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It 1s generally assumed that the variability of neuronal morphology has an important effect on both the
connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated.
Neuroanatomical archives represent a crucial tool to explore structure—function relationships in the brain.
We are developing computational tools to describe, generate, store and render large sets of three-
dimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible
to the neuroscientist. Single-cell neuroanatomy can be characterized quantitatively at several levels. In
computer-aided neuronal tracing files, a dendritic tree is described as a series of cylinders, each repre-
sented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This ‘Cartesian’
description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive
information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes
neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g.
maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but
it only yields information on the collective anatomy of a group of dendrites, 1.e. it 1s not complete enough
to provide a precise ‘blueprint’ of the original data. We are adopting a third, intermediate level of descrip-
tion, which consists of the algorithmic generation of neuronal structures within a certain morphological
class based on a set of ‘fundamental’, measured parameters. This description is as intuitive as a classical
neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian
file (the algorithms generate and display complete neurons). The advantages of the algorithmic descrip-
tion of neuronal structure are immense. If an algorithm can measure the values of a handful of
parameters from an experimental database and generate virtual neurons whose anatomy is statistically
indistinguishable from that of their real counterparts, a great deal of data compression and amplification
can be achieved. Data compression results from the quantitative and complete description of thousands of
neurons with a handful of statistical distributions of parameters. Data amplification is possible because,
from a set of experimental neurons, many more virtual analogues can be generated. This approach could
allow one, in principle, to create and store a neuroanatomical database containing data for an entire
human brain in a personal computer. We are using two programs, L-NEURON and ARBORVITAE, to inves-
tigate systematically the potential of several different algorithms for the generation of virtual neurons.
Using these programs, we have generated anatomically plausible virtual neurons for several morpho-
logical classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These
virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights
the potential and the limitations of the ‘computational neuroanatomy’ strategy for neuroscience data-
bases.
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1. INTRODUCTION

Neurons constitute the structural building blocks for the
brain, yet their own structure is far from elementary.
Dendritic and axonal trees stemming from the soma
develop an extremely complex pattern of branching that
occupies and fills three-dimensional (3D) space. Since
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the original work of Santiago Ramoén y Cajal, it has been
apparent that the detailed knowledge of neuritic struc-
tures was an important aspect of neuroscience (Cajal
1894-1904). More discoveries that
dendrites conduct input signals actively, back-propagate
action potentials and integrate synaptic inputs by means
of time-dependent nonlinear summation (reviewed e.g. in
Eilers & Konnerth 1997) provided indisputable evidence
that dendritic morphology is a key aspect of the neuronal
machinery underlying signal processing and integration.

recently, many
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Equally important lines of research proved that network
connectivity is constantly reshaped by the dynamic remo-
delling of both dendrites and axons, and that dendritic
morphology 1is pivotal in determining the pattern of
synaptic formation among neurons (recently reviewed in
Wong & Wong 2000).

In order to explore the structure—function relationship
in single neurons, electronic databases of complete and
accurate 3D dendrites constitute a valuable tool. For
example, neuroanatomical databases can be used to
construct detailed electrophysiological models of ionic
conductance (e.g. De Schutter 1999), study the effect of
dendritic morphology on firing patterns (Krichmar et al.
2001), define anatomical classes unambiguously (Cannon
et al. 1999), test hypotheses of growth mechanisms (Van
Pelt et al. 1999) and investigate the influence of dendritic
morphology on axonal growth (Van Ooyen et al. 2000).
To date, few neuronal databases are publicly available
(e.g. Cannon et al. 1998), but additional morphological
data 1s made available by single research groups in sparse
fashion and upon request.

Two crucial issues in the development and use of
neuromorphological databases concern the experimental
data acquisition and the format of the entries. Data
acquisition refers to a multi-step process from tissue
staining to the extraction of single neuron structural
information. This is a difficult task that limits the number
of entries stored in a database. The morphological data
format refers to the code adopted to store neuromorpho-
logical data as entries into a database. There is a trade off
between the accuracy guaranteed by digital format and
the greater insight ensured by the usage of statistical
distributions. The next two sections of this introduction
briefly review the current scientific state of these impor-
tant issues, with an emphasis on the unsolved problems.
The remainder of this paper discusses the use of computa-
tional algorithms as an alternative approach to obtaining
and describing neuroanatomical data.

(a) Issues in data acquisition

The experimental acquisition of single neuron morpho-
logical data is an arduous procedure. Neuronal processes
normally are so intricately intermingled that for most
species one must find means for selectively labelling indi-
vidual cells in order to evaluate their structure. Nowadays
this can be achieved in a great variety of ways, such as:
superfusion with vital dyes (Muller 1989); impregnation
with heavy metals (e.g. Cohen et al. 1973; Somogyi 1990);
targeted 1ontophoresis or bulk injection with chemical
chromophores (Stewart 1981; Purves & Hadley 1985;
Godement ef al. 1987) or with dye-amplifying enzymes
(Muller & McMahan 1976); infection with gene
sequences, either acutely (Luskin et al. 1988; Price et al.
1987) or heritably (see Stearns 1995) and even to develop-
mentally selectable targets (Roy et al. 2000).

Once labelled, the task to examine and acquire a
neuron’s morphological features remains non-trivial. For
more than a century, the principal tool for recording
neuronal structures has been the light microscope. Its
practical resolution has improved gradually from around
0.5 pm to better than 0.1 pm (Gustafsson et al. 1999). This
degree of precision has long been sufficient to reveal the
hallmark features of neurons, i.e. discrete somata
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sprouting a wide range of closely apposing dendritic and
axonal branching processes. For many decades now, these
features of central nervous systems have been routinely
amenable to careful visual inspection, and have been
documented in part by manual drawings and by photo-
micrographs.

However, without an unequivocal measurement stan-
dard, all labelling methodologies contend with the ques-
tions of whether neurons are labelled completely and
whether any important structural changes were imposed
by the method of tissue preparation. The resolution of the
light microscope is not enough to settle all such questions
reliably. For instance, it cannot always disambiguate fibre
crossing from branching (especially because of poor
depth resolution, discussed below). In addition, when
more than one neuron is labelled, it is often impractical
to distinguish which cell adjacent processes belong to, or
whether neighbouring processes actually make contact
(e.g. Gabirol-Pol et al. 2000).

These ambiguities in deciphering arbour structure are
greatly exacerbated by physical sectioning and fixation.
Sectioning (followed by serial reconstruction) is necessi-
tated by the diminishing depth-of-field of the high-
magnification objectives needed to details.
Fixation limits tissue autolysis, thereby preserving speci-
mens for long-term observation. Both procedures
compromise the ability to understand network organiza-
tion by distorting morphological features, e.g. by artefac-
tually affecting neurite diameter, inducing varicosities
and creating discontinuities.

In order to overcome some of these limitations, one can
resort to electron microscopy for resolving fine anato-
mical structures down to the resolution of single synapses.
This technique is susceptible to additional interpretative
confusions due to fixation. The major problem of electron
microscopy, however, is the intensive manual labour
involved in obtaining and manipulating hundreds or
thousands of extremely delicate sections. With some
notable exceptions (Stevens et al. 1980; Sims & Macagno
1985; Schierenberg e al. 1986; White et al. 1993; Soto et al.
1994; Shepherd & Harris 1998), these problems make
electron microscopy an impractical method for the
systematic extraction of neuronal structure, particularly
over large areas. Nonetheless, electron microscopy plays
an essential role in demonstrating the limits to accuracy
and completeness of neuronal labelling.

A common problem of both light and electron micro-
scopy 1is constituted by the z-resolution limit, which is
usually much cruder than the resolution in the plane
(%y’). Widespread research efforts have yielded significant
improvement of the depth resolution for light microscopy.
For instance, numerous interference methods (see Inoue
1988) convert small differences of path length (due to
changes in refractive index) into contrast, via constructive
and destructive processes. More recently, improved discri-
mination in depth has come from advances in imaging
with polarized light (Oldenbourg & Mei 1995) and from
the confocal microscope (see Pawley 1990), particularly
in its many recent multi-photon configurations (see Piston
1999). These tools, with the addition of computer-
controlled fine focus, generate volumetric data in the
form of stacks of aligned serial sections digitized at 0.5 to
0.1 pm increments along the z-axis. Such virtual (optical)
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sectioning methods dramatically reduce the number of
cutting artefacts otherwise generated by physical section-
ing at 1 to 50 pm. In addition, the enhanced contrast
captured by electronic scanning can also yield useful
improvement of lateral resolution (see Oldenbourg et al.
1993). A final increase in overall resolution is obtainable
from mathematical deconvolution of the resulting volume
(see Rizzuto et al. 1998; McNally et al. 1999).

A further important source of uncertainty in the
experimental acquisition of morphological data is consti-
tuted by the extraction of neuronal structures from
microscopic images, however they are generated. This
process, commonly referred to as ‘tracing’, is classically
carried out with the aid of camera lucida, a system of lenses
allowing the overlay of the image of ‘external’ object (e.g.
paper and pencil) onto the microscope field of view. This
task of manual labour can be partially computerized by
using motorized stages controlled by the movement of a
mouse or a joystick, interfaced by specialized software
such as NEUROLUCIDA (Microbrightfield, Colchester, V'T')
(Glaser & Glaser 1990). Even in the computerized
version, however, neuronal tracing involves a great deal
of user interaction, and is plagued by low precision in the
determination of the exact focus, which limits the effec-
tive z-resolution.

Recent attempts to automate this process completely
are based on ‘flood-filling’ algorithms operating on volu-
metric data: starting from an arbitrary point within the
scanned neuron, adjacent regions in the volumetric scan
are automatically recruited if they ‘belong’ to the cell
(Senft 1995). When the image has a sufficiently high
contrast, the test to determine whether a voxel belongs to
the structure being traced is based on a simple threshold
criterion, although more sophisticated methods (Cohen
et al. 1994) also can be used. The resulting connected
object can be further processed by ‘thinning’ (e.g. Gong
& Bertrand 1990) in 3D, which provides the complete list
of orientated lengths, bifurcations and terminations in the
branching structure. A pre-processing step allows one to
preserve information on the original diameter (Senft
1995).

This automated computer-based procedure allows one
to obtain highly detailed neuronal structures in a much
shorter time than with manual tracing (minutes rather
than days), provided that the contrast of the image is
adequate. In addition, the assignments of neurite
diameter and z-values are more reproducible than with
hand tracing. Remaining unresolved ambiguities, such as
crossing points appearing as chiasms or loops, can be
edited out manually or semi-automatically based on heur-
istics. These algorithms sometimes amplify surface irregu-
larities and mistakenly interpret visual noise as cell
structures. These problems, too, can be resolved with
manual editing or judicious smoothing.

The major drawback of algorithmic neuronal recon-
struction is that the automatically traced data is limited
to the scanned volume. The recent availability of compu-
tational memory (RAM) in the gigabyte range makes it
possible to analyse several adjacent fields at once. For
relatively compact trees, this allows the automatic tracing
of entire trees. However, this possibility is less suitable to
apply to large dendritic fields (as in spinal cord motor
neurons), and to axons, often meandering well beyond the
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confines of the lens field of view, and even beyond the
relatively thick physical sections cut for confocal micro-

scopy.

(b) Morphological data formats

Raw data acquired experimentally can be stored in
different formats. The most classical possibility is to repre-
sent the dendrite with a picture or set of pictures.
Although this is the most commonly used format (e.g. in
publications), and yields intuitively accessible inform-
ation, pictures are flawed by the major problem of data
loss. A 3D structure is represented two-dimensionally,
and even if multiple perspectives can be used, the
retrieval of information depending on the third dimen-
sion (in any perspective) is rarely complete. An obvious
alternative is to represent the 3D structure of dendrites in
a digital format, allowing ‘pseudo-3D’ rendering and
animation in modern computer graphics. In this format,
the branches of a dendpritic tree are represented as a set of
cylinders, and each cylinder is described by a line of the
morphological file. The three main digital formats
adopted to describe dendritic morphology are the ‘SWC’
format (Cannon et al. 1998), the ‘Eutectic’ format
(Capowsky & Schneider 1985 and references therein),
and the ‘Neurolucida’ format (Glaser & Glaser 1990).

In general, the digital formats consist of a plain text file
with each line describing the geometry of one neuronal
segment (cylinder). These files can range from 500 lines
for small, simple cells, to 10 000 or more lines for large
and complex cells. In the SWC format, dendritic
segments are characterized by an identification number, a
type (to distinguish basal, apical, proximal, distal and
lateral trees), the «, j, z positions of the cylinder ending
point (in pm with respect to a fixed reference point), a
radius value (also in pm), and the identification number
of the ‘parent’, i.e. the adjacent cylinder in the path to the
soma (the parent of the root being the soma itself). In the
Eutectic format, dendritic segments are characterized by
a type, the Cartesian positions of the cylinder ending
point, a diameter value, and the topological assignment
of the cylinder, i.e. whether the segment is continuing (it
has one ‘daughter’), bifurcating (two daughters), or
terminating (no daughters). The SWC and Eutectic
formats are thus very similar, and it is easy to verify that
both conserve all the information available in the
dendritic morphology. Some research groups use varia-
tions of these two formats, and simple software routines
can be written to interconvert them. An example of these
two formats is reported in figure 1. Interestingly, the new
Neurolucida format (version 4.0) adopts a ‘pseudo-
graphic’ convention, in which each segment is character-
ized by a type, Cartesian position and diameter, while the
connectivity is determined by the number of indentations
in the line (at each bifurcation, daughters are indented
with respect to their parent, and terminations are marked
by a horizontal line). The digital description of the SWC,
Eutectic, or Neurolucida format constitutes a completely
accurate mapping of dendritic morphology, but it bears
little intuitive information for the neuroscientist (e.g. it is
difficult to establish the morphological class of a neuron
by simply looking at its SWC or Eutectic file). In addition,
the Cartesian format is not compact (a typical single
neuron is described by several thousand lines).
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Figure 1. Digital representation of dendritic morphology. This extremely simplified neuronal structure was obtained by
extensive pruning of a dentate gyrus granule cell (Cannon et al. 1998). The left panel shows the digital SWC representation:
every cylindrical compartment is described by a row containing a label (ID, the same numbers reported next to the branches

in the picture, middle panel), tag (T, 1 for soma, 3 for dendrite), Cartesian positions (x, y, z, in micrometres), radius (R), and
connectivity (C, representing the label of the parent; 1 indicates no parent). The right panel shows the N'T'S digital representation
of the same structure (the acronym stands for Neuronal Tracing System, the original name of Eutectic). The only differences

are the absence of a label, the choice of diameter (D) to represent the thickness of the cylinder, and the connectivity format that
refers to the cylinder topology: s’ is the soma, ‘b’ a bifurcating segment (two daughters), ‘c’ a continuing segment (one

daughter), ‘t” a terminating segment (no daughters).

In contrast to the digital format, a classical neuro-
anatomical analysis characterizes neuronal dendrites on
the basis of statistical distributions of morphological para-
meters derived from the raw data (Uylings et al. 1986). A
typical example i1s the widely adopted Sholl analysis
(Sholl 1953), which plots the number of dendritic
segments as a function of the distance from the soma.
Other commonly used morphological descriptors are
branch length statistics, such as length distributions
versus size of soma, versus number of branches, versus
branch diameter, or versus position in the layer (Ishizuka
et al. 1995), tree shape, such as depth over width ratio
(Claitborne et al. 1990), bifurcation ‘partition’ or asym-
metry (Van Pelt et al. 1992), or any correlation between
the above parameters (Larkman 1991). This description is
intuitively more accessible, but it only yields information
on the collective anatomy of a group of dendrites, 1.e. it is
not complete enough to provide a precise ‘blueprint’ of the
original data. In addition, from classical neuroanatomical
analyses, it 1s usually impossible to extract more morpho-
logical information than that which is explicitly reported.
For example, if someone were interested in knowing the
distribution of the terminal diameter their
dendritic path distance from the stem, this information
would not be available from other parameter distributions
and correlations.

In summary, dendritic morphology databases in Carte-
sian format (SWC, Eutectic, Neurolucida, or similar
formats) contain complete information that can be used
to derive any morphological measurement, but they
require extensive storage space and are not intuitively
accessible from the geometrical or physical point of view.
In contrast, dendritic morphology databases based on
pictures or on classical statistical plots are compact and
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intuitively accessible to the neuroscientist, but they do not
conserve the entirety of the information contained in the
original data.

(c) The ‘computational’ alternative

The computational neuroanatomy approach to
dendritic morphology databases consists of the algo-
rithmic generation of neuronal structures within a certain
morphological class, based on a set of measured ‘funda-
mental’ parameters. This strategy has great potential to
overcome the problems related to both extensive experi-
mental acquisition and format of single-neuron morpho-
logical data. Given the right type of algorithm, this level
of description is as intuitive as a classical neuroanatomical
analysis (because the statistical distributions of the funda-
mental parameters have an geometrical
meaning), and as complete as the digital format (because
these parameters are sufficient to generate and display
complete neurons). Since the fundamental parameters
measured from experimental data result in statistical
distributions, algorithms that generate ‘virtual neurons’
sample values from these distributions stochastically. As a
result, just as in nature, no two virtual neurons are iden-
tical, even if they belong to a recognizable anatomical
class (Ascoli 1999).

This ‘computational’ approach to single-cell neuro-
anatomy, originally proposed in the late 1970s (Hillman
1979), can now be fully exploited thanks to the recent
explosion in computational power and computer graphics
tools. With only a limited number of experimentally
traced neurons for each morphological class, a large
number of ‘virtual’ database entries can be generated,
thus minimizing one component of the time-consuming
experimental process. At the same time, an entire

intuitive
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morphological class can be completely described by a
handful of parameters, thus offering an ideal solution for
the morphological database formats. The next section of
this paper describes the details of the major computa-
tional neuroanatomical algorithms for single neurons.
The following two sections describe an example of the
application of this strategy to an electronic database of
virtual morphology and the rationale for its validation.
Finally, the last section of the paper discusses advantages
and disadvantages of individual algorithms as well as of
the general computational neuroanatomy approach.

2. DESCRIPTION OF THE ALGORITHMS

Two major types of computational algorithms have
been proposed for the virtual generation and description
of dendritic trees, namely ‘local’ and ‘global’ algorithms.
Local algorithms rely entirely on a set of local rules inter-
correlating morphological parameters (such as branch
diameter and length) to let each branch grow indepen-
dently of the other dendrites in the tree as well as of its
absolute position within the tree. In global algorithms,
new dendritic branches are dealt ‘from outside’ to
competing groups of growing segments, also depending
on their position in the tree (e.g. on their distance from
the soma).

Local and global algorithms offer complementary
advantages. Local algorithms are simpler, are more intui-
tive, and the fundamental parameters used by the algo-
rithms can be measured directly from experimental data.
Because of their small number of parameters, they are well
suited to study structure—function relationships and the
origin of emergent properties (i.e. anatomical parameters
that are not explicitly imposed in the algorithm). Global
algorithms are usually more flexible, but many of their
fundamental parameters must be obtained through exten-
sive and elaborate parameter searches. Global algorithms
can also be extended to generate populations of inter-
connected neurons (networks), instead of single neurons.
In the next three sections, we describe a series of local and
global algorithms as implemented in two software
packages, L-NEURON (Ascoli & Krichmar 2000) and
ARBORVITAE (Senft 1997; Senft & Ascoli 1999), as well as
other relevant neuroanatomical algorithms and rules.

(a) Local algorithms in L-NEURON

L-NEURON is a program designed to describe, generate
and visualize the precise dendritic morphology of single
neurons. The L-NEURON executables (for Unix and
Windows) are publicly available at http://www.krasnow.
gmu.edu/L-Neuron/index.html (case sensitive). The soft-
ware implementation is continuously improved and
additional interfaces, conversion algorithms and measure-
ment tools are under development. L-NEURON is based on a
modification of an original program to generate L-systems
architectures, including fractals and botanical trees
(Prusinkiewicz & Lindenmayer 1990). As such, it can
read in regular L-system files (in the ‘turtle graphics’
dialect adopted by Laurens Lapré, http://www.xs4all.nl/
~Iljlapre/lparser.htm) and produce any type of geome-
trical recursive structure. In addition to the genera-
tion of L-systems, L-NEURON implements a series of
local neuroanatomical rules to create virtual neurons in
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3D space (Ascoli & Krichmar 2000). The intermediate
output of both the L-systems and the neuroanatomical
algorithms is a ‘production string’, i.e. a sequence of char-
acters with specific geometrical meanings in terms of
‘drawing’ commands (such as grow forward, split, turn by
an angle, taper, etc.). The production string can be then
translated into digital format in a variety of outputs,
including SWC, VRML, POV, DXF, or VOL, a binary
format that can be displayed by a viewer under Windows.
Thus, L-NEURON products can be both represented
graphically and used in electrophysiological simulations.

The first class of neuroanatomical rules implemented in
L-NEURON was derived from an original proposal by
Hillman (1979, 1988). According to Hillman, a dendritic
tree can be described (and generated) as a sequence of
local, recursive processes corresponding to the growth of
single branches starting from a stem or a bifurcation
point, and ending with another bifurcation point or a termi-
nal tip. A branch (characterized by a certain starting
diameter) grows for a certain length and tapers. If its
final diameter is larger than a threshold, it bifurcates
(giving rise to two new branches), otherwise, it elongates
for an additional terminal amount and it stops. Upon a
bifurcating event, the diameters of the two daughters are
determined from the final diameter of the parent via the
ratio between the two daughter diameters and the gener-
alized Rall’s ‘power rule’, stating that the sum of daughter
diameters elevated to a coefficient equals the parent’s
diameter elevated to the same coeflicient (see Hillman
1979). In Hillman’s description, a branch stops growing not
because of a fixed number of iterations (as in L-systems),
but because all branches, through tapering and bifur-
cations, end up with too small a diameter to grow further.

Hillman called the branch length, taper rate, diameter
threshold for bifurcations, terminal length, daughter
diameter ratio and Rall’s power coefficient, ‘fundamental
parameters of shape’ (Hillman 1979), viewing them as a
complete set of descriptors for the dendritic tree. In
L-NEURON, Hillman’s ‘algorithm’ is implemented with
the addition of two elements that make the process truly
complete. First, angles are introduced to orientate
dendritic stems in three dimensions (by an azimuth and
an elevation with respect to the centre of the soma), and
to describe or generate bifurcations (by an amplitude and
a twist of the plane). This simple characterization of bifur-
cation angles assumes that bifurcations have a uniformly
random tilt, and that the parent and the two daughters
lie on the same plane. Both of these assumptions are only
very rough approximations of reality for all the neuronal
classes tested (S. L. Senft and G. A. Ascoli, unpublished
data). Second, Hillman’s algorithm neglects to describe
the dendritic path within a branch, which has a clear
influence on important characteristics such as dendritic
length and overall tree size. In L-NEURON, the branch
path is characterized by a ‘fragmentation’ process in
which a branch is described as a sequence of shorter
segments. The fragmentation ‘smoothness’ (i.e. amplitude
of connection angles between consecutive segments) is
determined by the measured ratio between the branch
path length and the Euclidian distance between branch
starting and ending points.

All Hillman’s fundamental parameters of shape, as well
as angles and fragmentation in L-NEURON, can be
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measured experimentally from a set of neurons belonging
to the same morphological class. For example, bifurcation
amplitude angles can be measured at each bifurcating
point in each available dendrite of a given type from the
neuronal set. Obviously, these measurements are easier,
faster and more reliable if the morphological data are
available in digital format. Each of the resulting sets of
L-NEURON parameters can conform to a variety of statis-
tical distributions, such as Gaussian, uniform, constant,
gamma, exponential, etc. The set of statistical distribu-
tions describe the morphological class from which they
were extracted. When L-NEURON is run to generate
neurons, it samples parameter values stochastically within
the correct statistical distributions. Every virtual neuron
grown 1in such a process will be a unique individual (i.e.
as In nature, no two virtual neurons are identical).
However, if a set of virtual neurons is produced, their
collective morphological properties (as measured by the
fundamental parameters) will be statistically identical to
those measured from the real neurons.

Two additional variations have been implemented in
the Hillman-like algorithm in L-NEURON. First, Rall’s
power equation was modified in a less restrictive way by
multiplying the parent diameter by a constant that we
called ‘poliko’ (power linear ‘konstant’), to respect experi-
mental findings more faithfully (e.g. Cullheim et al. 1987;
Hillman 1988). Second, an option is given to calculate the
bifurcation amplitude and tilt angles with Tamori’s equa-
tions (Tamori 1993), instead of measuring the amplitude
and sampling a random tilt. Tamori’s ‘effective volume’
analysis logically connects bifurcation angles with the
parent diameter and with a parameter (the effective
dimension) that is constrained by Rall’s power as an
upper bound. In L-NEURON, Tamori’s variation to Hill-
man’s algorithm is implemented by sampling a random
effective dimension between the value of one and the
sampled value for Rall’s power, and using this number to
calculate tilt and amplitude (Tamori 1993; Ascoli &
Krichmar 2000).

The second, alternative class of neuroanatomical rules
implemented in L-NEURON corresponds to the simplest of
the models proposed by Burke and co-workers to describe
spinal cord motor neurons (Burke et al. 1992). This algo-
rithm is also local, stochastic and recursive, in that the
growth of each dendritic segment is only determined by
its diameter and random sampling and, upon growth, a
segment spawns more segments that obey the same rules.
Burke’s model describes dendritic growth also within a
branch, i.e. it allows ‘extension’ processes on top of bifur-
cations and terminations. At each step of the algorithm,
branches grow by a unitary length and taper their
diameter. A random number is then sampled and tested
to check whether it falls below a diameter-dependent
value of a bifurcation probability distribution. If this test
is passed, the branch bifurcates and generates two daugh-
ters. Otherwise, a second analogous sampling occurs with
a termination probability distribution. If the termination
test is passed, the branch stops—otherwise it starts a new
iteration with unitary growth, etc. Burke’s model differs
from Hillman’s also for the determination of the daugh-
ter’s diameters at bifurcations: instead of using the
diameter ratio and (a modified) Rall’s law, daughter
diameters are sampled empirically from a statistical
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distribution derived from the experimental correlations of
the normalized diameter pairs (i.e. the measured linear
correlation in the scatter plot of the diameter of one
daughter divided by the parent diameter versus the
diameter of the other daughter, divided by the parent
diameter). Like Hillman’, Burke’s algorithm does not
determine the value of the angles, which are thus imple-
mented in L-NEURON exactly in the same fashion.

Despite being formulated specifically for motor
neurons, Burke’s model is more flexible than Hillman’s.
However, it uses parameters that do not have a direct
biophysical meaning (such as the probability of bifurca-
tion or the sampling parameter for daughter diameters).
In contrast, most of Hillman’s parameters correspond to a
precise subcellular rationale. For example, Hillman’s
minimum threshold diameter for bifurcation reflects the
impossibility of a branch to split when only containing
enough microtubules to support one process (Hillman
1979, 1988). In other words, Burke’s model seems to
describe dendritic morphology more accurately at the
empirical level but less satisfactorily at the level of under-
lying biological mechanism. Burke’s description can be
improved by adding semi-global and global constraints to
the local algorithm. Particularly, the distribution of
daughter diameters appear to be affected by the diameter
of the grandparent (Burke et al. 1992), while the bifurca-
tion and termination probability distributions depend not
only on the diameter but also on the path distance from
the soma (Nowakowski et al. 1992).

At present, L-NEURON implements a single global
parameter that seems to influence dendritic shape drama-
tically in all implemented algorithms, namely ‘tropism’
(Prusinkiewicz & Lindenmayer 1990). Tropism is a post-
processing modification of the bifurcation angles (i.e. of
the directions of branches), which ‘pushes’ cylinders in one
of the Cartesian directions or away from (or towards) the
soma. While tropism was originally used in L-systems to
mimic the effect of gravity and wind, in dendritic growth
it seems suitable to model the presence of gradients of
trophic factors.

(b) Global algorithms in ARBORVITAE

ARBORVITAE is a program motivated by a desire to
visualize activity patterns in large networks of inter-
connected and developing neurons (Senft 1997). To a
certain degree it is possible to obtain such information
experimentally through optical imaging (Orbach et al.
1985; Haglund et al. 1992; Dailey & Smith 1994; Tsodyks
et al. 1999; Shoham et al. 1999). When dealing with an
entire nervous system, however, optical imaging is limited
by physical constraints in depth-of-field, field-of-view,
resolution and signal-to-noise with depth, and by a
restricted ability to discriminate blended signals arising
from disparate physiological processes. In order to bypass
these problems, ARBORVITAE aims at synthesizing brain
anatomy and physiology, from the subcellular toward the
system level, using computational simulations. An inten-
tion of ARBORVITAE is to combine information from the
experimentally available vignettes of nervous system
structure and activity to emulate the genesis, outgrowth
and interactions among sets of neurons. The core repre-
sentation constitutes skeletal 3D branching structures of
neurons described statistically at the level of populations.
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Thus, one of the aspects simulated by ARBORVITAE, is
dendritic morphology. Because of its more ambitious
goals, ARBORVITAE is more complex than L-NEURON,
despite many common conceptual aspects. At the present
time, ARBORVITAE is not publicly distributed to the
neuroscience community.

ARBORVITAE instantiates individual neurons as
members of groups. Morphological properties of each
neuron are specified by sampling a set of random vari-
ables defined at the group level. Every variable is
governed by statistical distributions fitted to experimental
data. Basic examples include the locations, sizes and
orientations of somata, or the orientation angles, length
and diameter of dendritic segments. Neurons emit
primary neurites that emerge from the soma in number,
location and direction characteristic for the group. In
general, although some growth decisions in ARBORVITAE
are made using also local information, many constraints
are predominantly imposed at the group level. This
global approach constitutes the most striking difference
from the local algorithms implemented in L-NEURON.

A biological rationale behind global algorithms lies in
the hypothesis that arborization in neurons is resource-
limited (see Samuels ef al. 1996): a soma of a given size
might trophically support only a certain length of distal
neurite, and in a mature neuron, expansion of one sub-
tree can promote the regression of another. ARBORVITAE
extends this concept to the level of the cell group: a
certain amount of growth resource is available to a group
of cells as a whole (and it is therefore determined in the
program at the group level). The growth resource is then
dealt out progressively to all cells, in growth epochs. This
has the effect of imposing approximately similar growth
on all of the cells of a group in each epoch. Epochs repre-
sent different stages of growth in the development of the
neuron. Between growth epochs, the statistical distribu-
tions of morphological parameters may vary (as deter-
mined at the group level). The precise growth pattern of
each dendrite in a group is negotiated with all other
‘active’ sites (i.e. portions of the growing dendrites that
could receive additional segments) that compete for the
remaining group resource quota.

Arbours are constructed as linked tubular segments
that can meander, branch and taper, and that can be
detailed with synapses and varicosities or spines. Statis-
tical distinction is made between segments that ‘append’
to somata (thus initiating neurites) and those that
‘extend’ or ‘bifurcate’ (thus continuing neurites). Different
morphological classes result from different statistical
distributions of morphological parameters, as well as
from varying the proportion of appending, extending and
bifurcating branches. Finally, a ‘growth failure’ prob-
ability is also specified at developing branches to enhance
topological and geometrical variability. Within this
general framework, ARBORVITAE implements two alter-
native global algorithms of growth.

In the first algorithm (Senft 1997; Senft & Ascoli 1999),
dendritic segments are first dealt out to somata in
‘appending’ mode, to initiate neurites. Dealing occurs in
round-robin fashion with a ‘skipping’ probability. The
resulting distribution of dendritic stems per soma is
Gaussian, with mean and standard deviation controlled
by the number of appending segments and the skipping
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probability (G. A. Ascoli and S. L. Senft, unpublished
data). The orientation of the appending segments is
governed independently by additional random variables
specified for the group. Next, additional dendritic
segments are dealt progressively to pre-existing segments,
again in numbered order and with a failure probability. A
certain percentage of the quota of dendritic segments is
dealt in ‘extending’ mode (i.e. only terminal tips can
grow). Then a second portion is dealt in ‘bifurcating’
mode (i.e. ‘internal’ segments receive a second daughter
and terminal segments receive a pair of daughters). The
remaining quota is used for terminal extension. Since all
growing sites in any epoch are labelled with a numerical
identity, this dealing process also allows the user to
specify a Starting point’ within the set of active sites
below which no growth is permitted, by imposing the
constraint of a minimum identity number threshold for a
site to receive a segment. This additional parameter can
permit only a subset of cells to express neurites, or can
induce neurites to bifurcate (on average) only after a
certain distance from the soma.

A wide variety of plausible arborization patterns
emerge with this design (Senft & Ascoli 1999). However,
the method used to identify the growth spots that are to
receive additional segments is computationally inefficient,
as it requires the sequential querying of large numbers of
pre-existing segments. More importantly, several para-
meters used in this algorithm are not directly measurable
from the experimental data. Thus, a potentially extensive
parameter space must be searched to obtain the values of
the statistical variables that best match the morphological
details observed in specific neuronal classes.

In order to solve these problems, a second, more
systematic and efficient algorithm was implemented in
ARBORVITAE. The dealing process is still divided into
growth epochs, but bifurcating and extending phases are
not segregated in different epochs and the number of
epochs can be determined at the group level. Each epoch
is assigned with a certain quota of dendritic length. In
this algorithm, growth can only occur at terminal
branches, 1.e. no previously added ‘internal’ segments can
receive a second daughter. Within an epoch, each tip
either terminates or receives two daughter branches (i.e.
it bifurcates), depending on a termination probability
specified at the group and epoch levels. If a tip termi-
nates, it is removed from the set of ‘active spots’ for the
rest of the epochs, and will remain a terminal point in the
mature neuron. If a tip receives two daughter branches,
two values for interbifurcation length are sampled, and
subtracted from the epoch length quota. Each branch
then extends for the sampled length with a number of
shorter cylindrical subsegments, each with a length also
specified at the group level (the shorter the length of the
individual segments, the larger the number of segments to
be recruited for appropriately elongating the branch). The
end points of the two daughter branches are then added
to the list of active spots. An epoch ends when the whole
length quota is used. In this second algorithm, topological
variability is provided by the random order in which
active spots within a group are sampled for receiving
daughter pairs. All the parameters used in this modified
dealing process can be measured directly from experi-
mental data under the assumption (reasonable for a
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group) that growth epochs correspond roughly to
physical distances around the soma (i.e. on average,
dendrites grown earlier are closer to the soma). For
example, the interbifurcation length, the total dendritic
length within a certain distance from the soma, and the
number of terminations and bifurcations versus path
length, are all derivable from simple variations of Sholl
analysis.

Many anatomical features of these ‘intrinsic plans of
growth’, in both algorithms described above, can be
modified in ARBORVITAE by ‘environmental’ variables,
representing trophic or tropic influences. Environmental
interactions are particularly consequential when neurons
are generated in the context of larger networks: dendritic
outgrowth can be modulated by the presence of afferent
nputs, and axons can be made to navigate towards (or
away from) a hierarchy of somatic and neuritic targets
(Senft & Ascoli 1999). While such global interactions
have their effects at the detailed level of individual
segments (modulating their length and orientation), they
are specified to the program parsimoniously as a matrix
of interactions among source and target groups. Hence
the specific information for creating axon pathways or
synaptic sites is generated on-the-fly from stochastic
variation of group-level constraints, and need not be
specified a priori for each morphogenetic events. Con-
sequently, the structures created by ARBORVITAE are
dynamic, so that the developmental processes, such as cell
migration, neurite growth or remodelling and signal
propagation, can occur asynchronously and feed back on
cach other. However, it is important to underline that,
once generated, these virtual structures are as detailed as
if traced experimentally. Indeed, ARBORVITAE is able to
intermingle traced and algorithmically generated data
within the same networks, in a uniform internal format.

(c) Other relevant algorithms and rules

Although L-NEURON and ARBORVITAE implement a
variety of local and global algorithms to generate
dendritic morphology, there are other stochastic and
statistical models that should be mentioned here. A
global, mainly topological approach inspired Van Pelt
and co-workers to study a series of increasingly complex
models of dendritic morphology (Van Pelt & Uylings
1999). The key assumption in Van Pelt’s models is that the
bifurcating probability of a dendritic branch depends
exponentially on the order of branching (i.e. the number
of bifurcations that separate a branch from the soma).
Bifurcations can occur at terminal branches or at ‘in-
ternal’ branches (i.e. branches that already terminate in a
bifurcation). Thus, in the simplest model, dendritic
‘erowth’ is completely characterized by the exponential
relationship between bifurcation probability and branch
order, and by the ratio of terminal versus internal
growth. Additionally, more elaborate models consider the
timing of bifurcation events, the length distribution of
attaching branches, and the total number of available
branches (Van Pelt & Uylings 1999). Van Pelt’s models
have been demonstrated to reproduce faithfully time-
dependent growth in several morphological classes, also
taking into account dendritic pruning and tree asym-
metry (reviewed in Van Pelt & Uylings 1999). However,
they lack a description (and a physical rationale) of
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branch diameters and diameter-related processes, such as
tapering and diameter changes at bifurcations.

A different strategy has been proposed by Winslow ef al.
(1999) to generate dentate gyrus granule cell dendrites.
In this study, the starting process is to reproduce the
empirical distribution of the distances of all bifurcation
points from the soma as normalized with respect to the
farthest branch point. Then, branch points are connected
starting from the soma by sampling the closest ‘free’ point
from the growing ‘tip’, thus generating a one-dimensional
projected tree. Next, this mono-dimensional tree 1is
inflated into a 3D tree by stochastically projecting width
and depth coordinates according to the empirical shape
of the tree. Finally, coordinates are rescaled to reproduce
the ‘real’ values, and diameter and dendritic wiggle are
added, as sampled from empirical, distance-dependent
distributions (Winslow et al. 1999). This model, which
does not pretend to rely on any biophysical rationale, was
not extensively characterized for its morphological
realism, and was never tested for different morphological
classes.

Additional local and global anatomical rules that can
in principle be incorporated in morphological models of
dendritic growth, such as the arbour optimization by
Cherniak et al. (1999), were recently reviewed (Ascoli
1999). These additional or alternative constraints could
be incorporated in L-NEURON and ARBORVITAE for
direct empirical testing.

3. DATABASE STRUCTURE AND AVAILABILITY

We are using L-NEURON and ARBORVITAE to investi-
gate systematically the potential of the ‘computational
neuroanatomy’ approach for neuroscience databases. We
have virtually generated anatomically plausible neurons
for several morphological classes, including cerebellar
Purkinje cells, hippocampal pyramidal cells and inter-
neurons, dentate gyrus granule cells, thalamic relay
neurons, cortical pyramidal and stellate cells, and spinal
cord motor neurons (Senft 1997; Senft & Ascoli 1999;
Ascoli 1999; Ascoli & Krichmar 2000). In this section,
we describe a publicly available electronic database of
virtual neurons that we are constructing as an example of
the computational neuroanatomy potential (figure 2).
This database, initially containing entries from the
Purkinje cell and motor neuron morphological classes, is
published through the Internet at http://www.krasnow.
gmu.edu/L-Neuron/index.html (case sensitive).

The structure of the database is similar to that of an
analogous archive of experimental dendritic morpholo-
gies (Cannon et al. 1998), which is also available electroni-
cally (and through links from the Internet address above).
In particular, the database is formatted as a table. Each
row of the table represents a single-neuron entry. The
seven columns contain an entry name, neuron type (e.g.
motor neuron or Purkinje cell), algorithm type (e.g.
Hillman, ARBORVITAE, etc.), link to a comment file, link
to a picture, link to an SWC file and links to other files (if
any). The comment file is a simple text describing when
and how the virtual neuron was generated, and providing
references to its quantitative analysis, when available. The
picture is an image of the generated neuron in portable
format (usually JPEG). The SWC files are the digital
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Figure 2. A screenshot of the virtual neuromorphology electronic database. The database is available online from the
L-NEURON Web page, and contains pictures (JPEG) and SWC files of neuronal structures generated with a variety of local and
global algorithms. The database also stores comment files, parameter files, links to conversion routines and references to the

original experimental data.

anatomical data of the neurons, and constitute the core
items of the database. The SWC format was also chosen
in analogy with the above mentioned experimental data-
base (Cannon et al. 1998). Neurons in SWC can be visual-
ized three-dimensionally, rotated and zoomed through any
Java-enabled internet browser (e.g. Netscape or Explorer
in versions 4.0 or higher) with Cannon’s applet Cvapp.

Additionally, for virtual neurons generated with L-
NEURON, the L-NEURON source file and the binary VOL
file are also available in the database (as hyperlinks in the
‘other files’ column). VOL neuron files, too, can be viewed
three-dimensionally, rotated and zoomed with Lapré’s
software L-VIEWER, running under DOS and Windows.
Both Cvapp and L-VIEWER are freely available (internet
links provided in the database Web page). For virtual
neurons generated with ARBORVITAE, the original output
(in Eutectic-like format) is also available in the database.

The present structure of the database was designed to
maximize simplicity and user friendliness. Only a very
basic knowledge of internet browsing is required to scroll
the page and select the links. However, more sophisti-
cated options, such as online generation of neurons,
advanced entry searches and comparisons, are not imple-
mented at this time.

It is relevant to note here that the impact of this and
other databases of neuronal morphology on the neuro-
scientific community will also depend on the availability
of simple software tools that can extract flexibly a variety
of user-defined morphological parameters from the
archives. We have developed one such program called
L-MEASURE (Scorcioni ¢/ al. 2000, 2001), which is fully
compatible with SWC and most other formats (including
Eutectic and Neurolucida). L-MEASURE is also publicly
available (http://www.krasnow.gmu.edu/L-Neuron/index.
html, case sensitive), but at present it does not allow the
online analysis of archived data (both the software and
the data must be downloaded onto the local disk).
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The experimental dataset for motor neuron morphology
1s constituted by six gastrocnemius o-motor neurons from
the spinal cord of adult cats. These neurons were labelled
by intracellular injection of horseradish peroxidase,
completely reconstructed from serial sections and digit-
ized into computer files by Cullheim et al. (1987). The
original computer file format is a redundant union of the
SWC-like and Eutectic-like formats described in §1b of
this paper. More precisely, the dendritic trees are repre-
sented as a series of cylindrical compartments, each
described by a line of thirteen values corresponding to a
label, branch order, branch number, segment number,
segment type (extending, bifurcating or terminating), x, j,
z positions of the cylinder starting point, and x, j z posi-
tions of the cylinder ending point, segment length and
segment diameter. The numbering system for branches
and segments is described in detail in Cullheim et al.
(1987). The original digital files were converted to SWC
formats with a simple routine written in AWK (Aho et al.
1988) and running under Unix. The six experimental
motor neurons in SWC formats as well as the conversion
routines are available in the online database.

The experimental dataset for Purkinje cell morphology
is constituted by three neurons from the albino guinea pig
cerebellar cortex. These cells were labelled with horse-
radish peroxidase and morphologically reconstructed by
Rapp et al. (1994). The original computer files in Eutectic
format were also converted into SWC with an AWK
routine running under Unix. The three SWC Purkinje
cell files as well as the conversion routine are available at
the database Internet site. It is useful to notice that,
despite the limited number of neurons experimentally
available in the Purkinje class, the high morphological
complexity of these cells makes each entry extremely
data-rich. For example, the three dendritic trees
corresponding to the three Purkinje cells contain a total
of 1308 bifurcations, while the 70 dendritic trees
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Figure 3. Examples of motor neurons from the database. () An experimental motor neuron (v_e_motol) from Cullheim et al.
(1987). (6) An L-NEURON cell generated with Hillman’s algorithm, ‘poliko’ option (v-hp_motol). (c) A cell generated as in (4)
but using Tamori’s variation (v_tp-motol). (d) An L-NEURON cell generated with Burke’s algorithm (v_b_motol). Parameters
were taken from Burke et al. (1992), or, when not available, measured from the experimental data. (¢) An ARBORVITAE cell
generated using ‘algorithm one’ (v_.al_motol). ( /') An ARBORVITAE cell generated using ‘algorithm two’ (v_a2_motol).

corresponding to the six motor neurons contain a total of
950 bifurcations.

Virtual neurons were generated by L-NEURON and
ARBORVITAE using a variety of algorithms and settings.
For each algorithm, one to ten sets of six virtual motor
neurons and three virtual Purkinje cells were created.
Within each group, different random seeds were used in
the generation of individual neurons. In particular, the
following algorithms (described in sections 2a and 2b of
this paper) were used:

e L-NEURON, Hillman-like algorithm;

e L-NEURON, Hillman-like algorithm with ‘poliko’
implementation;

e L-NEURON, Hillman-like algorithm, Tamori variant,
with ‘poliko’ implementation;

e L-NEURON, Burke’s algorithm;

e L-NEURON, miscellancous algorithms with tropism
(low value);

e L-NEURON,
(high value);

e ARBORVITAE, first algorithm;

e ARBORVITAE, second algorithm;

e ARBORVITAE, second algorithm with trophic gradient
(low value);

® ARBORVITAE, second algorithm with trophic gradient
(high value).

miscellaneous algorithms with tropism

The electronic database of virtual morphology
currently contains 390 generated neurons (plus nine
experimentally acquired neurons). More virtual neurons
are going to be continuously added to this initial collec-
tion as new algorithms and different morphological
classes are tested.
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Figure 3 displays pictures of five virtual motor neurons
generated with different algorithms as well as one experi-
mental motor neuron. Even within the same morpho-
logical class (or a given set of parameter distributions and
choice of algorithm) no two neurons are identical: the
neurons shown in figure 3 are just typical examples from
their respective groups.

Analogously, figure 4 displays pictures of five virtual
(and one real) Purkinje cells generated with the same
algorithms used in figure 3. Each of the algorithms can
generate structures as different as motor neurons and
Purkinje cells by using different statistical distributions of
morphological parameters.

Figure 5 shows the effect of tropism on dendritic
morphology. Here, real neurons are compared with
virtual neurons generated with various algorithms with
moderate or excessive tropism.

4. VERIFICATION AND VALIDATION OF
COMPUTATIONAL NEUROANATOMY ALGORITHMS

An important aspect in computational neuroanatomy
is the validation of algorithms. A comparison of the
multiple entries of the database of virtual morphology
(even as sketchily summarized in figures 2, 3 and 4)
makes it immediately apparent that groups of neurons
created with different algorithms are different. This
structural variability is conceptually unlike both the
natural variability observed within a morphological class
(or within a group of virtual neurons generated stochas-
tically with the same algorithm) and the morphological
differences distinguishing two anatomical classes of
neurons. How can one decide which algorithm is the
best?
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(b)

(d)

Figure 4. Examples of Purkinje cells from the database. (a) An experimental Purkinje cell (v_e_purkl) from Rapp et al. (1994).
(b) An L-NEURON cell generated with Hillman’s algorithm, without ‘poliko’ option (v_h_purkl). (¢) Same as in (4), but with
‘poliko’ option, which remarkably increases the number of segments grown (v_hp_purkl). (d) Same as in (¢), but using Tamori’s
variation, which improves the dendritic orientation (v_tp_purkl). (¢) An ARBORVITAE cell generated using ‘algorithm one’
(vaal_purkl). (/) An ARBORVITAE cell generated using ‘algorithm two’ (v_a2_purkl).

Figure 5. Effect of tropism on dendritic structure. () Another experimental motor neuron (v.e_moto2) from Cullheim et al.
(1987). (6) An L-NEURON cell generated with Burke’s algorithm, using a moderate amount of tropism, pushing dendrites away
from the soma (v_bt.motol). (¢) Same as in (4), with an excessive amount of tropism (v_bts_motol). (d) Same as in (¢), setting
tropism in the y axis (vertical on the page) instead of away from the soma (v_bty_motol). (¢) Another experimental Purkinje cell
(v_e_purk?2) from Rapp et al. (1994). (/) An L-NEURON cell generated using Hillman’s algorithm with ‘poliko option’ and a
moderate amount of tropism, both away from the soma and in the » axis (v_hpt_purkl). Notice the remarkable difference
between this cell and the corresponding cell without tropism (figure 4¢). (g) An ARBORVITAE cell generated using ‘algorithm
two’ and tropism away from the soma (v_a2tl_purkl). (£) Same as in (g) with greater tropism (v_a2th_purkl): compare with the
‘regular’ cell, figure 4/.

There are several levels at which algorithms to
generate dendritic morphology can be validated. First,
one has to check that dendritic structures are being gener-
ated according to the parameters specified by the algo-
rithm and by the user. A simple way to do this is to
measure from the generated neurons the morphological
parameters that the algorithm used in the generation
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(called ‘basic parameters’). For example, using Hillman’s
algorithm one could measure the interbifurcation length
of each branch in the group of virtual neurons. The statis-
tical distribution of these values should correspond to the
statistical distribution fed to the program to generate the
dendrites. In order for two distributions of values to be
statistically equivalent, they need to have the same
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moments. Statistical distributions used in our algorithms
for fitting the experimental data are fully characterized
by the first two moments, i.e. mean and variance. Some
distributions used in the algorithms, like uniform or
gamma distribution, are conventionally specified with
their standard parameters, however from these one can
derive the first two moments (additionally, distributions
in L-NEURON and ARBORVITAE are truncated at
minimum and maximum boundaries). Thus, in this case,
the problem of algorithm validation reduces to testing the
‘null’ hypothesis that the empirical distributions of the
basic parameters collected from the set of virtual neurons
are consistent with the distributions of these same para-
meters used for their generation. The statistical distribu-
tions used in the generation algorithms are therefore
treated as known population probability distributions,
and standard statistical tests are performed in order to
assess the hypothesis. The results of testing are typically
reflected in the p-value, stating the confidence level in
accepting the null hypothesis.

However, it is necessary to note that statistical testing
provides only an indirect algorithm validation. In fact,
even if the test of the null hypothesis is positive, it only
asserts that the probability of the data being sampled
from a different population distribution is sufficiently low.
Thus, although negative results of statistical testing would
strongly indicate errors in the algorithm implementation,
positive testing can never formally establish the correct-
ness of the algorithm.

Assuming that the algorithm is in fact generating the
correct parameters with the specified distributions, one
needs to test the accuracy of the algorithmic description of
a morphological class. In other words, the group of virtual
neurons has to be compared with the corresponding group
of real neurons. This can be done superficially through
visual inspection. A trained neuroanatomist can quite
accurately spot subtle differences between groups of cells.
Thus, how anatomically plausible virtual neurons look is
usually a good starting point to verify whether an algo-
rithm is ‘good’. A more quantitative way to compare
groups of real and virtual neurons is to evaluate the simi-
larity of the statistical distributions of morphological
parameters other than those trivially used by the algo-
rithm (called ‘emergent parameters’, as opposed to basic
parameters). Statistical considerations similar to those
discussed for the validation of the implementation apply
here.

Emergent morphological parameters can be chosen at
any level of complexity. Neurons can be characterized by
single scalar numbers (e.g. total dendritic length), or by
how local measures vary with location (e.g. dendritic
diameter versus distance from the soma along the path)
or with any other local measure (e.g. distribution of
branch surface area versus daughter diameter ratio). In
fact any correlation between morphological parameters
(discussed in sectionlb of this paper) can be used as a
source of emergent parameters. Morphological para-
meters or distributions that are ‘basic’ for one algorithm
can be considered ‘emergent’ for a different algorithm.

In general, as many emergent parameters as possible
should be tested. If there is a statistically significant
discrepancy in the comparison of any emergent para-
meter between real and virtual neurons, then the
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morphological algorithm used to generate those virtual
neurons is not fully accurate. However, the discrepancy
can provide useful anatomical feedback to modify and
improve the algorithm. The complete morphological
analysis of all the groups of virtual neurons collected in
the online morphological database is beyond the scope of
this discussion and will be published elsewhere (Ascoli

et al. 2001).

5. CONCLUDING REMARKS

An important goal in computational neuroanatomy at
the single-cell level consists of creating algorithms to
generate virtual dendritic structures that are morpho-
logically equivalent to real neuronal dendrites. To the best
of our knowledge, L-NEURON and ARBORVITAE are the
first two programs that implement in software neuro-
anatomical algorithms to generate complete virtual
dendprites (other algorithms, while constituting influential
scientific advances, have not been implemented to
generate complete 3D structures; see, for example, Van
Pelt & Uylings (1999).

In principle, an algorithm that can describe success-
fully the morphology of a mature neuron does not neces-
sarily also reproduce the intermediate stages of
development. In other words, the sequence of algorithmic
steps does not always correspond to biological growth
stages, even if the empirical description of the final
product is excellent. Ideally, an algorithm that tries to
reflect developmental mechanisms faithfully should also
describe complex phenomena such as dendritic pruning
and synaptic elimination. Indeed, it might be impossible
to simulate dendritic growth processes accurately without
embedding the neuron in the whole (simulated) network.
If this proves to be the case, then only a modelling tool as
complex as ARBORVITAE, where developmental inter-
actions between anatomy and physiology can in principle
be simulated, could accurately describe neuronal growth.

At this early stage of computational neuroanatomy,
however, even unrealistic assumptions in the growth
mechanism can constitute a useful starting point in
morphological modelling. In fact, the analysis of the first
‘generation’ of products can help refine hypotheses and
thus build an improved model to obtain a second gener-
ation of products. We are hopeful that this process would
converge to an accurate algorithm describing and gener-
ating neuronal morphology. The attempt to relate
systematically the discrepancies between virtual and real
data to the logical steps of the algorithm is greatly facili-
tated if the algorithmic basic parameters correspond to
intuitively accessible biophysical correlates. As previously
mentioned in this paper, this is the case for some algo-
rithms (e.g. Hillman’s, see §2a) but not others (e.g.
Winslow’s, see § 2¢).

Both local and global algorithms implemented in
L-NEURON and ARBORVITAE are extremely promising in
the search for an accurate computational description of
neuronal morphology. A large base of starting models is
particularly useful in view of the possibility that a certain
algorithm could describe perfectly a few morphological
classes, but not others, and vice versa. From the user’s
point of view, local and global algorithms offer some-
what complementary advantages. Local algorithms are
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conceptually more intuitive and their basic parameters
are generally easier to measure from experimental data.
Global algorithms are more flexible and potentially more
detailed in the description of the growth processes. These
differences are also reflected in the complexity of the
implementations, whereas the L-NEURON program has a
simpler structure than ARBORVITAE.

The potential advantages of the algorithmic descrip-
tion of neuronal structure are remarkable. If L-NEURON
and ARBORVITAE, by measuring values of fundamental
parameters from a restricted number of available experi-
mental neurons, can generate virtual neurons that are
anatomically indistinguishable from the real ones, two
extremely important features for morphological data-
bases, namely data compression and amplification, could
be achieved. Data compression derives from the ability to
describe quantitatively and completely any number of
neurons from a morphological class with just a few statis-
tical distributions of fundamental parameters. Data
amplification 1s an intrinsic property of the computa-
tional neuroanatomy approach because, from a fixed
number of experimental neurons, any (arbitrarily large)
number of non-identical virtual analogues can be gener-
ated.

The electronic database described in this paper
provides a source of clear examples to illustrate these
aspects and possibilities. The six experimental motor
neurons in uncommented SWG format occupy 63.7 kb of
disk space, once compressed. Analogously, the size of the
three experimental Purkinje cells (also in compressed,
uncommented SWC format) is 47.1kb. In contrast, the
L-NEURON descriptor files for these groups range from
289 and 355 bytes (plain Hillman parameters occupying
the least amount of space, and Burke parameters with
tropism occupying the most).

A mammalian brain contains between 10" and 10%
neurons and an estimated 500-2000 morphological
classes (Williams & Herrup 1998; Shankle et al. 1998). In
order to store a neuroanatomical database containing
single-neuron morphological data for an entire such
organ, an archive size of approximately 1000 Th would
be necessary (this estimate 1s completely theoretical, since
it would be impossible to acquire such an amount of
experimental data given the current technical limitations
discussed at the beginning of this paper, § 1a). In contrast,
starting from the experimental data acquired from a
small fraction of the neurons in each morphological class,
algorithms such as those implemented in L-NEURON and
ARBORVITAE would enable the statistical description of
dendritic morphology for an entire brain in a few mega-
bytes of disk space.

The next crucial step in this line of research is certainly
the extensive, quantitative, morphological characteriz-
ation of virtual neurons, and their comparison with real
cells of the corresponding morphological classes. Further-
additional morphological classes (particularly,
hippocampal neurons) will be similarly modelled and
analysed. This will help us investigate whether a single
algorithm can be constructed that accurately describes
several (or all) morphological classes.
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