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Abstract

In this paper we study strange nonchaotic attractors (SNAs) and multistable dynamics in a

class of nonlinear economic systems. For quasiperiodically forced case, the generation and

evolution mechanisms of SNAs are discussed. The fractal, Heagy–Hammel, torus doubling, and

intermittency routes to SNAs are identified. The Lyapunov exponent, phase sensitive function

and power spectrum are used to characterize the dynamical and geometrical properties of SNAs.

Moreover, when multistable phenomenon occur in the system, the boundaries of the basin of

attraction may become intertwined, which leads to the economic unpredictability in the long

run.

Keywords: nonlinear economic system, strange nonchaotic attractor, phase sensitivity,

multistability.

1. Introduction

In recent years, chaotic dynamics has made many applications in the field of economics.

Benhabib and Day [1] first introduced the chaotic dynamics theory into economics. They

showed that sequences of rational choices can be erratic when preferences depend on expe-

rience. Puu [2] used Cournot’s duopoly theory to study the nonlinear dynamical behavior of

two competing firms in the market. Under the assumption of isoelastic demand and constant

unit production cost, the model shows repeated periodic and chaotic motions. Chiarella [3] con-

sidered the generalized nonlinear supply function in the traditional cobweb model and proved

that there exists a path from period-doubling bifurcation to chaos in the locally unstable region.

Matsumoto [4] investigated that it is better for the whole economy to fluctuate in chaos than to

be stable in the long run.

The unemployment-inflation correlation is one of the most important correlations in eco-

nomics. Phillips [5] reported his observations of rising wages and unemployment in 1958. As
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the first person to notice this, he pointed out that there is not only a correlation between inflation

and unemployment, but also a negative correlation. In a sense, with the increase of wages, the

unemployment rate will decline. In addition, inflation and unemployment can affect financial

markets because it raises the level of uncertainty, which means an increase in financial market

turbulence [6]. Hence, the dynamical behaviors of inflation and unemployment models are a

problem worth studying.

In order to further explore the dynamical properties of a system, one usually applies external

excitations, and these external excitations will make the system exhibit abundant dynamical

phenomena [7–9], such as phase locking, attractor crises, quasiperiodic motion, etc. SNAs

usually appear in some systems with quasiperiodically forced excitation [10–13]. On the one

hand, this class of attractors exhibit the dynamical properties of regular attractors, that is, they

are nonchaotic in the dynamics, since the maximum Lyapunov exponent is nonpositive. On the

other hand, SNAs also show the geometric characteristics of chaotic attractors, that is, they have

geometric fractal structure.

Over the years, SNAs have been widely studied experimentally and numerically in different

dynamical systems. Pikovky and Feudal et al. [14] first proposed the method of rational number

approximate frequency and phase sensitivity function to characterize the strangeness of SNAs.

Ding et al. [15] studied a class of quasiperiodic excitation systems, in which the parameter

region of SNAs has fractal structure, which lies between two critical curves, one of which marks

the transition from quasiperiodic attractors to SNAs. The other marks the transition from SNAs

to chaotic attractors. Romeiras et al. [16] identified SNAs with two-frequency quasiperiodic

forcing in the damped pendulum equation , and experimentally observed that SNAs have power

spectral characteristics with different frequencies. Zhang et al. [17] proved that SNAs exist in

the FHN neuron model under weak noise disturbance. Prasad et al. [18] found that SNAs can

be generated by the collision of an invariant curve with itself. Venkatesan et al. [19] showed

very many types of routes into chaos through SNAs in a straightforward quasiperiodic forcing

cubic map, and distinguished between the two classes of attractors by the phase diagram, finite

time Lyapunov exponents. In particular, Linder et al. [20] used data collected by the Kepler

space telescope to find strange nonchaotic stars, which further showed that strange nonchaotic

phenomena are real in nature.

As a special type of attractor, many experts have devoted to the investigation of irregular

dynamical transitions and mechanisms of SNAs. Several mechanisms and routes for forming

SNAs are described in the literature, such as fractal route [21], torus collision route [22], in-

termittency route [23, 24], bubbling route [25], Blowout bifurcation route [26] and so on. The

above literature provides further reference for other routes [27–30] to form SNAs. In additional,

a number of mathematically rigorous results [31–34] on the topic of SNAs have been reported

in recent years.

We are interested in the dynamical behaviors of the unemployment-inflation system [35]

under quasiperiodically forced excitations. The paper is organized as follows. In Sec. 2, we

briefly describe a nonlinear economic system and introduce the phase sensitivity. Then, the

generation mechanisms of SNAs are discussed in Sec. 3. The nonchaotic and strange properties

of SNAs are analyzed via phase sensitive function and power spectrum in Sec. 4. In Sec. 5, we

uncover a dynamical phenomenon in which a 1T quasiperiodic attractor and 3T quasiperiodic
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attractor coexist in the system, and obtain the basin of attraction of these coexisting attractors.

The main results are summarized in Sec. 6.

2. Nonlinear economic system

The unemployment and inflation rate are important factors that affect social stability and

economic development. The dynamical analysis of unemployment and inflation models can

deeply understand the current economic state and propose reasonable policies [36–38]. The un-

employment rate refers to the proportion of surplus labor force in the whole labor force. Under

the condition of high unemployment rate, the economy will have a downward trend. Inflation

rate refers to the increase of average price in a continuous period, and consumer price index is

generally used to describe inflation. There are many economic theories about inflation and un-

employment. Among them, the more authoritative and effective theory is Phillips curve, which

establishes a functional relationship between inflation rate and unemployment rate. Taking into

account the influence of other relevant factors, we apply a small perturbation to the system of

equations for the Phillips curve, and the form of the system is obtained as follows.

xn+1 =
(

xn + c
(

β1 + β2e
−yn + (a− 1)xn

))

(1 + ε cos zn) ,

yn+1 =
(

−b
(

m−
(

β1 + β2e
−yn

)

− axn

)

+ yn
)

(1 + ε cos zn) ,

zn+1 = zn + ω(mod2π).

(1)

where a, b, c,m, ω, β1, and β2 are the system parameters. In order to better understand the dy-

namical behaviors of the nonlinear economic system, we take ε, b, and c as the control variables,

and fix a = 1,m = 2, ω = (
√
5− 1)/2, β1 = −2.5, and β2 = 20 in what follows.

Chaos in dynamical systems is characterized by its sensitive dependence on initial condi-

tions, which is often called “butterfly effect”. The sensitive dependence on small perturbations

or initial conditions can be described by the Lyapunov exponent. In addition, the Lyapunov

exponent can also show the average stretching or compression rate of each point in the mov-

ing orbit for a long time, which can describe the overall properties of the dynamics. Take a

two-dimensional map as an example:
ß

xn+1 = f (xn, θn) ,
θn+1 = θn + 2πω(mod2π).

(2)

According to the definition of Lyapunov exponent, we have

λ = lim
n→∞

ln
∣

∣

∣

∂xn

∂x0

∣

∣

∣

n
= lim

n→∞

1

n

n−1
∑

k=0

ln

∣

∣

∣

∣

∂f (xk, θk)

∂xk

∣

∣

∣

∣

. (3)

If the Lyapunov exponent is nonpositive, then the system is nonchaotic, which means that there

is no sensitive dependence on the initial conditions.

The characterization of strange properties of SNAs is a difficult problem. Pikovsky and

Feudel [14] proposed that strange and nonstrange attractors can be distinguished by tht phase

sensitivity. From the map (2), we get the recurrence relation:

∂xn+1

∂θ
= fθ (xn, θn) + fx (xn, θn)

∂xn

∂θ
. (4)
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The equation (4) can be further written as

∂xn

∂θ
=
∂f (xn−1, θn−1)

∂θn−1

+
∂f (xn−2, θn−2)

∂θn−2

∂f (xn−1, θn−1)

∂xn−1

+
∂f (xn−3, θn−3)

∂θn−3

∂f (xn−1, θn−1)

∂xn−1

∂f (xn−2, θn−2)

∂xn−2

+
∂f (xn−4, θn−4)

∂θn−4

∂f (xn−1, θn−1)

∂xn−1

∂f (xn−2, θn−2)

∂xn−2

∂f (xn−3, θn−3)

∂xn−3

+ · · · .

(5)

According to the equation (2), the equation ∂xm/∂θm = ∂xm/∂θk = ∂xm/∂θ0 hold for any

positive integer m and k. Therefore, the subscript of θ can be omitted and ∂xn/∂θ can be called

“derivative of variable with respect to phase”. Hence, the equation (5) can be rewritten as:

∂xN

∂θ
=

N
∑

k=1

fθ (xk−1, θk−1)RN−k (xk, θk) +RN (x0, θ0)
∂x0

∂θ
, (6)

where

RM (xm, θm) =
M−1
∏

i=0

fx (xm+i, θm+i) , (7)

and R0 = 1. Since the SNAs are nonchaotic, that is, the Lyapunov exponent λ is nonpositive.

For sufficiently large n, the value of Rn is very small, so as long as n = N is large enough, the

derivative value can be approximated by

∂xN

∂θ
≈ SN =

N
∑

k=1

fθ (xk−1, θk−1)RN−k (xk, θk) . (8)

Therefore, the strange properties of the attractor can be verified in terms of whether SN is

bounded or not. To better characterize the strangeness of SNAs using this method, consider

γN(x, θ) = max |Sn| , (0 ≤ n ≤ N). (9)

If the value of γN increases with the number of iterations N , this means that |SN | tends to

infinity, namely, the derivative of the state variable with respect to the phase is not a bounded

value. Therefore, with the help of the equation (9), the strange properties of the attractor can be

verified. With the increase of the number of iterations, the growth rate of SN can represent the

strange degree of the attractor, which gives a quantitative index of strangeness. Next, take m
initial points (x0, θ0) at random and compute the minimum value of γN(x, θ)

τN = min
x,θ

γi
N(x, θ)(i = 1, 2, 3 · · ·m). (10)

can more accurately determine whether the attractor is nonsmooth. In the process of calculation,

if the attractor is nonsmooth, τN will increase as N increases. Assuming that this function

increases by a power law as N → ∞
τN ∼ Nµ, (11)

4



where the exponent µ is a quantitative characteristic of the strangeness of the attractor, which

is called “phase sensitivity exponent”. If µ ≈ 0, then the attractor is regular. while µ 6= 0, the

value of the derivative of the state variable with respect to the phase increases with the increase

of the number of iterations, and SN tends to infinity, so that the attractor is strange (nonsmooth).

3. Generation mechanisms of SNAs

3.1. The fractal route

The attractors get gradually wrinkled without any interaction with nearby periodic orbits

in the fractal routes. The generation mechanism of such SNAs was described by Kaneko as

early as 1984, but he did not refer to the emerging new invariant sets as SNAs. In contrast

to other mechanisms for generating SNAs, this mechanism is difficult to relate to a precise

bifurcation phenomenon. The fractal routes only change the structure of attractors gradually,

and the number of attractors does not change obviously.

(a) b = 1.35 (b) b = 1.4

(c) b = 1.409 (d) b = 1.412

Figure 1: For c = 0.75, ε = 0.05, the phase diagram in the (z, y) plane.
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Let us fix the parameter c = 0.75, ε = 0.05 and increase the value of b. For b = 1.35,

there are two smooth branches in the phase diagram, which indicates that the system (1) is in

a doubled torus state denoted as 2T , see Fig. 1(a). As b is decreased further to 1.4, the 2T
quasiperiodic attractor gets increasingly wrinkled and irregular, but the attractor remain contin-

uous as shown in Fig. 1(b). When b = 1.409 the attractor becomes extremely wrinkled and

appears some discontinuous regions, see Fig. 1(c). At such values, the attractor is strange, and

the maximum Lyapunov exponent of the system is negative (λmax = −0.0441 , see Fig. 2(a)).

Thus,the 2T quasiperiodic attractor transforms into an SNA. For b = 1.412, the SNA eventu-

ally evolved into a chaotic attractor (Fig. 1(d)) with a fractal structure and positive maximum

Lyapunov exponen ( λmax = 0.0149, see Fig. 2(b) ). Generally speaking, in the process of the

attractor evolution, an SNA appears only after a smooth quasiperiodic attractor produces the

wrinkle-like geometry. Therefore, the wrinkling phenomenon can be regarded as a “prelude” to

the generation of SNAs from fractal routes.

(a) b = 1.409 (b) b = 1.412

Figure 2: For c = 0.75, ε = 0.05, the maximum Lyapunov exponent.

3.2. The Heagy-Hammel route

As the change of control parameters, two stable curve and unstable invariant curves collide,

the stable invariant curves will lose stability, from a quasiperiodic attractor to an SNA, this

route is known as Heagy-Hammel route. This mechanism may be closely related to homoclinic

bifurcation.
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(a) b = 1.15 (b) b = 1.163

(c) b = 1.16575 (d) b = 1.166

Figure 3: For c = 0.4, ε = 0.02, the phase diagram in the (z, y) plane.

To better illustrate the transition in the system (1), let c = 0.4, ε = 0.02 and b is to be

taken as control parameter. For b = 1.15, there are four smooth invariant curves in the phase

diagram, namely, a 4T quasiperiodic attractor, see Fig. 3(a). As b is increased to 1.163, the

4T quasiperiodic attractor appears wrinkled and the distance between adjacent invariant curves

starts to shrink, see Fig. 3(b). As b increases further to 1.16575, the two adjacent stable invariant

curves (blue lines) collide with the unstable invariant curve (red dashed lines), which causes the

stable invariant curves become locally nonsmooth, see Fig. 3(c). As b continues to increase to

1.166, the 4 T quasiperiodic attractor evolves into an SNA, see Fig. 3(d). Under this parame-

ters, the maximum Lyapunov exponen of the system (1) is -0.0177, so it can be verified that the

attractor is nonchaotic, see Fig. 4. We find that the collision between the stable 4 T quasiperi-

odic attractor and the unstable 2 T quasiperiodic attractor leads to the creation of the SNA, and

the attractor is discontinuous along the z-axis, which also further illustrates strangeness of the

attractor.
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Figure 4: For c = 0.4, ε = 0.02 and b = 1.166, the maximum Lyapunov exponent.

3.3. The torus-doubling route

The torus-doubling route is that the torus-doubling bifurcation is interrupted by a subhar-

monic bifurcation, and the torus attractor loses stability and evolves into an SNA. The torus-

doubling bifurcation and period-doubling bifurcation have similarities and differences. The

differences are as follows: (1) the dimension of attractor is different. (2) When period-doubling

bifurcation occurs in a system, the Lyapunov exponent is equal to zero in one direction. When

a torus-doubling bifurcation occurs, the Lyapunov exponent is equal to zero in two directions.

(3) Period-doubling bifurcation is a typical route to chaos, and torus-doubling bifurcation may

lead first to an SNA and then to a chaotic attractor, which is a typical route to SNAs.

In order to illustrate the transformation of torus-doubling route to SNAs, we can draw the

phase diagrams in the (x, y) plane for c = 0.75, ε = 0.001. For b = 1.07, a 1 T quasiperiodic

attractor occurs in the (x, y) plane, see Fig. 5(a). As the value of b is decreased b = 1.35, the

1T quasiperiodic attractor evolves into a 2 T quasiperiodic attractor, which is generated by the

torus-doubling bifurcation, see Fig. 5(b). As the value of b is decreased 1.4, the 2T quasiperi-

odic attractor again undergoes the torus doubling bifurcation and the corresponding period-4

quasiperiodic orbit is denoted as 4T, see Fig. 5(c). In the generic case, the torus-doubling phe-

nomena can continue to occur until a critical point is reached, beyond which the system will

exhibit chaotic motion. However, in the present case, the torus-doubling phenomenon no longer

occurs, instead the 8 T quasiperiodic attractor becomes wrinkled and loses smoothness, which

is shown in Fig. 5(e). This is because the 8T quasiperiodic attractor collides with its unstable

parent torus. For the attractor exhibited in Fig. 5(e), the corresponding to the maximum Lya-

punov exponent remains negative (λmax = −0.0041), see Fig. 6(a). Therefore, the system is in

the strange nonchaotic state for b = 1.43305. Finally, the SNA evolves into a chaotic attractor

with b = 1.44, see Fig. 5(f).
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(a) b = 1.07 (b) b = 1.35

(c) b = 1.4 (d) b = 1.43

(e) b = 1.43305 (f) b = 1.44

Figure 5: For c = 0.75, ε = 0.001, the phase diagram in the (x, y) plane.
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(a) b = 1.43305 (b) b = 1.44

Figure 6: For c = 0.75, ε = 0.001, the maximum Lyapunov exponent.

3.4. The type-I intermittency route

In type-I intermittency routes, the torus is eventually replaced by a strange nonchaotic at-

tractor through the saddle-node bifurcation. When the Floquet multiplier of unperturbed system

passes through the unit circle, the attractor loses stability and the phenomenon is called “type-I

intermittency”. Saddle-node bifurcation is a necessary but not sufficient condition for type-I

intermittency occurrence. Another necessary condition for type-I intermittency occurrence is

that the orbit must repeatedly enter the neighborhood of the original periodic orbit.

In order to describe SNAs in terms of torus intermittency, let us fix the parameters c =
0.75, ε = 0.00314 and b varies from 1.42 to 1.43. For b = 1.42, a 4T quasiperiodic attractor

with four smooth branches appears in the (θ, x) plane, see Fig. 7(a). As b is increased to 1.43,

the 4T quasiperiodic attractor suddenly appears many disordered points near the orbit, which

are the characteristics of type-I intermittency, see Figs. 7(c) and (d). From the enlarged figure

in Fig. 7(d), it can be observed that the attractor has the geometric fractal structure, and the

attractor is no longer smooth. Therefore, the attractor is strange. The nonchaotic property is

represented by the maximum Lyapunov exponent λmax = −0.0358, see Fig. 8.
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(a) b = 1.42 (b) b = 1.42

(c) b = 1.43 (d) b = 1.43

Figure 7: For c = 0.75, ε = 0.00314, the phase diagram in the (θ, x) plane and (x, y) plane.

Figure 8: For c = 0.75, ε = 0.00314, and b = 1.43, the maximum Lyapunov exponent.
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4. Determining the strange properties of SNAs

In Section 2, we introduce the phase sensitivity function to verify the strange properties of

SNAs. Here we take the SNA generated by the torus-doubling route as an example (Fig. 5 (e))

to describe the strange properties of this attractor. The phase sensitivity exponent µ and the

maximum derivative value τN of the state variable with respect to the phase z are calculated.

For b = 1.4, the phase sensitivity exponent µ = 0 and the value of τN tends to a small bounded

value as the number of iterations increases, which means the attractor is regular, see Fig. 9 (a).

In sharp contrast, for b = 1.43305, the phase sensitivity exponent µ = 2.3561 and the value of

τN tends to infinity as the number of iterations increases, namely, the attractor is strange, see

Fig. 9(b).

(a) b = 1.4 (b) b = 1.43305

Figure 9: For c = 0.75, ε = 0.001, the phase sensitivity functions.

The power spectrum (Fourier amplitude spectrum) corresponding to periodic attractors or

quasiperiodic attractors is discrete, and the discrete power spectrum has some δ-peaks. The

power spectrum corresponding to the chaotic attractor is continuous and has no δ-peaks. How-

ever, SNAs usually appear in the transition region from quasiperiodic attractors to chaotic at-

tractors, the power spectrum corresponding to SNAs is a special spectrum between discrete and

continuous. This particular spectrum is called singular continuous spectrum, which exhibits a

combination of continuous and discrete components, and has many δ-peaks [39]. We take the

Fourier transform of the time series {xn} at frequency ω as {xn} at frequency ω as

X(ω,N) =
N
∑

n=1

xne
i2πnω. (12)

Hence, the power spectrum of the attractor is defined as [40]

Pω = lim
N→∞

|S(ω,N)/N |2, (13)
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Therefore, we can use singular continuous spectrum to examine strange properties of the attrac-

tor. For the SNA shown in Fig. 5(e), The power spectrum is continuous with many δ-peaks,

indicating that the attractor is strange, see Fig. 10.

Figure 10: For c = 0.75, ε = 0.001, and b = 1.43305, the singular continuous spectrum.

5. Multistable analysis

In complex dynamical systems coexistence of attractors is called multistability or multi-

stable dynamics. The final state of multistable systems is closely related to the choice of initial

conditions. Small changes in initial conditions may lead to changes in attractor types.

In this section we extend our analysis to determining basins of attraction in parameter space.

For the system parameters c = 0.75, ε = 0.01 and b = 0.75, a 1T quasiperiodic attractor and

3T quasiperiodic attractor coexist in the system under different initial values (2.5, 3.5, 0) and

(2, 2, 0), as shown in Fig. 11. The attracting domain corresponding to the 1 T quasiperiodic

attractor is green region and the attracting domain corresponding to white 3 T quasiperiodic

attractor is red region. The blue region is infeasible region, see Fig. 12. The attracting domain of

the 3T quasiperiodic attractor is nested within the 1T quasiperiodic attractor, and the coexisting

basins of attraction are highly intertwined implying that small uncertainties in the specification

of the parameters result in qualitatively different types of behavior.
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Figure 11: For c = 0.75, ε = 0.01 and b = 1.07, the coexistence of 1T and 3T quasiperiodic attractors for different

initial values.

Figure 12: For c = 0.75, ε = 0.01 and b = 1.07, the basin of attraction correspond to the coexisting attractors.

6. Conclusions

In this work, the dynamics of a class of nonlinear economic systems under quasiperiodic

excitation is considered. We identify four types of transitions to strange nonchaotic attractors

as the system parameters are varied: fractal route, Heagy-Hammel route, torus-doubling route,

and intermittent route. The methods used to numerical investigations are maximal Lyapunov

exponent, Fourier spectrum, and phase sensitivity function. In additional, a novel dynamical

behavior that the 1T quasiperiodic attractor coexists with 3T quasiperiodic attractors is un-

covered. In such cases, basin of attraction is also obtained to better understand the long-term

unpredictability of the economic system. The results of this work offer ideas for the study of

strange nonchaotic dynamics in other systems, as well as provide support for the economic

theory and policy research.
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