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Generation and Thermalization of Plasma Waves

By T. H. Stix *

A fully ionized gas immersed in an axial magnetic
field may exhibit low-frequency oscillations where
the electric field and macroscopic velocity per-
turbations are perpendicular to the axis. The
ordinary and extraordinary hydromagnetic waves of
Alfvén ! and Astrom 2 are examples of these transverse
oscillations. Ion cyclotron waves?® are another
example. The physical environment appropriate to
these low-frequency transverse waves is present in
several types of proposed thermonuclear reactors,
including the stellarator ¢ and the pyrotron.’

For several reasons, the thermonuclear experimen-
tist may be interested in generating these waves.
First, they are a hydromagnetic phenomenon that can
be produced in the laboratory and experimental
data can be checked against hydromagnetic theory.
Second, generating and observing these waves at
low power may be a useful diagnostic technique for
determining plasma characteristics which are impor-
tant parameters of these waves such as magnetic
field strength, plasma density and density distribution,
plasma temperature and composition, and the state
of ionization of the plasma. TFinally, generating
these waves at high power is a possible scheme for
rapid heating of the plasma. Calculations on ion
cyclotron wave generation and thermalization in-
dicate an efficiency, in a typical example, of more
than 659, for the transfer of power from an rf
power source into effective random ion motion.

An effect which is termed “ cyclotron damping”
is found to be extremely important in the theory of
ion cyclotron waves. Cyclotron damping causes free
ion cyclotron waves to decay exponentially with
time, or propagated ion cyclotron waves to decay
exponentially with axial distance. TFurthermore,
cyclotron damping converts the energy of the wave
motion into effectively random transverse ion motion,
which makes ion cyclotron heating especially useful
for a pyrotron-type device.

Cyclotron damping occurs for transverse oscillations
which are periodic both in time and in axial distance.
Ions moving along lines of force will “feel” the
oscillations of the transverse electric field at a
frequency which differs from the plasma rest frame
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frequency by the Doppler shift. Some ions will
“feel ” the oscillations at their own cyclotron fre-
quency, and Lenard ® has pointed out that these
ions will absorb energy at a constant rate from the
electric fields. Dawson ¢ has shown that the presence
of classes of such ions leads to the damping with
distance of propagated oscillations. In the excellent
paper of Gershman 7 the effects of cyclotron damping
on ordinary and extraordinary hydromagnetic waves
have been computed.

The kinematic effects of cyclotron damping appear
in the off-diagonal components,

nmim { waw, Yav and nim  wyw, iy,

of the stress tensor. The axial ion velocity w, is a
constant of the motion through first order in these
transverse oscillations, and is a zero-order quantity.
The off-diagonal stress tensor terms are then first
order terms, and must be included in a theory of
small-amplitude oscillations. Although the stress
tensor does not appear explicitly, it is the calculation
of these momentum transport quantities which
occupies the first section of this paper. A dispersion
relation is obtained at the end of this section.

Then the physical effects of cyclotron damping
are discussed in terms of phase relations, power
absorption and damping rates. The reduction of the
dispersion relation and the phase relations to the
undamped results previously obtained (Ref. 3) is
shown for frequencies slightly removed from the ion
cyclotron frequency.

After that we calculate the energy input from an
inducing coil to a cylindrical plasma. The cir-
cumstances include excitation of the plasma in the
immediate neighborhood of the ion cyclotron {fre-
quency and excitation of ion cyclotron waves and
hydromagnetic waves. Estimates are made for the
width of the power absorption resonances, and
the power transferred to the plasma is compared to the
obmic losses in the induction coil. For a plasma of
appreciable density, the power transfer is efficient only
in the cases of wave generation. A plasma heating
scheme proposed in the last section is to generate ion
cyclotron waves at a long wave-length, in order to
achieve efficient transfer from the rf power source,
and allow the waves to propagate through a region
of magnetic field which decreases with axial distance



126 SESSION A-5

P/361

T. H. STIX

from the coill The wavelength of the 1on cyclotron
waves becomes shorter and shorter, and finally local
cyclotron damping starts to occur In this local
region, the waves damp out and the wave energy 1s
converted mto energy of effectively random transverse
1on motion

DISPERSION RELATION FOR CYCLOTRON
DAMPING

Small amplitude oscillations perpendicular to the
lines of force are considered for a fully iomized gas
mmersed 1n an axial magnetic field Particle colli-
stons are infrequent and the temperature of the gas
corresponding to 1on motions perpendicular to the
lines of force 1s assumed to be zero  The temperature
of 1ons corresponding to motions parallel to the lines
of force 1s taken to be finite We consider oscillations
which are periodic m axial distance and 1n time, and
neglect effects of resistivity gravity wiscosity and
electron 1mertia

For transverse oscillations the velocity of an
mdividual 10n along a lime of force 1s approximately
constant We divide up the plasma into a massless
electron fliid and into constituent streams of ions,
where each stream 1s populated by ions with the
same zero-order axial velocity We solve the equa-
tion of motion for each constituent stream separately
m terms of the transverse electric field along a line of
force Adding the streams together gives a charge
and current distribution due to the 1on motions in
terms of the electric field Inserting this 1on charge
and current distribution into Ohm’s Law and Max-
well’s equations yields homogeneous equations 1n the
transverse electric fields The solution of these
equations determines the x and y dependence of the
electric fields for a given z and ¢ dependence, and
the elmination of the electric field variables from the
equation yields a dispersion relation for the system

The coeffictents 1 the dispersion relation are
mntegrals over the distribution of zero-order parallel
on velocities Followmng a suggestion made by
Ira Bernstemn ® we can avoid divergences in these
mntegrals at resonance by considering an initial value
problem 1n the 1on motion

A Tist of symbols used in this paper 1s given in
Table 1, together with thewr defimitions Dimension-
less quantities will be used extensively

The first-order lmearized equation for the macro-
scopic motion of 10ns in one of the constituent streams 1s

oa oua Ze
T T

We assume that the first-order electric and magnetic
fields vary as the real parts of @(x, y) exp (skz 4+ 1wt)
and %(x v} exp (tkz + wwi), where the components

of @ and B may be complex A consequence of the
massless electron motion 1s that €, 15 zero  Using this
fact and Maxwell’s equations, ¥ m equation (1) can
be expressed n terms of €, and &,

A solution to (1} will then express the transverse
velocity in terms of the transverse electric fields We

@ +uxeB, + we, xB (1)

choose that particular solution w, which fits the
mitial values #y; = 1wy, =0 at T =1, and sum u,
over all the constituent streams, to obtamn v, In
dimensionless form, we have

v, = Re{(1/Q)[ — Ay + A_ + 1D.. + 1D_]
X B e#Z+9T 4 (JO— A, — A_+1D,—1D_)
NG % €02 +1AT) (2)

where
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x s [(T — T,)(1 + AJdA, (3)

b 1 (% (A-Q\ A
iM—T_fo/ ~ g< % 1+ A

X AL = cos[(T — To) (1 £ A)J}dA  (4)

The integrals m (3) and (4) approach long-time
asymptotic values For values of T — T > |xsy|~L,
which means a time long compared with the time 1t
takes 1ons with the rms velocity to travel an axial
distance equal to A/9, the integrals may be reason-
ably approximated by thewr asymptotic values

For a Maxwellian distribution of axial 1on velocities
characterized by a mean axial 1on energy of &7,/2,
A, has the long-time asymptotic form

AByZ, .

T
1, — L I i et S 5
de=gn s 7 = sy T B

where p, = (1 4 Q) (xsy)

For large values of T — T; we may approximate
D, by dropping the cosmne term and taking the
principal part of the remaming mtegral For a
Maxwellian distribution, the long-time asymptotic
form 1s convemently given by D, -1, —3% A
graph of xs,/, versus p, 1s shown in Fig. 1 Also
shown on the graph 1s |x|s,d, I, reaches peak
values of 0 54|xs|~ at [p.| ~ 10 Useful approxim-
ations to [, are I, A (2xsyp. )t for [po|>1 and
I~ poluse)™ for [po] <1
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Table 1

Integers and Operators

Q &0:+ 60 + €0
3 3 o Q. €0: + €0

V & vt6,, 1€ ,, 0 Q=Re{enz+ior)
Re real part of

A atomic weight
Zi iomnic atomic number

€ €y, €; €, €y unit vectors

cgs-Gausstan Umits

B first-order magnetic field

B, zero-order axial magnetic field strength

c velocity of light

[ first-order electric field

e electronic charge

3 sheet current density in “ ideal coil ”

k axial wave-number, 4- 27/4

f Boltzmann’s constant

leoil over-all length of induction coil

m ion mass

We, Ni number of electrons, ions per unit volume

n(w,)dw, number of ions per unit volume with w, in

range dw,

tc radius of induction coil

Yo radius of plasma boundary

7,0,z 4,9, 2t cylindrical and Cartesian coordinates; time

T ion temperature in °K

u first order macroscopic velocity for a single

constituent stream

b macroscopic plasma velocity

w individual ion velocity

A =2 axial wave-length

[} angular frequency

Wei angular ion cyclotron frequency, ZieB,/nic

Dimensionless Units

Az Eq. (3), 5) R, 7ooi/6

B B, S Eq. (23)

D Eq. 4) s, [287ijmc?)%

E ¢B, T weift

et EEq.(z(?; M vie

q. wei

g () a(t) i NN c 27
c /J ¢ ni a AnnimcBy

Iy, Ju Ky Ref. 9 fm Eq. (20)

I Fig. 1y Eq. (9)

j* 15+ B, 7 Eq. (18)

L oci lecilfc ® kelwel

M,N Eq. (14) A Q + uwye—t

P Eq. (22) » Eq. (8)

b (L Qles) & Eq. (23)

QU Vv,w Section 3 04, 0, cf Eq. (7)

R roocife € w/wci

We look now at particle energies rather than
velocities. Let md{u? + u,2>/2 denote the average
over an oscillatory cycle of the transverse energy of
an ion in a single constituent stream. Summing
this average energy over all the constituent streams,
we obtain

I mdoug? g2y = et {F o |Ey + 0B 2
+4- F_|E; — tE,2}  (6)
where F has the long-time asymptotic form for a

Maxwellian distribution, I, — Iy 4- (T — T,)4 /2.
F, is the contribution to the sum from ions which do

not “feel” their ion cyclotron frequency, and repre-
sents the kinetic energy associated with the non-
resonant part of the forced ion oscillations. The second
term is the contribution to the sum from ions which
do “ feel ” their ion cyclotron frequency. The energy
associated with a single-constituent stream at exact
resonance increases as the square of the elapsed time.
However, because of the spread in axial velocities,
fewer and fewer streams remain in resonance as time
goes on, so that the total energy associated with all
the streams increases only linearly with time. Simi-
larly, the velocity m, of a single-constituent stream
at exact resonance increases linearly with elapsed
time, but the summed velocity w, asymptotically
approaches a constant magnitude.

The physical situation we wish to approximate in
a self-consistent manner is a plasma with steady-
state oscillations. A low but finite collision rate in
the plasma creates a quasi-equilibrium situation.
(There may be a heating of the plasma due to the
oscillations, which we can make arbitrarily slow by
reducing the amplitude of oscillation.) To help
understand this quasi-equilibrium, we consider, for
simplicity, those collisions which interchange the
axial velocities of the colliding ions but leave the
transverse velocities of each ion unchanged. Each
colliding ion will be removed from one constituent
stream and put into another. The transverse velocity
an ion carries with it from the first stream may be
different from the transverse velocity at that point
associated with the second stream. If so, this dif-
ference will be random. In particular, an ion moving
from a resonant stream to a non-resonant stream
will bring with it a large transverse velocity, almost
all of which will be random with respect to the
non-resonant stream. A large number of such tran-
sitions will increase the temperature of the trans-
verse motion of the non-resonant ions. Conversely,
an ion moving from a non-resonant stream to
a resonant stream will bring with it almost no
transverse velocity. It will then be accelerated
by the transverse electric fields from an initial state
of almost zero transverse velocity. A large number
of such transitions will cause energy to be absorbed
by the resonant ions from the electric fields in the
plasma. These two processes are the thermalization
and energy absorption mechanisms of cyclotron
damping.

With these processes as guides, we can construct a
simplified model of a quasi-equilibrium plasma to
which our ion orbit calulations would accurately
apply. We consider a plasma in which each ion
undergoes a catastrophe at a time 7 after its previous
catastrophe. FEach catastrophe causes the ion’s trans-
verse velocity to be reduced to zero. The macroscopic
velocity (w,> for this plasma is obtained from (2)
by averaging over catastrophe times,

{v, > = -rlfo v, a7,

This average has the same asymptotic form for
large v that v, has for large 7" — T;. (v >givesus
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the plasma ion current density, which is all we require.
Plasma electron current is obtained from Ohm’s Law
(Eq. 5a, Ref. 8) which states that electrons move
freely along magnetic lines of force and with a velo-
city cEXe, across magnetic lines of force. In
Maxwell’s equations (Eq. 62-94, Ref. 3) we can
neglect displacement current in both the plasma and
vacuum for the wave-lengths and frequencies of
interest to us. We obtain the differential equation
for the transverse electric field in the plasma

[Vx (VXE)], = o;E + i0,E X, (7)

where oy =a(tdy —i4_ — 1+ I, + I_), and
op=a(fdy +44_+Q+ 7, —I_), and the long-
time asymptotic expressions are to be used for A..

In cylindrical coordinates, with no dependence on 0,
and when ¢, and o, are independent of position, the #
and 6 components of Eq. (7) may be combined to
give Bessel’s equation. The solution which is finite

at the origin ? is E,.Nfierv J1(»R), where

0.2 — 202 4 x* — 0,2
op — %

2= (8)
v is the radial wave-number. By going to the limit
of large radii, Eq. (8) may be thought of as the
dispersion relation for a Cartesian coordinate system,
where » and x are wave-numbers in the appropriate

Cartesian directions.

PHASE RELATIONS AND CYCLOTRON
DAMPING RATES

We distinguish four regions, determined by fre-
quency, wavelength, density, and temperature,

Table 2. Approximate Dispersion Relations, o, and o,

Duspersion relation a, Gy
I v%:—xz[ll—_ziil + 0, jad o
m gt o (i gy
oI Q2 — ’;2 _ 7‘3; _ %f%;

where the oscillations described by the dispersion
relation (8) may be rather easily characterized. The
spectrum also contains other regions, where the plas-
ma behavior is not so easily characterized. The kine-
matics in the other regions can, however, also be
obtained from the equations of the preceding section.
The four regions are labelled:

Case I:  Neighborhood of ion cyclotron frequency
Case II:
Case III: Torsional hydromagnetic waves

Ion cyclotron waves

Case 1V: Compressional hydromagnetic waves.

Four parameters are particularly important in
characterizing these regions, |#|sy, p., y, and ¥ x*/a,

where
oA Z3Bgni A3
= =520%x10-18 — =
v < % >Q=:F I % AL Ty ®)
%2 mk2c? A
—_— T 16 —
= pP—— 2.03x10 TaniE (10)

|»¢|sy is the ratio of the velocity of an ion of energy
f7; to the phase velocity of the oscillation, and is
small in cases of practical interest. It may be eva-
luated numerically by inspection of equation (5).
p+ measures the proximity of the oscillation f{re-
quency to the ion cyclotron frequency. y large or
small will determine whether or not the electric
field in the plasma is appreciably affected by the
induced field due to plasma currents. x?/x large or
small was the principal criterion found in Ref. (3)
separating ion cyclotron waves from hydromagnetic
waves. In detail, the conditionsin the four regions are:

Case I:  |pil<lor|p_| <1, sy < 1, #2/a > 1
Case II: [pi|>1, p_|>1, wfa>1, Q~ +1
Case ITL: [po|>1, [p—| > 1, #¥la<k 1

Case IV: [po > 1, [p|>1, »¥la < 1. (11)

Using (2), the radial component of (7), and ap-
proximations based on (11), we obtain the approximate
dispersion relations and phase relations for each of
the four cases given in Tables 2 and 3. Some addi-
tional comments may be made on the separate cases.
References will be made to (11), Table 2 and Table 3
without specific mention.

Case |

The ions rotate in circular orbits with the same
sense of rotation as that for a free ion in a magnetic
field. The ion wvelocity vector is thus circularly
polarized. An electric field with the same circular
polarization and phase exists in the plasma, so that
energy is being put into the ions. Taking the time
average of weE, and using the phase relations of
Table 3 to obtain v in terms of E, we obtain a power

Table 3. Phase Relations
E, 7y 9, & 174
iEg il E, + iEy
LoTEy a A
I —<1+ :’;)% -0 %:8
TILa 5:: —Q(1+ vz) Fi
Ve Q(1+ ::) 5; L

8 Valid for ov*)) xS,



GENERATION AND THERMALIZATION OF PLASMA WAVES 129

input for Cases I and II which is the same as given
by (6), where the energy in each constituent stream
was summed over all the streams. The same power
input for Case 1 was also obtained by Kulsrud and
Lenard ¢ through quite a different calculation.

For Case I, E, varies as I; (constant xR), where the
absolute value of the constant lies between 1 and
N2. For [x|Ry <1, E;~R for R<R, and is
equal to the E, that would exist in the region in the
absence of plasma due to the induction coil, E vacuvm,
This £, cannot match the boundary condition for
a free oscillation (see Ref. 3), so the oscillations can
only be forced or driven.

For sufficiently low density or short wavelength,
y < 1 and E, is very small compared to E, The
total vector electric field in the plasma is approxi-
mately equal to eyF,"uum,  E, is in phase with v,
and in this circumstance cyclotron damping is a
strong effect. For y > 1, corresponding to higher
density or longer wavelength, F, is approximately
equal in magnitude to E, The physical explanation
for this set of circumstances was offered first by
Kulsrud.® The currents due to the radial ion
motion and the associated longitudinal electron
motion induce a fluctuating magnetic field and in
turn a radial electric field, E,. It turns out that this
radial electric field is phased so that the resultant
E, and E, combination have principally a circular
polarization which is opposite to that of the ion mo-
tion, v, and v, The wrongly polarized electric
field does not put energy into the ions. There is a
small electric field of the correct polarization which
supplies enough energy to the ions to overcome the
now much reduced cyclotron damping effect. It
will turn out that at appreciable densities this in-
ductive effect greatly reduces the efficiency of ion
cyclotron heating in the Case I region.

Cases Il, lil and IV

These are possible oscillatory modes of the plasma-
The simple criterion, [p4|> 1 and |p_|> 1 is suffi-
cient to reduce the formalism in this paper to the
simpler approach of Ref. (3), where the stress tensor
was neglected in the equation of motion.

In Cases IIT and IV and in the undamped form of
Case I, the electric field in the plasma is in quadrature
with the ion velocity. No energy is transferred to
or from the plasma wave in the steady state. How-
ever, when these waves are externally generated by an
induction coil, the electric field due to the coil will
appear in the plasma in phase with the ion velocity and
in quadrature with the coil current. The electric
field due to plasma currents associated with the
generated wave will be in quadrature with the ion
velocity but in phase with the coil current. This
field is the “back emf”. Power flows from the
coil to the plasma wave.

Of particular interest is the case for ion cyclotron
waves which are slightly damped by a small amount
of cyclotron damping. This situation occurs for
values of . such that 4 ., is small but not negligibly
small compared to [[.]|. (See Fig. 1.) In the

constituent stream derivation, » and Q were assumed
real. The dispersion relation is satisfied by com-
plex values of ». Physically, the cyclotron damping
power is furnished by a divergence in the radial (or
x-direction) flow of energy. Writing » = vy + o,
where », and », are real, (»)~! is the x-direction
e-folding distance for the damping of velocity and
field amplitudes. We are also interested in two
other cases.

When Q and » are real, but » is complex, the
cyclotron damping energy is supplied by a divergence
in the axial flow of power. Writing »x = %, -+ i,
(3,)"t is the axial damping distance for the wave
amplitudes. Finally, when » and x» are real but
Q= Q, + 40, is complex, the cyclotron damping
energy is supplied by the wave itself, causing it to
damp out with time at a rate €.

For slightly damped waves, the damping rate and
distances are linearly related to one another with
coefficients determined by the undamped waves.
Using such linearized perturbations of the dispersion
relation, we obtain the damping rate and reciprocal
damping distance for slightly damped ion cyclotron
waves,

A o o 2
Q, =24, (1 4+ Q)2 :7i<?+m> . (12)
ad . (vt 4+ 4vEe + 4f)

M= T T 13)

Equation (13), for the case » = 0, has also been
obtained by Dawson.8

ENERGY INPUT TO A PLASMA FROM AN
INDUCTION COIL OF FINITE LENGTH

The relations given in the preceding sections apply
to steady-state oscillations in a cylinder of plasma
of infinite length. In practice, one has a plasma of
finite length and an induction coil considerably
shorter than the plasma. The true resonant modes
of such a plasma are periodic in the axial length.
However, we shall assume that wave energy which is
propagated axially away from the coil is thermalized
and absorbed without reflection. Assuming rapid
thermalization, the rate of temperature rise of a plasma
in a finite size reactor (e.g., stellarator or pyrotron)
may be found by dividing the net power input to the
plasma by the heat capacity of the plasma. For
practical cases, it is useful to have a ratio of power
inputs rather than an absolute level. We choose to
compare the power input to the plasma with the rf
power which is wasted, in a practical system, in ohmic
losses in the induction coil. This ohmic loss is the
principal source of inefficiency in a practical plasma
heating system. And in a diagnostic experiment,
power absorption by the plasma must be measured
above the background of this ohmic loss. For-
tunately, in both plasma heating and plasma diag-
nostic experiments, this power ratio is convenient
to measure.



130 SESSION A-5

P/361

T. H. STIX

We call this power ratio W, and break W up into
a product of three more ratios, such that W = QVU.
We discuss these ratios in turn.

w

W is the average rf power input to the plasma
divided by the average rf ohmic power loss in the
coil system. The coil system includes not only the
exciting coil, but also the connecting leads and
the resonating elements, such as capacitors.

Q

Q is the figure of merit for the coil system. It is
defined as the peak rf magnetic energy stored in
the coil system multiplied by the angular frequency,
o, and divided by the average 1f ohmic power loss
in the coil system. Typical Q values in the mega-
cycle range would run from 200 to 400.

v

A practical coil system stores magnetic energy in
regions other than inside the volume normally oc-
cupied by plasma. To allow room for the vacuum
chamber wall and for electrical insulation, the radius
of the plasma boundary may be only one half the
coil radius. Magnetic energy will also be stored
outside the coil volume in the stray inductances of the
resonating elements and connecting leads. We there-
fore introduce a storage ratio, ¥, defined under no-
plasma conditions. V is the peak rf magnetic
energy stored in an “ideal coil” divided by the
peak rf magnetic energy stored in the coil system.
The “ideal coil” is defined to have the following
characteristics: (a) its radius is the same as the
radius of the plasma boundary, (&) it carries a sheet
current proportional to cos (kz + wt), (¢) it has
zero stray inductance, and (4) internal to the ideal
coil, the electromagnetic field produced by the
sheet current of the ideal coil is the same as the
electromagnetic field produced by the actual coil
system,

If the current distribution in a physical coil system
is best approximated by standing waves, we would
superimpose two running-wave ideal coils. The
numerator of 7 should be the sum of the magnetic
energies for both ideal coils. TFor a practical
case, we consider an induction coil constructed of
individual sections which are spaced axially every
half wavelength and which are electrically connected
in series. The azimuthal direction of current flow
alternates from section to section. We denote by
P; that part of the total coil system inductance,
P, which is associated with the fundamental
(cos kzcos wt) component of the induction-coil
current. If each section contains N turns spread
evenly over a 1/Mth part of a wavelength, we obtain,
neglecting end effects, the end-to-end %%,

- 5
Fy = 16 % 10-9 lMNkrc sin <£>] Leonr
- M

X (211 (kro) Ky (kre)]  (14)

and the storage ratio is

Iy (kro) Ky (kre) 2
Iy (kre) Ky (kro) Zes

where % and % are in henries, and /lep is in cm.
Evaluating V in (14) for typical cases will reveal
the high penalty for short wavelengths and small
7y to 7, ratios. In practice, values of V' may run
from 0.05 to 0.2.

u

The numerator of U is the average power input
to the plasma for a given ideal-coil current. The
denominator of U is the product of the angular fre-
quency, o, and the peak rf magnetic energy stored
in the ideal coil under a no-plasma condition with the
same ideal-coil current.

V= (15)

Long-coil Approximation

We consider now an induction coil of finite length.
We divide the plasma into three sections: to the
left of, underneath, and to the right of the coil. We
consider the plasma section underneath the coil as
though it were a plasma section underneath an in-
duction coil of infinite length. End effects are
neglected.

A coil of finite length will excite a band of wave-
lengths. 1If the band is too broad, it may be broken
into groups of narrower band-widths. A calculation
may be made for each group, and the results super-
imposed. In treating Case I, we shall assume that
the band of excited wavelengths lies entirely within
the range allowed by the criteria in (11), and we
shall neglect the change of plasma kinematics within
the band. In Cases II, III and IV, the effect of the
wide band-width for a short coil will appear in the
shape and amplitude of the power absorption curve.

In Case I, the power absorption calculation will be
based on the cyclotron damping integrals (4). In
discussing these integrals, it was mentioned that
ions would reach their asymptotic velocity after
being subjected to the electric fields for times long
compared with the time it would take an ion with
energy f1,/2 to travel the distance A4/9. For these
integrals to apply to ions drifting through the coil
section, the coil length must be long compared to
/9.

Case |

We consider the case |x|R,<(1 so that E,~y
Egvacuum - [pderneath the induction coil, the power
input per unit volume may be obtained from (6).
We use the phase relation in Table 3 to obtain

Ey 4+ iE, in terms of E gracuum, - To obtain the power
ratio Uy, we integrate the power input per unit
volume over the plasma volume, and divide by the
reactive power stored magnetically in the ideal
coil. For [#[Ry <1, we may use a solenoid ap-
proximation. We obtain, at Q = —1 or 1,

oy _n2702.
UI‘1+y2 272

(16)
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Ut is a maximum for y = 1. At higher values of
y (higher density, longer wavelength), the plasma-
current inductive effect reduces the efficiency. The
shape and width of the resonance depend on the
magnitude of y. We derive an improved version of
E,/iE,in Table 3, Case I, using 0, = 0, = a(id . +1),
and obtain by numerical calculation the following
half-power frequencies.

Q) =1 1+707 for y « 1,
‘Q% =14 1159 fory>»1,
o1 J1—177 _
Q, 11_“11'417} fory =1, (17)
where
AT
7 :)LBOZ;. (18)

The resonant peak in the first two cases occurs at
|Q = 1. In the p =1 case, the peak occurs at
|Q] = 1—8.0%, and the calculated power absorption
at the peak is 2.6 times the absorption at [Q =1
(Eq. 16). For larger values of y, this peak moves into
the region of ion cyclotron waves. If one evaluates
p+, which measures when damping can occur (see
Fig. 1), at the resonant frequency for undamped ion
cyclotron waves, its numerical value turns out to be
approximately equal to y. For y < 1 then, ion cyclo-
tron waves cannot exist because they are overdamped.
y =1 is an intermediate case. Ifor y > 1, cyclotron
damping will be small, and there is a weak power
absorption peak at Q] =1 and a strong peak asso-
ciated with wave generation. The calculation of
power absorption at the strong peak is done in the
following section.

Cases Il, lll and IV

We consider now the cases where we have a reso-
nance of the total plasma. The power which the
exciting coil puts into the plasma in the coil section
is propagated or radiated, axially out each end of the
section as a hydromagnetic or ion cyclotron resonance
wave. (For Case II, a small amount of power will
also go into cyclotron damping inside the coil section.)

We expect running waves to squirt out each end
of the coil, and to run axially down the plasma to
infinity in each direction. We divide the plasma
into three axial sections, and join the solutions for
each section to one another by making the wave
amplitudes continuous at the joint. Further details
of end effects at the joints are not considered. For a
left-moving running wave, for instance, we assume
that everywhere to the left of the leit end of the ex-
citing coil the wave motion is a natural mode of
oscillation of the system, and that the wave amplitude
is constant. To the right of the right end of the
exciting coil, the wave amplitude for this left moving
wave is assumed to be zero. And underneath the
exciting coil, we assume that the plasma behaves
as though it were underneath an exciting coil of
infinite length.

The solution underneath the coil must satisfy the
boundary conditions at the plasma-vacuum interface
R =R, and at the induction coil radius R = R..
Without loss of generality, we can replace the in-
duction coil by an ideal coil at R = R, carrying
a current j* = e, Re[j* exp (12 4 iQT)]. We use
the boundary conditions in Ref. (3), Eqs. (40)-(9b),
and expand J,(»R), where it occurs, in an infinite
series of J,(v,R), where w, is the radial wave number
for the mth radial mode of oscillation of the free
cylindrical plasma. The various », are the various
solutions of Eq. (12), Ref. (3).

For each mode m we choose particular solutions
Eym for the left moving wave which are zero at the
right end of the coil, Z = Z,. We obtain, under-
neath the coil and for R << R,,

Egr =Bl 1o (e — 2 — 2
+ osin {(x — %n) (Z — Zy)}] (19)
where
_ 2105*
b = R+ (6 = Dlomke) Aok~ 20
and

#Ro K, (#Ry)

G = —
K, (%Ry)

(21)

#m 1s the axial wave-number for the mth radial mode
of free oscillation at the frequency (). Other am-

plitudes in the plasma beside Eﬁ may be obtained
from E, via the phase relations of Table 3.

The power input to the plasma from the ideal
coil is found by integrating over the surface of the
ideal coil the product of the coil current density
with the electric field due to plasma currents. The
average power going into the smth radial mode is

_|f Bo¢® \ﬁm;*LzRo(% — ”m)]1<1’mR0)‘
Pm —1<860c12/ 2 — ,sz ‘S(E>r (22)
where
1 — cos 2§ 4 #(2& — sin 2£)
S(¢&) = 22 (23)

and &= (¢ — #y)L/2, and where we use the real
term in S(&) to represent real power and the imaginary
term to represent reactive power. S(&) approaches 1
as & — 0 so that P, is real at resonance.

The power ratio Uyaye is the ratio of the real part
of Py to the reactive power in an ideal coil. Eva-
luating this ratio at resonance, v = v, and s = %,
we obtain

Uwave = [ (211 (%RO) Kl (%RO)

G2 — 1) xR ov? |
X{“L (vRO)z} L 3%2] -
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A useful approximation to (24) is the |»|R, <1
limit. Then

2 g2t
2R, av] (25)

Uwave R [ T ?}72

The quantity 0+%/0x? is obtained by differentiating
the relevant dispersion relation, (8) or Table 2.
In the low xR, limit, v, R, are the roots of J,(vmR,),
and are given approximately by v,Ry &~ n(m — 1)
for m>1. (Compare Ref. 3.) In this limit,
12 > 2% It is frequently useful to drop the »?/a > 1
criterion on ion cyclotron waves. For the undamped
waves, it is sufficient to require only that »2 > 22
and %/ >> (22 to obtain the approximate dispersion
relation

Q2 =1 4 afx?] L (26)
Using the #2/a>> Q2 and »?>» »? approximation

for ion cyclotron waves, we obtain the |x|Ry < 1
approximation to (24) for cases II, III, IV :

8lcoi17'o2 ov—1
= - = - 2
Un 2 (m — T3 (1 4 aufs?) (27)
_ 8lcot1 742 2
_ lcoilz- o
U = Srg? (29)

The resonance curve of plasma load versus fre-
quency is given by (22). Since the quantity in
absolute value signs in Eq. (22) varies only slowly in
the vicinity of a resonance, the shape of the resonance
curve is essentially determined by S(&), Eq. (23). One
may substitute for &, &= (L/2)(Q — Q) (8€/0x) L.
The half-power points occur at & = 4 1.4. 0Q/dx is
the group velocity of the wave, and may be deter-
mined from the dispersion relation. For our various
cases, we obtain the half-power frequencies

0452 [1 + s2/a]' Case Il
Q — Qp 0.452
273 = 111
o, + o Case
1.87,2
:{: m Case 1V, (30)

THERMALIZATION OF PLASMA WAVES

We can list some of the processes which will act
to thermalize the energy of plasma wave motion and
which are amenable to calculation. In addition to
these known processes, there may occur in an actual
plasma a rapid thermalization of wave energy through
not yet understood processes similar to those observed
by Langmuir ** and Gabor.'?

In all three types of plasma waves, ion-electron
co lisions will transform the wave energy slowly into
ohmic heat. A faster thermalization will take place
in hydromagnetic compressional waves through the
heating processes of magnetic pumping,® which will
act on both ions and electrons.

An interesting situation occurs for ion cyclotron
waves in a gas containing ions with different charge
to mass ratios. Only the resonant ions move with
the wave. One might consider heating a deuterium-
tritium mixture in this manner. Even if the relative
average velocities of deuterium and tritium were
insufficient for nuclear reaction without wave ther-
malization, the ion-ion collisions will cause the wave
to be thermalized fairly rapidly.

Cyclotron damping offers a possibility for therma-
lizing ion cyclotron waves extremely rapidly. It will
generally be highly inefficient to put power into a
plasma of appreciable density at the short wave-
lengths required for strong cyclotron damping (Case I).
At longer wavelengths, however, one can couple
energy into ion cyclotron waves, and the power
transfer can be extremely efficient (Case II). For a
plasma confinement device, such as a stellarator or
a pyrotron, one could cause the steady-state con-
fining field to decrease with the axial distance from
each end of the coil section. If the rate of change
with distance of the confining field is sufficiently
small, the ion cyclotron waves which squirt out each
end of the coil section will change in an adiabatic
fashion. As they move through the decreasing B,,
their wavelength will graduvally decrease, and when
it becomes sufficiently short, cyclotron damping
will occur locally. The ion cyclotron waves will
damp out (Eq. (13)), and the wave energy will be
transformed into energy of individual ion motions
which are still perpendicular to the lines of force, but
with effectively random amplitudes and phases. One
might say that the actual heating of the plasma
occurs in this region of cyclotron damping.

The author wishes to acknowledge the many useful
ideas which came from discussions with Ira Bernstein,
John Dawson, Russell Kulsrud, and Andrew Lenard,
some of which have been indicated in this text. In
addition, the author is profoundly grateful to Professor
Lyman Spitzer for his constant encouragement and
productive interest.

Addendum

The author also wishes to thank Dr. J. Neufeld,
who has recently brought to his attention the paper
of Gershman.? It may be noted that the damping
rate computed from the dispersion relation (8) in
the present paper will be equal to €2 times the
damping rate computed from the dispersion rela-
tion (31) in Gershman’s work. This difference has
its origin in the assumption here that the tempe-
rature of transverse ion motion was zero, while
Gershman assumed an isotropic distribution.
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