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ABSTRACT: 

 

Registration of RGB-D data using visual features is often influenced by errors in the transformation of visual features to 3D space as 

well as the random error of individual 3D points. In a long sequence, these errors accumulate and lead to inaccurate and deformed 

point clouds, particularly in situations where loop closing is not feasible. We present an epipolar search method for accurate 

transformation of the keypoints from 2D to 3D space, and define weights for the 3D points based on the theoretical random error of 

depth measurements. Our results show that the epipolar search method results in more accurate 3D correspondences. We also 

demonstrate that weighting the 3D points improves the accuracy of sensor pose estimates along the trajectory. 
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1. INTRODUCTION 

Since their recent introduction to the market, RGB-D cameras, 

such as the Kinect (Microsoft, 2010), have gained a lot of 

popularity for indoor mapping, modelling and navigation. The 

Kinect sensor captures depth and colour images at a rate of 

20~30 frames per second, which can be combined into a 

coloured point cloud, also referred to as RGB-D data. 

Compared to laser scanning, Kinect RGB-D data have lower 

accuracy and resolution (Khoshelham, 2011). However, the 

high data acquisition rate and the great flexibility of the Kinect 

make it an attractive sensor for mapping and modelling indoor 

environments.  

 

A primary step in mapping by RGB-D data is the registration of 

successive frames. The common approach is based on visual 

features, i.e. point correspondences extracted from the colour 

images by keypoint extraction and matching methods such as 

SIFT (Lowe, 2004) and SURF (Bay et al., 2008). These point 

correspondences are transformed to 3D space by using the 

depth data, and are then used to estimate the rotation and 

translation between every pair of frames.  

 

The pairwise registration is prone to error due to the random 

error of individual points but also the transformation from the 

colour space to the depth space. In a long sequence, the 

pairwise registration errors accumulate and lead to deformation 

in the resulting point cloud. To cope with registration errors, 

loop closing has been used (May et al., 2009; Du et al., 2011; 

Endres et al., 2012; Henry et al., 2012). A loop in the trajectory 

of the sensor can be detected when the sensor returns to a scene 

that is previously observed. Loop closing is essentially a global 

adjustment of the sensor pose (position and rotation) 

simultaneously for all frames in a sequence. 

 

Loop closing is not always feasible, for example when mapping 

a long narrow corridor, or when the two frames at the closing 

do not have sufficient overlap or reliable keypoint matches. In 

such situations, improvement of the pairwise registrations is 

important as it can reduce the error and deformations in the 

final point cloud.  

 

In this paper, we look into two sources of error in pairwise 

registration based on visual features: the error in the 

transformation from the RGB space to the depth space, and the 

random error of individual points in the 3D space. We present a 

method for accurate transformation of point features from the 

RGB space to the depth space, and propose a weighting scheme 

to adjust the contribution of the 3D point correspondences in 

the estimation of the registration parameters. Our experiments 

show the role of relative orientation in the accuracy of the 3D 

point correspondences. We also demonstrate that weighting 

point correspondences based on their theoretical random error 

improves the registration accuracy. 

 

The paper proceeds with a review of related literature in Section 

2. In Section 3, the methods for the generation and weighting of 

3D point correspondences are described. Section 4 describes the 

experiments and results of registration using weighted point 

correspondences. The paper concludes with final remarks in 

Section 5. 

 

2. RELATED WORK 

The popular approach to registering point clouds is the iterative 

closest point (ICP) algorithm (Besl and McKay, 1992; Chen 

and Medioni, 1992). Izadi et al. (2011) showed real-time 

registration of Kinect depth images using a GPU 

implementation of the ICP algorithm. The method of Fioraio 

and Konolige (2011) was also based on ICP, but could integrate 

features from the colour image. 

 

Since ICP is a fine registration method requiring a close 

approximation of the registration parameters, it has been often 

used to refine an initial coarse registration. In the work of Henry 

et al. (2010), the initial registration parameters were estimated 
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from SIFT key points (Lowe, 2004) extracted from and matched 

across the colour images, where outliers were removed using 

RANSAC (Fischler and Bolles, 1981). Du et al. (2011) 

followed a similar approach but allowed user interaction. The 

RGB-D SLAM method (Engelhard et al., 2011; Endres et al., 

2012) and the method of Bachrach et al., (2012) were both 

based on the idea of initial registration using visual feature 

points, although they used different feature extraction operators. 

Dryanovski et al. (2012) performed the initial registration based 

on edge features extracted from the colour images. Steinbrucker 

et al. (2011) adopted an energy minimization approach to 

registering RGB-D data.  

 

For loop closing several methods have been used. Graph-based 

optimization methods (Olson et al., 2006; Grisetti et al., 2007; 

Kummerle et al., 2011) represent the poses and their constraints 

as nodes and edges of a graph, and apply an optimization 

method such as gradient decent to minimize the error. Sparse 

bundle adjustment (Lourakis and Argyros, 2009) involves least-

squares (re-)estimation of pose parameters by minimizing the 

re-projection error in the image space. 

 

Other types of correspondences, such as planes (Brenner and 

Dold, 2007; Khoshelham and Gorte, 2009; Khoshelham, 2010), 

point-planes (Sande et al., 2010; Grant et al., 2012) and lines 

(Bucksch and Khoshelham, 2013; dos Santos et al., 2013), have 

been used for registering laser scanner point clouds. Taguchi et 

al. (2012) combined points and planes for the registration of 

RGB-D data. Dou et al. (2013) combined planes with visual 

features in both pairwise registration and global adjustment. A 

comparison of RANSAC and Hough transform for plane 

extraction and mapping using RGB-D data is presented by Nasir 

et al. (2012). 

 

3. GENERATION AND WEIGHTING OF 3D POINT 

CORRESPONDENCES 

In this paper, we follow the concept of initial pairwise 

registration using point features extracted from the colour 

images. We focus on two aspects in this approach: 

transformation of the colour image features to the depth image 

for the generation of 3D point correspondences, and weighting 

of the 3D point pairs based on the theoretical random error of 

individual points. 

 

3.1 3D point correspondences from 2D keypoints 

We use SURF (Bay et al., 2008) to extract and match keypoints 

in successive colour images as it is considerably faster than 

similar algorithms. The keypoints are defined in the 2D 

coordinate system of the colour image. For the estimation of the 

pairwise registration parameters the 2D points should be 

transformed to 3D space by using the depth data. We define the 

3D coordinate system of the point cloud with its origin at the 

centre of the infrared camera, the Z axis perpendicular to the 

image plane, the X axis perpendicular to the Z axis in the 

direction of the baseline between the infrared camera centre and 

the laser projector, and the Y axis orthogonal to X and Z 

making a right handed coordinate system. 

 

To generate 3D correspondences from the 2D keypoints, in 

some previous works it has been assumed that a shift of the 

depth image pixels (applied within the driver) is sufficient to 

align the depth image with the colour image (Engelhard et al., 

2011; Endres et al., 2012; Henry et al., 2012). As we will show, 

there are cases where the shift between the coordinates of 

conjugate points in the colour image and the depth image has a 

large variance, even when the image coordinates are corrected 

for lens distortions. 

 

A more proper way to transform the coordinates from the colour 

image to the depth image is by using the relative orientation 

parameters (three rotations and three translations – different 

from photogrammetric relative orientation which involves five 

parameters) between the two cameras. This of course requires 

that the relative orientation parameters are estimated in a 

previous calibration procedure. For the estimation of relative 

orientation parameters stereo calibration with a calibration grid 

has been used (Khoshelham and Elberink, 2012). This method 

provides relative orientation parameters but with relatively low 

accuracy due to the short length of the baseline between the two 

cameras in proportion to the distance to the calibration grid. 

Another approach is by using a 3D calibration field with 

markers that can be measured in the depth image as well as in 

the colour image. By measuring the markers in the depth image 

the 3D coordinates of the points are obtained in the infrared 

camera coordinate system. Using the 3D coordinates in the 

infrared frame and the corresponding 2D coordinates in the 

RGB frame the transformation between the two frames can be 

obtained by a least-squares space resection procedure. 

 

The estimated orientation parameters allow the transformation 

of 3D points to the colour image (back projection), whereas we 

need to transform the 2D keypoints to the 3D space. This is an 

ill-posed problem. To overcome that, we make use of the 

epipolar geometry in the following procedure: 

 

Given a keypoint in the RGB frame:  

1. calculate the epipolar line in the depth frame using the 

relative orientation parameters; 

2. define a search band along the epipolar line using the 

minimum and maximum of the range of depth values 

(0.5 m and 5 m respectively); 

For all pixels within the search band: 

1. calculate 3D coordinates and re-project the 

resulting 3D point back to the RGB frame; 

2. calculate and store the distance between the re-

projected point and the original keypoint; 

Return the 3D point whose re-projection has the smallest 

distance to the keypoint. 

 

Note that interior orientation parameters (including lens 

distortion) are used in both frames to transform back and forth 

between pixel coordinates and image coordinates. When the 

distance between the keypoint and the nearest re-projected point 

is larger than a threshold (e.g. 2 pixels) the keypoint is flagged 

as not having a valid 3D correspondence. Figure 1 illustrates the 

procedure in a test scene. 

 

 
 

Figure 1. Finding 3D points in the depth image (right) 

corresponding to 2D keypoints in the colour image (left) by 

searching along epipolar lines (red bands). 
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3.2 Definition of weights 

Pairwise registration involves the estimation of a rotation matrix 

R and a translation vector t between two sets of corresponding 

points, which minimize the error:  
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where Xi,j-1 and Xi,j are the 3D coordinates of point i in frames 

j-1 and j respectively, and wi is the weight associated to the 

point pair i. Since points in the Kinect point clouds do not have 

a uniform precision (Khoshelham, 2011), it makes perfect sense 

to weight the points according to their random errors. 

 

As Kinect depth images are captured typically at a frame rate of 

20 to 30 fps, resulting in small rotation and translation 

parameters between successive frames, we can approximate our 

observation equations with vi = Xi,j-1 – Xi,j , for which the 

weight can be defined inversely proportional to the variance of 

the observation: 
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where σ2
X is the variance of point X and k is an arbitrary 

constant. 

 

We define the weights for every pair of corresponding points 

based on the theoretical random error of their depth values (Z) 

only. This is because weighting based on the error of X, Y 

coordinates would reduce the contribution of the points with 

increasing distance from the centre of the point cloud, which is 

counter-intuitive as off-centre points are expected to play a 

more important role in the correct alignment of two surfaces. It 

has been shown that the variance of the depth σ2
Z has the 

following relation with the variance of the measured disparity 

σ2
d (Khoshelham and Elberink, 2012): 
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where c1 is a depth calibration parameter. This gives us the 

following equation for the weight of a point pair: 
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3.3 Pairwise registration 

Once the corresponding 3D points and their associated weights 

are obtained the point clouds of two successive frames can be 

registered. The common approach, which is also used here, is to 

combine the least-squares estimation method with RANSAC to 

eliminate the outliers (Hartley and Zisserman, 2003). To speed 

up the registration we use Horn’s closed-form solution (Horn, 

1987) to estimate the registration parameters for each random 

sample within RANSAC. Once the inliers are identified, a final 

iterative least-squares estimation using weighted inlier points is 

performed to obtain the registration parameters. 

 

4. EXPERIMENTS 

To show the effect of relative orientation on the transformation 

of keypoints from the RGB space to the depth space we made a 

test scene with markers that could be measured manually in 

both the depth image and the colour image. The markers were 

captured and measured in seven pairs of images. Figure 2 shows 

one of the seven pairs. The coordinates of the markers were then 

transformed from the colour image to the depth image using the 

epipolar search method as described in Section 3.1.  

The transformation was done using two sets of relative 

orientation parameters. The first set was obtained by a standard 

stereo calibration procedure using a calibration grid. The second 

set was obtained by the space resection method using a 3D 

calibration field similar to the scene shown in Figure 2. The 

discrepancies between the manually measured coordinates of 

the markers in the depth image, and the transformed coordinates 

obtained by each of the two sets of relative orientation 

parameters provide an indication of the error in transforming 

the keypoints from the 2D space to the 3D space.  

 

Figure 3 (a) shows first the difference between the colour image 

coordinates and the depth image coordinates (both corrected for 

lens distortion using the model of Brown (1971)) of the markers 

to test whether the transformation is only a shift. Clearly, there 

is a large variance in the shift between the two sets of 

coordinates. Figure 3(b) shows the discrepancies between the 

measured and the transformed coordinates of the keypoints, 

where the relative orientation parameters from the stereo 

calibration are used for the transformation. Figure 3(c) shows 

the discrepancies between the measured and the transformed 

coordinates of the keypoints, where the relative orientation 

parameters from the space resection method are used. It can be 

seen in Figure 3(c) that the transformed points have a variance 

of about 1 pixel. This shows that transforming the points by the 

epipolar search method and using the relative orientation 

parameters from the space resection is more accurate and 

reliable than the other methods. 

 
Figure 2. Manually measured markers in the disparity (left) and 

colour image (right). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Discrepancies between the manually measured and 

transformed coordinates of the markers using only a shift (a), 

using parameters from stereo calibration (b) and using 

parameters from space resection (c). 
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To study the effect of weighting 3D point correspondences in 

pairwise registration a set of six RGB-D sequences from an 

office environment was acquired. Since obtaining ground truth 

trajectories was difficult, the sequences were acquired such that 

the first and the last frame of each sequence had sufficient 

overlap and could be registered to form a closed loop. This 

allowed the calculation of the closing error for each trajectory 

based on the following equation:  
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where j
iH denotes the transformation from frame i to frame j, 

and Δ is a residual transformation matrix containing a closing 

translation vector v and a closing rotation matrix δR. From these 

we calculated two error metrics to evaluate the accuracy of each 

trajectory: a closing distance from v and a closing angle as the 

sum of (absolute) rotation angles in δR. 

 

Figure 4 shows the closing distances and closing angles for the 

six sequences after the pairwise registration with and without 

weights. The sequences were sorted in order of increasing 

length, and the horizontal axes show sequence length. It can be 

seen that both the closing distances and closing angles are 

improved as a result of using weights in pairwise registrations. 

Table 1 shows the average closing distance and closing angle 

over all sequences registered with and without weights. 

 

Figure 5 compares for one of the sequences the trajectory 

obtained by weighted registration (blue curve) with that 

obtained by registration without weights (red curve). The black 

curve is the closed loop obtained by a global adjustment of the 

sensor poses. It can be seen that the trajectory from the 

weighted registration follows more closely the globally adjusted 

trajectory. Example point clouds of an office environment 

obtained by the weighted registration of RGB-D sequences are 

shown in Figure 6.  

 

 
(a) 

 
(b) 

 

Figure 4. Closing distance (a) and closing angle (b) for six 

RGB-D sequences registered with and without weights. 

Registration 
Average closing 

distance [cm] 

Average closing 

angle [deg] 

without weight 6.42 6.32 

with weight 3.80 4.74 

 

Table 1. Average closing errors for registrations with and 

without weight. 

 

 
Figure 5. Trajectory obtained by weighted registration of an 

RGB-D sequence (in blue) compared with the trajectory 

obtained by registration without weights (in red) and one 

obtained by global adjustment (in black). 

 

 

 

 
 

Figure 6. Example point clouds of an office environment 

obtained by weighted registration of RGB-D sequences. 
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5. CONCLUSIONS 

When registering long RGB-D sequences, pairwise registration 

errors accumulate and lead to inaccurate and deformed point 

clouds, particularly in situations where loop closing is not 

feasible. We showed that accurate transformation of keypoints 

from the RGB space to the depth space using an epipolar search 

method results in more accurate 3D point correspondences. We 

also showed that assigning weights based on the theoretical 

random error of the depth measurements improves the accuracy 

of pairwise registration and sensor pose estimates along the 

trajectory. 

 

Using weighted observations in pairwise registration allows the 

estimation of covariance matrices for the estimated pose 

vectors. These can be used to weight pose vectors in the global 

adjustment, and further improve the sensor pose estimates in a 

closed loop. 

 

A drawback of registration by using visual features is the 

influence of synchronization errors between the RGB camera 

shutter and the IR camera shutter on the transformation of 

keypoints to the 3D space. This emphasises the importance of a 

fine registration step using point- and plane correspondences 

extracted from the depth images to generate accurate point 

clouds from RGB-D data. 
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