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ABSTRACT   

In this paper, we review our recent work on the statistical properties of polarization speckle generated by a birefringent 

material with rough surface. After a short introduction of a less-known concept of polarization speckle with its unique 

properties of random polarization states fluctuating in space, we provide an intuitive explanation of the cause of 

polarization speckle by vector random walks in the complex plane for two components of the vectorial electric fields. 

The surface polarization scattering is investigated in terms of the coherence matrix, and a relationship between the 

statistical properties of the scattered light at the scattering surface and the micro-structure of the anisotropic media has 

been explored to understand the underlying mechanism. The coherence and polarization properties of the stochastic 

electric fields at the far field after propagation have been studied in order to describe their spatial structure and evolution. 

Furthermore, the dynamic properties of polarization speckle have also been investigated in order to investigate the 

simultaneous reduction of coherence and polarization of the scattered light for the first time.  

Keywords: Speckles, polarization, mutual coherence tensor, statistical optics, random walk 

 

1. INTRODUCTION 

Since continuous-wave lasers became commercially available in the early 1960s, extensive studies have been made on 

their basic properties and applications of laser speckle [1-3]. The term speckle patterns is usually associated with the 

fine-scale granular distribution of a light intensity pattern that arises from the interference of coherently superposed 

multiple random optical fields. In the majority of studies on speckle phenomena, these random optical fields have been 

treated as scalar optical fields, and the main interest has been in the statistical properties and applications of the intensity 

distribution of the speckle patterns. Recently, statistical properties of random electric vector fields have come to attract 

new interest because of their importance in wide areas of practical applications such as in biology and metrology. 

Statistical phenomena of random electric vector fields referred to as Polarization Speckle have relevance to the theories 

of speckles, polarization and coherence. Much effort is now being made by researchers to establish a new realm of 

statistical optics based on a unified theory on speckles, coherence and polarization [3,4]. Clearly it is far beyond the 

ability of the authors to cover these complete subjects related to the phenomena of stochastic electric fields. We will 

therefore restrict ourselves to the narrow-scope review on some of our recent works on statistical properties of 

polarization-related speckle phenomena, along with an introduction of mechanism for generation of polarization speckles, 

their coherence and polarization properties, spatial structure and evolution. Furthermore, we will also introduce some 

dynamic properties of polarization speckle produced by a rotating rough-surfaced retardation plate to explore the 

simultaneous reduction of coherence and polarization of the scattered light.  
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ultant polariza

m walk,  n
E  r

he length and p

o preserve fin

Figure 1 Sc

nts of the pola

” The sums fo

omponents of 

herefore the p

f the vectorial

NCE OF PL

view our rece

e how variou

ent materials [

we assume f

n of the birefr

enerated from 

ATION OF

eckle compo

n as stochastic

ization phasor

m amplitudes 

disturbance. F

from the scalar

t phasor of th

ased on the v

lk can be expr

ˆ yx
ii

x ya e x a e
φφ +

ization phaso

irections, with

ation compon

represents the 

phase for k =

nite energy, i.e

chematic diagr

arization phas

or each polariz

f the sum, an

polarization st

l electric field

LARIZATO

BIREFR

nt work on th

s statistical pr

6,7]. 

free-space tran

ringent materi

m the rough sur

F THE CAU

sed of a mu

c electric field

rs with rando

and random

For each comp

r components

he sum establ

vector random

ressed as [5] 

1

1
ˆy

N

n

y
N

φ

=

= ∑E

or (a complex

h them being u

ents, respectiv

n-th compon

x  or y comp

e. 2| |E , even 

ram of random

ors are added 

zation compon

nd in particu

tate will be d

d.     

ON SPECK

RINGENT M

he generation 

roperties pola

nsmission ge

al with a typi

rface, the rela

USE OF PO

ultitude of in

ds is a vectoria

om vector dire

m phases) rep

ponent of pol

 of the polariz

lishes the com

m walks for E

1

1
(

N

n

nN =

= ∑E

x electric fiel

unit vectors. a

vely. N repres

nent of the po

onents of nE
r

when the num

m polarization

vectorially to

nents may be 

ular whether 

determined fro

KLE ON M

MATERIA

of polarizatio

arization spec

ometry for su

ical random su

ationship betw

OLARIZAT

ndependently 

al signal, whic

ections (rando

presenting a 

larization spec

zation phasors

mplex amplitu

xE%  and y
E% , re

ˆxni

xn yna e x a e
φ +

ld vector), xE%

x
a and ya  are

sents the num

olarization pha

respectively. 

mber of comp

n phasor sum 

ogether, they c

large or smal

constructive 

om the resulta

MICROSTR

AL 

on speckle bas

kle depend on

urface polariz

urface height 

ween these hei

TION SPE

phased addi

ch could be un

om polarizatio

monochroma

ckle, a compl

s constitutes a

ude. Figure 1

espectively. G

ˆ) ,yni
e y
φ

           

x and y
E% are t

e the lengths a

mber of polari

asor in the su

The scaling fa

ponent polariz

  

constitute wha

ll, depending o

or destructive

ants of sums 

RUCTURE 

sed on surface

n the microst

zation scatteri

fluctuation ha

ght variations

CKLE 

itive complex

nderstood as a

on states) and

atic or nearly

ex addition o

a random walk

 illustrates an

Given that the

               (1)

two Cartesian

and x
φ  and yφ

ization phasor

um (a complex

factor N1  is

zation phasors

at is known as

on the relative

e interference

for these two

OF A 

e scattering o

tructure of the

ing, where an

as been given

s of the rough

x 

a 

d 

y 

f 

k 

n 

e 

n 

y  

r 

x 

s 

s 

s 

e 

e 

o 

f 

e 

n 

n. 

-

Proc. of SPIE Vol. 10834  108340K-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

surfaced retar

It is influence

birefringent m

arbitrary dire

in this letter 

surface heigh

electric field.

Figure 

       Let the s

( )i
E r through

by 

                      

where (
m

mφ
path passing 

Under the as

depolarizer a

just behind th

                      

with the angu

of generality

coherence ma

                      

rdation plate a

ed by variation

material, and 

ections with re

we will adop

ht fluctuations

 

2 Schematic di

cattered electr

h the Jones ma

                     

, )x y=  is the 

through the r

sumption that

are statistically

he depolarizer

                     

ular brackets <
, we assume 

atrix is given b

                     

and the amplit

ns of surface s

polarization 

eference to th

pt an oversim

s for the roug

agram of surfac

se

ric field imme

atrix ( )T r  for 

                      

effective pha

retardation pl

t the coherenc

y independent

. That is 

     1 2( , )t
W r r

< >L  above 

that the incid

by 

               
i

W

tude variation

slope, shadow

effects introd

e orientation 

mplified mode

gh-surfaced r

ce scattering fro

ection of a typi

ediately behin

a birefringent

         ( ) =T r

ase delay for th

late with surf

ce property of

t, we have th

1 2

1 2

( , )

( , )

xx

yx

i

i

W

W

⎛
⎜=
⎜
⎝

r r

r r

denoting “ens

dent light is a

co
),( 021 ⎜

⎜
⎝

⎛
= Irr

ns of the scatte

wing of retarda

duced to the 

of fast/slow a

el to give som

retardation pla

om a rough surf

cal surface thic

nd the rough s

t material with

( )

0

xj

j

e

e

φ−

−

⎛
⎜⎜
⎝

r

he x̂  or ŷ  co

face height flu

f the incident 

e transmission

1 2

1 2

( , )

( , )

xx

yx

j

j

e

e

φ

φ

Δ

Δ

< >

< >

r r

r r

semble averag

a linearly pol

sisinos

coscos2

θθ
θ

ered electric f

ation plate, mu

scattered wav

axis of the bir

me physical in

ate and the p

face of anisotro

ckness fluctuatio

surface, ( )t
E r ,

h its fast/slow

( )

0

yjφ

⎞
⎟⎟
⎠

r
,           

omponents of t

uctuation and

illumination 

n coherence m

1 2

1 2

( , )

( , )

xy

yy

i

i

W

W

<

<

r r

r r

ge”. For demo

larized, spatia

,
in

sins
2 ⎟

⎟
⎠

⎞

θ
θθ

      

field is in gene

ultiple scatteri

ve travelling 

refringent mat

nsight into th

polarization fl

opic media with

on 

, be related to

w axis  aligned

                    

the electric fie

d the remainin

field and the 

matrix 1( ,t
rW

1 2

1 2

( , )

( , )

xy

yy

j

j

e

e

φ

φ

Δ

Δ

⎞< >
⎟
⎟< >⎠

r r

r r

onstration purp

ally coherent, 

                      

eral extremely

ing and reflec

in the retard

terial. For ana

he relationship

luctuations of

  

h an example of

o the incident 

d along the ŷ d
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where 0I  is the on-axis intensity of the incident field and θ  is the linear polarization angle with the x̂ -axis. Some further 

progress can be made for Eq. (3) when certain assumptions for the effective phase delay and the correlation function of 

the surface thickness are specified [2-3]. For simplicity, the assumption is usually made that the effective phase delays 

(or equivalently the surface height fluctuations) is a Gaussian random process. We have 

                                  

{ }
{ } [{ ]}
{ } {

]}

1 1

1 2

2 2 2 2

1

2 2

2 1 2

exp (2 ) ( 1)( ( )) ( 1)( ( ))

exp ( 2 )( ) exp (2 ) ( 1) ( ) ( 1) ( )

exp ( 2 )( ) exp (2 ) ( 1) ( )

( 1) ( ) 2( 1)( 1) ( ) ( ) ,

lmj

l m

l m l m

l m l

m l m

e j n d d n d d

j n n d j n d n d

j n n d n d

n d n n d d

ϕ π λ

π λ π λ

π λ π λ

Δ ⎡ ⎤< >= − + − − +⎣ ⎦

= − − − −

⎡= − − − < >⎣

+ − < > − − − < >

r r

r r

r
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                                  (5) 

where λ  is the wavelength in vacuum, ( )d r  is the zero mean Gaussian random thickness variation around the average 

thickness d of the birefringent plate, ln and mn are the refractive indices for the birefringent material. Another 

assumption is that the correlation function of the surface thickness also takes Gaussian form. 

                                                             { }2 2 2

1 2 1 2( ) ( ) exp | | ,d dd d rσ< >= − −r r r r                                                                (6) 

where 2

dσ  and dr are mutually independent quantities indicating the variance of ( )d r and the radius at which the 

normalized surface thickness correlation falls to 1 e , respectively. Therefore, the transmission coherence tensor of the 

scattered electric field immediately behind the scattering layer becomes a complex Hermitian matrix. 

                                       { }2 2 2 2 2 2

0( ) cos exp 4 ( ) ( 1) [1 exp( )] ,t

xx d x dW r I n r rθ π σ λΔ = − − − −Δ                                        (7.1) 
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yy d y dW r I n r rθ π σ λΔ = − − − − Δ                                       (7.2) 
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       (7.3) 

        When Equations (7.1)-(7.3) have been derived, the surface of the polarization scattering spot is assumed to be rough 

and wide-sense stationary where its correlation function depends only on the differences of measurement coordinates:

1 2| |rΔ = −r r . These results provide us with a specific relationship between the correlation properties of the transmitted 

electric fields and the micro-structure of the rough surface of the birefringent material. 

           To provide physical insight into these results, we have presented some numerical examples by taking the 

following parameters: 4, 1.486xnθ π= = and 1.658yn =  for the birefringent material: calcite [8]. Note the fact that the 

normalized correlation functions in Eqs. (7) approach their non-zero asymptotes, respectively for large separation rΔ . 

These asymptotes indicate that the transmitted electric field passing through the retardation plate has a non-negligible 

specular transmission of the incident light, as can be easily seen by noting the flat correlation functions when 0dσ = , in 

which only a specular transmission light exists. To study the non-specular component in the scattered light, it is helpful 

to subtract out these asymptotes of the correlation functions, yielding 

                                                                                      ( ) ( ) ( ) .t t t

m n m n m n'W r W r WΔ = Δ − +∞                                                                (8) 

The coherence area cA  of this non-specular component of the scattered electric field is found by evaluating [2] 

                                                                                                     
2

0
2 ( )t

cA rd rπ μ
+∞

= Δ Δ∫ ,                                                                                 (9) 

where 
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         Figure 3(b) shows the spatial degree of polarization for the scattered electric field vs. the standard deviation for the 

surface thickness fluctuation normalized by the wavelength. As dσ λ increases, the spatial degree of polarization 

reduces to zero monotonically. Note that when the surface-thickness standard deviation reaches beyond 2λ , the spatial 

degree of polarization for the scattered light at the surface is less than 1 10 indicating a depolarization effect to scramble 

the incident polarization. Therefore, the scattered electric field at the surface can realistically be considered as spatially 

unpolarized light. Comparing Fig. 3(a) and Fig. 3(b), we further note that the widths at half maximum of tP is much 

broader than that of stcc AA indicating that the realization of depolarization is much more difficult than that of 

decoherence for the scattered light introduced by increasing the standard deviation of the rough-surfaced retardation 

plate. 

       Under the assumption of a large surface roughness with large phase variance owing to the smaller lateral distance 

required to obtain a phase difference of 2π , we can make further progress. In this case the second exponential terms in 

Eq. (7) may be series expanded, and only the first two terms in the series are essential. For 2 2 2( )(1 1 (2 ))l m dn n k σ π− − >>  , 

( , , )l m x y= , we have 

                                    
{ }22 2 2 2exp{ } ( ) 2( 1)(exp 2 .1)

d l m l m dlm
k n n n n rj σϕ ⎡ ⎤− + − − ΔΔ − ⎣= ⎦r

                                    (12) 

The approximation in Eq. (12) has resulted in breaking down the double exponential into a single exponential facilitating 

further mathematical analysis in order later to arrive at an analytical solutions for the propagation of the coherence 

matrix. Under the paraxial approximation, the propagation of the coherence matrix through a complex-valued ABCD 

optical system is given by 

                                                              *

1 2( ) ( ) ( ) ( ) .o t G G d d= ∫∫1 2 1 2 1 1 2 2
W p ,p W r ,r r ,p r ,p r r                                           (13) 

where the superscript o indicates the field in the observation plane, and the Green’s function in the matrix formalism is 

                                                               ( ) ( ){ }2 2, exp .2
2 2

jk jk
G A D

B Bπ
= − − − ⋅ +r p r r p p                                          (14) 

In the equation above, j is the imaginary unit and the A, B and D are complex values that can be determined by 

multiplying the matrices for all the individual optical components in the optical train, i.e. lenses, free space propagation 

and apertures [11-12]. The benefit of the above expression in Eq. (6) is that it usually enables us to give an analytical 

result, covering a broad range of optical systems. In arriving at the above expression, we have tacitly assumed that the 

refractive indices in the input and output planes are identical, but not necessarily unity. As an example, we will consider 

a typical case of free space propagation over a distance z with a preceding aperture of size sr  to model the illuminating 

spot size, and thus the corresponding ABCD matrix is 

                                                                                            
1 /

/ 1

R

R

jz z z

j z

−⎛ ⎞
⎜ ⎟−⎝ ⎠

，                                                                    (15) 

where Rz  is the Rayleigh range 2 2R sz kr= . By substituting these elements of the ABCD matrix into Eq. (14), one can 

study the changes in the degree of coherence and the degree of polarization for free space propagation. 

        Figure 4(a) gives the absolute values of the degree of coherence of the polarization speckle generated by the rough-

surfaced retardation plate at two positions 1 2Δ = −p p p located symmetrically with respect to the ẑ axis along the 

normalized propagation distance.  It can readily be seen that the degree of coherence takes a large value close to unity for 

two points located near the optical axis. Fig. 4(b) shows the degree of polarization of the polarization speckle for free-

space propagation, plotted against the normalized propagation distance
Rz z , and the normalized lateral distance 

measured in spot size
sp r . As expected, the degree of polarization changes appreciably depending both on the 

propagation distance z and on the polarization angle of the incident beam. Instead of a uniform distribution for the 

modulated electric fields just behind the depolarizer, the spatial degree of polarization for the polarization speckle after 

propagation does not remain uniform.  
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      Under the paraxial approximation, the mutual coherence matrix for the electric field at 
1ρ on 1st observation plane after passing 

through a complex ABCD optical system and that for the field at 2ρ  on 2nd plane displaced by a distance zΔ  is connected by Eq. (13) 

and (14). Let 
1M be ABCD matrix for the entire optical system under consideration, determined by the multiplication of the matrices 

for all the individual optical components, i.e., the lenses, free space propagations and aperture. For our system in Fig. 5, the 

relationship between ABCD matrix 
1M at the 1st observation plane and 

2M for the 2nd observation plane can be chained together as: 

                                                                                               
2 1

1
.

0 1

zΔ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

M M                                                                                        (17) 

     On substituting from Eq. (17) into Eq. (13), we obtain the expressions for the propagation of coherence tensor for the 

polarization speckle at two observation planes with a separation distance of zΔ . That is 
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                          (19) 

    Without loss of generality and for demonstration purposes only, the optical system has been chosen as free-space 

propagation with its ABCD matrix given in Eq. (15). From the analytic expressions of the coherence tensor in Eq. (18) 

and (19), we can obtain the 3-D distribution for the degree of coherence and degree of polarization for polarization 

speckle. They are 
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                                 (20) 

and 

         { }{ }2 2
1/ 2

2
2 2 2tan ( ) .( 1) ( 1) tan ( 1) (( ) 1 4 1 ex 1p )d x y y x x y

k n n n n n nP θ σ θ
−⎡ ⎤− − − +⎡ ⎤= − − − ⎣ ⎦− −⎣ ⎦ρ                (21) 

    It’s interesting to note that the spatial degree of polarization for the polarization speckle is independent of the 

location and stay constant during propagation. Figure 6 shows the contours of the 3-D correlation function with

1 2| |ρΔ = −ρ ρ . Note the fact that the illumination spot size sr is small compared with the distance to the observation 

plane z , and the transverse and longitudinal correlation widths have been measured by the widths of the curves at their 

half-maxima, i.e.  | | 0.5μ =  . From Fig. 6, we find that a polarization speckle has a typical needle shaped structure and 

its extent in the axial dimension is much greater than the extent in the transverse dimension.  Within this needle shaped 

structure, the polarization states have become scrambled and the perfectly polarized coherent incident beam has become 

spatially partially polarized or depolarized depending on the polarization direction of the incident electric field vector as 

compared to the optical axis of the birefringent material with rough surface.  
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         Another significant quantity to investigate is the degree of polarization for the modulated scattered electric field. After taking 

0rΔ = and 0τ = , we substitute to the mutual coherence tensor of the transmission beam and derive the degree of polarization for 

the transmitted light through a rotating depolarizer. Figure 8(b) shows the degree of polarization which decreases as the standard 

deviation of the surface thickness increases. As an example, when the standard deviation of surface thickness is around 3 times the 

wavelength of the incident light, i.e. 3dσ λ ≈ , the degree of polarization approaches to zero and the transmitted light can be 

reasonably considered as unpolarized light. From Fig. 3(a) and Fig. 8(a), we note that the coherence area is also close to zero and the 

corresponding coherence time still reduces to a finite value without becoming zero. Therefore, the beam passing through the rotating 

rough-surfaced retardation plate can serve as an ideal light source as a quasi-monochromatic, spatially incoherent, unpolarized light 

source, which has been used for coherence tensor holography for coherence and polarization synthesis.  

6. CONCLUSIONS 

In summary, we reviewed our recent work on the generation and spatio-temporal evolution of polarization speckle 

generated by a birefringent material with a rough surface. After giving an intuitive explanation of the cause of 

polarization speckle by vector random walks of polarization phasors, we reviewed the mechanism for the generation of 

polarization speckle from the rough-surfaced retardation plate and investigated the relationship between the statistical 

properties of the scattered light and the micro-structure of the anisotropic media. The coherence and polarization 

properties of the stochastic electric field in the far field after propagation has been studied with respect to its spatial 

structure and evolution. Furthermore, the dynamic properties of polarization speckle by a rotating rough-surfaced 

retardation plate have also been examined to explore the simultaneous reduction of coherence and polarization of the 

scattered light.  
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