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Abstract

Investments in generation capacity in restructured electricity systems remain a rel-

atively unexplored subject in the modeling community. We consider three models

that differ by their underlying economic assumptions and the degree to which they

depart from the old capacity expansion representations. The first model assumes a

perfect, competitive equilibrium. It is computationally very similar to the old ca-

pacity expansion models even if its economic interpretation is different. The second

model (open-loop Cournot game) extends the Cournot model that is sometimes used

for modeling operations in restructured electricity systems to include investments in

new generation capacities. This model can be interpreted as describing investments

in an oligopolistic market where capacity is simultaneously built and sold on long-

term contracts when there is no spot market (Power Purchase Agreements). The third

model (closed-loop Cournot game) separates the investment and sales decision. It

describes a situation where investments are decided in a first stage and sales occur in

a second stage, both taking place in oligopolistic markets. The second stage is a spot

market. This makes the problem a two-stage game and corresponds to investments in

merchant plants where the first stage equilibrium problem is solved subject to equilib-

rium constraints. Because two-stage models are relatively unusual in discussions of
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electricity, we characterize the properties of this game and compare them with those

of the open-loop game. We show that despite some important differences, the open

and closed-loop games share many properties. One of the important results is that

the solution of the closed-loop game, when it exists, falls between the solution of the

open-loop game and the competitive equilibrium.

Keywords: Electric utilities; Existence and characterization of equilibria; Non

cooperative games; Programming; Oligopolistic Models



1 Introduction: Investments in power generation

Capacity expansion models have a long tradition in both the power sector and

the operations research literature. They were one of the first applications of

linear programming in the fifties when the industry was organized as regulated

monopolies (Massé and Gibrat (1957)).

While capacity expansion models have evolved into quite complex tools in

operations research terms, their economics remained relatively simple. Gener-

ation plants differ by their investment and operation costs. Capacity expansion

models select the mix of plants that minimizes the total cost of satisfying a

time-varying demand with randomness over a typical horizon of say twenty

years. This formulation assumes away some important phenomena. Having

capacity investments with long lives imply risks. Except for the prudence

reviews that developed in the US (see Joskow (1998) for a discussion of the

evolution of the US power sector), these risks were generally passed on to the

consumer. This allowed the industry and the modeler to assume away most

risk factors including the uncertainty of future demand and fuel costs. Even

though our goal is to look at capacity investments in competitive situations,

we retain this simplification in this paper. It is indeed common practice to

increase the discount factor with respect to the risk free interest rate in order

to account for uncertainty. We assume such a procedure and consider annual

values of equipment capacity costs using an exogenous discount rate. All ca-

pacity costs are therefore expressed in terms of their annualized value in the

rest of the paper. Extensions of these standard capacity expansion models

can account for long-term uncertainties in demand and fuel cost. Stochastic

programming models (Louveaux and Smeers (1988), Janssens de Bisthoven et

al. (1988)) as well as the literature on investments under uncertainty (Leland
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(1972), Drèze and Gabszewicz (1967), Smith (1969), Drèze and Sheshinski

(1976)) are relevant to this problem.

A capacity expansion model designed for a regulated monopoly converts

directly into one applicable to a perfectly competitive market. One first in-

troduces a demand model that accounts for the dependence of demand on

prices. Assuming that the associated inverted demand function is the gradi-

ent of a utility function (p(q) = ∇qU(q), the minimum cost capacity expansion

problem can be readily extended into a nonlinear model where the objective

maximizes the net present value of producers and consumers surplus over a

given horizon. With additional computational complexity, the method also

extends to demand models that do not derive from a utility function (see Wu

and Fuller (1996)). An alternative model where profits are maximized sub-

ject to a regulatory constraint has been used to understand the inefficiencies

associated with rate-of-return regulation (Murphy and Soyster, (1983)).

Perfect competition is a strong assumption when it comes to restructured

electricity markets. A more suitable hypothesis is to presume that the power

market is oligopolistic, or in other words that the number of suppliers is suf-

ficiently small that each can influence prices. While the regulated monopoly

model can be extended readily to deal with a perfectly competitive market,

representing imperfect competition is much more complex. This paper is about

investment in oligopolistic restructured electricity systems.

Market power is an actively researched area in the literature on restruc-

tured electricity systems. Several models exist that look at the operations of

a market with oligopolistic players when capacities are given (see for instance

the POWER (www.ucei.org) or the HEPG (www.ksg.harvard.edu/hepg) web

sites). An extensive stream of less formalized literature also treats the subject.
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In contrast, very little is available when it comes to investment. Chuang, Wu,

and Varaiya (2001) formulate a single-period Cournot model and solve exam-

ples of equilibria. Except for this paper and to the best of our knowledge,

neither qualitative nor qualitative results from market models dealing with

both investments and operations in an oligopolistic electricity market exist

at this time. But economic theory provides us with at least two frameworks,

both equally interesting for looking at the issue. We briefly review some of

these notions as they constitute the conceptual backbone of this paper.

We begin with strategic investments, which are investments that are made

to modify a rival’s actions. They are best interpreted in a two-stage decision

context where investment decisions are made first while operations (genera-

tion, trading and sales) are decided in the second stage. Second-stage un-

certainties, when they are present, influence first-stage decisions. In the first

model of this type, Spence (1977) considers the case where an incumbent builds

capacity in the first stage while a potential entrant invests in the second-stage.

Both operate in the market in the second stage. The potential entrant incurs

a fixed cost to enter the market, which the incumbent has already paid. The

entrant optimizes its decision assuming that the incumbent will utilize all its

capacity in the second stage, given the entrant effectively enters the market.

The potential entrant decides to enter the market only if it can make a posi-

tive profit after paying for the fixed cost. The incumbent selects its capacity

and operating levels in order to maximize its profit subject to the condition

that it wants to bar the entrant from the market. Once the potential entrant

decides to not enter, the incumbent operates below its capacity to maximize

its profits.

Dixit (1980) retains most elements of Spence’s model but allows the incum-
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bent to add capacity in the second stage. The entrant invests and operates

in the second stage if it can make a positive profit after covering the fixed

cost. Another difference from Spence is the second-stage market is Cournot.

The problem of the incumbent is thus an optimisation subject to equilibrium

constraints (the Cournot conditions of the second stage), that is to say an

MPEC (Mathematical Program subject to Equilibrium Constraints) (Luo et

al. (1996)). MPEC problems are more general than the bilevel mathematical

program that subsumes Spence’s model.

In contrast to both Spence and Dixit, Gabsewicz and Poddar (1997) as-

sume that the two firms may simultaneously enter the market. They do so by

choosing their capacities in the first stage, and they cannot revise this choice

in the second stage. Only operational decisions are made in second-stage,

and as in Dixit’s model, the second-stage market equilibrium is Cournot.

Gabsewicz and Poddar also modify the description of the technology by drop-

ping the fixed cost to enter the market. Uncertainty is a key element of the

Gabsewicz and Poddar (1997) model. They assume that the demand func-

tion is revealed in the second stage only and that the achieved equilibrium is

contingent on this demand information. This implies that investments must

be decided before knowing the intensity of the demand. Firms invest so as

to reach a Nash equilibrium in the first stage knowing the expected outcome

of their decision in the second stage. This nesting of two equilibrium prob-

lems (a subgame-perfect equilibrium) leads to an equilibrium problem subject

to equilibrium constraints. To make things more interesting, the uncertain

character of the demand in the second stage makes this problem a stochastic

equilibrium problem subject to equilibrium constraints.

These problems are unusual but not totally absent from the literature. In
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a different but related context, Allaz (1991) and Allaz and Vila (1993) study

the forward commodity markets with market power through an equilibrium

model subject to equilibrium constraints. The first paper offers a multistage

deterministic model while the latter is two stage but stochastic. Both models

look at the incentive for producers of some commodity to trade in the forward

market (first stage) before going into the spot market (second stage). In the

deterministic model, when duopolists sell into a forward market, the resulting

equilibrium is closer to the competitive equilibrium. Furthermore, both players

enter the forward market despite the profit reductions because the decision to

enter has the form of a prisoners dilemma game. The stochastic equilibrium

model allows one to explore the mix of strategic and hedging incentives for

trading in the forward market. While Allaz (1991) and Allaz and Vila (1993)

models do not immediately apply to our investment problem, the former can be

adapted to fit a realistic power market by considering two forward electricity

markets namely peak and off peak. Generators would then first trade peak and

off peak forwards before generating in peak and off peak on the spot market.

This extension is left for further research.

These two-stage models provide a realistic framework for looking at invest-

ments in the restructured power sector. However, they are stylized analytic

models that do not involve the computable tools necessary for solving realistic

models. It is our objective in this paper to move a few steps from the eco-

nomic concepts towards computable models of capacity expansion in restruc-

tured electricity systems. We first note that the introduction of an uncertain

demand function by Gabsewicz and Poddar (1997) is suitable for modeling

demand in the power sector. As indicated above, electricity demand is both

time varying and uncertain. The time varying character of electricity demand
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is often represented by a load duration curve. This curve is best characterized

by its inverse which gives the amount of time t at least m megawatts are de-

manded. When the time interval is scaled to 1, this inverse can be interpreted

as an operating characteristic curve, which is one minus the corresponding

probability distribution of a certain demand level. This probabilistic inter-

pretation allows one to incorporate the overall uncertainty driving demand.

The time varying and uncertain demand can thus be represented as a set of

demand states each occuring with a given probability. In conclusion some

representation of uncertainty, such as found in Gabszewicz and Poddar (1997)

is necessary for dealing with investments in electricity.

Both the oligopolistic investment problem and the issue of entry deter-

rence are relevant to model the restructured power industry. The oligopolistic

problem is more directly applicable to the US situation where investor-owned

utilities in restructured systems have largely divested their power plants. In

contrast, entry deterrence appears directly applicable to the European market

where this divestiture process has not taken place to such a large extent and

a dominant player remains in place in most instances. The Spence and Dixit

models as well as Schmalensee’s (1981) and Bulow, Geanakoplos, and Klem-

perer’s (1985) variants involve fixed costs or economies of scale. We disregard

both phenomena. Restructuring in electricity is indeed rooted in the idea that

phenomena of natural monopoly have largely disappeared from generation (see

Stoft 2002, Chapter 2-2). We therefore assume that economies of scale and

fixed entry costs are negligible. In contrast with the above mentioned models

that assume a single technology, the representation of the electricity sector re-

quires several types of plants in order to economically satisfy the time varying

demand. We thus concentrate on the oligopolistic investment problems with
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no explicit entering fixed cost but with the players using different technologies

having different cost characteristics. Also, we do not use the asymmetry of an

incumbent versus a new entrant. In short, this paper concentrates on problems

of the Gabszewicz and Poddar (1997)’s type, that is, problems of oligopolistic

competition in investment. But we adapt their assumption to the realities

of the power sector and suppose that agents invest in different technologies.

This diversity of technologies and agents has consequences. While Gabsewicz

and Poddar rely on the symmetry of their problem (both agents use the same

technologies) in order to prove the existence of equilibrium, the asymmetry of

our agents may invalidate this existence.

Summing up, we assume a restructured power system where firms select

their capacity and compete in the day-to-day power market. In order to sim-

plify the problem while retaining the key aspects of the power sector, we as-

sume only two types of capacity namely peak units and baseload units (Stoft,

chapter 2-2). Peak units have lower investment and higher operating costs

than baseload units. This technological diversity is a major departure from

the cited economic literature and is a consequence of electricity not being

storable. The time-varying nature of demand is combined with a represen-

tation of the uncertainty of the demand as a load duration curve which is

discretized into a finite set of demand scenarios. Price responsiveness is in-

cluded by supposing a price responsive demand in each scenario. One can

formulate each player’s optimization problem as a two-stage stochastic pro-

gram with multiple demand curves. Since the operating costs are invariant in

our model, the order in which plants are dispatched does not change across

multiple demand scenarios and the scenarios collapse into a single scenario.

This is very much akin to the Gabsewicz and Poddar (1997) framework.
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The paper presents three models, a perfect-competition model, an open-

loop Cournot model and a closed-loop Cournot model (in mathematical pro-

gramming terms, and equilibrium subject to equilibrium constraints). See

Fudenberg and Tirole (1986) for the notions of open and closed loop equilib-

rium. We use perfect competition as a benchmark. The open-loop Cournot

model is a relatively simple representation of imperfect competition. Its strate-

gic variables are investment and operations; the two players select these vari-

ables at the same time. This is a Cournot model because the players choose

quantities and then set the price. Even though the model is mathematically

simple, it has a realistic interpretation, namely plants are built and their out-

put is sold under long-term contract at the same time. This model does not

assume any spot market; it corresponds to an industry structure organized

around Power Purchase Agreements (Hunt and Shuttleworth (1996)). The

closed-loop Cournot model is structured around the same strategic variables.

The main difference is that these variables are not decided at the same time.

Capacity decisions are made in the first period and operating decisions in the

second period. The closed-loop Cournot model can be seen as an industry

structure organized around a spot market (Hunt and Shuttleworth (1996)).

Generators compete by building plants with no guarantee that they will be

able to sell their output or any guarantee on price. The game is then truly

a two-stage game where competition takes place in two steps. The genera-

tors play against each other when making investments, knowing how they will

play against each other when operating their plants. This feature makes the

closed-loop game a first period equilibrium subject to equilibrium constraints

in the second period. Note however that our framework does not include

forward contracting (e.g. one year), a problem that has received a consider-
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able attention in the literature (e.g. Green (1999), Newbery (1998), Wolak

(1999)). The inclusion of this forward market could be done in different ways

and is a subject of research in itself. One possibility is to assume that forward

contracts are concluded at the same time the plants are built (see Newbery

(1999), section 5). This keeps the problem two stage. It becomes multistage

if there are several rounds of forward contracting after building time). The

analysis of forward contracting is left to further research.

The paper is organized as follows. The next section (Background) intro-

duces the description of the power sector adopted in the paper, that is the

representation of the demand and technologies and some market assumptions.

The perfect-competition case used as the reference is discussed in Section 3 to-

gether with the equilibrium conditions and standard properties. The open-loop

Cournot model is presented in Section 4 together with equilibrium conditions

and some properties of the solution. A sensitivity analysis of the short-term

equilibrium is also presented in this section. These sensitivity results are first

applied in Section 5 to discuss short and long-term reaction functions and to

derive some of their properties. The closed-loop Cournot model is introduced

in Section 6. Its analysis constitutes the core of the rest of the paper. After

a definition of the problem and a statement of its equilibrium conditions, the

solution of the closed and open-loop Cournot models are compared to estab-

lish their similarities and differences. These properties allow one to derive

results comparing the investments in both models. Finally, Section 7 deals

with the difficult issue of existence and uniqueness of a solution of the closed-

loop Cournot model. Conclusions close the paper. In order to facilitate the

exposition, all proofs are given in the appendix.
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2 Background

We consider a simple electricity system where all demand and supply is con-

centrated at a single node. The paper, therefore, neglects network congestion

issues. This simplification is mandatory at this stage of the research. First

a model that includes the network and accounts for congestion would be un-

tractable at this stage. Second the main forces driving investments in restruc-

tured markets are still so unknown that it seems better not to cloud the issue

with the impact of congestion which itself still generates a lot of discussion.

This being said, it is an often heard argument that conestion should influ-

ence the location of new plants. But this issue has never been studied in a

formal model. We approximate the load duration curve with a step function

(Figure 1).

MW

S1

.  .  .  .

Figure 1: Yearly demand decomposition
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In order to simplify notation, we assume that these segments are one unit

wide. We index these segments by s = 1, · · · , S, where s = 1 is the peak

segment and s = S is the base segment.

The different models considered in this paper deal only with two types of

generation equipment, each characterized by their annual (per kW) investment

(K) and operations (per kWh) (ν) cost. We use p to denote a peaker (e.g. Gas

Turbine)and b to denote a base-load plant (e.g. Combined Cycle Gas Turbine).

A two technology power system is described in Stoft (2002) (chapter 2-2-2)

together with typical cost figures. By assumption, peakers are cheaper for peak

demand, Kp + νp < Kb + νb, and base plants are cheaper for base demand,

Kb + Sνb < Kp + Sνp.

These assumptions are illustrated in Figure 2.

νb

νp
Kb

Kp

S1

︸
︷︷

︸ ︸︷︷
︸

Figure 2: Peakers and base plants
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Generation capacities are built and operated by two generators denoted

i = p, b. In order to simplify the structure of the model, we assume that

generator p builds and operates only peak plants while generator b builds

and operates only base plants. Essentially, we are looking at the case where

companies develop expertise and specialize. We have developed results for the

case where they do not specialize. However, we have left them out because

of length considerations. The main result when players do not specialize is

that the players have identical capacity levels for each type at equilibrium.

Specialization creates an asymmetry just as incumbency has for the models in

the cited papers. Investment variables are denoted xi, i = p, b for investments

by generators p and b respectively and are continuous. Operations variables

are denoted ysi , i = p, b; s = 1, · · · , S for the production of generator i in time

segment s. Needless to say we have xi ≥ ysi ≥ 0 i = p, b; s = 1, · · ·S.
Finally, demand in each time segment s of the second stage is given by an

affine inverted demand curve: ps = αs − βqs s = 1, · · · , S and β > 0. We

use this demand model for two reasons. First, it is a good approximation to

a nonlinear demand curve in the immediate neighborhood of the equilibrium.

Second, it makes the mathematics of the proofs simpler and more understand-

able. We use the same slope for all steps to simplify the notation and some

of the resulting formulas. What is critical to the character of our results is

that the demand curves do not cross. Demand is higher in the peak segment

and decreases as one moves towards the base segments. This is expressed

as α1 > α2 > . . . > αS . The inverted demand curves for the different time

segments are depicted in Figure 3.
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q

αs − βqs

α1 − βq1

Figure 3: Inverted demand curves

3 The perfect-competition case: equilibrium condi-

tions

Consider first the case where both generators compete with given capacities

x without exerting market power. That is, they generate until marginal cost

equals price. Each of the generators has the following optimization problem

when it takes the prices ps as given.

maxxi,ysi
∑
s [ps − νiy

s
i ]−Kixi

s.t. 0 ≤ ysi ≤ xsi .
(1)

Let ωsi be the dual on the nonnegativity of ysi and λsi the dual on the capacity
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upper bound. Note that outside the context of the equilibrium, because the

prices are fixed, the solutions are xi = 0 when
∑S̃
s=1 ps < Ki+S̃νi,∀ S̃;xi =∞

when∑S̃
s=1 ps > Ki + S̃νi for some S̃ and xi = [0,∞) when

∑S̃
s=1 ps = Ki + S̃νi

for all S̃.

The vector of generation levels ysi , s = 1, · · · , S, i = p, b at equilibrium

satisfies the following short-term (operations) equilibrium conditions where

the producer does not see the demand response to price. (See Sherali et al.

(1982) for the derivation of these conditions in the fixed demand case).

−αs + βysi + βys−i + νi + λsi = ωsi ≥ 0, ysi ≥ 0, ωsi y
s
i = 0

xi − ysi ≥ 0, λsi ≥ 0, (xi − ysi )λ
s
i = 0

i = p, b; s = 1, · · · , S

(2)

Equilibrium capacity levels x satisfy the following long-term (investment) equi-

librium conditions.

Ki −
∑S
s=1 λsi ≥ 0, xi ≥ 0, xi(Ki −

∑S
s=1 λsi ) = 0

i = p, b
(3)

The following properties follow directly from these equilibrium conditions.

Production Efficiency:

Peak plants are built and operated only for the time segments s = 1, · · ·Sp for

which they are most cost effective, that is, such that Kp + Spνp < Kb + Spνb

and Kp + (Sp + 1)νp > Kb + (Sp + 1)νb. In contrast base plants are built and

operated in all time segments s = 1, · · · , S.

14



Pricing Efficiency:

Prices are equal to long run marginal costs which are themselves equal to

short-run marginal costs plus scarcity rents in all time segments. This is seen

by noting that

ps = αs − β(ysp + ysb) =




νp + λsp when xp = ysp

νp when xp > ysp > 0

νb + λsb for s = 1, · · · , S

Investment Criterion:

The criterion is to invest when the capital cost equals the sum of margins

on operation costs in all time segments. This can be restated as Ki =∑S
s=1 max(ps − νi; 0), i = p, b. This expression has the flavor of a call op-

tion in the sense that the value of the plant is equal to the payoff of a strip

of call options of strike prize νi in all time segments. It is useful to note

here that the price of electricity ps is endogenous to the process (the price

depend on the investment). Models of this type are discussed in Dixit and

Pindyck (1994). They provide the natural economic context for looking at

this investment criterion.

4 The open-loop Cournot model

4.1 Equilibrium conditions

We now take up the first imperfect-competition model, referred to as the open-

loop Cournot model. In this model, each generator selects its capacity xi and

generation plan ysi , taking the generation levels ys−i of the other player as given.

In short, generator i, i = p, b, solves the continuous quadratic programming

problem,
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minxi,ysi
∑
s

[
−αs + β(ysi + ys−i)

]
ysi + νi

∑S
s=1 ysi + Kixi

s.t. xi − ysi ≥ 0, ysi ≥ 0, s = 1, · · · , S
(4)

The solution to this problem satisfies the following short-term equilibrium

conditions, which are the Karush, Kuhn, Tucker (KKT) conditions for each

player. (The equilibrium condition is that the KKT conditions for both players

are satisfied simultaneously.)

−αs + 2βysi + βys−i + νi + λsi = ωsi ≥ 0, ysi ≥ 0, ωsi y
s
i = 0

xi − ysi ≥ 0, λsi ≥ 0, (xi − ysi )λ
s
i = 0

i = p, b; s = 1, · · · , S

(5)

The solution also satisfies the following long-term equilibrium conditions

Ki −
S∑
s=1

λsi ≥ 0, xi ≥ 0, xi(Ki −
S∑
s=1

λsi ) = 0 i = p, b (6)

In contrast with the perfect-competition model, generation is not neces-

sarily least cost in the open-loop model. Peak plants may indeed operate

in time segments s > Sp where they are not most cost efficient (Reminder:

Kp + Spνp < Kb + Spνb.) Also, prices are greater than marginal cost in all

time segments where generation is positive

ps = αs − β(ysp + ysb) > αs − 2βysp − βysb = νp + λsp when xi = ysi ,

= νp when xi > ysp > 0

ps = αs − β(ysp + ysb) > αs − βysp − 2βysb = νb + λsb when ysb > 0

Finally, players invest until capital cost equals the sum of the marginal

gross margins made on the different time segments

Ki =
S∑
s=1

max(ps − βxi − νi; 0) i = p, b.
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The relationship between this criterion and its possible interpretation in

term of option should again be noted here. One first note that the value of

the plant can still be expressed as the value of a strip of call options. But the

payoff of these options is quite unusual to the extent that it is not equal to

the maximum between the spread between electricity price and fuel costs and

zero. If one were to refer to the usual criterion of a real option, one would

find Ki <
∑S
s=1 max(ps − νi; 0), i = p, b, which implies that the value of the

plant is smaller than a strip of call options on the spark spread. The seemingly

exaggerated prices sometimes offered on the market for existing plants may

thus be interpreted as the resulting from a blind use of the real option formula

in oligopolistic markets.

4.2 Solution existence and uniqueness

Existence and uniqueness of Cournot solutions are generally easy to analyze.

The present model is no exception. In order to proceed towards this analysis,

we first consider a variational inequality reformulation of the problem (See

Harker and Pang (1990) for a survey of the theory of variational inequalities).

Define for s = 1, · · · , S

ys =


 ysp

ysb


 , Gs

i (y
s) ≡ −αs + 2βysi + βys−i + νi, i = p, b (7)

(Note: −Gs
i (y

s) is equal to the marginal revenue minus the short-run marginal

cost of generator i.)

Also define

y = (y1,· · · ,yS);GsT (ys)=(Gs
p(y

s), Gs
b(y

s));GT (y)=(G1T (y1),· · · ,GST (yS)) (8)

x = (xp, xb), KT = (Kp,Kb), F (x, y)T = (KT , GT (y)) (9)
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Let Z be the set of feasible (x, y). By definition, the solution to the varia-

tional equality V I(Z,F ) is a point z∗ =


 x∗

y∗


 belonging to Z satisfying

F T (z∗)(z − z∗) ≥ 0 (10)

for all z ∈ Z. The mapping F (z) is monotone if for all (x, y) ∈ Z, that is,

[F (z1) − F (z2)](z1 − z2) ≥ 0. It is strictly monotone when this inequality is

strict whenever z1 
= z2. The following lemma provides the basic technical

result for analyzing the open-loop Cournot model.

Lemma 1 G(y) is strictly monotone, F (x, y) is monotone.

It is now possible to restate the Open-Loop Cournot Competition Problem

as

Seek (x∗, y∗) : x∗i − ys∗i ≥ 0, ys∗i ≥ 0, i = p, b; s = 1, · · · , S satisfying

F (x∗, y∗)T (x− x∗, y − y∗) ≥ 0 (11)

for all (x, y) : xi − ysi ≥ 0, ysi ≥ 0, i = p, b; s = 1, · · · , S.

The properties of this model are summarized in the following theorem which

also invokes the notion of dynamic consistency introduced in Newbery (1984).

By definition the multiperiod solution of a game is dynamically consistent

when the optimal actions for future periods as part of the period 1 solution

remain optimal in the subsequent periods, given the first period solution. Note

that dynamic consistency is a weaker concept than subgame perfection (see

Haurie et al (1999) for a discusion of these two concepts).)
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Theorem 1 There always exists an open-loop Cournot equilibrium. It is

unique. This equilibrium is dynamically consistent. The base player always

invests a positive amount at equilibrium. The peak player does not necessarily

do so, except if the equilibrium demand in some segment s ≤ Sp is larger than

the equilibrium demand in segment Sp+1.

4.3 Sensitivity analysis

This section presents a set of results that pave the way towards the analysis of

the closed-loop equilibrium problem. These results show how the solution of

the short-term equilibrium problem varies with the generation capacities and

the demand parameters. Using Theorem 1 and the variants introduced below,

we can state the following definitions and lemma.

Definition 1 Let ysi (x), i = p, b; s = 1, · · · , S be the solution of the short-

term equilibrium condition (4) for a given x, the vector of capacity for both

players.

The ysi (x) satisfy the following properties.

Lemma 2 ysi (x) is well defined (ysi is unique for given x). Each ysi (x) is left

and right differentiable with respect to xj, j = i,−i.

The following model is similar in nature (but particular to the power sector)

to the one introduced by Dixit (1980) for studying strategic investments. It

models the second-stage equilibrium after the entrance of player −i with a

capacity x−i.

Definition 2 An Open-Loop Cournot Competition problem contingent on ca-

pacity x−i is an Open-Loop Cournot Competition problem where the capacity
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x−i is fixed. Denote by (xi(x−i), ((ysi (x−i), y
s
−i(x−i)), s = 1, · · · , S) the so-

lution to an Open-Loop Cournot Competitive problem contingent on capacity

x−i as a function of this capacity.

The solution to this problem satisfies the following properties.

Lemma 3 (xi(x−i), yi(x−i), y−i(x−i)) are well defined (they exist and are unique

for every x−i). Each of these functions is left and right differentiable.

Consider now the solution of the short-run equilibrium in time segment s as a

function of the demand level in that time segment. The solutions satisfy the

following properties.

Lemma 4 Define ysi (α
s), λsi (α

s) and ωsi (α
s) to be the solutions of the short-

run equilibrium conditions (4) as functions of αs. ysi (α
s) and λsi (α

s) are mono-

tonically non-decreasing in αs. ωsi (α
s) is monotonically decreasing in αs when

nonzero.

This result is intuitive. It says that the generation level of each agent increases

with the willingness to pay (αs) for electricity. It also states that the marginal

value of capacity in some time segment increases with the willingness to pay

for electricity in that time segment. Because willingness to pay for electricity

in the different time segments decreases with the index of these time segments,

this lemma implies the following corollary.

Corollary 1 If ysi = xi, then ys
′
i = xi for s′ < s.

The peak generator has a higher operating cost than the base generator. It

is thus reasonable to expect that, barring the case where base generation

is limited by available capacity, peaker generation will be lower than base

generation in any given time segment. This is stated in Lemma 5.
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Lemma 5 ysp < ysb in any time segment s such that the baseload capacity is

not binding (ysb < xb).

The next equally intuitive sensitivity result, stated formally in Lemma 6, says

that the marginal value of plant capacity decreases as its total capacity in-

creases.

Lemma 6 Given x−i, the λ are non-increasing with xi and strictly decreasing

with xi as long as the λ are positive.

Lemma 2 implies that one can state the solution of the short-run equilibrium

conditions as a function of first-stage investments. This will be used for char-

acterizing the closed-loop Cournot equilibrium. Lemma 3 implies that one

can study the solution of a game where an incumbent chooses capacity xi,

taking into account the future investment and operations of an entrant. This

is used for studying strategic investments (Dixit (1980) and Poddar’s (1997)

extension). The rest of this paper concentrates on the closed-loop equilib-

rium à la Gabszewicz and Poddar (1997). In order to proceed further, we use

Corollary 1 to introduce the following definition.

Definition 3

si(x) = max{s | ysi = xi}, i = p, b (12)

For a given vector x of generation capacities, it is thus possible to partition

the set of the different time segments into the following different classes.
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(a) −αs + 2βxi + βx−i + νi + λsi = 0 0 < ysi = xi λsi ≥ 0

i = p, b

(b) −αs + 2βyi + βy−i + νi = 0 0 < ysi < xi λsi = 0

i = p, b

(c) −αs + 2βxi + βy−i + νi + λsi = 0 0 < ysi = xi λsi ≥ 0

−αs + βxi + 2βy−i + ν−i = 0 0 < ys−i < x−i λs−i = 0

(d) −αs + βys−i + νi = ωsi ysi = 0 ωsi ≥ 0

−αs + 2βys−i + ν−i = 0 0 < ys−i < x−i λs−i = 0

(e) −αs + βx−i + νi = ωsi ysi = 0 ωsi ≥ 0

−αs + 2βx−i + ν−i + λs−i = 0 0 < ys−i = x−i λs−i ≥ 0

(13)

Define Biyj(x) = ∂yj
∂xi

when the derivative exists. The derivative of the

second-stage equilibrium variables with respect to the first-stage capacities

can be characterized as follows.

Lemma 7 The derivative of yj with respect to xi when it exists can be stated

as follows for the above cases

(a) Biyi(x)=1 i=p, b Biy−i(x)=0 i=p, b

(b) Biyj(x)=0 i=p, b; j=p, b

(c) Biyi(x)=1 B−iy−i(x)=0 B−iyi(x)=0 Biy−i(x)=−1
2

(d) Biyj(x)=0 i=p, b; j=p, b

(e) B−iy−i(x)=1 Biyi(x)=0 Biy−i(x)=0 B−iyi(x)=0

(14)
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5 Reaction curves

Reaction curves play a significant role in the study of oligopolistic equilibria in

economics. In order to conduct our analysis, consider the following definition

of the short-term reaction curve.

Definition 4 The short-run reaction curve of player i with respect to the

action ys−i of player −i in time segment s, for given capacities x is the solution

of the system

−αs + 2βysi + βys−i + νi + λsi = ωsi ; ysi ≥ 0, ωsi y
s
i = 0

xi − ysi ≥ 0, λsi ≥ 0, (xi − ysi )λ
s
i = 0

It is denoted ysi (y
s
−i;x).

This reaction curve satisfies the following property.

Lemma 8 ysi (y
s
−i;x) exists and is well defined. It is piecewise affine with

dysi
dys−i

= 0 when ysi = xi or 0

= −1
2 whenever 0 < ysi < xi

The long-term reaction curves xi(x−i), (ysi (x−i), y
s
−i(x−i), s = 1, · · · , S) have

been introduced in Definition 2. They can be used to study strategic invest-

ments as in Dixit. They are characterized by the following propositions.

Proposition 1 xi(x−i) is piecewise affine and continuous. Each affine seg-

ment has a slope strictly between 0 and −1.

Proposition 2 ysi (x−i) and ys−i(x−i) are piecewise affine and continuous.

Each affine segment of ysi (x−i) has a slope between 0 and −1. Each affine

segment of ys−i(x−i) has a slope of 0 or +1.

23



6 The closed-loop Cournot model

6.1 Definition and equilibrium conditions

To define generator i’s problem in the closed-loop Cournot model, consider

first the solution ysi (xi, x−i) of the short-run equilibrium conditions (4).

For given x, seek ysi (xi, x−i) that satisfies

−αs + 2βysi + βys−i + νi + λsi = ωsi ≥ 0, ysi ≥ 0, ωsi y
s
i = 0

xi − ysi ≥ 0, λsi ≥ 0, λsi (xi − ysi ) = 0

i = p, b; s = 1, · · · , S.

The long run problem of generator i is then

min
xi≥0

Kixi +
S∑
s=1

[
−αs + β(ysi (xi, x−i) + ys−i(xi, x−i)) + νi

]
ysi (xi, x−i) (15)

By definition (x∗p, x
∗
b) is a subgame-perfect equilibrium (Selten (1975)) or

a closed-loop Cournot equilibrium ( Fudenberg and Tirole (1986), Haurie et

al. (1999)) if xi solves generator i’s long run problem for given x∗−i, i = p, b.

In order to characterize the solution to this problem, consider a point x

such that the ysi (x) are differentiable. A closed-loop equilibrium at such a

point would satisfy the condition

Ki +
∑
s

[
−αs + 2βysi (x) + βys−i(x) + νi

]
Biy

s
i (x)

+
∑
s βysi (x)Biy

s
−i(x) = ξi ≥ 0, ξixi = 0

(16)

We temporarily disregard points of non-differentiability and characterize an

equilibrium point where all ysi (x) are differentiable. This will be done by

investigating the relationship between the solution of the closed and open-

loop problems.
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6.2 Closed-loop versus open-loop Cournot model

The following lemma is intuitively reasonable: if one player does not generate

in some time segments in the Cournot equilibrium, it must be the one with

higher short-term operating costs, that is the peak player.

Lemma 9 Suppose the closed-loop Cournot equilibrium problem has a solution

with time segments of type e. Then the peak player is the one operating at zero

level in these time segments.

This result allows one to derive a first characterization of the relation

between the closed and open-loop problems. It gives a sufficient condition

for the two equilibria to be identical. Essentially, this happens when neither

player has load segments where the operating decisions change in response to

the other player’s capacity decision.

Theorem 2 When all segments s in the closed-loop Cournot equilibrium prob-

lem are of type e with ωsi > 0 or a, b or d, the equilibrium is the same as the

solution of the open-loop Cournot problem.

The following can be seen as a restatement of this result in terms of the

investment criterion. Specifically the equality between the Ki and
∑
i λ

s
i will

play an important role in relating the open and closed-loop equilibria.

Corollary 2 If for every load segment xi = ysi implies x−i = ys−i, then Ki =∑
s λ

s
i .

This corollary states that in this case the solution of the optimization

subject to the equilibrium constraints is the same as in the pure optimization

in the open-loop game. The above results indicate that differences between
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the open and closed-loop equilibria require the solution to have time segments

of type c or e. A first characterization of a solution with time segments of

type c is given by the following lemma, which states that if the solution has

multiple segments of type c in the equilibrium, then the same player is below

capacity in all of these segments.

Lemma 10 In case c, 0 < ysi = xi and 0 < ys−i < x−i for some segment s

implies that there is no segment s′ for which 0 < ys
′
−i = xi and 0 < ys

′
i < x−i.

This lemma allows us to introduce the following theorem which establishes

a major divergence between the solution of the open and closed-loop Cournot

equilibria. That is, the solution of the player’s optimization subject to equi-

librium constraints is different from the optimization in the open-loop game

and the KKT conditions are violated.

Theorem 3 Consider the case in which segments fall into the five cases a, b, c, d

and e with ωi > 0. Then the solution to the closed-loop Cournot equilibrium

problem is different from the solution of the open-loop Cournot equilibrium

problem. Moreover one of the two following pairs of relations holds

Ki >
S∑
s=1

λsi , K−i =
S∑
s=1

λsi (17)

for i = p or b depending on whether ysi = xi and ys−i < xi in the segments of

type c.

The interpretation of the theorem is as follows. The investment cost of

some plant, at the closed-loop equilibrium, may be higher than the sum of its

short-term marginal values in the different time segments as would be implied

by the KKT conditions. The difference between the two characterizes the value
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for the player of being able to manipulate the short-term market by its first-

stage investments. This value is not captured in the standard optimization

duals because the second-stage problem is an equilibrium solution.

These relations can again be interpreted in terms of a real option. First,

note that the relation K−i =
∑S
s=1 λsi implies K−i ≤

∑S
s=1 max(ps− νi; 0). As

already argued in the discussion of the open loop problem, the interpretation

is that the value of a merchant plant may be smaller than the strip of call

options on spark spread between electricity and fuel cost. As will be shown

in Corollary 3, this happens for gas-fired units. In contrast the relation Ki >∑
s=1 λsi leaves us with a complete indeterminacy as far as the comparison

between Ki and
∑S
s=1 max(ps − νi; 0) is concerned. It would seem that the

usual interpretation of real options breaks down here.

The following lemma establishes a relatively intuitive property that is com-

mon to the solution of the open and closed-loop equilibria. It states that the

solution of the short-run equilibrium first takes advantage of the existing ca-

pacity with low operating costs. As expected, this holds both in the open and

closed-loop equilibria.

Lemma 11 Assume an equilibrium of the open or closed-loop Cournot equi-

librium problem. At such an equilibrium, if the peak player is at capacity in

some time segment s, then the base player is also at capacity in that time

segment.

The following corollary takes advantage of Lemma 11 to refine the result

expressed by Theorem 3. It says that if closed and open-loop equilibria differ,

the base player manipulates the short-run market through investment. Ac-

cordingly, the per-unit investment cost in the base plant is higher than the

sum of the marginal values of this plant in the different time segments.
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Corollary 3 If there exists a closed-loop equilibrium with time segments of

type c, then

Kb >
S∑
s=1

λsb and Kp =
S∑
s=1

λsp (18)

The next results complete the comparison between the closed and open-

loop equilibria. Cournot equilibria are known to reduce quantities put on the

market. Theorem 4 says that this effect is less pronounced with the closed-loop

game.

Theorem 4 Suppose there exists a closed-loop equilibrium. Then the total

capacity in the closed-loop equilibrium is at least as large as the total capacity

in the open-loop equilibrium and is larger when there are segments of type c

or e.

The explanation of the above phenomenon can be found in the capability

of the base player to manipulate the short-term market by its investment.

Specifically the base load player has a stronger incentive to invest than in the

open-loop model.

Theorem 5 Suppose there exists a closed-loop equilibrium. Then the base

capacity in the closed-loop equilibrium is at least as great as the base capacity

in the open-loop equilibrium.

The overall outcome of this added investment is a reduction of prices com-

pared to those prevailing in the open-loop equilibrium.

Theorem 6 Suppose there exists a closed-loop equilibrium. Then the total

production in the closed-loop equilibrium is larger than in the open-loop equi-

librium for each time segment. Hence prices are lower in each time segment

of the closed-loop equilibrium.
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The following result is a priori surprising: even though the solutions of the

open and closed-loop equilibria may be different (and are also different from

the perfect-competition equilibrium), the marginal value of the peak capacity

in all time segments is the same in all these equilibria. Although the results

may look strange, the underlying reason is simple: the investment criterion

Kp =
∑

λsp is the same in the three equilibria and it can easily be shown that

this implies the equality of the λsp.

Lemma 12 Let m, c and o respectively indicate the competitive, closed-loop

and open-loop equilibria. Then λsmp = λscp = λsop = λsp ∀ s if one invests in

the peak plant in the three equilibria. One has λsmp ≥ λscp ,∀ s if xcp = 0 at

equilibrium.

The following theorem concludes the comparison among the different equi-

libria.

Theorem 7 The total capacity and production in the closed-loop equilibrium

falls between the open-loop equilibrium and the competitive equilibrium.

7 Existence and uniqueness of the solution of the

closed-loop Cournot model

The existence and uniqueness of the solution of the open-loop Cournot model

was rather straightforward to establish. In contrast the analysis of these same

questions is much more involved for the closed-loop model. We first introduce

some notation. For a given x = (xp, xb) use the monotonicity properties of
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λ(α) stated in Lemma 4 and Lemma 5 to define

S1 = {1, · · · , s1} = {s | λsp > 0}
S2 = {s1 + 1, · · · , s1 + s2} = {s | λsp = 0, λsb > 0, ysp > 0}
S3 = {s1 + s2 + 1, · · · , s1 + s2 + s3} = {s | ysp = 0, λsb > 0}
S4 = {s1 + s2 + s3 + 1, · · · , S} = {s | λsp = 0, λsb = 0}.

(19)

Note that this definition is local to this section and these si are not the

same as those defined in Section 4.3 “sensitivity analysis”. We also write the

Si and si as Si(x) and si(x) if dependence of these elements on x is to be

emphasized. Finally, we write

Σ = {S1, S2, S3} and σ = {s1, s2, s3}.

As a preliminary goal, we want to study the first-stage reaction of player b

(investment xb) as a function of the first-stage action of player p (investment

xp).

Rewriting the objective function of player b using the above sets for a given

xp, we can state that player b minimizes

OCb(xb | xp) = Kbxb +
∑
s∈S1(x)(−αs + βxp + βxb + νb)xb

+
∑
s∈S2(x)(−αs + βysp(x) + βxb + νb)xb

+
∑
s∈S3(x)(−αs + βxb + νb)xb

+
∑
s∈S4(x)(−αs + βysb + νb)yb

(20)

Define the derivative of OCb(xb | xp) with respect to xb where it exists as

MCb(xb | xp) = Kb +
∑
s∈S1(x)(−αs + βxp + 2βxb + νb)

+
∑
s∈S2(x)(−αs + βysp(x) + 2βxb + νb)

+
∑
s∈S2(x) y

s
bBby

s
p(x) +

∑
s∈S3(x)(−αs + 2βxb + νb)

(21)
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Finally, we denote the expressions (20) and (21) as OCb(xb | xp; Σ), OCb(xb |
xp;σ),MCb(xb | xp; Σ),MCb(xb | xp;σ) when we want to express them as

functions of Σ (or σ) that are defined exogenously, independent of x. Specifi-

cally it is useful to refer to OCb(xb | xp;S1), OCb(xb | xp; s1), MCb(xb | xp;S1),

MCb(xb | xp; s1) where only the first element S1 (or s1) is defined exogenously,

independent of x, but the other S (or s) depend on x.

The following lemma states that the objective function of player b is not

convex. However it has partial convexity properties.

Lemma 13 OCb(xb | xp) is a piecewise convex function of xb for given xp.

Separation between convexity intervals occur at points bs1(xp) = αs1 − νp − 2βxp
β ,

s1 = 1, · · · , S.

The bsi(xp) identify levels of xb where the marginal value of peak plants

becomes zero. The lemma states that OCb(xb | xp) is convex in xb as long

as the sets of time segments with zero and nonzero marginal values of peak

plants do not change.

It is easy to see that the function OCb(xb | xp) is piecewise quadratic. Sep-

aration between quadratic pieces occur when some of the Si(x) change. These

changes may also create non-differentiable points in the function OCb(xb | xp).
Non-convexities can occur only at these points. Consider the points (xp, xb)

where this non-differentiability of OCb(xb | xp) can occur. MC2(xb | xb; Σ) is

still defined if one specifies the values of s1, s2, s3. Using these definitions and

the proof of Lemma 13, one can state the following corollary.

Corollary 4 Let xp, xb be a point where OCb(xb | xp) is not differentiable.
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Define σ = (s1, s2, s3) = lim ε>0
ε→0

σ(xp, xb − ε). Then

MCb(xb | xp; s1 − 1, s2 + 1, s3) < MCb(xb | xp; s1, s2, s3}
MCb(xb | xp; s1, s2 − 1, s3 + 1) = MCb(xb | xp; s1, s2, s3}
MCb(xb | xp; s1, s2, s3 − 1) = MCb(xb | xp; s1, s2, s3}.

Consider now, for xp given, the evolution of MCb(xb | xp) as xb increases.

Elements of S1(x) can move into S3(x) and similarly elements of S2(x) and

S3(x) can move into S3(x) and S4(x) respectively. Using Corollary 4, we

obtain a graph of MCb(xb | xp) as depicted on Figure 4.
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Figure 4: Pattern of MCb(xb | xp)
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7.1 Discussion

It appears from the preceeding discussion that the constraint xb ≤ bs1(xp)

determines the set S1 = {1, · · · , s1} and defines the region of convexity of the

function OCb(xb | xp). Even though, minxb OCb(xb | xp) is not a convex prob-

lem, it is piecewise convex and minxb≤bs1 (xp) OCb(xb | xp) = minOCb(xb |
xp; s1) is a convex problem. The problem minxb OCb(xb | xp; s1) has an

economic interpretation: it represents the behavior of player b when this

latter optimizes its capacity in the domain of xb that makes λsp = 0 (the

marginal value of the plant of player p is zero) in all market segments s > s1.

Comparing the expressions of the objective functions, one can easily see that

OCb(xb | xp; s1) ≥ OCb(xb | xp; s1 − 1). It is also easy to see that xb ≤ bs1(xp)

is contained in xb ≤ bs1−1(xp). Reassembling these different remarks, one can

conclude that minxb OCb(xb | xb) = mins1 minxb OCb(xb | xp; s1).

While the objective function of player b is piecewise convex, it is useful

to note as stated in the following lemma, that its optimum never lies at the

boundary between two zones of convexity.

Lemma 14 The reaction of base player b (investment xb) to the action of

player p (investment xp) can never be on a boundary xb = bs1(xp) for some

s1.

The above discussion leads to a first characterization of the reaction func-

tion of player b to the investments of player p.

Proposition 3 The solution to minxb OCb(xb | xp; sp)(= minxb≤bs1 (xp) OCb(xb |
xp)) exists and is unique. Let xb(xp; s1) be this solution. Then xb(xp; s1) is

piecewise affine and continuous, with the slope of each affine segment strictly

between 0 and −1.
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Proposition 3 suggests, but does not prove, that the overall reaction func-

tion of player b has the form depicted in Figure 5 where a particular piecewise

affine function xb(xp; s1) constitutes the reaction function in an interval strictly

between two lines bs(xp) and bs−1(xp) (because of Lemma 14). In order to fur-

ther elaborate on this intuition, consider the first segment of this reaction

function.

x2

x1

bs (x1)

bs−1(x1 )

x2 (x 1; s)

Figure 5: Interpretation
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7.2 Construction of the first segment of the reaction function

Consider the initial condition where xp = 0 (no peak capacity). Player b reacts

to this situation by solving minxb OCb(xb | 0) which is a convex problem. This

solution defines the set of time segments s = 1, · · · , s0
1 where the marginal value

of an investment in the peaker is positive. In order to define s2 and s3 and

avoid the degeneracy ysp = xp = 0 with λsp > 0, simply take a perturbation

ε > 0 of the zero capacity of equipment p. Let s0
2, s

0
3 be obtained accordingly.

x2

x1
1, x

1
2

x1

bs(x1)

x2(0; s1)

Figure 6: Construction of the reaction curve when xp departs from 0

Let xb(0; s0
1) (or xb(0; s0

1, s
0
2, s

0
3)) be this solution. By construction xb(0; s0

1)

≤ bs01
(0). Consider now the function xb(xp; s0

1) that is where s0
1 is kept fixed

but the s2 and s3 are functions of the point x. By Proposition 3 xb(xp; s0
1) is
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continuous piecewise affine with slope between 0 and -1 for each affine segment.

It thus has an intersection with xb = bs01
(xp) because bs01

(xp) has a slope -2.

Let x1
p, x

1
b be this intersection. We know that x1

p, x
1
b cannot be on the reaction

function. Indeed,

Lemma 15 There exists a point x1
p strictly between 0 and x1

p where

xb(xp; s0
1) ceases to be the optimal response when xp > x1

p. From that point

on and on some interval the optimal response is a function xb(xp; s1
1) with

s1
1 < s0

1. Moreover one has xb(x1
p; s

1
1) > xb(x1

p, s
0
1).

This leads one to extend the reaction function as depicted on Figure 7.

x2

x1

bs1(x1)

bs0(x1)

x1
1

x1
1

x1
2

(x1
1, x

1
2)

Figure 7: First and second segments of the reaction functions
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xb(xp; s0
1) is thus the reaction function until some point x1

p where s0
1 decreases

and xb(xp) jumps by a positive amount. Let x1
p, x

1
b(where x1

b = xb(x1
p; s

1
1)) be

the point after the jump; k = 1 denotes the first jump. This construction can

be generalized. Indeed

Lemma 16 Let (xkp, x
k
b ) and xb(xp; sk1) be the point and the reaction function

obtained after jump k. One has

xb(xkp; s
k
1) < bsk1

(xkp).

If sk1 > 1, xb(xp; sk1) defines the reaction function until a point xk+1
p ,

xk+1
b . At that new point, the optimal response is a function xb(xk+1

p ; sk+1
1 )

with sk+1
1 < sk1. Moreover, one has

xb(xk+1
p ; sk+1

1 ) > xb(xkp; s
k
1).

This construction can be summarized in the following theorem.

Theorem 8 The capacity reaction function of the baseload player in the closed-

loop game is piecewise continuous with upward jumps. In each interval of

continuity, it is monotonically decreasing with slope between 0 and −1.

Up to this point, we have said nothing about the reaction function of

player p. Since this player sees player b at capacity whenever it is, its reaction

function is continuous and monotonically decreasing with slope between 0 and

−1. Combining the properties of the reaction functions, if they intersect, they

intersect at only one point. Summing up we obtain the following existence

and uniqueness result.

Theorem 9 The closed-loop game does not necessarily have a pure strategy

equilibrium. If it has, the equilibrium cannot occur when λsp = 0 and xp = ysp.

If there is an equilibrium, it is unique.
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The discontinuities have a flavor of strategic substitute and complement

effects as discussed in Bulow, Geanakoplis, and Klemperer (1985). The down-

ward sloping affine segments reflect substitute effects. They are driven by the

linear demand curves as in Dixit’s model. The upward jumps look like extreme

cases of complement effects where an increase of capacity of one player (here

the peak) induces a simultaneous increase of the other player. But the effect

is more difficult to relate to Bulow et al.’s analysis. It indeed results from a

re-optimization of the generation of the peak player at certain levels of peak

and base capacity. This rearrangement is rooted in the discrete decomposi-

tion of the demand curve into different time segments, something that is not

directly interpretable in Bulow et al.’s framework.

8 Conclusion

This paper analyzes three capacity expansion models related to the restruc-

tured electricity industry. The first model assumes a perfectly competitive

market. It is an idealized situation which is useful only for reference. The

second model, referred to as the open-loop Cournot model, corresponds to a

market where commitments are simultaneously made on investment and sales

contracts. It represents an organization based on Power Purchase Agreements.

This model has the standard Cournot properties and it is also easy to han-

dle numerically. Finally, the third model represents an industry organized

around merchant plants. It is an equilibrium problem subject to equilibrium

constraints. In general this type of model is extremely difficult to handle nu-

merically. Indeed, the problem is a true two-stage equilibrium problem that

exhibits non-convexities in the first stage. This non-convexity is not surprising.

Two-stage equilibrium models are extensions of bilevel and MPEC problems
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that are well known to be nonconvex. Because of this nonconvexity, some

form of enumeration is required not only to find a pure-strategy equilibrium

but also to identify whether it exists.

In order to explore the different games, the models elaborated in this paper

have been simplified to the case of two agents, each specializing in a particular

type of plant, namely peak and base plants. This simplified context facilitates

the analysis. Specifically, it makes it relatively easy to identify whether there

exists an equilibrium, and to characterize it when it exists. The simplification

also makes it possible to structure the set of possible second-stage equilibria,

using sensitivity analysis. It is the exploitation of those results that allows us

to derive results on an a priori badly behaved problem. This characterization

can also help reduce the enumeration required to handle the nonconvexity of

the problem in case one tries to solve it numerically. We expect that some of

this analysis can be carried through to more general models. In principle, the

search through second-stage equilibria needs to be done by enumerating all

complementarity sets of the second-stage problem. This may be an impossible

task for a general problem with several agents controlling several technologies

or when agents are spatially distributed on a grid. One longer-term objective

of the paper is to show that this enumeration can be reduced by sensitivity

analysis. Also, we expect that economic intuition could help develop this

sensitivity analysis and characterize the nature of the relevant nonconvexities.

One next step of the research will include exploring which sensitivity properties

can be retained in a more general context in order to reduce the enumeration.

Sequential games pervade all electricity restructuring experiences even

though the literature remains relatively underdeveloped. Most of the atten-

tion in the area so far has concentrated on the contract market (e.g. Green
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(1999), Newbery (1998), Wolak (1999), Bessembinder and Lemmon (1999)) or

multisettlement systems (Kamat and Oren (2002)). The subject that retained

most attention is the extent to which forward markets reduce market power

and the incentive of players to engage into these contracts. This problem finds

its academic origin in Allaz (1992) and Allaz and Vila (1993). It has been

recently highlighted by the contrast between the Californian debacle (where

these contracts were forbidden) and the good performance of the British reform

(where they were allowed). We look at a somewhat complementary problem

as we do not consider the forward/spot markets but compare two situations

that differ by the existence of a spot market. Our Cournot model assumes

long term contracts but no spot market while the closed loop models disre-

gard long term contracts to concentrate on the spot market. Models such as

these and extensions thereof could shed some light on the new situation that

the experiences create. This would be particularly relevant to the extent that

the impact of the structure of the industry on the incentive to invest and its

ultimate consequences on electricity prices remain largely unexplored. An im-

portant qualitative feature of the results of this paper is that the model with

a spot market has lower prices and higher quantities than the one without

the spot market. This result holds even when there is no financial contracts

as was the case in the initial stage of restructuring in California. The model

also shows the potential for no equilibrium in the model with a spot market.

Needless to say, these conclusions could be tempered by the value of long-term

contracts in managing risk. Furthermore, a market with a mix of spot and

contract prices could potentially lower prices even further than the closed-loop

solution, along the lines of the work by Allaz and Vila (1993).

The model also leads to investment criteria. These can be interpreted in
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terms of real options. But the interesting feature is that these interpretations

are not the standard ones. In short a blind application of standard calls on

spark spread could be totally erroneous for valuing plants in an oligopolistic

market. Thi s would certainly justify further research. How to characterize the

solution with continuously growing demand and existing capacity is another

topic for future research. Lastly, the development of multistage models could

also be warranted. For instance, the second-stage game misses another feature

that has appeared in California, using planned maintenance games to raise the

price. In short, we believe that two-stage, and multistage game models could

help explore many realistic situations that appear in electricity restructuring.
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Appendix

Proof of Lemma 1

To prove that Gs(ys) is strictly monotone, note that

[Gs(ys,1)−Gs(ys,2)]T (ys,1 − ys,2)

= β(ys,1p − ys,2p , ys,1b − ys,2b )


 2 1

1 2





 ys,1p − ys,2p

ys,1b − ys,2b


 > 0

whenever ys,1 
= ys,2 (recall that β > 0). The strict monotonicity of G(y)

follows from the strict monotonicity of each Gs(ys). To show the monotonicity

of F (x, y) note that

[F (x1, y1)− F (x2, y2)]T


 x1 − x2

y1 − y2




= (0, 0, G(y1)−G(y2))T




x1
p − x2

p

x1
b − x2

b

y1 − y2


 = [G(y1)−G(y2)]T (y1 − y2).

This expression is ≥ 0, strictly positive when y1 
= y2 and zero otherwise.

Proof of Theorem 1

(i) There always exists an open-loop Cournot equilibrium. Because the de-

mand function is affine and demand is constrained to remain non neg-

ative, one has 0 ≤ ysi ≤ αs

β for all i and s. There is thus no loss of

generality in bounding xi by α1

β (the largest of the αs

β ).

The open-loop Cournot equilibrium problem can then be reformulated

as a problem in a non empty compactness set. This together with the

continuity of the mapping insures the existence of a solution (Harker and

Pang (1990)).
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(ii) The solution is unique in y because of the strict monotonicity of G(y).

It is also unique in x because xi = y1
i , i = p, b since each generator

minimizes its cost.

(iii) The solution is dynamically consistent.

This comes trivially from the statement of the equilibrium conditions

(condition (5) is a subset of conditions (5) and (6)).

(iv) The base player always invests a positive amount in the open-loop

Cournot equilibrium. The peak player does not necessarily do so, except

if the equilibrium peak demand is greater than the other equilibrium

demand.

Suppose xb = 0 and assume xp > 0 to avoid the trivial case of no demand.

• The short-run equilibrium conditions imply for s = 1, · · · , S

−αs + 2βxp + νp + λsp = 0

−αs + βxp + νb + λsb ≥ 0 or αs − βxp ≤ νb + λsb

• The long run equilibrium conditions, together with the above rela-

tions, imply

Kp =
∑
s λ

s
p =

∑
s α

s − 2βSxp − Sνp <
∑
s α

s − βSxp − Sνp

or Kp + Sνp <
∑
s α

S − βSxp ≤ Sνb +
∑

λSb ≤ Kb + Sνb

which contradicts relation (1).

• To show that xp can be 0 at equilibrium, we use the following exam-

ple. Let Kb = 10, νb = 0,Kp = 5.5, νp = 4, αp = 10, αb = 8, β = 1.

Relation (1) is clearly satisfied. The short-run equilibrium condi-

tions of the base player can be written as

−α1 + 2β + νb + λ1
b = 0,

−α2 + 2βxb + νb + λ2
b = 0
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which are satisfied for xb = b, λ1
b = 6, λ2

b = 4.

The short-run equilibrium condition of the peak player can be writ-

ten as
−α1 + βxb + νp + λ1

p ≥ 0,

−αb + βxb + νp + λ2
p ≥ 0

which are satisfied for xb = b, λ1
p = 0.5, λb1 = 0.

Last we assume that xp = 0 and q1 = α1 − β(y1
p + y1

b ) > qs =

αs − β(ysp + ysb), s = 2, · · · , S.

The short-run equilibrium conditions for player p and b respectively

imply −α1 +βxb+νp+λ1
p ≥ 0 and −α1 +2βxb+νb+λ1

b = 0. Using

Kb = λ1
b (recall that λsb = 0 for s ≥ 2 because q1 > qs, s = 2, · · · , S).

One obtains Kp ≥ λ1
p ≥ α1 − βxb − νp > α1 − 2βxb − νp = α1 −

2βxb−νb+(νb−νp) = νb+λ1
b−νp = νb−νp+Kb or Kp+νp > Kb+νb

which contradicts (1).

Proofs of Lemma 2 and Lemma 3

Proof of Lemma 2

The proof follows from the strict monotonicity of G(y) as shown in the proof

of Lemma 1. The y(x) are unique for all x, because with x given, the second-

stage problem decomposes into a set of standard, single-stage Cournot prob-

lems. The y(x) are also continuous in x and hence left and right differentiable

with respect to xp and xb.

Proof of Lemma 3

The proof follows from the strict monotonicity of G(y) and the monotonicity

of F (x, y) as shown in the proof of Lemma 1. Because all these expressions are
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unique, they are also continuous in x and hence left and right differentiable

with respect to x−i.

Proof of Lemma 4

Consider successively the four cases

(i) 0 < ysi < xi, y−i = 0, ωs−i > 0

(ii) ysi < xi and ωsi = 0, i = p, b

(iii) ysi < xi and ys−i = x−i

(iv) ysi = xi, i = p, b

Case (i)

From (4), −αs+2βysi +νi = 0 or ysi = αs − νi
2β . Similarly −αs+βysi +ν−i = ωs−i

and ωs−i = −αs + βαs − νi
2β + ν−i or ωs−i = −αs

2 −
νi
2 + ν−i.

Case (ii)

Suppose ysi < xi, i = p, b. λsi = 0 and hence satisfies the lemma. With

λsi = ωsi = 0, (5) is two equations with two unknowns having a solution

ysi =
1
3β

[αs − (2νi − ν−i)] , i = p, b.

This proves the lemma for case (ii).

Case (iii)

−αs + 2βysi + βx−i + νi = 0

implies

ysi =
1
2β

(αs − βx−i − νi) .
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Inserting this expression in −αs + βysi + 2βx−i + ν−i + λs−i = 0 one gets

−αs +
1
2
(αs − βx−i − νi) + 2βx−i + ν−i + λs−i = 0

which gives

λs−i =
1
2

[αs − 3βx−i + (νi − 2ν−i)]

which again proves the lemma.

Case (iv)

λsi = αs − 2βxi − βx−i − νi

which proves the lemma.

The above shows that the ysi (α
s) are monotone with αs in each of the (ii),

(iii) and (iv) cases. Because the ysi are unique for each α, ysi (α
s) is continuous

in α and hence the lemma is satisfied. Because we do not have any unique-

ness result for the λ, one needs to be somewhat more careful for proving their

global monotonicity. Consider a change from (ii) to (iii). The result is trivial

since the λ can only move from 0 to a nonnegative value.

Consider now a change from (iii) to (iv). The result is trivial for the λ that

goes from zero to a nonnegative value. It is easy to see from the equilibrium

conditions (5) that the other λ is continuous with y and hence that the result

also holds.

Proof of Lemma 5

Relaxing the constraint ysp < xp, consider case (ii) of the proof of Lemma 4.

One has ysp = 1
3β [αs − (2νp − νb)] and ysb = 1

3β [αs − (2νb − νp)]. The result
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follows from the fact that νp > νb implies 2νp − νb > 2νb − νp. Since ysp =

min{xp, 1
3β [αs − (2νp − νb)]}, the lemma holds.

Proof of Lemma 6

Consider again the different cases of the proof of Lemma 4.

(i) and (ii) ysi < xi i = p, b implies that the λsi = 0. The lemma is thus

satisfied in this case.

(iii) ysi < xi and ys−i = xi. The relation (proven in Lemma 4)

λs−i =
1
2

[αs − 3βx−i + (νi − 2ν−i)]

shows that λs−i strictly decreasing with x−i and invariant with xi. The

lemma is thus satisfied in this case.

(iv) ysi = xi i = p, b implies

λsi = αs − 2βxi − βx−i − νi

which again proves the lemma.

The result can then be obtained globally by using the same reasoning as in

Lemma 4.

Proof of Lemma 7 and Lemma 8

Proof of Lemma 7

The result immediately follows from the expressions used to define segments

(a) to (e).

Proof of Lemma 8

The result immediately follows from short-term equilibrium relation (5).

51



Proof of Proposition 1

Let x−i be given. xi satisfies

−αs + 2βxi + βys−i + νi + λsi = 0, s ≤ si(x) (denoted si in the following).

Adding up all these relations and noting that Ki =
∑
s λ

s
i =

∑
s≤si λ

s
i

−
si∑
s=1

αs + si2βxi + β
si∑
s=1

ys−i + siνi + Ki = 0

or at a point x−i where the derivative is defined

2si
dxi
dx−i

+
si∑
s=1

dys−i
dx−i

= 0.

Consider the following cases

(i) s−i ≥ si and hence
dys−i
dx−i

= 1 for s = 1, · · · , si which implies dxi
dx−i

= −1
2

(ii) s−i < si and hence
dys−i
dx−i

= 1 for s = 1, · · · , s−i. For s = s−i + 1, · · · , si
one has

−αs + βxi + 2βys−i + ν−i = 0

and hence
dys−i
dxi

= −1
2
.

Combining these relations we write

2si
dxi
dx−i

+ s−i + (si − s−i)
dys−i
dxi

dxi
dx−i

= 0.

This gives
dxi
dx−i

(
2si −

1
2
(si − s−i)

)
+ s−i = 0

or
dxi
dx−i

= − s−i
3
2
si +

1
2
s−i

= − 2s−i
3si + s−i

≥ −2si
3si + s−i

> −1.
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Proof of Proposition 2

Let x−i be given. One has

(i) −αs + βysi + 2βys−i + ν−i = 0 if ysi < xi, i = p, b and hence
dys−i
dx−i

= 0

(ii) −αs + βxi + 2βys−i + ν−i = 0 if ysi = xi and ys−i < x−i

and λ−i = 0. This implies
dys−i
dx−i

= −1
2

dxi
dx−i

which is strictly between

0 and 1 by Proposition 1

(iii)
dys−i
dx−i

= 1 if ys−i = x−i and λ−i > 0

Let x−i be given. One has

(i) −αs + 2βysi + βys−i + ν−i = 0 if ysi < xi and ys−i ≤ x−i and λ−i = 0 and

hence dysi
dx−i

= 0

(ii) −αs + 2βysi + βx−i + ν−i = 0 if ysi ≤ xi and λsi = 0 and ys−i = x−i and

λsi > 0 and hence dysi
dx−i

= −1
2

(iii) dysi
dx−i

= dxi
dx−i

if ysi = xi and λsi > 0 and hence dysi
dx−i

is strictly between

0 and -1 by Proposition 1.

Proof of Lemma 9

Let s be a segment of type e. Let ysi = 0 and ys−i = x−i. Suppose xi > 0, one

gets

αs − βx−i − νi = −ωsi ≥ 0

αs − 2βx−i − ν−i − λs−i = 0 or αs − 2βx−i − ν−i ≥ 0

Combining the two relations, one gets

νi ≥ αs − βx−i > αs − 2βx−i > ν−i
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which shows that i is generator 1.

Proof of Theorem 2

Consider a point of differentiability and the associated equilibrium conditions

Ki +
∑
s

[
−αs + 2βysi (x) + βys−i(x) + νi

]
Biy

s
i (x)

+
∑
s βysi (x)Biy

s
−i(x) = 0 i = p, b

The Biy
s
−i(x) are zero when s belongs to a, b or d or e when ωsi > 0

(Lemma 7). The equilibrium condition becomes

Ki +
∑
s

[
−αs + 2βysi (x) + βys−i(x) + νi

]
Biy

s
i (x) = 0.

This expression can be rewritten (using Lemma 7) as

Ki +
∑
s∈a∪e

[
−αs + 2βysi (x) + βys−i(x) + νi

]
= Ki −

∑
s

λsi = 0

which shows that the solution is also a solution to the Open-Loop Cournot

problem.

Proof of Lemma 10

Suppose 0 < ysi = xi and 0 < ys
′
i < xi with s′ < s. One then has ys

′
i < xi = ysi

with αs
′
> αs which contradicts Lemma 4. Alternatively 0 < ysi < xi and

0 < ys−i = x−i with s′ > s shows the same contradiction.

Proof of Theorem 3

Using the reasoning of the proof of Theorem 2, one can restate the equilibrium

condition as

Ki +
∑

s∈a∪c∪e
(−λsi ) +

∑
s∈c

βysi (x)Biy
s
−i(x) = 0, i = p, b
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Suppose ysi = xi and ys−i < x−i for i ∈ c, then Biy
s
−i(x) = −1

2. We obtain

Ki −
∑
s λ

s
i − 1

2
∑
s∈c βysi (x) = 0 and K−i −

∑
s λ

s
−i = 0

or Ki = Σsλ
s
i + 1

2
∑
s∈c βysi (x) >

∑
s λ

s
i and K−i =

∑
s λ

s
−i

Proof of Lemma 11

Note that the result holds trivially if both players are at capacity throughout

all time segments. Suppose not and let si be defined as in relation (10). Sup-

pose sb < sp. One has

λsp = λsb = 0 s > sp

λsp ≥ λsb = 0 sp ≥ s > sb

λsbp − λsb+1
p = αsb − αsb+1 − β(xb − yb)

because −αsb + 2βxp + βxb + νp + λsbp = 0 and

−αsb+1 + 2βxp + βyb + νp + λsb+1
p = 0

λsbb − λsb+1
b = αsb − αsb+1 − 2β(xb − yb)

because −αsb + βxp + 2βxb + νb + λsbb = 0 and − αsb+1 + βxp + 2βyb

+νb = 0

and hence

λsbp − λsb+1
p > λsbb − λsb+1

b , and λsp − λs+1
p = αs − αs+1,

λsb − λs+1
b = αs − αs+1 sb > s

and hence

λsbp − λsb+1
p > λsbb − λsb+1

b , and λsp − λs+1
p = αs − αs+1,

λsb − λs+1
b = αs − αs+1 sb > s.
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Combining these relations we get

∑
s

λsp >
∑
s

λsb.

Suppose we are dealing with an Open-Loop Cournot equilibrium. Then

Kp =
∑
s

λsp >
∑
s

λsb = Kb

which is a contradiction. Suppose we are dealing with a Closed-Loop Cournot

equilibrium and player p is at capacity in segment c. Then sp > sb and by

Theorem 3

Kp >
∑
s

λsp >
∑
s

λsb = Kb

which is a contradiction.

Proof of Theorem 4

Let o and c indicate the closed and open-loop Cournot equilibrium respectively.

Suppose xop + xob > xcp + xcb. We prove the contradiction in two parts.

Part 1: We show that xop > xcp and xop + xob > xcp + xcb implies
∑
s λ

sc
p > Kp

which contradicts the above corollary.

Part 2: We show that xob > xcb and xop + xob > xcp + xcb implies
∑
s λ

sc
b > Kb

which again contradicts the above corollary.

Part 1

Suppose xop > xcp, xop + xob > xcp + xcb. We know that Kp =
∑
s λ

sc
p (long-

term equilibrium condition (6) of the open-loop problem) and will show that

λscp ≥ λs0p for all s with some inequalities holding strictly. Let Kp =
∑
s′ λ

s′o
p +∑

s′′ λ
s′′o
p with λs

′o
p > 0 and λs

′′o
p = 0
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λs
′o
p > 0 implies ys

′o
p = x0

p > xcp ≥ ys
′c
p (A.1)

By Lemma 11, λs
′o
p > 0 implies λs

′o
b > 0 and hence ys

′o
b = xob . Adding up

ys
′o
p and ys

′o
b one gets

ys
′o
p + ys

′o
b = xop + xob > xcp + xcb ≥ ys

′c
p + ys

′c
b (A.2)

Adding (A.1) and (A.2) one gets

2ys
′o
p + ys

′o
b > 2ys

′c
p + ys

′c
b

and hence

λs
′c
p > λs

′o
p .

Therefore,

∑
s′

λs
′c
p +

∑
s′′

λs
′′c
p >

∑
s′

λs
′o
p +

∑
s′′

λs
′′o
p = Kp

which is the desired contradiction.

Part 2

Suppose xop < xcp and xob > xcb and xop + xob > xcp + xcb. Let Kb =
∑
s′ λ

s′o
b +∑

s′′ λ
s′′o
b with λs

′′o
b = 0 and λs

′o
b > 0.

λs
′o
b > 0 implies ys

′o
b = xob > xcb ≥ ys

′c
b (A.3)

Suppose λs
′o
p > 0, then

ys
′o
p = 0 and ys

′o
p + ys

′o
b = xop + xob > xcp + xcb ≥ ys

′c
p + ys

′c
b (A.4)

Adding (A.3) and (A.4) one gets
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ys
′o
p + 2ys

′o
b > ys

′c
p + 2ys

′c
b

and hence

λs
′c
b > λs

′o
b .

Suppose λs
′o
p = 0, the short-term equilibrium conditions of player p in the

open and closed-loop games are

−αs + 2βys
′o
p + βxob + νp = 0

and

−αs + 2βys
′c
p + βys

′c
p + νp + λs

′c
p = 0

which gives

2βys
′o
p + βys

′o
b = αs − νp ≥ αs − νp − λs

′c
p = 2βys

′c
p + βys

′c
b (A.5)

Adding (A.1) multiplied by 3β to (A.5) and simplifying one gets

ys
′o
p + 2ys

′o
b > ys

′c
p + 2ys

′c
b

and hence

λs
′c
b > λs

′o
b .

We then get

∑
s′

λs
′c
b +

∑
s′′

λs
′′c
b >

∑
s′

λs
′o
b +

∑
s′′

λs
′′o
b = Kb

which is the desired contradiction.
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Proof of Theorem 5

Suppose xop < xcp. This relation together with xop + xob < xcp + xcb shown in

Theorem 4 implies 2xop + xob < 2xcp + xcb. Using the corollary of Lemma 11, we

write

Kp =
∑
s′

λs
′c
p +

∑
s′′

λs
′′c
p with λs

′c
p > 0 and λs

′′c
p = 0.

Because λs
′c
p > 0 implies λs

′c
b > 0, by Lemma 11 we have

2ys
′o
p + ys

′o
b ≤ 2xop + xob < 2xcp + xcb = 2ys

′c
p + ys

′c
b

which proves that λs
′o
p must be greater than λs

′c
p . This implies

Kp =
∑
s′

λs
′c
p +

∑
s′′

λs
′′c
p <

′∑
s

λs
′o
p +

∑
s′′

λs
′′

= Kp

and hence a contradiction.

Proof of Theorem 6

Using Theorems 4 and 5, we know that xop+xob < xcp+xcb and xob ≤ xcb. Suppose

first that λscp > 0, then λscb > 0 and ysop + ysob ≤ xop + xob < xcp + xcb = yscp + yscb

and the result is proven for these load segments.

Suppose now that λscp = 0 and λscb > 0, the two following relations hold at

(yscp , xcb)

−αs + 2βysp + βxb + νp = 0 (A.6)

−αs + βysp + 2βxb + νb + λsb = 0 (A.7)

Consider a decrease of xb from the value xcb towards xob . Using (A.6) one sees

that ysp + xb decreases
(

d
dxb

(ysp + xb) = 1
2

)
as well as ysp + 2xb

(
d

dxb
(ysp + 2xb)
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= 3
2

)
. Relation (A.7) will thus continue to hold with an increased λsb for any

decrease of xb. Relation (A.6) will also continue to hold until xb hits xob or

ysp hits xop. In the first case, (ysp, x
o
b) satisfying (A.6) is the open-loop second-

stage equilibrium in time segment s; it satisfies ysp+xob < yscp +xcb which proves

the result. In the second case we continue decreasing the value of xb until it

hits xob while keeping yp bounded at its upper limit xop. This will result in a

further decrease of ysp+xb until the point (xop, x
o
b). This point is the open-loop

second-stage equilibrium in time segment; it satisfies xop +xob < yscp +xcb which

proves the result.

Proof of Lemma 12

Suppose first xcp > 0 and xop > 0. Recall that the base player is at capacity

when the peak player is at capacity (Lemma 11 and a similar and trivial result

for the perfect-competition equilibrium). The equilibrium conditions (2) and

(5) imply

−αs + βxmp + βxmb + νp + λsmp = 0 s ∈ {s | λsmp > 0}
−αs + 2βxop + βxob + νp + λsop = 0 s ∈ {s | λsop > 0}
−αs + 2βxcp + βxcb + νp + λscp = 0 s ∈ {s | λscp > 0}

or
λsmp = λ

(s−1)m
p + (αs − αs−1) s ∈ {s | λsmp > 0}

λsp = 0 s /∈ {s | λsmp > 0}
with similar relations for the open-loop and closed-loop equilibria. This is a

set of simultaneous equations with one degree of freedom. Since

K1 =
∑
s

λsmp =
∑
s

λscp =
∑
s

λsop ,

we have three identical sets of simultaneous equations with the same solutions

and the result holds.
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Suppose now xcp = 0. (We know that xmp > 0 by our assumption on the cost

parameters.) The equilibrium condition (5) becomes

−αs + βxcb + νp + λscp = ωscp s ∈ {s | λscp > 0}

Select the minimal λscp , that is those for which ωsop = 0. One has as before

λscp = λ
(s−1)c
p + (αs − αs−1) s ∈ {s | λscp > 0}

λscp = 0 s /∈ {s | λscp > 0}

The same reasoning as before implies λsmp ≥ λscp .

Proof of Theorem 7

Suppose first xcp > 0. (By assumption xmp > 0). Then by Lemma 12

Kp =
∑
s∈Sp

(αs − βxmp − βxmb − νp) =
∑
s∈Sp

(αs − 2βxcp − βxcb − νp)

where Sp = {s | λsp > 0}. Thus

0 = |Sp|{βxcp + β[(xcp + xcb)− (xmp + xmb )]}

or

0 = xcp + (xcp + xcb)− (xmp + xmb )

and hence since xcp > 0,

xmp + xmb > xcp + xcb.

Suppose now xcp = 0. Then by Lemma 12

Kp =
∑
s∈Sp

(αs − βxmp − βxmb − νp) ≥
∑
s∈Sp

(αs − 2βxcp − βxcb − νp)

where Sp = {s | λsmp > 0}, or

0 ≥ |Sp|{β[(xcp + xcb)− (xmp + xmb )]} (since xcp = 0)

61



or again

xmp + xmb ≥ xcp + xcb.

By Theorem 4 we know that xcp + xcb ≥ xop + xob and the capacity result holds.

By Theorem 6 we see that the production in each time segment in the

closed-loop game is greater than the production in the open-loop game. To

see that the competitive equilibrium has higher production than the closed-

loop equilibrium, we need only consider the cases where the capacity of player

1 is not binding in the competitive case. First assume yscp > 0. Then in

equilibrium

−αs + βysmp + βysmb + νp = ωsmp ≥ 0

−αs + 2βyscp + βyscb + νp + λscp = 0

or ysmp + ysmb ≥ 2yscp + yscb > yscp + yscb .

For yscp = 0, note that ysmb must also be zero (the marginal revenues are the

same in both cases at 0 and below marginal cost) and we need only consider

the case where ysmb < xmb , which leads to

−αs + βysmb + νb = 0

−αs + 2βyscb + νb + λscb = 0

or ysmb ≥ 2yscb + λscb > yscb .

Thus, the production levels are highest in competitive markets.

Proof of Lemma 13

Consider the derivative MCb(xb | xp) given by

Kb +
∑
s∈S1(x)(−αs + βxp + 2βxb + νb)

+
∑
s∈Sb(x)(−αs + βysp(x) + 2βxb + νb)

− 1
2

∑
s∈S2(x) βxb +

∑
s∈S3(x)(−αs + 2βxb + νb).
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Recalling from the equilibrium condition (5) that

2βysp(x) = αs − βxb − νp, s ∈ Sb(x)

we get after grouping terms

MCb(xb | xp) = Kb +
∑
s∈S1(x)∪S2(x)∪S3(x)(−αs + νb)

+
∑
s∈S1(x) βxp +

∑
s∈S2(x)

(
αs − νp

2

)
+ 2(|S1(x)|+ |S3(x)|βxb + |S2(x)|)βxb

Note the following

(i) the expression is increasing with xb as long as the Si(x) do not change.

(ii) the expression is constant when an element s goes from S2(x) into S3(x).

To see this, take the equilibrium condition of player 1 when ysp becomes

zero

−αs + βxb + νp = 0

and note this is the balance of changes of terms that results from s

moving from S2(x) to S3(x) (note that this change requires replacing a

term βxb by 2βxb and dropping a term αs − νb
2 ).

(iii) The expression is constant, when an element s goes from S3(x) into

S4(x). To see this, take the equilibrium condition of player b when ys

becomes lower than xb

−αs + 2βxb + νb = 0

and note that this is the balance of changes of terms that results from s

moving from S3(x) to S4(x).
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(iv) The expression decreases when an element s goes from S1(x) into S2(x).

To see this, note that

∑
s∈S1(x)∪S2(x)∪S3(x)(−αs + νb) +

∑
s∈S1(x)\{s} βxp

+
∑
s∈S2(x)∪{s}

(
αs − νp

2

)
+2(|S1(x)|+ |S3(x)| − 1)βxb + (|S2(x)|+ 1)βxb]

−∑
s∈S1(x)∪S2(x)∪S3(x)(−αs + νb)−

∑
s∈S2(x)

αs − νp
2

+
∑
s∈S1(x) βxp + 2(|S1(x)|+ |S3(x)|)βxb + |S2(x)|βxb

= αs − νp
2 − βxp − βxb < 0

Applying the equilibrium condition of player p when λsp becomes zero

(−αs + 2βxp + βxb + νp = 0), one sees that this expression is equal to

−βxb
2 < 0.

The above shows that MCb(xb | xp) is increasing with xb as long as no element

moves from S1 into S2. OCb(xb | xp) is thus convex in xb in these zones.

MCb(xb | xp) has downward jumps when elements move from S1(x) to S2(x).

This happens when some λsp becomes zero in the equilibrium condition of

player p, that is when

αs − 2βxp − βxb − νp = 0.

This proves the result.

Proof of Lemma 14

Suppose that the solution of minOCb(xb | xp; sp) is xb = bs1(xp). By the

convexity of OCb(xb | xp; s1), MCb(xb | xp; s1) must be nonpositive at xb =

bs1(xp). This implies that MCb(xb | xp; s1 − 1) < MCb(xb | xp; s1) ≤ 0 and

hence that player b will not select bs1(xp) as its reaction to xp.
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Proof of Proposition 3

By Lemma 13, OCb(xb | xp) is strictly convex in xb for xb ≤ bs1(xp). The

solution xb of minxb≤bs1 (xp) OCb(xb | xp) is thus unique and hence continuous

in xp. Suppose also that it satisfies xb < bs1(xp). Then it is the solution of

MCb(xb | xp; s1) = 0

which can be rewritten for a certain M

M + |S1(x)|βxp + (2|S1(x)|+ 2|S3(x)|+ |S2(x)|)xb = 0.

This implies
dxb
dxp

= − |S1(x)|
2|S1(x)| − 2|S3(x)|+ |S2(x)|

and hence the solution is piecewise affine with slope between 0 and -1.

Proof of Lemma 15

Let xb(xp; s1, s2, s3) designate a response function for an arbitrary σ = (s1, s2, s3)

as defined above. OCb(xb(xp; s1, s2, s3) | xp) is a quadratic function of xp that

we denote

OCb(xp; s1, s2, s3).

Let x̃p be the largest value, before x1
p where there has been a change of s2

or s3 (x̃p could be 0). Let s̃2 and s̃3 be the values of s2 and s3 valid in the

interval (x̃p, x1
p). By the definition of the reaction in x̃p, we have

OCb(x̃p; s0
1, s̃2, s̃3) ≤ OCb(x̃p; s1, s2, s3) ∀ s1, s2, s3

At x1
p, x

1
b one has by the definition of the two curves defining this intersection

OCb(xb(x1
p; s

0
1, s̃2, s̃3) | x1

p) = OCb(xp; s0
1 − 1, s̃2 + 1, s̃3 | x1

p)

and 0 = MCb(xb(x1
p; s

0
1, s̃2, s̃3) | xp) > MCb(xb(x1

p; s
0
1 − 1, s̃2 + 1, s̃3 | xp).
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Therefore x1
b is not the optimal solution of OCb(xb | x1

p; s
0
1 − 1, s̃2 + 1, s̃3)

which implies

OCb(x1
p; s

0
1, s̃2, s̃3) > OCb(x1

p; s
0
1 − 1, s̃2 + 1, s̃3)

≥ OCb(x1
p; s
′
1s
′
2, s
′
3) for some σ′ = (s′1, s

′
2, s
′
3)

Moreover, we note that if an OCb(x1
p; s
′
1, s
′
2, s
′
3) is smaller than OCb(xp; s0

1, s̃2, s̃3)

it must be that s′1 < s0
1. Because OCb(xp; s′1, s

′
2, s
′
3) and OCb(xp; s0, s̃1, s̃2) are

quadratic functions, they can intersect in at most two points. Specifically a

function OCb(xp; s′1, s
′
2, s
′
3) that takes a lower value than OCb(xp; s0

1, s̃2, s̃3)

at x1
p must intersect OCb(xp; s0

1, s2, s3) before x1
p. Let x1

p the first of these

intersection points and OCb(xp; s1
1, s

1
2, s

1
3) be the function that generates this

intersection. At x1
p we have

0 = MCb(xb(x1
p; s

0
1, s̃2, s̃3) | x1

p) > MCb(xb(x1
p; s

1
1, s

1
2, s

1
3) | x1

p)

(because s1
1 < s0

1) (A.8)

OCb(xp; s0
1, s̃2, s̃3) > OCb(xp; s1

1, s
1
2, s

1
3) for xp > x1

p

(because of the properties of intersection of quadratic functions) (A.9)

From (A.8) we derive that xb(x1
p; s

1
1, s

1
2, s

1
3) > xb(x1

p; s
0
1, s̃2, s̃3). From (A.9)

we see that xb(xp; s1
1, s

1
2, s

1
3) is the new reaction curve from x1

p on. We also

note from before that s1
1 < s0

1.

Proof of Lemma 16

The proof follows the same reasoning as the proof of Lemma 15, starting from

the point (xkp, x
k
b ) with (xkp, s

k
2, s

k
2) instead of starting at (0, x0

b) with (s0
1, s2, s3).
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Notation

s = 1, · · · , S load segments

s = 1 peak segment

s = S base segment

p peak player

b baseload player

Sp last segment for which peak capacity is the lower-cost capacity

i = p, b index of the players

Ki investment cost

νi operating cost

xi amount of investment by player i

x = (xp, xb)

ysi operating level of player i in segment s

ps price in segment s

αs intercept of the demand curve

ωsi dual on the operating constraint for segment s

λsi dual on the capacity constraitn for segment s

ysi (x) short term equilibrium asa function of capacity

ωsi (α
s) dual on the operating constraint asa function of the demand-curve intercept

λsi (α
s) dual on the capacity constraint asa function of the demand- curve intercept

Si(x) maximum segment index for which capacity of type i is binding

Biyj(x) rates of change of the yj with respect to the xj’s

ysi (y
s
−i, x) short-run reaction curve given the capacities

xi(x−i) long-run reaction curve in the open-loop game

yi(x−i) short-run solution given the other player’s capacity in the open- loop game
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