) to
estimate the difference between the solution of the limit free boundary problem
and the solution of (1.1), (1.2). The difference is of order 0(e|lne|) so that,
as e —► 0, the solution of (1.1), (1.2) tends to the solution of the limit free
boundary problem.

Remark 1.1. After this paper was completed, the author was informed that
Hilhorst, Nishiura, and Mimura [26] proved the existence of a unique solution
to the limit free boundary problem (1.7) with e = 0 in the one-dimensional
case, that Evans, Soner, and Souganidis [16] obtained the global asymptotic
behavior of the solution of the Allen-Cahn equation, and that Giga, Goto, and
Ishii [25] established the global existence of at least a weak solution to the free
boundary problem (1.7) for both the case e > 0 and the case e = 0.

2. Statement of the main results
Consider the second initial-boundary value problem:

(2.1) uet=eAue + -f(uE,vE)   inQx(0,T),
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(2.2) vf = AvE + g(uE, vE) inQx(0,T),
(2.3) uE(x, 0) = y>(x) forxeQ,
(2.4) vE(x,0) = y/(x) for x efi,
(2.5) d„ue = 0 for (x,t)edQx[0,T),
(2.6) dnvE = 0 for (x,t)edQx[0,T),

where Q is a smooth (C3) bounded domain in 31" (n > 1), dn is the
normal derivative to dQ, and T is any positive number. For simplicity, we
shall assume that the functions / and g are given by (1.3) and (1.4).

For the sake of completeness, we first state a well-known existence and unique-
ness result for the system (2.1)-(2.6).

Lemma 2.1. Assume that y> and y/ are in C2(Q) and satisfy the compatibility
condition

(2.7) dn(p = dny/ = Q   VxedQ.
Then there exists a unique solution of the system (2A)-(2.6) for all 0 < T < +00.
Moreover, there exists a positive constant Co such that for all e > 0,

(2.8) \uE(x,t)\ + \vE(x,t)\<C0   Vxefi, t>0,
(2.9) \ve(x, t)-y/(x)\ <C0t   VjcsQ, i>0.
Proof. The existence of a unique solution follows from standard theory for
parabolic systems whereas the estimate (2.8) follows by the invariant region
theory (see, for example, Smoller [31, Chapter 14]). The estimate (2.9) follows
by applying the comparison principle to the functions vE and y/(x) ± Cot for
the equation (2.2).   D

Observe that for smooth initial data y/ , the change of ve in a short time is
small, so that equation (2.1) is basically the same as the scalar equation (2.1)
with ve replaced by y/. This observation leads to the following theorem.

Theorem 1 (Generation of interface). Assume that <p and y/ are in C2(Q) and
satisfy the compatibility condition (2.7). Assume also that there exists a constant
a > 0 such that

(2.10) \yi(x)\<2~-a   Vxefi.

Let (uE, vE) be the unique solution of (2.1)—(2.6). Then there exist positive
constants eo, To, and Mo such that for all e e (0, en], u£(x, Toe|lne|) satisfies

h-(y/(x)) - Moe|lne| < uE(x, Toe|lne|)
<h+(y/(x)) + M0e\lne\   VxeQ,(2.11)

(2.12) |M£(x,Toe|lne|)-M^(x))|<A/oe|lne|   Vx 6 i^o£|ln£|,

(2.13) \uE(x,x0e\lne\)-h-(y/(x))\<Moe\\ne\   Vxefi¿o£|ln£|,

where

nM0£|in£| = {xeQ: y>(x) > ho(y/(x)) + M0e\lne|},

Qw„£|in£| = {xeQ: <p(x) < h0(y/(x)) - M0e\ lne|}.
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Remark 2.1. As mentioned earlier, a weaker version of Theorem 1 was first
proved in [10].

The proof, given in §3, is based on the method developed in [9] and involves
the construction of supsolutions and subsolutions for equation (2.1).

We shall now formally find the asymptotic limit (u,v) of the solution
(uE, vE) of (2.1)—(2.6) as £-»0+, leaving the rigorous proof to §6.

Denote by 3¡T the set 3 x [0, T], where 3 is a set in 32N .For 1 < p <
+00, it is convenient to introduce the Sobolev norms

ll/II^^^^Ell^l^W + EH^I^r)    V*i = l,2,   fc = 0,l,
" i=l (=0

and
2    2-i

11/ II W¡-\2¡T) - ¿2 ZZ \\DlD'xf \\V(3>T) ■
;=0 7=0

Assuming that the assertion of Theorem 1 holds for each time t > 0, we
conclude that there exists a domain D = {Jo<t<A^! x M) such that

„-« \h+(v)   iî(x,t)eD,
(2.14) u = < _

\h-(v)   if(x,t)eQT\D.

By the Z/ (1 < p < oo) parabolic estimates, the Wp ,{(Qt) norm of vE
is uniformly bounded, so that its limit v must be a (weak) solution of the
equation

(2.15) vl-Av = g(h+(v),v)xD + g(h-(v),v)xClA-5   V(x,t)eQT.

Supplementing this parabolic equation with the initial and boundary data

(2.16) v(x,0) = y/(x)   WxeQ,
(2.17) dnv(x,t) = 0   V(x,t)edQx(0,T),

we can solve for v provided that D is known.
To find the set D, we shall use the limit behavior of the solution uE of (2.1 ).
Denote by P the (spatial) boundary of Dl ; then (1.6) suggests that D

evolves in such a way that

(2.18) VTl = T(v)   VxeH, re[0, T],

where Vp is the inward normal velocity of P . Note that Theorem 1 implies

(2.19) T° = dD° = {x e Q\y>(x) - h0(y/(x)) = 0}.

Equations (2.15)—(2.19) form a free boundary problem which we shall refer
to as the limit free boundary problem. We associate to (v , T) a function u
defined by (2.14) and refer to (u,v,Y) also as the solution of the limit free
boundary problem.

Theorem 2. Assume that y/ e C2(Q) and that Y° is a C2 hypersurface which
is the boundary of a domain D° cc Q. Then there exists a positive constant To
such that the limit free boundary problem (2.15)—(2.19) has a unique solution
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(v, T) in the time interval t e [0, T0], and the solution satisfies v e W¿¿ ' (Qr0)
and TeW^2(P>x[0,T0]).

To prove this theorem, we shall first study in §4 the solution T of the prob-
lem (2.18), (2.19) where the function T(v) on the right-hand side of (2.18)
is replaced by a given function V e W¿;l(QT). Then in §5 we shall estab-
lish the W^'1(Qt) regularity of the solution v of the problem (2.15)-(2.17)
where D is a given domain compactly contained in QT with a c1+a'(1+a)/2
lateral boundary. Denote by <%* the mapping which maps T into the solution
v of (2.15)—(2.17) with D being the (spatial) interior of T, and by S? the
mapping which maps v into the solution T of the problem (2.18), (2.19). We
shall finally prove that the composition map & = & o %? has a unique fixed
point, thereby establishing the existence of a unique solution for the limit free
boundary problem.

Finally in §6 we shall prove the following theorem.

Theorem 3 (Propagation of interface). Assume that the conditions of Theorems
1 and 2 hold, and that for some constant Co > 0, <p and y/ satisfy

(2m (<p(x)-ho(w(x))>c0\dist(x,r°)\      ifxeD0,
\ <p(x)-ho(y/(x))<-co\dist(x,T°)\   ifxeQ\D°,

where D° is the set {x e Q\<p(x) > h0(y/(x))} which is also the interior of Y°,
and dist(x,T°) denotes the distance from x to T°. Then, there exist positive
constants M0 and e0 such that for all e e (0, e0] and t e [toe|lne|, T0]

(2.21) \vs(x, t)-v(x, i)| <M0e|lne|   Vxefi,
(2.22)

\uE(x, t)-u(x, t)\ < M0e|lne|   Vx e {x e Q\ \ dist(x, P)| >M0e|lne|},

where xo is as in Theorem 1, To, v, and F are as in Theorem 2, and u is
given by (2.14).

Remark 2.2. If equation (2.1) is replaced by

ut-Au — -j(F(u) - ev),

where F is a bistable potential having equal depth of wells (i.e., 7^(0) = 0),
then, formally, we have

VT = -(T(ev) + eK + o(e)) = T\Q)v + K + o(l).

In this case, if we replace the function T^(v) + eK on the right-hand side of
the second equation in (1.7) by "V(Q)v + K, then the existence of the resulting
free boundary problem was established by Chen [10]. Using his existence and
regularity theorem for this free boundary problem, we can rigorously prove (by
the methods of [9] and of the present paper) a generation law which says that
an interface generates in time 0(e2|lne|), and a propagation law which says
that the normal velocity of the interface is 2^'(0)w + K.
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In the sequel, we shall denote by the letter C various positive constants
which do not depend on e .

3. Generation of interface

Notice that (2.9) and (2.10) imply that there exists a positive constant Tx
such that

(3.1) \vs(x,t)\<
2V3     1

a   V(x, t)eQTl, £6(0, 1)

In the sequel, we shall always assume that T < Tx so that (3.1) holds, and
therefore the three solutions h-(v), ho(v), and h+(v ) of the algebraic equation
/(•, v) = 0 are well defined.

In this section we shall show that in a short time of order 0(e\ In e|) the solu-
tion (uE, Ve) of the system (2.1)—(2.6) can be approximated by (w(<p, t/e ; y/),
yi), where w(Ç, x ; v) is the solution of the ordinary differential equation

(3.2)
wx(£, x;v) = f(w, v),
w(cl,0;v) = c;

x>0,

with ¿; e 3lx and v e [-2\/3/9 + \a, 2\/3/9 - \a] as parameters. To do
this, we shall follow the ideas developed in [9]: First we construct a function
w(Ç, x; b) which is the solution of the above ordinary differential equation
with its right-hand side replaced by a modification / of / ; then we show that
for some constant M large enough, the function

(3.3) u(x, t) = w(tp(x) - Mt, t/e; y/(x) + Me\\ne\)

is a subsolution to the parabolic equation (2.1), and the function

(3.4) w(x, t) = w(q>(x) + Mt, t/e; y/(x) - A/e|lne|)

is a supersolution.
In order to define f(u, v), let p(s) e C[f

ing:
(32x ) be a cut-off function satisfy-

(3.5)

p(s) = \ if|s|<l,
p(s) = 0 if|s|>2,

0<p(s)<\ ifl<|j|<2,
-2<sp'(s)<0 for all se32x

\p"(s)\<A for all se3fl

Set

Po = P

Define

_ n (u-hp(v)
el In el P+ = P

u- h+(v)
ellnel and   P- = p u - h-(v)

el lnel

(3.6)
f(u,v) = po I lne|

+ [l-/>o

h0(v) h+(v) - u h-(v) - u
+ P+    h-, „i— + P-|lne|

p-]f(u, v).
lnel
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Notice that F'(u) = 1 - 3w2 vanishes only at u = ±-\/3/3 ; it is convenient
to introduce a constant a defined by
(3.7)

yß        \ 2yß      1a = min< \n\ F\T + 1l) = ^r-\a orF\

Lemma 3.1. There exist positive constants e and C such (hat for all e e (0, e]
and v e [-2V3/9 + \a, 2\/3/9 - \o], the function f defined in (3.6) satisfies

(3.8)

(3.9)
(3.10)

(3.11)

\f(u, v)-f(u, v)\ < Ce|lne|   Mue [-Co, C0]:

\fu(U,V)\<C
\fv(u,v)\<C

fu(U,V) >

Vue [-Co, C0],
V« e [-C0, C0],

1
lnel

fu(u,v) < lnel

Mue

Mue

V3    _   V3    _

-C0,-T-a

(3.12) U ^ + ä,Q

(3.13)      |/„„(w,t;)|< C
Mu e [-Co, C0],

(3.14)

e | In e j

\fv(u, v)\ < C\fu(u, v)\   Mu e [-Co, C0], u± V3

where Co is as in Lemma 2.1.
Proof. It is enough to consider the case u e A(v), where

A(v) = {n\\r]-ho(v)\ <2e|lne|,  \t] - h-(v)\ <2e|lne| ,
or \n - h+(v)\ < 2e|lne|},

since if u £ A(v), then f = f, and the lemma is obviously true.  We can
divide the case u e A(v) into three subcases: (i)  \u - ho(v)\ < 2e|lne|, (ii)
|« - h-(v)\ < 2e|lne|, and (iii) |m - h+(v)\ < 2e|lne|.

Consider subcase (i):
(3.15) |u-Ao(v)|<2e|ln«|.
If e is small enough, then p- = p+ = 0 and

r, x U-ho(v)        ., ... .(3.16)

It follows that

\f(u,v)-f(u, v)\ =

lnel

Po
u-ho

lne

= Po\u-ho\

■f(u,v

1        f(u,v)-f(h0,v)
lnel u - he

< Cellnel

by (3.15) and the Lipschitz continuity of /.
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Differentiating (3.16) with respect to u yields

(3.17) fu{u,V) = Po
el IneI

u- ho
-/ + Po

lnel + [1 - Po]fu(u,v).

Inequality (3.9) thus follows by (3.15) and the boundedness of p' and fu .
To prove (3.11), notice that fu(u, v) > l/|lne| for any u e [-\/3/3 +

~ä,\n>ß-~ä] and e small enough; it follows that the function (w — Ao)/| lne| —
f(u, v) has the same sign as ho - u . Since p'0 also has the same sign as ho-u,
the first term on the right-hand side of (3.17) is nonnegative. It then follows
from (3.17) that

/«(", v) > Po
lne + [1 - Po]fu(u,v)>

1
lne|

i.e., (3.11) holds.
Differentiating (3.16) with respect to v , we get

fu(u,v) = p'oK0
e| lnel

« - ho
\aW^\ f

Pohp
I lnel + [1 - Po]fv(u,v).

Comparing this with equation (3.17), we find that (3.14) and (3.10) hold. Dif-
ferentiating f, with respect to v and using (3.15) and the boundedness of p" ,
we get

Jvv ~ (e\\ne\)2
u-hp
I lnel -/ + 1

e|lne [terms of order 0(1)] "(-irr)\e|lne|/

Therefore, Lemma 3.1 holds in subcase (i). Similarly, we can treat subcases (ii)
and (iii) and therefore establish the assertion of the lemma.   D

We now define the function w (Ç, x ; v ) as the solution of the ordinary dif-
ferential equation

(3.18)
( iï)r(Ç,x;v) = f(w,v),        t>0,

where £, e [-Co, Co] and v e [-2y/3/9+^o, 2v/3/9-2<r] serve as parameters.
Some properties of the function w(Ç, x ; v) are listed in the following lemma.

Lemma 3.2. Assume that Ç e [-C0, C0] and v e [-2y/3/9 + ^a, 2v/3/9-^<r],
and let w(Z,x;v) be the solution of (3AS). Then

(1) w(Ç,x;v)eC2(3?1 x3ê+ x [-2^/3/9 + \a, 2^3/9- \a]), and

(3.19) t&{(i,T;t/)>0   Vt>0;

(2) there exist positive constants To and eo such that if e e (0, eo] and
x > To|lne|, then w(i, x; v) satisfies

(3.20) w(Ç,x;v)>h+(v)-2e\lne\   V¿¡ e [h0(v) + 2e|lne|, oo),
(3.21) t&(i, t; v)< A_(t;) + 2e|lne|   Vf e (-oo, h0(v) - 2e|lne|],

and

(3.22) h-(v) -2e\lne| < t&({, x;v) <h+(v) + 2e\lne|   MÇ e[-C0, C0];
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(3) there exists a positive constant Cx depending only on eo and To defined
in (2) such that if e e (0, e0] and x e [0, t0| lne|], then

(3.23) |t%| < Cxw(/e,
(3.24) \Wv\ < Cx(l + wç),
(3.25) |%|<Ci(H-tî){)/e,
(3.26) |«2U|<Ci(l + tS4)/e.
Proof. Since w^ satisfies (w¡)T = fu(w, v)w( and Wç(Ç, 0; v) = 1, it follows
that

(3.27) w((Ç, x ; v) = exp (      fu(w(Ç, xx ; v), v)dxx J ;

the first assertion of the lemma thus follows.
Notice that u = hp, u = h- , and u = h+ are the only solutions of the

equation f(u, v) = 0; it follows that f(u, v) > 0 when u < h- or ho <
u < h+, and /(«, v) < 0 when h- < u < hp or u > h+. Consequently, as
t / +00, we have

(3 28) |t»(i,T;t;)-M«)l\0   foralli < M«),
i- |ti)(i, t;v)-A+(«)I\0   for all í > Ao(«) ■
Since there exists a constant a > 0 such that

/(«, u) > a min{u - h0, h+- u}   Mu e [h0, h+],

by solving (3.18) we find that

îî)(/zo + 2e|lne|, t; v) > min <   °      + , A0 + 2e|lne|eaT >

h^,x;v^>h+-max[2e\lne\,f^e-

It follows that
h0 + h+

II)   '(h0 + 2e\lne\, y|lne|; v) >

and
. fh0 + h+   t0|,    .     \     ,       . ..    .w I —=— , -y|lne| ; w I > A+ - 2e|lne|

provided that we take To = 2/q and e small enough. Therefore, for all £ >
Ao + 2e|lne| and T>To|lne|

"w(^, x;v)> i&(A0 + 2e|lne|, x; v)

>w(f^±,x-^\lne\;v)>h+-2e\\ne\,

i.e., inequality (3.20) holds. Similarly, we can show that (3.21) and (3.22) hold.
The second assertion of the lemma thus follows.

To prove the last assertion of the lemma, we first consider the case

|Î-AoO)| <i>-Toe|lne|.
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Since f(u, v) = (u - ho(v))/\lne\ when \u - ho(v)\ < e|lne|, we can solve
(3.18) explicitly to get

w(Ç, t; v) = h0(v) + (£- Ao(v))eT/IM   Mxe[0, T0|lne|].

Direct differentiation then yields

%(£, x;v) = 0,
%,(£, t;í;) = 0,
wv(Ç,x;v) = h'p(v)[l-e^nE\],

wvv(Ç,T;v) = hQ'(v)[l-e*/^].
Assertion (3) thus holds in this case. Similarly, we can treat the cases |¿; -
h-(v)\ < e| Ine| and |¿; - h+(v)\ < e|lne|.

It now remains to consider the case when Ç e B(v), where

B(v) = {ne [-C0, Cp]\\n - h±(v)\ >e|lne| and \n - h0(v)\ > e~T°e|lne|}.

We claim that

(3.29) \f(w(cl,x;v),v)\>e-*°e   Mx e [0, T0|lne|], Í 6 B(v).
In fact, one can easily verify that when t\ e (hp, h+), the function w(£,, x; v)
is monotone increasing in x and £, and that the solution of (3.18) with £ =
h+ -e|lne| is given by

w(h+ -e|lne|, x; v) = h+ — e| lne|e_T/|lne|.

Hence, when Ç e [/zo+e~T°e|lne|, A+-e|lne|] and x e [0, T0e|lne|], it follows
that

¿Í < iî)(Ç, x;v) <w(h+ -e|lne|, Tofi|lne|; v) = h+ -e_T°e|lne|,
and, by (3.12), inequality (3.29) holds for the case £ e [hp + e~T°e|lne|, h+ -
e| In e|].  Similarly, we can treat the rest of the case ¿; e B(v), and therefore
(3.29) holds.

We shall now show (3.23)-(3.26) for the case £, e B(v). By the change of
variables

(3.30) dxx = -—-¿- = -^-
wz(cl,xx;v)     f(w(t:,xx;v),v)

for the integral on the right-hand side of equation (3.27), we get

f(w(t:, x;v),v)w{(, z;v)(3.31) tí>{(í,T;t;) = exp(ln|/(z,t;)|£

Differentiating this expression with respect to Ç and taking absolute values, we
get

!%(£> t;u)| = fu{™>v)ù(-§^M,v)
f(t,v)

fu(W, V)
M,v)

Wç -

P(í,v.
M,v)
M,v) fy(Ç,v] CeT° .

by (3.29) and the boundedness of /„ ; inequality (3.23) thus follows.
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Since iI)v(Ç, x; v) satisfies (wv)r — fu(w , v)wv+fv(w , v) and wv(Ç, 0; v)
= 0, we have

wv(£,x;v)=      expi/  fu(w(Z, x2 ; v), v)dx2 j fv(w(Ç, xx ; v), v)dxx.

Applying the change of variables (3.30) to the integrals on the right-hand side
yields

tB„(i, x;v)=   I
Jo

(3.32) =f(w,v)j

f(w(Ç, x; v), v) ? , _._ ,     , ,' fv(w(Ç,xx;v),v)dxx
o  f(w(Ç, xx;v),v)

" fv(z,v) dz

(3.33) f(w

i   P(z,v)
fv(z,V)

£|z±v/I/3|<J J    (Z '  V)

dz

+

•v)L
m.v)fk^m>-.P{z,v)

The first integral on the right-hand side of the last equality is bounded since
\f(z, v)\ > ct/4 when \z±y/3/3\ < ä, by the definition of cr in (3.7). The last
integral in (3.33) can be estimated by

L fv(z, V)

í|z±^3/3|>5 J     (Z >  V>

dz L M*, V)
t\,±ssm>; Mz > V)     KfiZ'V),

(3.34) < sup

<C

\fv(z,v)\
|z±x/3/3|>? \fu(z, V)\

1 1
+

1 1
+

\f(ci,v)\     \f(w,v)\

}f(t,v)\     \f(w,v)\
by (3.14). It follows that

\wv(í, t;ü)|< C|/(iB,u) l + _-^ +        1 <C(l+tñ{),
|/({,ü)|     \f(w,v)

where we have used (3.31) in the last inequality. This establishes (3.24).
Differentiating (3.31) with respect to v yields

-,     ,«    _.     v        fu(W , V)Wy + fv(w , V)        f(W,V) j. , p
Wçv(i, X,V) = -j---j——-fv(Ç,v).

/(í.u) f2(Z,v)
The right-hand side is bounded by C(\+w^)/e since /„ and fv are bounded,
|/|>e-T»e (by (3.29)), |ù>„| < C(l +wt), and f(w , v) = %/(£, v) ; inequal-
ity (3.25) thus follows.

It remains to prove (3.26). Differentiating the expression in (3.32) with re-
spect to v yields

fv(z,v)

(3.35)

f    f (z  v)
wvv = [fu(w, v)wv + fv(w, v)]       J")  '   [dz

Ji    f2(z.v)

fv(w,v).     ,,.    . r
+ JV"        'wv+f(w,v) I

f(w,v) Jç
fvv(z,v)     2f2(z,v)
P(z,v) " p(z,v)

dz.
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From (3.33) and (3.34), we know that the first integral on the right-hand side
is bounded by

1 1       \C   1 + +
|/(i,t>)|      \f(W,V)\J

Proceeding as in (3.33) and (3.34), we can also estimate

I Jv\
í   P(z,v)

dz <^.+ l/ui
e| lnel sup

Jz±v/3/3|>7f \fu(z,V)\

1
+

1
\M,v)\     \f(w,v)

<C 1
+

1
+

1
_e|lne|     e\M, v)\     e\f(w,v)

where we have used (3.11)—(3.13). Similarly, we can estimate

I
~P

Í   P(z,v)
dz <C    1 + 1

+
1

\P(cl,v)\     \P(w,v)\
Substituting these estimates into (3.35) and using the boundedness of /„ and
/„, we get

\wvv\ < C[\wv\ + 1]

+ C\f(w,v)\

1 + 1
+

1
\f(Z,v)\     \f(w,v)

+ C\Wy\
\f(w,v)\

1
+

1
e|lne|     e\M,v)\

+ 1
+

1
+

1
e\f(w,v)\     \P(cl,v)\     \P(w,v

<C[l+Wç]-
?Tl)

since f(w , v) = tt)¿/(¿;, v), \wv\ < C(l + w^), and \f\>e T°e . This com-
pletes the proof of the lemma.   D

Proof of Theorem 1. By symmetry, it suffices to prove (2.12) and the first in-
equality in (2.11). To do this, we shall show that the function u defined in
(3.3) is a subsolution to (2.1).

First we show that u satisfies the differential inequality

ut -eAu—f(u, vE) < 0   Vi 6 (0, T0e|lne|],(3.36)

Direct calculation yields

eAu = e[w£Ay> + rö^|Vc»|2 + 2wSvV<p • Wy/ + wvAy/ + wvv\Vy/\2]
< Cx sup{e|Aç>| + e|Ay/| + \\><p\2 + |Vy/|2}[l + wA

xen
= CxA0[l+wi]

by (3.23)-(3.26), where

(3.37) Ao=      sup     {e|Aç>| + e|A^| + |Vç>|2 + |V<H2}.
X€£î,0<£<£o
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One can also compute

Ut-f(u, Ve) = -Wx - MWç-f(w , Ve)

= -f(w , y/ + Me\lne\) - Mw^

—[f(ii , ¥ + Me\ lne|) + y/ + Me\ lne| - vE]

< -|/-/| + -\vE - y/\ - Mwç - M\lne\

< -Mw( -[M-C- Co t0]| In e|   Vf e(0, T0e|lne|],

where we have used the relations wT = /, \f — f\< Ce|lne| (by (3.8)), and
\vE - y/\ < CoT0e|lne| (by (2.9)). Hence,

ut -eAu-f(u, vE) < (C + CoXo + CxAo-M)\\ne\ + (CxAo- M)w£ < 0

if M is large enough (recall that wç > 0). Inequality (3.36) thus follows.
Note that w(Ç, 0; v) =% implies

u(x, 0) = w(<p(x), 0; y/(x) + Afe|lne|) = <p(x) = uE(x, 0)   Vx e Q,

and the compatibility assumption (2.7) implies

d„u(x, t) = wid„y>(x) + wvd„y/(x) = 0 = dnuE(x, t)   MxedQ,  t>0.

Hence, applying a comparison theorem for the parabolic equation (2.1) to the
pair of functions uE and u yields

u(x,t)<uE(x,t)   MxeQ, r e [0, T0e|lne|].

Consequently,

(3.38)    uE(x, Toe|lne|) > ^(^(x) - Mxoe\\ne\, To|lne| ; y/(x) + A/e|lne|).

Using the first inequality in (3.22) and the Lipschitz continuity of the function
h- , we get

uE(x, T0e|lne|) > h-(y/(x) + Me|lne|) - 2e|lne|
> h-(y/(x)) -(cA/ + 2)e|lne|,

which yields the first inequality in (2.11) if we take M large enough.
Substituting (3.20) into (3.38), we obtain

uE(x, T0e|lne|) > h+(y/(x) + Me\\ne\) - 2e|lne| > h+(y/(x)) - (cM + 2)e|lne|

provided
<p(x) - AfT0e|lne| > h0(y/(x) + Me|lne|) + 2e|lne|.

The last condition can be fulfilled if

<p(x) > ho(y/(x)) + Ce\ lne|
for some constant C large enough.  This establishes (2.12).  Theorem 1 thus
follows.    D

Remark 3.1. By carefully checking the proof of Theorem 1, one finds that equa-
tion (2.2) is used only to derive the a priori estimate (2.9). Hence, equation (2.2)
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can be replaced by any equation which, when coupled with equations (2.1) and
(2.3)-(2.6), forms a system admitting a solution satisfying (2.9). In particular,
Theorem 1 remains true if equation (2.2) is replaced by the equation

ve - pAvE = g(uE, Ve),

where p = p(e) is any constant satisfying 0 < p. < C for some positive constant
C independent of e .

Remark 3.2. The condition cp e C2 in Theorem 1 can be replaced by the
weaker condition that tp is Lipschitz continuous. In fact, the only modification
needed in the proof is to replace the function tp in (3.3) by (f which satisfies
<p - Ce|lne| < q>E < <p and e|A££| + |V^e| < Ao (cf. (3.37)), and to replace tp
in (3.4) by lpE satisfying the corresponding conditions. Similarly, the function
yi may be assumed to be only Lipschitz continuous.

4. Motion of hypersurfaces
Let r° be a C2 compact hypersurface in 32" and assume that T° is the

boundary of a domain D° ce Q. We shall study the evolution of T° when
at each time t > 0, it moves with an outward normal velocity V, where V =
V(x, t) is a given function belonging to W£; ' (QT).

Denote by P the evolution of Y° at time t and assume that for t e[0, S)
with S sufficiently small, P is a C1 deformation of To . Then we can find a
function <I>(x, t) e Cl(Qâ) which, for all t e (0, 3), satisfies

t P - {x e f2|0>(x , 0 = 0},
(4.1) | |V<P(x,i)l^0   VxeP,

lo(x,i)<0        MxedQ.
Let D' be the interior of P ; then D' = {x e Í2|0(x, t) > 0} and the

outward normal velocity of P is í>,/|VO|. Hence, the evolution of P can be
described by

(4.2) <I>t(x,t) = \V<&(x,t)\V(x,t)   MxeV,  te(0,S),

with the initial conditions

(4.3) T° = {x e f2|<D(x, 0) = 0},        D° = {x e Q|<P(x, 0) > 0}.

Definition 4.1. A family of hypersurfaces {P}o<«á is called a solution of the
motion problem if there exists a function 0 e Cl(Q¿) satisfying (4.1)-(4.3),
and

(4.4) '    ¡p    '     eW^(Qs).

Remark 4.1. the condition (4.4) is imposed to ensure uniqueness.

Remark 4.2. The level set approach for the motion of hypersurfaces was first
used by Baríes [4], Sethian [32], and others.

In the sequel, we shall denote by Y°(h) the set {x e Q\ dist(x, P) < h},
where h > 0 is an arbitrary constant.
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Let L < \ dist(P, dQ) be a small fixed positive constant and let Op: T°(L)
-» 32x be a C2 function such that

r° = {xeP(L)|(Do(x) = 0},
D° n T°(L) = {x e P(L)|<D0(x) > 0},

|V<D0(x)|>0   VxeP(Z).
Given V e W^X(QT), we extend it to a W^x function in 32N x(0, T)

and consider the following system of ordinary differential equations:

^ dS^^-mâ^*^^
(4.6) ^ß(x, í) = \Q(x, t)\VV(Y(x,í),í).
(4.7) T(x,0) = x,

(4.8) ö(x,0)=VO°W
|Vd>o(x)| '

where x e T°(L) is considered as a parameter.
This system has a unique solution as long as \Q\ remains positive. Assume

that (T, Q) is a solution of (4.5)-(4.8) in some interval 0 < t < ô . Then by
(4.6), |£ß| < C\Q\, where C = ||VF||Loo(£V). Since |ß(x, 0)| = 1, it follows
that
(4.9) e~Ct < \Q(x, 0| < eCt   Mx e T°(L).
This a priori bound shows that the system (4.5)-(4.8) admits a unique solution
for all t e [0, T].

Notice that when x e P, Q(x, 0) is equal to the unit inward normal of P
so that T(x, 0 is independent of the choice of <Po(x). In addition, T(x, t)
is independent of the extension of V as long as T(x, 0 remains in Q.

Set Y(A, t) = [Y(x, t)\x e A} . We shall show that {Y(T0, 0}o<Ka is the
unique solution to the motion problem provided that ô is small enough.

Define t* by
(4.10)

t* = sup{i e [0, T]\ there exists an h e (0, L) such that for all T6[0,i],
Y(T°(h), t) c Q and the mapping T(-, r) :
T°(h) —> Y(Y°(h), x) is a Lipschitz homomorphism}.

Here, a mapping is called a Lipschitz homomorphism if both the mapping and
its inverse are Lipschitz continuous.

The following lemma shows that /* is strictly positive.
Lemma 4.1. There exists a positive constant TL depending only the W%¿X(QT)
norm of V such that Y(P)(L), t) cQ and the mapping

Y(.,t):T0(L)^Y(Y°(L),t)
is a Lipschitz homomorphism for each t e [0, T¿]. Moreover, Y(x, t) is Lip-
schitz continuous in x and t in the domain T°(L) x [0, T2] and its inverse
Y~x(y, t) is Lipschitz in y and t in the domain ^¡^^^(^(L), t) x {t}).
Proof. Since the right-hand side of (4.5) is bounded, T(x, t) is Lipschitz in t
so that Y(T°(L), t) c Q for any t small enough.
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Denote by Fx and F2 the right-hand sides of (4.5) and (4.6) respectively.
Differentiating (4.5) and (4.6) with respect to x, we get, for each x e T°(L),

(4.11)

(4.12)

(4.13)

d_(dY/dx\      (dFy/dY   dFx/dQ\ fdY/dx
dt \dQ/dx) - \dF2/dY   dF2/dQ) \dQ/dx

dY_
dx

= A(x   ,)(dY/dx
-A{x,t)\^dQ/dx

(x, 0) = /„    (the unit nxn matrix).

§§<*-»>
d~n
~dx x).

Since   V e  W^¿x   and   |ß|   is strictly positive (by (4.9)), the matrix  A  is
bounded; hence,

fj(*.o,!f(*,o<C   MxeT°(L), te[0, T],

where C depends only on T and the W¿¿ ' norm of V . Integrating the first
n equations in (4.11) and using the initial condition (4.12), we get

%ix-<}='"+l{1 (dFxdY     dFxdQ
dYdx+-dUJx-^{X>X)dx>

and therefore

(4.14)
9Y,       ,     ,^(x,t)-I„ <Ct   MxeT°(L), te[0, T].

This estimate shows that   T  is a Lipschitz homomorphism for all  t  small
enough.

Implicit differentiation yields

dY~x,    .       (dY Ï'ÎH 9T
dx (x,t)

-\ Q(x,t)
\Q(x,t)\ v(y,t)\x=Y- '(y,0

which implies that T ' is Lipschitz in /. The assertion of the lemma fol-
lows.   D

Lemma 4.2. If {P}o<i«s is a solution of the motion problem for some ô e
(0, i»), then it is given by

(4.15) P = Y(T°,t)   Mte(0,o).
Proof. Let O be the function in Definition 4.1 and set f = (<¡>, - |VO|F)/0.
Then fe W^°(QÔ) and

Q>l(x,t)-\V<t>(x,t)\V(x,t) = <&(x,t)f(x,t)   MxeQ, te (0,6).

This equation can be solved by the method of characteristics as follows (see, for
example, Courant and Hubert [12]): For every x e Q, denote by y — Y(x, t)
the characteristic curve starting from x , and set ^(x, 0 = 0(T(x ,0,0 a°d
P(x, t) = V~0(T(x, 0, 0 • Then the triple (?,*¥, P) satisfies the following

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERATION AND PROPAGATION OF INTERFACES 895

differential system:

(4.16) *-Y{x,t) = ~V(r,t),

(4.17) jV(x,t) = Vf(Y,t),

(4.18) jtP(x, t) = f(Y, t)P + \P\VV(Y, t) + VVf(X, t),

(4.19) T(x,0) = x,
(4.20) ¥(x, 0) = <t>(x, 0),
(4.21) P(x, 0) = V<P(x, 0).

The solution ¥ of (4.17), (4.20) can be integrated:

¥(x, 0 = ®(x, 0)exp (J f(Y(x,x),x)dx) .

It follows that T(x, 0 = 0 if and only if 0>(x, 0) = 0, i.e., if and only if
x e P . Therefore, we have

(4.22) Tt = {ye Q\®(y ,0 = 0} = {Y(x, t)\*¥(x, t) = Y(T°, t)}.

One can verify that when x e P (so that ^(x, 0 = 0), the pair (T(x, 0,
ß(x, 0), where

ö(x  t) = exp(-/07(f(*,T),T)¿T)
m*'*'- \P(x,o)\ nx,t),

forms a solution of (4.5)-(4.8); hence, by uniqueness, Y(x, t) = Y(x, t) for
all X e P . The assertion of the lemma then follows from (4.22).    D

Theorem 4.3. Let V e W¿;X(Q x (0, T)) be given and define t, as in (4.10).
Then, for any S e (0, /»), the motion problem admits a unique solution in the
time interval [0, a].
Proof. In view of Lemma 4.2, we need only show that {Y(T°, 0}o</<<5 is a
solution of the motion problem.

By the definition of tm, there exists a positive constant h depending on ô
such that Y(T°(h) ,t)cQ and the mapping T(-, 0: T°(h) >-> YJT°(h), t) is a
Lipschitz homomorphism for all t e [0, <5] ; thus the function O defined by

é(y,t) = ^o(Y-i(x,t))

is Lipschitz continuous in both y and t in Uo<«á(^(^°(^)' 0 x M) •
We claim that

(4-23) ^'^^tvSoWl'0   v*eI*(A), i€[0,*].
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To prove this, we compute

d („,      x   dY,      ,\      d _   dY     _    d   ( d „_(ß(X,0—(*,0) = ^ß-^ + ß-^(^

= lÖlVF-fi-ß-^(eF)    (by (4.5) and (4.6))

IW|V    ôx   * ax Viol y        iöi V     öx

=_öAfö.v=-1ißi-udx\\Q\) 2™dx
Q
IÖI

2N
0;

hence,

(4.24) ß(x,0.||(x,0 = ß(x,0).||(x)0) = i^|i   Vxel».

On the other hand, the definition of 4> implies that

(4.25) <P(T(x,0,0 = <*>oW.
Differentiating this identity with respect to x yields

VO(T(x ,0,0' §|(* ' l) = V4>oW   Vx e r°(Ä) •

Dividing both sides by | VOol and subtracting the resulting equation from (4.24)
yields

(Q_™_)9Y =\u    |V<D0|j dx

Since the matrix |^ is nondegenerate, the assertion (4.23) follows.
Differentiating (4.25) with respect to t, we get, for all x e T°(h) and t e

[0,S],

o = v<p. %-Y + üt = -v4>(y, o• iQ^IJi^» 0 + *((y, Ob-r(x,o;
using (4.23), we obtain

(4.26) <P,(v-, o = Iv<ï>(v., 01 V(y, o   Vy e y(r°(A), 0, * G [0, S].
From (4.23) and the fact that Y~x is Lipschitz in y and t and that ß is

Lipschitz in x and i, we deduce that V4É> is Lipschitz in y and í in the
domain U/e[0 sJY(T°(h), t) x {t}); by (4.26), 0>t is also Lipschitz in y and
t. Hence, <P 6 ^2(Ufe[o,fl(^(r°(A), 0 x {/}))■

To prove the theorem, we have to construct a function O satisfying Defini-
tion 4.1. We shall now construct it from 4>.

Let a be the minimum value of |<D0| on dT°(h) and let G(-): 32x ^ 32x
be a C2 function satisfying

G(0) = 0,        G'(0)>0,
(4.27) G'(s)>0   Mse32x,

G'(s) = 0   Ms e(-oo,-a/2]U [a/2, oo).
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Set
G(a/2)   if x is in the inside of Y(T°(a), t),

<D(x, 0 = < G(<fr(x, 0)   ifxe y(P(a),0,
G(-a/2)   if x is on the outside of Y(T°(a), 0 •

Clearly, O belongs to W^2(Qâ) and it satisfies (4.1), (4.3). We can compute

i a ™\   *' - lV<I>lF = G'®> - |G"VÔ»|K = [<P, - |V<fr|K]G'(d>) = 0(4.28)
V(x,0eß<5

by (4.26) and (4.27). The last equation shows that <I> satisfies (4.2) and (4.4);
therefore, the family of the sets given by (4.15) is a solution of the motion
problem. This completes the proof of the theorem.   D

Next we establish some estimates for the solution of the motion problem. It
is convenient to introduce a mapping xo(t], /) : P x (-h, h) —> 32N defined by

(4.29) Xo(n,l) = n + llt(r1)   M(n, I) eT° x (-Lp, Lp),

where ~n(n) is the unit outward normal to P and L0 G (0, ¿dis^P, dQ))
is a constant small enough such that Xo is a local diffeomorphism.

Theorem 4.4. There exist a monotone increasing function K(M) > 0 and a
monotone decreasing function T(M) > 0 such that if

(4-3°) WVWW^T{M))<M,

then the motion problem admits a unique solution in [0, T(M)] and the solution
is given by

(4.31) P = {xo(n,l(n,t))\ner0}   Mte[0,T(M)],
where l(n, t): P x [0, T(M)] i-> (-L0, Lp) is a function satisfying

(4-32) ll/|l^-Vx[o,r(M)])<^W.
(4.33) l|/||C3/2(rox[(U]) < K(M)tx'4   Mt e [0, T(M)].
Proof. For each y\ e Tp , consider the equation, for /,
(4.34) <t>(x0(ri, 0,0 = 0,
where <í> is the function constructed in the proof of Theorem 4.3. Since
<J>(xo(n, 0), 0) = 0 and

^-(x0(n, 0), 0) = Vi>(//, 0) • ̂ f(ri,0) = -G'(0)V<D0(,/) • Jt(n)

= -G'(0)|V<Do(i7)|^0,
the implicit function theorem ensures that equation (4.34) defines a unique
function I — l(n, t) for / small enough. Recalling that 4> e W^2, we deduce
that / e W£2 , and therefore (4.32) follows.

Noting that l(n, 0) = 0 V^eP,we can use the mean value theorem and
(4.32) to deduce that ||/||Loc(rox[o,,]) < Ct for all t e [0, T(M)]. Hence, by the
interpolation

(4.35) I|-Ilc3/2<C(||.||^.03/4(II-Ik»)1/4,
inequality (4.33) follows; this completes the proof of the theorem.   D
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In the sequel, we shall denote by S the mapping from v e W^X(QT) to
/, the function in (4.31) where Y is the solution of the motion problem with
V = -T(v).

Theorem 4.5. Let vx  and v2  be two functions in  W^X(QT), and set lx =
&vx and I2 = S?v2. Then there exists a constant C depending only on M =
\\vl\\w^(nT) + \\v2\\fv^{ciT)>such that

(4.36) HZ1 - /^.(PxpMD < Ct\\vx - v2\\wi.o(aw)   Mte[0, T(M)].
Proof. Denote by (Y'(x, t), Q'(x, t)) the solution of the system (4.5)-(4.8)
corresponding to V1 — -"V(vl). Then

^-(Yx-Y
dr >-e2:+

= \FX(YX, Qx) - FX(Y2 , Q2)\ + \F2(YX, Qx) - F2(Y2 , Q2)\

< C[\YX - Y2\ + |ß' - ß2| + IVF^y1, 0 - VV2(Y2, oi
+ \Vx(Yx,t)-V2(Y2,t)\]

< C[(l + \\Vl\\w,o{QriM]))\Yx - Y2\ + |ß> - ß2| + \\VX - V2\\w^aTm)].

Since Yx = Y2 and ß1 = ß2 at / = 0, we can apply GronwalPs inequality to
get

(4.37) |y' - y2| + iß1 - ß2| < ct\\vx - v2\\wuo(anM]).

Denote by Yr> the inverse of Y'. The identity Y'(Yr>(y ,t),t)=y  (i =
1, 2) implies

(4.38) YX(Y2~' , t) - YX(YX~] , 0 = Yx(Y2~l , t) - Y2(Y2~' , t).

Applying the mean value theorem to the expression on the left-hand side and
using (4.14), we get

|y'(y2"', o - yx(yx~> , oi > 5iy2"' - y1_1i

if t y is small enough; therefore, after using (4.37) to estimate the right-hand
side of (4.38), we obtain

(4.39) |y'"  -y2" |<Ci||K' -V2 w¿¿u(nnM))

Denote by <P' (/ = 1, 2) the function <P constructed in the proof of Theo-
rem 4.3 with V = V'. Applying the estimates (4.37) and (4.39) in (4.23) and
using (4.28), we find that

(4.40) ||V<D' - V^IUoo^, + ||4»; - 02|U»(íí/) < Ct\\Vx - V2\\w^(ÇÏTm).

Since 0'(-, 0) = <I>2(-, 0), we can use the mean value theorem and the last
estimate to conclude that

(4.41) W-&\\L-m < ct\\vx - k2||^.o(ÍW)).
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Recall that the function / is defined implicitly by (4.34). By an argument
similar to that which leads to (4.39), we can deduce from (4.40) and (4.41) that

II/1 -/2llc.(n.x[o,í]) < Ct\\Vx - V2\\w^{ClTm)   Mte[0, T(M)].

Since  V - -^(vl) and the function W is smooth, the assertion of the
theorem follows.   D

5. A   W2; X   ESTIMATE FOR A PARABOLIC EQUATION
AND THE PROOF OF THEOREM 2

Consider the parabolic problem

(5.1) v, - Av = fi(v)xo + fi{v)xiy ,       xeQ,  te(0,T),
(5.2) v(x,0) - y/(x), xeQ,
(5.3) dnv(x,t) = 0, xedQ, te(0,T),
where /!(•) and f2(-) are Lipschitz continuous functions, D = \J0<t<T(D'x{t})
is a domain compactly contained in Q x [0, T], and Dc -Qx [Ö, T]\D. For
every te[0,T], let P = dD' and set Y = Uo<í<r(r' x W) • We assume that
there exists a function /: To x [0, T] —> (-L0, Lo) such that

n = {x0(f/,/(?7,0)l'/er0} ví€[o,t],
where Xo is the mapping defined in (4.29) and Lo is a small constant such that
xo is a C2 diffeomorphism (in n and /) and Lo<\ dist(To, dQ).

By the LP parabolic estimate (cf. Ladyzhenskaja et al. [27]), for any p e
(1, oo), there exists a constant Cp depending only on Q and T such that

(5.4) IMI^.'(ñr) ^ Cp[llvll^2(ñ) + \\fi(v)XD + f2(v)Xiy\\u(çiT)]-
A sharper regularity result is established in the following theorem.

Theorem 5.1. Assume that fx and f2 are uniformly Lipschitz continuous, and
that y/ e C2(Q) satisfies the compatibility condition (2.7). Then the problem
(5.1)—(5.3) has a unique solution v and it satisfies

(5.5) IMI(y¿'(o:r) - c«(l + Pllc'+°.<n-c.)/2(rox[o,r]))   Va e (0,1)
for some constant Ca independent of I.
Proof. Let

(5.6) Y(x-Ç,t-x) = ^L^e-l-íl2/4*'-)

be the fundamental solution of the heat operator, and let G(x, t ; £, x) -
Y(x - £, t — t) + H(x, t ; Ç, x) be the Green function, where H is a "regu-
lar" term which makes G satisfy the boundary condition d„G = 0. In terms
of Green's formula, v e C°(Qt) is a solution of (5.1)—(5.3) if and only if v is
a fixed point of J?, where

3íf(v)=  [ v(t)G(x,t;Z,0)dt
Ja

+  f  [[fl(v(Ç,T))XD + Mv(t,T))XD<]G(X,r,Z,T)dZdT.
Jo Ja
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Since /i(-) and f2(-) are Lipschitz continuous, one can directly verify that J?
is a contraction mapping under the norm ||| v |||= sup0<i<7-(||v(', t)\\co^e~Al)
when A is large enough. Therefore 3? has a unique fixed point v , which is
also the unique solution of (5.1)—(5.3).

Now we turn to establish (5.5). Write v as
(5.7)

v(x, t)=  I y/(í)G(x,t;í, 0)dZ+ f í /2(t>({, x))G(x,t;i, x)d^dx
Ja Jo Ja

+ f  I [fi(v{Z,T))-f2(v{Z,T))]H(x,t;Z,T)dZdT
Jo Jd^

+ f ! [f(v(i,x))-f2(v(i,x))]Y(x-^,t-x)d^dx
Jo Jdt

= wx(x, 0 + w2(x, t) + Wi(x , t) + w4(x, 0 •

The function wx(x, t) = Jay/(Ç)G(x, t;Ç,0)dÇ is in W^X(QT) since y/ e
C2(Q) satisfies the compatibility condition dny/= 0 on <9Q. Since the Lp es-
timate (5.4) implies that v is Holder continuous, the Schauder estimate then im-
plies that w2(x, t) = ¡¿ SnMvß> *))Q(X,t;i,T)dÇdxism C2+a-x+a'2(QT).
Note that the smoothness of the boundary dQ and the compactness of the set
D in Qt imply that the function H(x, t ; Ç, x) is smooth in the set (Qt) x D ;
it follows that the function

Wi(x,t)= [  f [fx(v(è;,x))-f2(v(Ç,x))]H(x,t;c;,x)dc;dx
Jo Jd*

is in C2, x(Qt) ■ It now remains to show that the function

w4(x,t)=       /   g(Ç,x)r(x-Ç,t-x)dÇdx
Jo Jd*

is in W¿¿x(Qt) , where g(Ç, x) = fx(v(Ç, x)) - f2(v(£,, x)) is Holder continu-
ous.

If x d¿ Yt, one can compute

j£nf-{x,t)=  ft (g(í,x)-g(x,t))YXiXj(x-í,t-x)d^dx
OXjOXj Jp  jDt

+ g(x,t) [  [ n,-«|, t)P.(x -{, t - x)dSf dx
Jo Jr<

= Iij + g(x, t)J¡j   VI </</<«,

where dS$ is the surface element of P and n,-(i, t) is the ith component of
~n(Ç, x), the unit outward normal to dDx (= P) at £. Since g is Holder
continuous, the improper integral 7y is uniformly convergent and uniformly
bounded.

To estimate Jy , we need only consider the case when x is close to P . Let
ô be a small constant and assume that x is in a ¿-neighborhood of P . Let ¿Jo
be a point on P such that |x - ¿¡o| = dist(x, P). Without loss of generality,
we can assume that ¿;o is the origin and 7?(¿j0, 0 = ~~e\ ■ Note that x - ¿j0 is
parallel to ~n(£,p, 0 , so that x = (0', a), where 0' is the origin of 32"~x and
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\a\<ô. Since Y is cx+a^x+a^2, there exists a C1+a-('+a>/2 function k such
that in the neighborhood Q(5, t), where

Q(S,t)=z{(?,ZH,T)\)p\<S, \U<S,max{0,t-o2}<x<t},

the hypersurface P can be represented by

6, = *({', T),    (cí',T)€fi'((5,0 = {(^,t)||¿:'|<(5, max{0,i-<î2}<T<0-

Clearly, /:(0' ,0 = 0 and Vi-A:(0/, 0 = 0' ; it follows that there exists a constant
C such that

(5.8) |Ví,A:(¿:',T)|<C(|¿;'| + |/-T|1/2r   V({, t) e Q'(ô, t),
(5.9) |^',T)|<C(|¿;'| + |í--r|1/2)1+Q   M(^,x)eQ'(ô,t)

for some positive constant C depending only on the c1+a,(1+a)/2 norm of Y.
Write /;; as

JU = \if + ÍÍ 1 "<(£ ' t^íj (x-^,t-x)dSidx = Jxj + J2j.
[ J JrnQ(s, t)    J Jt\q(ô , t) J

Clearly, /? is bounded since its integrand is uniformly bounded. To estimate
J¡j , we use the identity ~n(Ç, t)^ = (Vçik(Z', x), -l)dÇ', obtaining

Jy = [[        %0f, x)Yi;(-i', a - k(C,x),t-x)d?dx   if iV u
JjQ'(S,t)

and

Jnn = - [f       Y(n(-^',a - *({', x),t- x)dt:'dx.
JjQ'(S,t)

, ■»
is bounded by

When z ̂  « , /¿ is uniformly bounded since, by (5.8) and (5.6), its integrand

1/2-ia   l£'i * r-\£'\2/Mt-T)\kii(c;',x)Yij(c;',a-k,t-x)\<C(\t'\ + \t-x\x'2rt,l^{i_T)n/2e

which is uniformly integrable.
To estimate Jx„ , notice that if S is small enough, we have

\a-k(Ç',x)\2>a2/2-k2
> a2/2 - C(\?\ + (t- T)'/2)2(1+a)    (by (5.9))

>a2/2-|¿;'|2/2-C(?-T)1+Q;

it follows that

Y(?,a-k,t-x)< C—^-j-2e-^2+^'^
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//JJO'(
a-k T(-<f ,a-k,t-x)dcl'dx

\k\ YdU'dx

lQ'(ô,t) 2(í- T

" JJQ'(ö,t)2(t-x)rd^ dT + JjQl{s,t)2(t-xY

-       70   (í-T)3/2 y^-,(i-T)(»-l)/2

+ C/l (Ifl + Ii-Tl1^)1/2-vl+a

<2'(<M / -j-^/2+1 ' —

In summary, D2w4 is uniformly bounded (except on Y which is of measure
zero), and thus so is D2v . Using equation (5.1), we conclude that vt is also
bounded, thereby completing the proof of the theorem.   D

In the sequel, we shall denote by <%* the mapping which maps / into v , the
solution of (5.1 )-(5.3).

Theorem 5.2. Assume that lx, I2 e Cx+a• <1+a)/2(P x [0, T]), and let vx = ß?lx
and v2 = ??l2. Then there exists a constant c which depends only on Q, P,
and M = \\lx\\o+°,v^)i^T*x[o,T\) + ¥2\\w¿¿a(V>x.[Q r\) sucn mat vl and v2 satisfy

(5.11

(5.10) ||t;  -v \\w¿.°(ñr) < C\\l -I ||c°.»/2(px[o,r])-
Proof. Subtracting the representation of v2 in (5.7) from the one for vx yields

vx(x, t) -v2(x, t)

=   Í  [{[fdvl)-A(v2)]XD>
Jo Ja

+ [/2^1)-/2(^2)]/(D.)C}¿::^;:¡c(x,í;¿:,t)^í/t

JO    \Jd^\D^2      Jd¿\D¿)

x [fx(v2(Ç, x))-f2(v2(cí, x))]G(x, t;Z,T)dtdT
= M(x, 0 + N(x, 0 •

Since /!(•) and f2(-) are Lipschitz continuous, it follows that

P*IU°(ñ,) < C fsM\Vl(Z, T) - V2(t, T)|}
00 [l,t'> Jo íeíi

(5.12) xsup/  [\VxG(x,t;t;,x)\ + \G(x,t;c;,x)\]dc;dx
xeaJgi"

<CÍ'IIVI-V^^dx.-  Jo     vr^t
Suppose that N satisfies

(5.13) H^ll^^fi,) - ^11^  _Mlc°."/2(r°x[o,i]);

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERATION AND PROPAGATION OF INTERFACES 903

then we can substitute (5.12) and (5.13) into (5.11), obtaining

\vl-v2\\w^{ä,)^C
r' \\vx - v2

/   -ij—-ax + L-\\i  -t ||c".»/2(roxr0;i])

Inequality (5.10) thus follows by Gronwall's inequality.
It remains to prove (5.13). Using the change of variable Ç = xo(r¡, r) we get

ft    r     fl'(l>T)
N(x,t)=       /   / g(n,r,x)G(x,t;xp(n,r),x)drdndx,

Jo  Jp> Jl2(ri,r)

where

g(n, r, x) = det (^;)°) MviiMl, r), r)) - f2(v2(xp(r,, r), x))].

Denote by m - m(t) the norm ||/1 - /2||z.°°(roX[o,i]) • We can estimate N by

\N(x,t)\<m\\g\\CO{V>x[_L>L]xlo,t))      /     sup    G(x,t;x0(n,r),x)dndx
Jo   JTVre[-L,L]

<Cmyß.

Therefore the L°° norm of /V in Q x (0, 0 is bounded by Cm\ß.
For any integer z, 1 < i < n , we can compute

ft  f    fi{(n,r)
NXt{x,t)=  I   /    / g(n,r,x)GXi(x,t;xo(n,r),x)drdt]dx

Jo  Jt° Jl2{ri,t)
ft     f       fl'{tl, t)

= [g(r¡,r,x)-g(x,t)]Gx¡(x,t;xo(n,r),x)drdndx
Jo Jr° Jl2(n,T)

ft    f       /•/'('!,t)
+ g(x,t)       /    / HXi(x, t;x0(n,r),x)drdndx

Jo  Jr° Jl2(t],r)
ft   f     fll(r¡,x)

+ g(x,t)       /    / YXi(x-Xo(t],r),t-x)drdt]dx
JO   JV> Jl2{ri,T)

= Nx(x, t) + g(x, t)N2(x, t) + g(x,t)N?(x, t).

Similar to the L°° estimate of N, one can estimate the L°° norms of N¡ and
N2 by Cm. It therefore remains to estimate Nf . After applying the same
argument as in the case of Jy , w need only consider the integral

_       ff fi*(n,t)
Nj= / YXi(r\,r-a,t-x)drdr\dx,

JjQ'(S,t)Jli(n,x)

where |a| < S and

(5.14) /1(0',0 = 0,        V,/'(0',0 = 0'.
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We can estimate N„ by

|tf»l // /        {\J    [)Y(n,r + lx-a,t-x)drdndx
JjQ'(S,t)J0 2(Í-T)iQ'V.t)
i-rn

^\   dr\\        ^7J^Y(r1,r + lx-a,t-x)dr1dx
J-m       JJ0'(S.t)2(t-V-m

rm
Q'(S,t) 2(t - t)

if lililí
m~" JjQ'(S,t)   2(Í-T)

+ f" dr if        ^!',th(t1,r + lx-a,t-x)dndx
J-m        JJo'(S.t)   A*-*)

<Cm

since I/11 < (\n\ + Jt=rj   Wt=2) (by (5.14)) and

Y(V,r + lx-a,t-x)< C       !    /2g-C2+'r-fl'^8(t-T).

To estimate N¡, i < N, we write N¡ as

_        ff fi2(i,*)N¡= / Yni(n,r-a,t-x)drdndx
J jQ'(S,t) JlHn,T)

=  ÍÍ        -f-l f [Y(r},r-a,t-x)-Y(n,lx-a,t-x)]dr\dndxJjQ'(S,t)dr]i [Jn J
¡2

-11 \   Yr(n,r-a,t-x)l2idrdndx
JJQ'(s,t) Jn

+ //        (l2-ll)^-(Y(n,lx-a,t-x))dndx.
JjQ'(ö,t) arli

By the divergence theorem, the first integral on the right-hand side of the second
equality is bounded. The second integral is also bounded by the same treatment
as for the L°° estimate of Nn . The last integral can be written as

//        (l2(ry,t)-ll(0',t))^I(Y(r,,ll-a,t-x))dtjdx
JjQ'(0',t) ar\

+ if       [(l2-lx)(n,x)-(l2-lx)(0',t)]^-(Y(r1,lx-a,t-x))dr,dx.
JjQ'(S,t) a"i

Again, by the divergence theorem, the first integral is bounded by Cm . Since

|(/2 - lx)(n, t) - (I2 - /'XO', 01 < II/1 - /2||c«-/2(|»7| + (t - x)x'2T,

the second integral is bounded by C\\lx -l2\\c<,,a/2, and therefore so is A/,. This
proves (5.13) and completes the proof of the theorem.   D

Proof of Theorem 2. Set & = 9 o ¿F and

XTo = {le Ci'2(YQ x [0, 7b])| ||/||c*2(Px[Q.roD < Lp/2},

where L0 is the constant introduced in §4 and Tp is a small positive constant
to be determined.
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By Theorem 5.1, for every / 6 XTo, l^ljpMrñxro ri) - M *°r some con"
stant M independent of / and T0 (if To is small). Thus, by Theorem 4.4,
&l = %(%?l) e W^2(Y° x [0, min{T0, T(M)}]) and

ll<^llc3/2(I^x[0,min{r0,r(Af)}]) < K(M)T0     .

Hence, if T0 is small enough, P maps XTo into itself. In addition, &~ is
compact since it maps XTo into a bounded set in W¿¡'2(Y0 x [0, 7b]) which
is compact in Xj0. Furthermore, by Theorem 4.5, Theorem 5.2, and the in-
terpolation formula (4.35), SF is also continuous. We can therefore apply the
Schauder fixed point theorem to conclude that & has a fixed point which is
clearly a solution of the limit free boundary problem.

To prove the uniqueness, assume that &" has two fixed points /'  and I2 .
Then it follows from Theorem 4.5 and Theorem 5.2 that

¥ ~l llc'(r°x[o,f]) < Ct\\%?l -%?l ll^.o^j
< Cf||/ - / ||c«.°/2(rox[o,z])   Vie [0,7b].

Therefore lx = I2 when t is small. By repeating the above procedure step by
step, we can prove the uniqueness of the solution of the limit free boundary
problem up to time To ; this finishes the proof of Theorem 2.   D

Remark 5.1. One can see that the estimates in Theorem 4.5 and Theorem 5.2
are stronger than what is needed by the proof of Theorem 2. These estimates
can be used to show the uniqueness of other free boundary problems such as
the free boundary problem (1.7) (with e > 0).

Remark 5.2. The assertion of Theorem 2 is local (in time) since Theorem 4.4
establishes only the local existence of the classical solution of the motion prob-
lem. Although global weak solutions of the motion problem can be obtained by
using a so-called "vanishing viscosity" method developed by Crandall, Evans,
and Lions [13] and in fact this problem has been well studied by Sethian [32],
Osher-Sethian [29], and Baríes [4] (also see the references therein), we still can-
not get the unique global (weak) solution of the limit free boundary problem
since, as we can see, the other arguments for establishing the existence for the
solution of the limit free boundary problem do not follow. Very recently, Giga,
Goto, and Ishii [25] established the global existence of at least a weak solution
to the free boundary problem.

6. A COMPARISON LEMMA FOR PARABOLIC SYSTEMS
AND PROOF OF THEOREM 3

Lemma 6.1 (Comparison). Let (ue, vE) be a solution of the system (2.1)—(2.6).
Assume that f, g e Cx(322) satisfy

(6.1) ^L(u,v)<0,    ^(u,v)>0   M(u,v)e322,
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and that a four-tuple (ü,v , u,v) satisfies

(6.2) üt - eAïï —f(ü, v) > 0   in Qp,
(6.3) Vt-Av-g(ü,v)>0   inQT,

(6.4) ut - eAu —f(u ,v)<0   in QT,

(6.5) vt - Av - g(u, v) <0   inQT,
(6.6) dnu<0<dnü   on dQT,
(6.7) o„t¿<0<9„t7   ondQp,
(6.8) m(x, 0) < ue(x, to) < ü(x, 0)    o«fix{0},
(6.9) v(x,0)<vE(x, t0) <v(x, 0)    o«fix{0}

./or some ío > O. 77ze«

(6.10) u(x, t) < uE(x, t + t0) < ü(x, t)   M(x,t)eQT,
(6.11) v(x, t) < vE(x, t + tp) < v(x, t)   M(x,t)eQT.
Proof. The assertion of the lemma follows from standard routine techniques,
namely, subtracting the differential inequalities (6.2)-(6.5) from their corre-
sponding differential equations satisfied by uE and vE, multiplying the result-
ing inequalities by (uE - Ti)+ (= max{(zz£ - 17), 0}), (u - uE)+ , (vE - v)+ ,
and (v-vE)+ respectively, integrating over fix (0,0 and adding the resulting
inequalities together, then using (6.1) and Cauchy's inequality, and finally using
the Gronwall inequality to deduce that (uE - u)+ = (u - uE)+ — (vE - v)+ =
(£_v£)+=0.     D

Remark 6.1. Similar (and simpler) comparison lemmas can be obtained for the
other cases where / is monotone in v and g is monotone in u .

We call any four-tuple (ü,v,u,v) satisfying (6.2)-(6.9) a sup-subsolution
for the system (2.1)-(2.6).

Proof of Theorem 3. Let (Y, u, v) be the solution of the limit free boundary
problem in the interval [0, 7b] (Tp is as in Theorem 2). As before, we de-
note by D' the interior of P and by D the union Uo<kt (&' x W) • Let
d(x, t) e W^-2(fir0) be a smoothly truncated approximation of the signed
distance function from x to P ; more precisely,

d(x, 0 = <

' \LX if x e D' and dist(x, P) > Lx,
dist(x, P)      if x e D' and dist(x, P) < \LX,

dist(x, P)   if x e Q\Dl and dist(x, P) < \LX,
■\LX if x e fi\D' and dist(x ,Y')>LX,

where Lx e (0, Lo) is a fixed small constant. We can assume that \d(x, t)\ >
Li/2 whenever dist(x, P) > Li/2. Taking smaller Lx if necessary, we may
also assume that dist(0fi, P) > L, for all t e [0, T0]. It follows that

(6.12) dnd(x,t) = 0   M(x,t)edQTo.

Let (U(•, v), T"(v)) be the unique solution of the eigenvalue problem (1.5).
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Direct verification shows that when / is given by (1.3), the solution is given by
h+(v)-h.(v)U(z,v) = h+(v)

l+exp[j.(z + z0(v))(h+{v)-h-(v))}'

T(v) = -j=(2h0(v)-h+(v)-h-(v)),

where z0(v) e 32x is a constant ensuring the last condition in (1.5). Clearly,
the function U satisfies

(6.13) Uz(z,v)>0   Mze32x,
(6.14)

\Uz(z,v)\ + \Uzz(z,v)\ + \U(z,v) - h+(v)\ <Aexp(-az)   Mz > 0,
(6.15) \Uz(z,v)\ + \Uzz(z,v)\ + \U(z,v)-h-(v)\ <Aexp(az)   Mz<0
for some positive constants A and a which are independent of v if v is in a
compact subset of (-2\/3/9, 2\/3/9).
Remark 6.2. The particular choice of / in (1.3) is only for convenience; the
inequalities (6.13)—(6.15) hold also for general double well-potential f.

Set to - Toe | lne|, where t0 is as in Theorem 1, and define

(6.16) v-v+h,
(6.17) v = v-h,
,,.Q, -    „/iZ + iV/iellnel^'(6.18) u - U I-■-■-,v-2hl

ri id - Mxe\lne\eMl(6.19) u = U[-—-■-,v + 2h

where M and Mx are (large) constants independent of e, and h is a positive
function depending on e. We shall choose appropriate M, Mx, and h such
that (u,v,u,v) defined in (6.16)-(6.19) satisfy (6.2)-(6.9), and therefore we
can use Lemma 6.1 to conclude that
(6.20) u(x, t) <uE(x, t + x0e\\ne\)<u(x,t)   M(x,t)eQTo,
(6.21) v(x, 0 <vE(x, i + T0e|lne|) <v(x, t)   M(x,t)eQTo-

First, we verify the boundary conditions (6.6) and (6.7). Assume that
(6.22) dnh(x,t) = 0   M(x,t)edQTo.
Then, observing that d„v = dnd = 0 on dQp^, we immediately obtain

d„ü = d„v = dnu = dnv = 0   M(x, t) e dQn,
i.e., inequalities (6.6) and (6.7) hold if h satisfies (6.22).

Next, we verify the initial conditions (6.8) and (6.9).
It follows from (2.9) and the definition of v and v that (6.9) holds provided

that
(6.23) h(x, 0) > C0T0e|lne|.

To establish the second inequality in (6.8), let c0 be the constant in (2.20)
and consider two cases:

(i) ¿(x,0<-^e|lne| and
(ii) d(x,t)>-^e\lne\.
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In the first case, (2.20) implies that <p(x) < ho(y/(x)) - Moe|lne|, i.e., x e
Qtt «iwi • It follows from Theorem 1 thatA/r,e| lne|

(6.24) uE(x, Toe|lne|) < h-(y/(x)) + M0e\lne\

Observe that the functions h-(-) and h+(-) are monotone decreasing and there
exists a positive constant cx satisfying

(6.25) h±(b-a) >h±(b)+cxa   Mb e 2V3     a_   2y/3     a
9    + 2'    9        2 ,«e[o.;

it follows that if

(6.26) h(x,0)> ^e|lne|   Vxefi,

. .'rf + Miellne,u(x, 0) = U (-j-1-'- ,y/-2h

then

>h-(y/-2h) > h-(y/) + 2cxh(x, 0)
> h-(y/) + 2M0e\lne\ > ue(x, T0e|lne|),

i.e., the second inequality in (6.8) holds.
To get the second inequality in (6.8) in case (ii), let a be the positive constant

in (6.14), and set

(6.27) Mx =-1—c0       a

Then in case (ii), we can compute

'd + Mxe\\ne\w(x, 0) = U ,yi-2h

> u(-\lne\, y/-2h\ >h+(y/-2h)-Ae~2^E\

> h+(y/) + 2cxh(x, 0) - Ae2 > h+(y/) + 2M0e\lne\ - Ae2
> h+(y/) + M0e\lne\ > ue(x, T0e|lne|),

where we have used the monotonicity of U(-, v) in the first inequality, (6.14)
in the second inequality, (6.25) in the third inequality, (6.26) in the fourth in-
equality, and Theorem 1 in the last inequality. Therefore, the second inequality
in (6.8) holds. Similarly, we can prove that the first inequality in (6.8) holds
under the condition (6.26) and the choice of M\ in (6.27).

Finally, we verify the differential inequalities (6.2)-(6.5).
First we consider (6.2). Denote by U, Uz , Uv , etc. the functions U,

Uz, Uv , etc., evaluated at ((d + Mxe\\ne\eMt)/e,v-2h). Direct computation
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yields

% - eA«-f(ü, v)

= {vAMMf*M'+VA«,-2l,l]}

{ el e e

+ Vvv\V(v - 2h)\2 + VvA(v - 2/z) j

--£{f(V,v-2h)-h),

= l^rldt + MM^Ilnel^' + T(u - 2/z)] j + j-Z7zz(l - \Vd\2)\

- (UzAd + 2VzvVd • V(v - 2h) + eTJvv\V(v - 2h)\2

+ Vv[eA(v - 2/z) - (v - 2h)t]} + -

r r r ^= 7i +12 + h + - ■e
where in the second equality we have used the equation satisfied by U.

To estimate 7!, notice that

(6.28) dt(x, t) = -T(v(x, 0)   Vx e P (= {x e Q\d(x, t) = 0})
since the outward normal velocity of Yt is dt and (Y, u, v) is a solution of the
limit free boundary problem. By the mean value theorem and the smoothness
of the function d, equation (6.28) implies

\dt(x, t) + ^(v(x, 0)1 < C\d(x, 01   V(x, 0 e QTo.
It follows that

dt + MMxe\ \ne\eMt + T~(v - 2/z)
= dt + T(v) + MMxe\ \ne\eMt + [T(v - 2/z) - T(v)]
> -C\d\ + MMxe\\ne\eMt - Ch
> -C\d + Mxe\ lne|eM'| + (M- C)Mxe\ lne|eMi - Ch.

Therefore if M and h satisfy
(6.29) sup\h(x,t)\<(M-C)Mxe\lne\eMt   Mt e (0,7b],

x&a

then
dt + MMxe\ \ne\eMt + T(v - 2/z) > -C\d + Mxe\ \ne\eMt\.

It follows that
, ^     Júf + M,e|lne|eM'l      fd + Mxe\lne\eMt „,\h>-C-J-U,[-J-,v-2hjh

>-Csup(|z|^-alzl)>-C

by (6.14) and (6.15).
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Next we estimate I2 . Since |Vú?| = 1 when \d\ <Lx/2, we have

I2m^Uzz(\-\Vd\2)
,Mt

UZ2(d + M^eM',v-2h)>-sup
6  \d\>Lt/2

> _£e-a(L,/2-A/l£|ln£|e«r0)/£ > _£■
_    e _

if e is small enough.
Finally, if we assume that h satisfies

(6.30) ||A||^,(nro)<C,

then |/3| < C.
Combining the above estimates for Ix , I2 , and 73, we conclude that

ïï, - eAïï—/(ïï, u) > -C + - .e e

The right-hand side is nonnegative if h satisfies

(6.31) h(x,t)>Ce   M(x,t)eQTo.

It follows that inequality (6.2) holds if M and h satisfy (6.29), and h satisfies
(6.30) and (6.31). Similarly, we can show that inequality (6.4) holds under the
same conditions.

Next, we verify the inequality (6.3). Calculation yields

v,-Av-g(-u, v)
= (v + h)t-A(v + h)-g(u,v + h)
= g(h+(v), v)xd + g(h-(v), v)xaTo\D + h, - Ah - g(û, v + h)
= (h+(v) - u)X{d>o] + (h-(v) - u)X{d<o) + ht-Ah + yh,

where we have used (1.4) in the last equality. We can estimate the first term on
the right-hand side of the last equality by

\h+(v) - u\X{d>o} < I" - h+(v - 2h)\X{d>o] + \h+{v - 2/z) - h+(v)\
< Ae-aM,lXDE^ + Ch < Ae2 + Ch

by the definition of ïï and (6.14). Similarly, we can estimate the second term
in (6.32) by

\h-(v)-Ü\X{d<0) < \Ü - h-(v - 2h)\X{d<-2Mle\lne\e^}
+ C*{_2ji/ie|tae|e"<<d<o} + IM« - 2A) - h-{v)\

< Ae   + CX{-2M,e\ \ne\eM,<d<0) + ^n ■

Substituting these two estimates into (6.32), we find that the differential in-
equality (6.3) holds if h satisfies the differential inequality
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(6.33) ht-Ah>Ch + C{e + X{\d\<2Mxe\\M\e"<}}   M(x,t)eQTo.

Similarly, inequality (6.5) holds if h satisfies (6.33).
In summary, (u,v , u, v) is a sup-subsolution if Mx is given by (6.27), M

and h satisfy (6.29), and h satisfies (6.22), (6.23), (6.26), (6.30), (6.31), and
(6.33).

Let h (depending on M) be the solution of the following parabolic problem:

(6.34) h,-Ah = Ch + C{e + X{\d\<2Mle\uie\e>"}}   (x,t)eQTo,
(6.35) dnh(x,t) = 0, (x,t)edQx(0,T0),
(6.36) /z(x, 0) = max{C0T0, A/o/ci}e|lne|, xefi.

Clearly, such defined h satisfies the conditions (6.22), (6.23), (6.26), and
(6.33). Since

X{\d\<2M¡e\lne\eMI} = X{d<2Mte\\ne\eMl} ~ X{d<-2e\\nc\eMt}

and the boundaries of the sets {d < 2Mxe\lne\eMt} and {d < -2Mxe\\ne\eMl}
are smooth (if e is small enough), the analysis in §5 implies that h e W^<x (fir0),
i.e., h satisfies (6.30). Note that the right-hand side of (6.34) is positive, so
that

h(x, t) > min{/z(<^, 0)} = max{C0T0, M0/ci}e|lne|   V(x, 0 € fir0,

that is, h satisfies (6.31).
It now remains to verify the condition (6.29). Write h as

h(x, t) = eCl I max I Cot0 , —- \ e|lne| + Ce /   / G(x, t;£,,x)d£,dx

+ C /   / /   G(x,t;T(n,r,x),x)
Jo  J-2M¡e\\ne\eM* J^

where G is the Green function of the heat operator dt - A introduced in §5,
T(n, r,x) = n + r~n\-,(r¡) is a diffeomorphism from P x (-Lx/2, Lx/2) to
{x e Q\\d(x, t) < Lx/2}, and TzV is the unit outward normal to P. It
follows that

sup|/z(x, 01 < CeCToie\\ne\ + et+ f Afie|lne|é>Mr--rr^dx]
x^a I Jo (t-xyi¿     J

^c^{l + WT2eM'}£\^\

<(M-C)e\\ne\eM'   Vie [0,7b]

if M is large enough. Inequality (6.29) thus holds.
We have now shown that (U,v,u,v) satisfies (6.2)-(6.9) (with z0 =

T0e| lne|), and therefore, by Lemma 6.1, (6.20) and (6.21) hold. The assertion
of Theorem 3 thus follows from the definition of (u,v,u,v_), (6.29), (6.14),
and (6.15).   D
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