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Abstract

In order to achieve the integration of driver experience and heterogeneous vehicle
platform characteristics in the motion planning algorithm, based on the
driver-behavior-based transferable motion primitives, a general motion planning
framework for offline generation and online selection of motion primitives (MPs)
is proposed. The optimal control theory is applied to solve the boundary value
problems in the process of generating MPs, where the driver behaviors and the
vehicle motion characteristics are integrated into the optimization in the form of
constraints. Moreover, this paper proposes a layered, unequal-weighted MPs
selection framework and utilizes the combination of environmental constraints,
nonholonomic vehicle constraints, trajectory smoothness, and collision risk as the
single-step extension evaluation index. The library of MPs generated offline
demonstrates that the proposed generation method realizes the effective
expansion of the MP types and achieves the diverse generation of MPs with
various velocity attributes and platform types. We also present how the MP
selection algorithm utilizes the unique MP library to achieve the online extension
of MP sequences. The results show that the proposed motion planning framework
can not only improve the efficiency and rationality of the algorithm based on
driving experience but also can transfer between heterogeneous vehicle platforms
and highlight the unique motion characteristics of the platform.

Keywords: autonomous vehicle; motion planning; motion primitives; driver
behavior; heterogeneous vehicle platform

Introduction

The ever-increasing advancement of unmanned vehicle technology, especially multi-

vehicle cooperative technology, will significantly promote the development of future

intelligent transportation systems and unmanned combat systems and will affect

the future travel modes and combat patterns [1–3]. In the unmanned vehicle sys-

tem framework, motion planning is one of the crucial components. Its main function

is to generate a reference trajectory that satisfies the constraints of the environment

and the vehicle itself [4–6]. How to build a unified motion planning algorithm for

heterogeneous vehicle platforms and use the driving experience to guide and acceler-

ate the completion of planning tasks is one of the fundamental tasks for the further

development of unmanned vehicle motion planning algorithms. In both the motion

planning algorithm and the driving behavior representation algorithm, the decom-

position of complex motion into motion primitives (MPs) can effectively improve

the efficiency of the algorithm [7–10].

https://www.researchsquare.com/article/rs-56830/v1
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The essence of MPs generation is to solve a set of Boundary Value Problems

(BVPs), i.e., to generate a set of paths connecting different target states [11]. The

difficulty in solving the above problems lies in the segmentation strategy of the state

space and the form of the curve connecting start and end state. Graph search-based

motion planning algorithms, such as the typical A* [12, 13], D* [14, 15], and state

lattice [16, 17], divide the environment space into basic grids and then generate

MPs based on center points, corner points, or edges. Aiming at the disadvantages

of a grid-based MP generation method that cannot consider nonholonomic vehicle

constraints, the hybrid A* algorithm completes the generation of MPs based on the

vehicle kinematic model [7, 18]. Each primitive used in the hybrid A* algorithm is

an arc generated with a fixed time scale and a fixed front wheel angle. The discrete

optimization-based method uses the spline curves or polynomial curves to generate

the MP candidate sets based on the offset points of the road centerline, which

effectively limits the search space and improves the overall efficiency of the algorithm

[19–21]. Also, some methods use numerical optimization to realize the generation

of MPs while considering vehicle dynamic constraints [22–24]. Although the MPs

generated by the above methods can meet the complex driving environment’s needs,

they failed to integrate the driver’s behavior information into the MP generation

algorithm. Besides, these methods generally lack the consideration of the difference

and connection of the heterogeneous platform motion characteristics.

The quality of the final path generated by the motion planning algorithm depends

not only on the quality of the MP itself but also on the rationality of the MP se-

lection and connection [25]. The selection of MPs is the process of first considering

the cost function represented by different constraints, secondly combining the cost

according to a particular weight factor, and finally selecting the MP with the min-

imum cost [26]. The Dijkstra algorithm takes the shortest path as the extension

cost of the MP [27]. The A* algorithm and its variants add heuristics based on

the target state and Voronoi diagram to the original Dijkstra algorithm [28]. The

sampling-based RRT path planning algorithm [29], on the one hand, takes the tar-

get point as a guide to the selection and extension of MPs. On the other hand, it

randomly extends in any direction with a certain probability to achieve a compre-

hensive search of the accessible areas. The Discrete optimization-based method [19]

utilizes the linear combination of the three extension cost values considering static

obstacles, dynamic obstacles, and path smoothness as the basis for the selection

of MPs. Although the MP mentioned above selection and extension method can

achieve the generation of the desired driving trajectory, no attention is paid to the

guiding role of the driver’s experience.

The learning and generalization of the driving experience and characteristics have

attracted the attention of many researchers in recent years [30–32]. Specific to the

trajectory-level driving behavior research, Guo et al. researched the generation of

human-like trajectories with the leader vehicle as an attractive force [33]. Although

the above method can cope with complex dynamic environments, the learning ob-

ject of its behavior is the guide vehicle, i.e., it is a follow-up human-like trajectory

generation method. Regarding the representation of human-like trajectories that

target the behavior of the ego vehicle, Schnelle et al. proposed a personalized tra-

jectory optimization generation method in two scenes: lane change and double lane
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change [34]. Besides, Zhao et al. also conducted a series of research work on the lane

change scene. Firstly, they used the support vector machine algorithm to extract

lane change primitives from the lane change trajectory data of surrounding vehi-

cles [35,36]. Subsequently, using the principle of trajectory matching, the generated

human-like lane change trajectory was integrated into the real-time motion plan-

ning system [37,38]. However, the above research has limitations in the application

of scenes. It is often aimed at a specific scene, and there is no further study on how

to combine multiple driving behaviors with the vehicle motion planning system in

the general driving environment.

In this paper, for the two heterogeneous platforms of wheeled Ackerman-steering

vehicle and tracked skid-steering vehicle, a unified vehicle motion differential con-

straint is proposed. In addition, five kinds of equality constraints for typical driving

behaviors and inequality constraints for vehicle platform characteristics are set, and

an offline optimization method for driver-behavior-based transferable motion prim-

itive (DBTMP) generation is formed. Based on the unique MP library established

for different vehicle platforms, the research on the selection of MPs is carried out

under the hybrid A* algorithm framework. However, there are two significant dif-

ferences in the construction of the selection framework due to the big difference

between the offline generated DBTMP library and the online generated MP library

used by the hybrid A* algorithm. Firstly, the DBTMP library generated offline is

a collection of multiple MP sets containing the entire speed interval, so a hierar-

chical structure is applied to restrict the MP candidate set. Secondly, since each

candidate set contains both behavior primitives and general primitives, different

weight coefficients are applied to the above two types of primitives when selecting

and evaluating a single extended MP. Finally, a motion planning algorithm based

on the offline generation and online selection of the DBTMP library is proposed.

The main contributions of this paper are shown as follows:

• A unified motion planning algorithm framework is proposed to complete the

motion planning tasks of heterogeneous platforms, achieving a balance be-

tween the general solution framework and the characteristics of heterogeneous

vehicle platforms.

• An offline MP generation method combining discrete driving behaviors and

vehicle kinematics model is proposed, and the guiding role of behavior primi-

tives to the online selection layer of motion planning algorithm is highlighted.

The remains of the paper are organized as follows. Section 1 details the problems

to be solved in this paper and explains the main parameters. Section 2 introduces

the offline generation method of the MP library. Section 3 introduces the online

selection framework of MPs. Section 4 demonstrates the unique MP libraries of two

heterogeneous vehicle platforms and the results of motion planning in two typical

scenes. Finally, the conclusion and future work are given in Section 5.

1 Problem Statement

The offline MP generation is to solve the optimization problem with driver behaviors

B and platform motion characteristics as constraints and trajectory smoothness as

the objective function g. The selection of MPs is first to select the MP set from the

MP library based on the passable area and velocity connection, and then utilize the
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cost function J as the evaluation index to choose the corresponding single extended

MP from the MP set.

The definition and explanation of the main parameters used in this paper are as

follows:

• s(t) = [x(t), y(t), θ(t)]T ∈ R
3×1 is the unified state parameter set of each

heterogeneous platform at time t, where x(t) and y(t) are the coordinate po-

sition of the x-axis and y-axis, θ(t) is the course angle. The defined coordinate

system is the geodetic coordinate system xoy.

• u(t) = [vx(t), vy(t), ωz(t)]
T ∈ R

3×1 is the unified control variable set of each

heterogeneous platform at time t, where vx(t) and vy(t) are the velocity of

the platform along the x-axis and y-axis, and ωz(t) is the yaw rate around the

z-axis. The defined coordinate system is the geodetic coordinate system xoy.

• ua(t) = [vwx
(t), α(t)]T ∈ R

2×1 is the unique control variable set of the wheeled

Ackerman-steering vehicle at time t, where vwx
(t) is the velocity of the rear

axle along the xa-axis, and α(t) is the front wheel angle of the vehicle. The

defined coordinate system is the vehicle body coordinate system xaoya.

• ut(t) = [vlx(t), vrx(t)]
T ∈ R

2×1 is the unique control variable set of the tracked

skid-steering vehicle at time t, where vlx(t) and vrx(t) are the velocity of the

left and right tracks along the xt-axis. The defined coordinate system is the

vehicle body coordinate system xtoyt.

• D = Ds · Da/t represents the mapping relationship between platform state

parameters and control variables, where Ds is the correlation between the

unified state parameter set s and control variable set u.Da/t is the correlation

between the u and the unique control variable set ua/t.

• B= {BSD, BLC,BUT,BRT,BTA} are the defined five kinds of driving behavior

constraints, which are straight driving behavior BSD, lane changing behavior

BLC, U-shaped turn behavior BUT, right-angle turn behavior BRT, and turn

around behavior BTA.

• U is the inequality constraint condition set according to the platform motion

limit. Ua and U t are for wheeled Ackerman-steering vehicle and tracked skid-

steering vehicle.

• J= {Je, Jn, Js, Jc} is the cost function when selecting a single MP, where Je

is the environmental constraint heuristic, Jn is the nonholonomic vehicle con-

straint heuristic, Js is the evaluation function considering the smoothness of

the curve, and Jc is the evaluation function considering the collision risk.

The method proposed in this paper is dedicated to solving the following two

challenges: First, how to generate a MP library that can be transferred between

heterogeneous platforms, considering the overall versatility and highlighting the

specificity of the vehicle platform. Second, how to integrate driving behavior fac-

tors into the generation and selection algorithm of the MPs, and then realize the

guidance of the driver’s experience to the motion planning algorithm.

2 Generation of MP

The generation process of DBTMP Library is shown in Fig.1. The entire process-

ing flow can be decomposed into two main components, namely the creation and

solution of optimal control problems and the rotation transformation and velocity
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expansion of a single MP cluster. Among them, the definition of the optimal con-

trol problem for the single MP generation is the core of the generation method. The

specific form of the optimal control problem is as follows:

min
ua/t

: g(s,u)

subject to :

s(t) = B t ∈ [t1, tg]

ṡ(t) = f(s(t),u(t)) t ∈ [t1, tg]

U(t) ∈ U t ∈ [t1, tg]

(1)

where g(s,u) is the objective function of trajectory smoothness optimization based

on the state parameters and control variables. s(t) = B is the constraint condition

of vehicle state based on driving behavior. ṡ(t) = f(s(t),u(t)) is the motion differ-

ential constraint describing the relationship between the control variables and state

parameters of the vehicle platform. U(t) ∈ U is the inequality constraint condition

set. t1 and tg are the start time and end time of MP generation respectively.

Figure 1 The DBTMP offline generation algorithm flow.

2.1 Vehicle Motion Differential Constraint

This paper ignores the impact of the suspension system on the vehicle motion re-

sponse and regards the vehicle platform as a rigid body moving in a two-dimensional

plane. The relationship between the unified state parameter set s and the unified

control variable set u in the two-dimensional space is shown in Equation 2.

ṡ(t) = Ds · u(t)

=







cos θ(t) − sin θ(t) 0

sin θ(t) cos θ(t) 0

0 0 1













vx(t)

vy(t)

ωz(t)






(2)

According to the characteristics of heterogeneous platform actuators, the mapping

relationship between the unique control variable set ua/t and unified control variable
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set u of different types of platforms is established, as shown in Equation 3.

u(t) = Da/t · ua/t(t) (3)

The relationship between the control variable ua of a typical wheeled Ackerman-

steering vehicle and the unified state parameter set s is shown in Equation 4, where L

is the distance between the front and rear axis of the vehicle. The related coordinate

system and a simplified model of the wheeled vehicle platform are shown in Fig.2.

Figure 2 Wheeled Ackerman-steering vehicle.

ṡ(t) = Ds ·Da · ua(t) =







vwx
(t) cos θ(t)

vwx
(t) sin θ(t)

vwx
(t) tanα(t)/L






(4)

The relationship between the control variable ut of a typical tracked vehicle and

the unified state parameter set s is shown in Equation 5, where B is the distance

between the two tracks. The related coordinate system and a simplified model of

the tracked vehicle platform are shown in Fig.3.

Figure 3 Tracked skid-steering vehicle.



Guan et al. Page 7 of 22

ṡ(t) = Ds ·Dt · ut(t)

=







(vlx(t) + vrx(t)) cos θ(t)/2

(vlx(t) + vrx(t)) sin θ(t)/2

(vrx(t)− vlx(t))/2B






(5)

2.2 Equality Constraints of Driving Behavior

This paper defines five typical driving behaviors, as shown in Fig.4. These typical

behaviors include BSD and BLC that exist throughout the velocity range, as well as

BUT, BRT, and BTA that exist only in the low velocity range. Due to the specificity

of the vehicle structure, BTA can be subdivided into BTAa for wheeled vehicle and

BTAt for tracked vehicle.

Figure 4 Driver behavior MPs.

For straight driving behavior BSD, U-shaped turn behavior BUT and right-angle

turn behavior BRT, only the course angle change between the start state t1 and the

end state tg is constrained.

BSD = θ(tg)− θ(t1) = 0 (6)

BUT = θ(tg)− θ(t1) = π (7)

BRT = θ(tg)− θ(t1) = π/2 (8)

For lane changing behavior BLC, in addition to restraining the course angle change

deviation, the lateral distance change deviation d should also be constrained.

BLC =

[

θ(tg)− θ(t1)

[cos θ(tg), sin θ(tg)][x(tg), y(tg)]
T
− d

]

= 0 (9)

For turn around behavior BTAa of wheeled vehicle, it is necessary not only to

restrict the beginning and end states but also to restrict the intermediate states

accordingly.

BTAa
=







θ(tg/3)− θ(t1)− π/3

θ(2tg/3)− θ(tg/3) + 2π/3

θ(tg)− θ(2tg/3)− π/3






= 0 (10)
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Since the tracked vehicle can complete the task of turn around through the pivot

turn movement, its constraint relationship BTAt is as follows:

BTAt
=







x(tg)− x(t1)

y(tg)− y(t1)

θ(tg)− θ(t1)− π






= 0 (11)

2.3 Inequality Constraints of Vehicle Platform Characteristics

The constraints of vehicle platform characteristics mainly include four aspects: the

input range of control variable u, the limitation of yaw rate ωz, the limitation of

lateral acceleration ay, and the limitation of the current generated MP velocity

attribute v.

U =



















u ∈ [−umax,umax]

ωz ≤ 0.8

ay ≤ 0.4g

v ∈ [vlow, vup]



















(12)

The inequality constraint relationship Ua of wheeled Ackerman-steering vehicle is

shown in Equation 13, where αmax is the maximum front wheel angle of the vehicle

platform.

Ua=



















α ∈ [−αmax, αmax]

vwx
tanα/L ≤ 0.8

v2wx
tanα/L ≤ 0.4g

vwx
∈ [vlow, vup]



















(13)

The inequality constraint relationship Ut of tracked skid-steering vehicle is shown

in Equation 14, where vlx max and vrx max are the maximum speed limits of the left

and right driving wheels respectively.

U t =



























vlx ∈ [−vlx max, vlx max]

vrx ∈ [−vrx max, vrx max]

2 |vlx−vrx | /B ≤ 0.8
∣

∣v2lx − v2rx
∣

∣ /2B ≤ 0.4g

(vlx + vrx)/2 ∈ [vlow, vup]



























(14)

2.4 Objective Function and Optimization Problem Solving

The objective function mainly reflects the requirements for the smoothness of the

generated MPs. The objective function ga for the wheeled Ackerman-steering plat-

form is shown in Equation 15, and the objective function gt for the tracked skid-

steering vehicle platform is shown in Equation 16.

ga =

∫ tg

0

(α(t)
2
+ vwx

(t)
tanα(t)

L
)dt (15)

gt =

∫ tg

0

(
(vlx(t) + vrx(t)

2
)
2

+
2(vlx(t)− vrx(t))

B
)dt (16)
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In this paper, the IPOPT [39] and CVODES [40] are applied to solve the optimal

control problem.

2.5 Generation of MP Library

Due to the complexity of the real driving environment, only the defined driving

behavior MPs cannot fully satisfy the motion planning problem in a complex en-

vironment. Therefore, in order to improve the applicability of the MP library, the

general MPs are generated as a supplement with the target course angle uniformly

distributed on [0, 2π] as the constraint.

After generating the MP cluster containing behavior primitives and general prim-

itives, a MP set covering the entire annular space with 36 MP clusters evenly dis-

tributed is generated by rotation transformation. A simplified schematic diagram

of the MP set generation is shown in Fig.5, and only a part of typical MPs and the

rotation transformation at three positions are shown in the figure. The resulting MP

library is a combination of multiple MP sets under different MP velocity attribute

settings.

Figure 5 MP cluster rotation transformation.

3 Selection of MP
The selection process of MP is shown in Fig.6. The entire processing flow can be

decomposed into the selection of the MP sets, the calculation of heuristics and costs,

the selection of a single MP, and the extension of the MP sequence. The selection of

MP sets refers to selecting the appropriate MP sets from the MP library based on

passable areas in the environment map and velocity attribute of the last extended

periodic MP set. The heuristics include both environmental constraint heuristic and

nonholonomic vehicle constraint heuristic. The environmental constraint heuristic

is calculated from the starting and target poses in the grid map. The nonholonomic

vehicle constraint heuristic is calculated based on the final state of every single

MP in the MP set and the target pose set by the planning system. The extension

costs include the trajectory smoothing cost represented by the curve energy and

the collision risk cost characterized by the distance from the obstacle. Finally, the

linear combination of heuristics and costs is selected as the basis for single-step

MP extension, and the selected multiple MPs are combined into a MP sequence to

complete the motion planning task.
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Figure 6 The DBTMP online selection algorithm flow.

3.1 Selection of MP Sets

The extraction of the single-step extended passable area is shown in Fig.7. The

radius of the passable area rarea is calculated by the closest distance dmin =

min{dobs 1, dobs 2, ..., dobs n} between the current position and the obstacle. The

candidate set of MPs need to satisfy the essential condition that the final state of

every single MP is within the passable area.

In addition, considering the velocity attribute association of two adjacent pe-

riodic MPs, the MP set with a large velocity gap from the previous periodic is

eliminated from the candidate set. Finally, the further narrowing of the candidate

set is achieved.

Figure 7 Single-step extended passable area extraction.

3.2 Heuristics Considering Environmental and Nonholonomic Constraints

The calculation of the environmental constraint heuristic Je takes the target position

as the initial point and utilizes the breadth-first-search algorithm to realize the
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iterative expansion of the distance cost until it expands to the starting position.

The specific algorithm flow is shown in Algorithm 1.

Algorithm 1 Pseudocode for computing environmental constraint heuristic
Require: starting point nstart; target point ngoal; open list Sopen; heuristic value Je(n); iteration value

∆J
1: Sopen ←

{

ngoal

}

2: {Je(n1), Je(n2) · · · Je(nall)} ← ∞, Je(ngoal)← 0
3: while ∅ 6= Sopen do
4: n← Pop(Sopen) {select the grid with the smallest heuristic value in open list}
5: ExpandNode(n, nnew) {take the current grid as the center grid and expand in the direction of

the surrounding eight grids}
6: if (CollisionCheck(n)) then
7: continue;
8: else if (nnew == nstart) then
9: break;
10: else
11: Je(nnew)← Je(n) + ∆J {heuristic value addition}
12: Sopen ← {nnew}
13: end if
14: end while

Fig.8 shows the comparison results of the environmental constraint heuristics

calculated based on the Euclidean distance and the breadth-first algorithm used in

this paper. It can be found from Fig.8(a) that the calculated heuristics will first

guide the MP to extend to the obstacle area, as shown by the dotted blue arrow in

the figure. On the contrary, in Fig.8(b), the MP is guided to the passable area, as

shown by the solid blue arrow in the figure. Therefore, the environmental constraint

heuristic proposed in this paper can avoid invalid extended search and effectively

improve the efficiency of the algorithm.

(a) Euclidean distance (b) Breadth first

Figure 8 Comparison of environmental constraint heuristics.

This paper also introduces the vehicle nonholonomic constraint heuristic Jn taking

the length of the Reeds-Shepp curve as the heuristic value. The Reeds-Sheep curve

is composed of a fixed curvature arc and a straight line. It can quickly generate a

curve connecting the start and end points while meeting the position and course

constraints of the two points. The nonholonomic constraint heuristic introduces the

evaluation of the target point’s course reachability under the premise of consid-

ering the vehicle’s motion characteristics, which makes up for the defect that the

environmental constraint heuristic only considers the target position’s reachability.
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Finally, the larger value of the environmental constraint heuristic and nonholo-

nomic constraint heuristic is selected as the final heuristic value of the grid, i.e.,

J1 = max{Je, Jn}.

3.3 Extension Costs Considering Smoothness and Collision

The extension cost proposed in this paper mainly includes two aspects: trajectory

smoothness and possible collision risk.

The extension cost value of smoothness Js is calculated using the curve energy

function as shown in Equation 17, the essence of this function is the discrete repre-

sentation of the curvature integral on the curve.

Js =

N
∑

i=2

(κ2
i−1 + κ2

i )∆si

2
(17)

where N is the number of discrete points of the curve, κi is the corresponding

curvature of the point, and ∆si is the distance between two adjacent points.

The extension cost value of collision risk Jc is calculated using the function shown

in Equation 18, and the vehicle platform is approximated by the six coverage circles

shown in Fig.9 during the calculation process.

Jc =

6
∑

i=1

(dobs i−ri)

6
(18)

Figure 9 Six covered circles of vehicle platform.

where dobs i is the distance from the center of each coverage circle to the nearest

obstacle, and ri is the radius of each coverage circle.

The above extension costs Js and Jc are given different weighting coefficients ωs

and ωc. The linear combination after weighting is the final extension value as shown

in Equation 19.

J2 = ωsJs + ωcJc (19)

The weighting coefficient ωs is differentiated according to the types of MPs as

shown in Equation 20. In principle, the relationship between the weight values of
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behavior MPs ωsB , general MPs ωsG and MPs in reverse direction ωsD is: ωsB <

ωsG ≪ ωsD .

ωs=











ωsB if mpi== Behavior MP

ωsG if mpi== General MP

ωsD if mpi== Reverse Direction

(20)

3.4 Evaluation Function of MP Selection

The total cost of selecting a single MP mpi in the MP candidate set should be the

sum of the corresponding heuristic and extension cost, as shown in Equation 21.

J(mpi) = J1(mpi) + J2(mpi), i ∈ [0, Np] (21)

where Np is the number of independent MPs in the MP candidate set. In the

extension process of MPs at each step, the MP with the smallest total cost in

the MP candidate set is selected for an extension. Finally, the desired trajectory

generation from the start position to the end position in the environment map is

realized.

4 Experimental Results and Discussion

In order to verify the effect of the DBTMP A* motion planning algorithm proposed

in this paper, the wheeled Ackerman-steering vehicle and tracked skid-steering ve-

hicle were chosen respectively, and the corresponding tests were carried out in both

the simulation environment and the real environment. In the simulation environ-

ment, we mainly conducted an in-depth comparative analysis of the algorithm per-

formance in low-speed and high-speed scenes. In the real environment, we mainly

focused on the applicability of the algorithm in real situations, especially the com-

patibility with the platform and the corresponding autonomous driving module. In

addition, the classic Hybrid A* method was also selected as a comparison refer-

ence. The specific platform parameters are shown in Table 1, where Pa represents

the wheeled Ackerman-steering platform and Pt represents the tracked skid-steering

platform.

Table 1 Platform geometric parameters and actuator constraints.

Type
B
(m)

L
(m)

αmax

(deg)
vlx max

(m/s)
vrx max

(m/s)
Pa 4.3 1.9 π/6 - -
Pt 5.2 3.3 - 16 16

4.1 MP Library Offline Generation

The MP libraries for both platforms used a unified optimization framework during

the generation process, and only the details of the vehicle characteristic constraints

were changed during the platform transformation process.

The overall situation of the two platform MP libraries is shown in Table 2, where

vm(m/s) is the velocity attribute of the MP set, dm(m) is the longest distance

covered by the MP set, NB is the number of behavior primitives in the MP set, Nm

is the number of general primitives in the MP set, 36 is the number of MP clusters
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after rotation transformation included in each MP set, J̄s is the average curve energy

value of each MP in the set. At the end of Table 2, the overall situation of the MP

library used by the Hybrid A* method which does not distinguish between vehicle

platforms and velocity attributes is presented.

Table 2 The generated MP library. This table lists the composition structure of the DBTMP library
generated offline for the wheeled Ackerman-steering platform and tracked skid-steering platform. The
structure of the online generated MP library used by the Hybrid A* algorithm is also introduced as a
comparison reference.

Platform vm dm NB Nm J̄s
Pa 5 20 16*36 49*36 0.0643
Pa 10 25 23*36 20*36 0.1099
Pa 12 30 25*36 20*36 0.1748
Pa 14 35 25*36 20*36 0.1473
Pa 16 40 25*36 20*36 0.1242
Pa 18 40 9*36 8*36 0.1067
Pa 22 40 9*36 6*36 0.0933
Pa 26 40 9*36 6*36 0.0824
Pa 30 40 9*36 6*36 0.0784
Pt 5 15 18*36 64*36 1.3136
Pt 10 25 23*36 20*36 0.2426
Pt 12 30 25*36 20*36 0.1694
Pt 14 35 9*36 8*36 0.1307
Pt 16 40 9*36 8*36 0.1065

Hybrid -
online

adjustment
- 17*36 0.2095

In order to show the generated MP clusters more intuitively, Fig.10 presents low-

speed and high-speed typical MP clusters with wheeled platform velocity attributes

of 5m/s and 18m/s, and tracked platform velocity attributes of 5m/s and 16m/s.

It also includes the MP cluster used by the Hybrid A* method.

The offline generation result of the MP library demonstrated that no matter what

type of vehicle platform, the number of MPs gradually decreased with the increase

of velocity. The reason is that the vehicle can achieve more diversified steering

movements at low speeds, but the number of MPs at high speeds is greatly reduced

due to the weakening of steering ability.

It can be observed from Table 2 that the average energy of the wheeled platform

MPs in the low-speed range was lower than that of the tracked platform. On the

one hand, it shows that the trajectory of the wheeled platform is smoother, and the

adjustment of the course is gentler. On the other hand, it also indicates that the

tracked platform has stronger and more aggressive steering adjustment ability at

low speed. In the high-speed range, the MPs average energy of the two platforms

was basically the same, and the steering adjustment tended to be the same.

Hybrid A* utilized a circular arc generated by a fixed curvature as the basic

MP. It neither realized the differentiation of the characteristics of heterogeneous

platforms nor the separation of different speed intervals. In general, the types of

MPs are relatively limited and do not have the diversity of MPs in the DBTMP

library proposed in this paper.

4.2 Comparative Analysis of MPs Online Selection in Simulation Environment

In order to demonstrate the performance of the MPs online selection algorithm

proposed in this paper, a low-speed scene and a high-speed scene were designed to

evaluate the motion planning algorithm. In each scene, the motion planning results

of Hybrid A*, DBTMP A*-Pa, and DBTMP A*-Pt were compared. The planning
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(a) 5m/s wheeled Ackerman-
steering platform
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(b) 18m/s wheeled Ackerman-
steering platform
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(c) 5m/s tracked skid-steering
platform
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(d) 16m/s tracked skid-steering
platform
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(e) Hybrid A*

Figure 10 Comparison of motion primitive cluster generation results.

results were solved by a laptop Lenovo-Ideapad Y700-15ISK with 16G memory, Intel

Core i7-6700@2.6GHZ×8, running under Ubuntu 16.04 64bits. The entire motion

planning algorithm was written in C++ in the ROS system.

Fig.11 shows the results of motion planning in low-speed scenes. Table 3 demon-

strates the comparison results of the corresponding evaluation indicators, including

the average curve energy J̄s, the total number of MP extensions Ne, the number of

behavior primitives during extension Nbe, and the solution time of the correspond-

ing motion planning algorithm T (ms).

Table 3 Comparison of MP online selection results in low-speed scene.

Method J̄s Nbe/Ne T
Hybrid A* 1.9371 0/23 132.43

DBTMP A*-Pa 0.0602 12/16 44.38
DBTMP A*-Pt 0.0578 17/18 48.15

From the perspective of smoothness of the motion planning results, no matter

which platform was used, the trajectory generated by the DBTMP A* algorithm is
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Figure 11 Comparison of motion planning results in low-speed scenes. Firstly, under the same
initial and final state conditions, the three motion-planning algorithms are compared, as shown in
Fig.11(a). In Fig.11(a), the blue and purple arrow indicates the position and heading of the initial
and end separately. The following sub-figures (Fig.11(b)-Fig.11(d)) respectively show the details
of the MPs extension of the three motion planning methods. In the three detailed sub-figures, the
final selected single MP in the MP cluster is represented by a thick solid line.

smoother. One of the reasons is that the overall MP library used by the DBTMP

A* algorithm is smoother than the Hybrid A* method. Another reason is that the

straight driving behavior primitives and general primitives use different weighting

coefficients in the evaluation (as shown in Equation 20), so the straight driving

behavior primitives occupy a larger proportion of the entire trajectory, which makes

the evaluation index of smoothness significantly lower than Hybrid A* algorithm.

From the perspective of the extension times of MPs, the extension times of

DBTMP A*-Pa and DBTMP A*-Pt were only 69.56% and 78.26% of the hybrid

A* method. This is mainly because the introduction of behavior primitives makes

the extension category of a single MP increase and improves the adaptability to the

environment so that it can complete the trajectory planning task with fewer MP

combinations. This was most evident in the local scene of the parking scene at the

end. Regardless of the vehicle platform, the DBTMP A* algorithm used only one

MP to complete the planning task, while the Hybrid A* achieved the task through

the joining of 5 independent MPs and did not highlight the characteristics of the

two platforms.
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From the perspective of the solution time of motion planning tasks, the DBTMP

A* algorithm only took up 35% of the overall solution time of the Hybrid A*

algorithm. The main reason is that the MP sets used by the Hybrid A* algorithm

are generated online based on the radius of the passable, while the MP sets selected

by the DBTMP A* algorithm are generated offline.

The comparison results of motion planning in high-speed scenes are shown in

Fig.12, and Table 4 demonstrates the corresponding evaluation indicators.

Table 4 Comparison of MP selection results in high-speed scene.

Method J̄s Nbe/Ne T
Hybrid A* 0.0577 0/8 90.4616

DBTMP A*-Pa 0.0093 4/4 57.2816
DBTMP A*-Pt 0.0071 4/4 55.6434
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(c) DBTMP A*-Pa extension detail

(d) DBTMP A*-Pt extension detail

Figure 12 Comparison of motion planning results in high-speed scenes.
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From the motion planning results of Fig.12 and Table 4, the algorithm proposed

in this paper took advantage of the DBTMP library to achieve lower curve energy,

fewer extension times, shorter solution time and more reasonable planning result.

This is mainly because the DBTMP library restricts and distinguishes the MPs that

can be selected according to the velocity attribute and introduces the standard lane-

change driving behavior primitives in high-speed scenes as supplements. This makes

the driving experience successfully integrated into the MP generation and selection

process proposed in this paper. Although the Hybrid A* algorithm can also plan the

corresponding collision-free trajectory, it does not conform to the driver’s driving

experience in high-speed scenes.

4.3 Applicability of the Algorithm in Real Environment

The performance of the proposed algorithm in the real environment is verified by

two vehicle platforms, namely the wheeled Ackerman-steering platform shown in

Fig.13(a) and the tracked skid-steering platform shown in Fig.13(b). The two plat-

forms are equipped with the same equipment, including a RoboSense 32-lidar and

two RoboSense 16-lidars, a Simpak982 GNSS receiver, a FOSN2 inertial navigation

system, an AVT-1290c camera, and two industrial personal computers.

(a) Wheeled Ackerman-steering platform (b) Tracked skid-steering platform

Figure 13 Unmanned vehicle test platforms.

Before the experiment, we have obtained the environmental map required for the

entire planning task through a multi-source SLAM algorithm. In the experiment, the

fusion positioning system provided centimeter-level real-time positioning accuracy

at a frequency of 50HZ. On the basis of a priori map, the environment perception

equipment carried by the vehicle added real-time environmental information to the

map at a frequency of 5HZ. Model predictive control was selected as the vehicle

motion control algorithm, and the comprehensive tracking error in the off-road

environment is less than 0.5m.

The purpose of the experiment in real scenes is mainly to test the performance

and efficiency of the algorithm under complex environmental conditions. Fig.14

demonstrates the comparison results of the motion planning algorithm at two-time

points during the unmanned driving. These two moments were the starting moment
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Figure 14 Comparison results of three motion planning algorithms in real environments.The
Hybrid A* algorithm only made extremely limited adaptability adjustments for the two platforms,
so only the wheeled Ackerman-steering platform was selected as the verification platform. T i

represents the initial moment of the planning, and T r represents the moment of replanning.

of planning and the trigger moment of replanning after turning. Fig.15 shows the

efficiency indexes of the three motion planning algorithms.

Judging from the experimental results in real scenes, the algorithm proposed in

this paper can not only be applied in unmanned systems in real-time but can also
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(a) Time-consuming at T i (b) Time-consuming at T r

Figure 15 Time-consuming of single-step extension of motion primitives.The single-step
extension time refers to the time required to select the most appropriate MP from the MP library
at each MP extension step.

achieve higher efficiency and more reasonable planning results. The experimental

conclusions in the real environment are consistent with the simulation.

5 Conclusion

This paper proposed a unified motion planning algorithm framework based on

DBTMP generation and selection for heterogeneous vehicle platforms.

(1) An optimized generation method is applied to realize the offline construction

of heterogeneous platform MP library. The generated MP library not only

distinguishes MPs according to the velocity attributes and platform charac-

teristics but also introduces five types of behavior primitives to expand the

types of MPs.

(2) The layered unequal weighted MP online selection framework makes full use of

the characteristics of the platform-specific MP library generated offline. Not

only the velocity connection relationship of the MP set is limited, but also

the selection weight of the single extended behavior primitive and general

primitive is distinguished.

(3) The DBTMP A* motion planning algorithm proposed in this paper not only

retains the strong environmental adaptability of the original Hybrid A* algo-

rithms but also highlights the characteristic difference between heterogeneous

vehicle platforms. Moreover, the proposed method effectively utilizes driving

experience to complete the reasonable guidance of the planning results, im-

proving the trajectory smoothness, and significantly reducing the required

solution time.
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