UC Davis UC Davis Previously Published Works

Title

Generation of a catalytic antibody by site-directed mutagenesis.

Permalink https://escholarship.org/uc/item/750439dr

Journal Science (New York, N.Y.), 245(4922)

ISSN 0036-8075

Authors

Baldwin, E Schultz, PG

Publication Date 1989-09-01

DOI

10.1126/science.2672338

Peer reviewed

tion of more complex carbonyl compounds for formaldehyde (H₂CO) may lead to the direct formation of acyclic nucleoside analogs at the C-8 position of adenine. Glycoaldehyde, for example (CHO-CH₂OH), may produce a dihydroxyl analog of potential interest in chemical evolution studies.

REFERENCES AND NOTES

- 1. S. L. Miller and L. E. Orgel, The Origins of Life on the Earth (Prentice-Hall, Englewood Cliffs, NJ, 1974).
- 2. A. W. Schwartz, Naturwissenschaften 70, 373 (1983). 3. R. Stribling and S. L. Miller, Origins Life 17, 261 (1987).
- J. Oro, Biochem. Biophys. Res. Commun. 2, 407 4.
- (1960).
 5. R. A. Sanchez et al., J. Mol. Biol. 30, 223 (1967).
 6. A. W. Schwartz and M. Goverde, J. Mol. Evol. 18, 351 (1982).
- A. W. Schwartz et al., Origins Life 14, 91 (1984). A. B. Voet and A. W. Schwartz, Bioorg. Chem. 12, 8 8.
- (1983). 9. C. V. Z. Smith, R. K. Robins, R. L. Tolman, Chem.
- Soc. Perkin. Trans. Part 1 1973, 1855 (1973).

- 10. J. P. Ferris et al., J. Mol. Evol. 11, 293 (1978).
- 11. The HCN concentrations used in this and in other studies can similarly not be regarded as "prebiotic." Solutions of 0.1 to 1M are chosen to produce a measurable set of products within a reasonable time. That such concentrations would not have been possible in a prebiotic ocean can be appreciated from the fact that the total nitrogen now present at the surface of the Earth would produce no more than a 0.2M solution if totally converted to HCN and dissolved in the present oceans. High concentrations of HCN can, however, be produced by freezing very dilute solutions, and this process has been proposed to have operated on the prebiotic Earth (1). 12. J. R. Cronin, S. Pizzarello, D. P. Cruikshank, in
- Meteorites and the Early Solar System, J. F. Kerridge and M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1988), pp. 819-857.
- G. F. Joyce et al., Proc. Natl. Acad. Sci. U.S.A. 84, 4398 (1987). 14. J. Visscher, C. G. Bakker, R. van der Woerd, A. W.
 - Schwartz, Science 244, 329 (1989).
- 15. A. W. Schwartz and L. E. Orgel, Science 228, 585 (1985).
- 16. J. Visscher and A. W. Schwartz, J. Mol. Evol. 28, 3 (1988).
- 17. Supported in part by National Aeronautics and Space Administration grant NGR 05067. We thank P. Daas for synthesizing 8-hydroxymethyladenine. 31 May 1989; accepted 8 August 1989

affinity and specificity (1). A number of

strategies have been applied to the genera-

tion of antibodies that catalyze a variety of

reactions with rate enhancements of 10² to

10⁶ (2-5). Site-directed mutagenesis should

prove useful for increasing the activity of

these catalytic antibodies, or for the stepwise

evolution of antibody-combining sites into

efficient selective catalysts. We describe the

substitution of a catalytic His residue for

Tyr at position 34 of the light chain of the 2,4-dinitrophenyl (DNP)-binding antibody

MOPC315 (6, 7). Tyr^{34L} was previously

shown to be in close proximity to the binding site by affinity labeling experiments (8).

The His mutant binds DNP ligands one-half

to one-eighth as tightly as the wild type, but

catalytically hydrolyzes DNP-coumarin ester

Generation of a Catalytic Antibody by Site-Directed Mutagenesis

ENOCH BALDWIN AND PETER G. SCHULTZ*

A hybrid Fv fragment of the dinitrophenyl-binding immunoglobulin A (IgA), MOPC315, has been generated by reconstituting a recombinant variable light chain (VL) produced in Escherichia coli with a variable heavy chain (VH) derived from the antibody. The Tyr³⁴ residue of V_L was substituted by His in order to introduce a catalytic imidazole into the combining site for the ester hydrolysis. The His mutant Fv accelerated the hydrolysis of the 7-hydroxycoumarin ester of 5-(2,4-dinitrophenyl)aminopentanoic acid 90,000-fold compared to the reaction with 4-methyl imidazole at pH 6.8 and had an initial rate that was 45 times as great as that for the wild-type Fv. The hydrolyses of aminopropanoic and aminohexanoic homologs were not significantly accelerated. Thus a single deliberate amino acid change can introduce significant catalytic activity into an antibody-combining site, and chemical modification data can be used to locate potential sites for the introduction of catalytic residues.

WO GENERAL APPROACHES HAVE emerged for the development of selective biological catalysts: genetic modification of enzyme active sites and chemical modification of biological or synthetic receptors with catalytic groups. These efforts have not only resulted in the generation of novel catalysts but have also provided a greater understanding of the mechanisms of enzymatic reactions. Recently, we and others have demonstrated that antibody-combining sites are also attractive starting points for the generation of selective catalysts, since they bind ligands with high

Fig. 1. Structures of ligands, substrates, and affinity labels.

1 45 times as rapidly, with a rate enchancement of ~90,000 compared to 4-methylimidazole.

The MOPC315 antibody binds a variety of DNP ligands with association constants of 10^3 to $10^7 M^{-1}$ (8, 9) and can be proteolyzed with pepsin to yield functional Fab' or Fv fragments (10). The Fv fragment (26 kD) is a heterodimer consisting of two peptides, V_H (14 kD) and V_L (12 kD), and contains all of the sequences necessary for folding of the binding domain and recognition of the DNP hapten. Although the atomic coordinates for MOPC315 have not been determined, magnetic resonance spectroscopy (11-13) and affinity labeling (8) studies have provided some information concerning binding site structure.

Because imidazole acts as a nucleophilic catalyst for the hydrolysis of carboxylate esters in aqueous solutions, introduction of a His at the appropriate position in the combining site of MOPC315 should result in a catalytic antibody with specific hydrolytic activity towards DNP-containing esters. Data from chemical modification experiments were used to target residues for substitution with His. Although 14 potentially reactive side chains occur in the hypervariable region (2 His, 2 Lys, 3 Arg, and 7 Tyr), DNP-containing affinity labels alkylate primarily two residues, Tyr^{34L} and Lys^{52H} (4, 8). The reactivity of each residue strongly depends on the number of atoms between the DNP ring and the electrophilic carbon of the affinity reagent; Tyr34L is alkylated

Department of Chemistry, University of California, Berkeley, CA 94720.

^{*}To whom correspondence should be addressed.

most efficiently by 4, whereas Lys^{52H} reacts with 5 (Fig. 1). Pollack et al. have previously exploited this data by using cleavable affinity labels to introduce a thiol (4), and subsequently a catalytically active imidazole (5) into the MOPC315 combining site at position 52H. We chose Tyr^{34L} for mutagenesis since it appeared that a His^{34L} side chain would be well situated to catalyze the hydrolysis of esters 1 through 3 (Fig. 1) (4, 5). The role of Tyr^{34L} in DNP binding has not been clearly established: affinity labeling of the Tyr hydroxyl to form the 2-keto-5-thiolpentyl ether prevents binding of ligands (4), perhaps by blocking the entrance to the site, while nitration has no effect (13). Tyr^{34L} is conserved in murine λ light chains and is found frequently in k chains and in heavy chains at the analogous position (position 33) (22). We also substituted Phe at position 34L to assess the contribution of the Tyr hydroxyl group to hapten binding.

In order to generate mutant MOPC315 combining sites, we chose to express the V_L portion of the Fv domain of the antibody in *Escherichia coli*. Eukaryotic disulfide-containing proteins are often produced in *E. coli* in a reduced insoluble form and must be subsequently renatured to the native state (14). Reduced and separated V_H and V_L peptides of MOPC315 have been recombined to yield a stable Fv (10). The single disulfide

host inequality occurring *E. ton* todons were used. A gene consisting of these sequences was constructed from four restriction fragments (Eco RI–Bst EII, Bst EII–Ava II, Ava II–Bss HII, and Bss HII–Hind III, denoted by the arrows above the sequence). Complementary synthetic oligonucleotides 78 to 99 bases in length were phosphorylated, annealed, and ligated into a derivative of M13mp18, either singly or as a pair. The cloned segments were sequenced and assembled into the full-length gene in several steps. Cassette and primer mutagenesis (*23*) were used to make subsequent modifications, which resulted in the deletion of the Eco RI site. (**B**) Expression vector pLcIIFXVL. The synthetic V_L genes were expressed as a fusion with the cII gene of coliphage λ (17). A synthetic duplex encoding the factor Xa recognition and cleavage sequence, Ile-Glu-Gly-Arg, was inserted in-frame at the 5' end of the V_L gene in M13. The β-globin gene in the expression vector pLcIIFXβ(nic⁻) (17) was excised by digestion with Bam HI and Hind III and replaced by the hybrid FXVL sequence. The Tyr³⁴ mutations [Tyr³⁴(TAT) to His(CAT) and Phe(TTT)] were made in the V_L gene in M13 by the method of Kunkel (23) and then transferred into pLcIIFXVL by substitution of the Bst EII–Hind III fragment.

8 SEPTEMBER 1989

bond in V_H or V_L can be formed by oxidation of the reduced forms prior to reconstitution. The simplicity and efficiency of reconstitution makes the Fv a desirable target for expression of an antibody-combining site in *E. coli*. We exploited this property to produce a hybrid Fv, in which recombinant V_L produced in *E. coli* is reconstituted with V_H derived from MOPC315 IgA. Expression of functional Fv (15) and Fab (16) fragments in bacteria by secretion has also been reported.

A gene encoding the first 115 amino acids of MOPC315 light chain (22) was designed and chemically synthesized (Fig. 2A), and expressed as a fusion with the λ cII gene (17) (Fig. 2B). The NH₂-terminal extension of the cII-V_L hybrid was removed by sitespecific cleavage with factor Xa (18). The liberated VL peptide was reconstituted with antibody-derived V_H , and the resulting Fv was purified by gel filtration and affinity chromatography (Fig. 3). Antibody-derived V_H was prepared by denaturing ion-exchange chromatography of authentic MOPC315 Fv, which was obtained from pepsin digestion of purified IgA, and subsequent affinity chromatography. Pepsin treatment afforded two major V_H peptides and a small amount of incompletely digested V_Hcontaining fragments, which copurified. Reconstitution experiments carried out in the

Fig. 2. (A) Nucleotide and protein sequence of the synthetic gene for MOPC315 V_L. The protein sequence of the V_L peptide [residues 1 to 115 (10)] was derived from a cDNA sequence of MOPC315 light chain mRNA (22). The protein sequence was converted to a DNA sequence, and restriction enzyme recognition sites were incorporated. Otherwise, the most frequently occurring *E. coli* co-

Table 1. Rate constants, K_{cat} , for hydrolysis of substrates 1 through 3 by $Fv(Y34H_L)$ according to the assay conditions described in Fig. 4B.

Ester	Fv(Y34H _L)	Fv(315)	$Fv(Y34F_L)$
1 2 3	0.18 ± 0.03* 0.015 <0.005	0.004 0.005	0.004

*SE (n = 3).

absence of V_L peptide afforded no DNPbinding or ester hydrolysis activity.

The binding of ϵ -2,4-DNP-L-lysine (DNP Lys) by mutant and wild-type Fv proteins was assessed by titration of the intrinsic fluorescence of MOPC315 Fv (10). Wild-type Fv [Fv(315)] and the Phe mutant [Fv(Y34FL)] bind DNP Lys with similar affinities at pH 6.8 (dissociation constant $K_d = 0.27 \pm 0.03 \ \mu M$, whereas the His mutant [Fv(Y34HL)] binds this ligand onesixth as tightly ($K_d = 1.4 \pm 0.3 \ \mu M$) (Fig. 4A) (values are reported \pm SE). These data suggest that the Tyr hydroxyl group is not important for recognition of the DNP moiety. DNP-aminoalkyl carboxylic acids of different lengths (6 through 9, Fig. 1) (9) were used to probe the location of the positively charged imidazole ring with respect to the DNP site in $Fv(Y34H_L)$ at pH 6.0. The relative affinities of Fv(Y34HL) for these ligands (7>8>9>6) are different from that of the Fv(315) (9>7>8>6). In general, $Fv(Y34H_L)$ binds 6 through 9 one-half to one-eighth as tightly as Fv(315), consistent with its lower affinity for DNP Lys at pH 6.8. In contrast to Fv(315), $Fv(Y34H_L)$ binds 7 and 8 most tightly, suggesting a compensating electrostatic interaction between the negatively charged carboxylate of the ligand and the protonated imidazolium side chain.

The ability of wild-type and mutant Fvs to hydrolyze esters 1 through 3 was assayed by measuring the rate of coumarin release fluorimetrically at pH 6.8 (4, 5). Fv(Y34H_L) efficiently hydrolyzes 1 in a manner consistent with Michaelis-Menten kinetics (Michaelis constant $K_m = 2.2 \pm 0.2$ μM , rate constant $k_{cat} = 0.18 \pm 0.03$ \min^{-1} , and $k_{cat}/K_m = 8.2 \times 10^4 M^{-1}$ \min^{-1} , pH 6.8) (Fig. 4B and Table 1). Under these conditions, Fv(Y34H_L) turns over at least 11 times and still retains 44% of its activity. The loss of activity probably results from the accumulation of the inhibitory reaction product 8. The Fv-catalyzed reaction was competitively inhibited with DNP Lys (inhibition constant $K_i = 3.8 \pm$ 1.5 μ M) (19). Ester 2 was a poor substrate $[k_{cat}(2) = 0.015 \text{ min}^{-1}]$, and the hydrolysis of 3 was not accelerated $[k_{cat}(3) < 0.005]$ min⁻¹]. Only the hydrolysis of 1 was significantly accelerated by Fv(Y34H_L), which is consistent with the preference for ligands 7 and 8, and the affinity-labeling data. The initial rate of hydrolysis of 1 by Fv(Y34HL) at pH 6.8 is \sim 45-fold as fast as the reaction with either Fv(Y34FL) or Fv(315) (Table 1). At pH 8.7, the reactivity of Fv(Y34H₁) and Fv(315) both increase, but differentially $(v[Fv(Y34H_L)]/v[Fv(315)] = 3.3, at 10$ μM 1). Under these conditions, Fv(Y34H_L) catalytically hydrolyzed 1, whereas Fv(315) reacted stoichiometrically. The increased reactivity of Fv(315) at higher pH may be due to deprotonation of the Tyr hydroxyl and subsequent transesterification to form a relatively stable phenol ester.

The imidazole-acylating agent diethylpyrocarbonate rapidly and completely inhibits the hydrolysis of 1 at pH 6.0 (5, 20), supporting a catalytic role for His³⁴. The imidazole side chain of His³⁴ could catalyze

Fig. 3. Expression, purification, and cleavage of Y34H and Y34F cII-VL fusion proteins and reconstitution of functional Fv's. (A) SDS-polyacrylamide electrophoresis gel analysis of various stages in the production of mutant Fv proteins: lanes 1 and 2, induced E. coli MZ1 [pLcIIFXVL(Y34F) and (Y34H)]; lanes 3 and 4, solubilized inclusion bodies; lanes 5

9 10 11 5 6 7 8 2 3 4 1 the state want and 6, purified fusion proteins; lanes 7 and 8, factor Xa cleaved and partially

purified V_L peptides; lanes 9 and 10, reconstituted and affinity-purified $Fv(Y34F_L)$ and $Fv(Y34H_L)$; lane 11, Fv from proteolysis of MOPC315 IgA. The bands above V_L and V_H are incompletely digested V-containing heavy chain fragments that copurify with V_H . (B) Gel filtration analysis of Fv(Y34HL). Inclusion bodies were obtained from induced E. coli MZ1 harboring pLcIIFXVL(Y34H

or Y34F) (17), solubilized in 8M urea, reduced with 20 mM dithiothreitol overnight at 4°C, and chromatographed on a 1 cm by 30 cm column of S-sepharose in 8M urea, 20 mM Na-MES, pH 6.0, with a 0 to 200 mM NaCl gradient (yield: 10 to 30 mg of purified protein per liter of induced cells [extinction coefficient at 280 nm ϵ_{280} (1 mg/ml) = 1.0 (10)]. The purified fusion proteins were oxidized in air for 30 hours at 4°C in 2.5M urea and 20 mM tris-Cl, pH 8.4, and then exhaustively dialyzed against 20 mM tris-Cl, pH 8.4, at 4°C. Fusion protein (3 mg) in 15 ml of 20 mM tris-Cl, pH 8.4, 1 mM CaCl₂, and kanamycin sulfate (30 µg/ml) was incubated for 30 hours, 37°C with 600 µg of bovine factor X [prepared from the BaSO₄ eluate of bovine plasma (17, 18) (Sigma)] activated in situ with 2.5 μ g of crude Russell's viper venom (Sigma). Crude V_L was made 100 mM in NaCl and passed through a 2-ml bed of Q-sepharose, dialyzed against distilled water, lyophilized, and dissolved in 8M urea and 20 mM potassium phosphate, pH 6.0. Fv(315) was purified from ascites fluid from MOPC315 myeloma grown in BALB/c mice as previously described (6, 10), except that the gel filtration step after pepsin cleavage was omitted. The $V_{\rm H}$ peptide was separated from $V_{\rm L}$ by ion-exchange chromatography (Pharmacia mono Q 10/10 column) in 20 mM tris-Cl, pH 8.0, and 8M urea, with a 0 to 250 mM NaCl gradient. Cleaved V_L (0.1 to 1 mg) and equimolar V_H were rapidly diluted tenfold from 8M urea into 100 mM potassium phosphate, pH 6.0 (final protein concentration = 50 µg/ml) and allowed to stand 30 min at 25°C. Active Fv was adsorbed onto DNP-lysine sepharose (10, 24), washed with 100 mM NaCl and 50 mM tris-Cl, pH 8.0 and eluted with a small volume of 30 mM DNP-glycine, pH 8.0. The eluate was dialyzed against 100 mM potassium phosphate, pH 6.8. Overall yield from the fusion protein is 5 to 20%. The yield of reconstitution is 20 to 30% based on V_H . Residual V_L dimer or DNP-glycine was removed by gel-filtration fast protein liquid chromatography (FPLC) on a Superose 12 column in 100 mM potassium phosphate, pH 6.8. Hybrid Fv reconstituted in this fashion has the same affinity for DNP-L-lysine as Fv purified from pepsin-treated MOPC315 IgA that was not reconstituted. Because of convenience, myeloma-produced Fv(315) was used in this study. Protein purity was assessed by electrophoresis through 14% polyacrylamide SDS gels (25) followed by Coomassie staining and by gel filtration FPLC analysis with a Superose 12 column (flow rate of 0.5 ml/min, sample size of 100 μ g).

1106

other mechanisms, although imidazole derivatives hydrolyze active esters primarily by the nucleophilic pathway in aqueous solution (7).

In order to assess the contributions of the binding site to hydrolysis of 1, we compared the Fv(Y34H_L) catalyzed reaction with the reaction with 4-methylimidazole under the assay conditions (5). The ratio of the bimolecular rate constants $(k_{cat}/K_m)/k_{4-MeIm}$ is $9 \pm 3 \times 10^4$ (21). This rate acceleration is similar to that of an antibody that contains an active site carboxylate that acts as a specific base in the catalysis of an elimination reaction (3). The rate of hydrolysis of 1 by Fv(Y34H_L) can also be compared with that of MOPC315 Fab that has been chemi-

1.00+ Α

0.00

в

1/v (nM⁻¹ min) 0.7 70

0.0

40 60

Retention

volume (ml)

0

5

Fluorescence 0.50

15

10

[DNP-L-lysine] (µM)

the hydrolysis of ester by three mechanisms:

(i) nucleophilic attack on the ester carbonyl

to form a labile imidazolide intermediate,

which is then rapidly hydrolyzed; (ii) activa-

tion of an attacking water molecule; and (iii)

electrostatic stabilization of the negatively

charged transition-state created by hydrox-

ide ion attack on the ester carbonyl. The

maximum velocity V_{max} of Fv(Y34H_L) hy-

drolysis of 1 increases linearly by only a

factor of 3 from pH 5.6 to 8.6. This result

suggests that the rate-limiting step of hy-

drolysis does not involve simple hydroxide

ion attack, since such a reaction should be

first order in hydroxide ion concentration.

Because Fv(Y34H_L) is also more active at

higher pH (where the neutral form of imid-

azole predominates), it seems unlikely that

the observed rate acceleration is simply due

to electrostatic stabilization. At present we

have no evidence supporting either of the

cally derivatized with an imidazole at Lys52H by a flexible tether seven atoms in length (5). Under similar conditions, the imidazolederivatized Fab hydrolyzes 1 approximately one-sixteenth as rapidly as Fv(Y34HL) $(k_{cat} = 0.011 \text{ min}^{-1}, pH 7.0)$. The greater reactivity of Fv(Y34H_L) is likely due to the fewer degrees of freedom of the His³⁴ side chain allowed by the protein backbone and surrounding side chains. In addition, the His imidazole may be better aligned for attack on the ester carbonyl of 1, or for activation of a water molecule.

We have demonstrated the feasibility of using site-directed mutagenesis to introduce a catalytically active residue into an antibody combining site. In the absence of highresolution structural information, chemical cross-linking data have proven useful in identifying sites for the introduction of catalytic groups. Additional site-directed or random mutagenesis combined with in situ screens or selections could be used to generate more efficient catalytic antibodies. Alternatively, Cys residues could be introduced for the subsequent attachment of synthetic catalysts to produce semisynthetic catalytic antibodies (5).

REFERENCES AND NOTES

- 1. F. Seiler et al., Angew. Chem. Int. Ed. Engl. 24, 139 (1985); A. Nissonoff, J. Hopper, S. Spring, The Antibody Molecule (Academic Press, New York, 1975).
- For a review, see P. G. Schultz, Science 240, 426 (1988). See also K. D. Janda, R. A. Lerner, A. Tramontano, J. Am. Chem. Soc. 110, 4835 (1988); D. Jackson et al., ibid., p. 4841; A. Cochran, R. Sugasawara, P. G. Schultz, ibid., p. 7888; D. Hilvert et al., Proc. Natl. Acad. Sci. U.S.A. 85, 4953 (1988); K. Shokat et al., Angew. Chem. Int. Ed. Engl. 27, 1172 (1988);
 K. D. Janda, D. Schloeder, S. J. Benkovic, R. A. Lerner, Science 241, 1188 (1988);
 B. L. Iverson and R. A. Lerner, *ibid.* 243, 1184 (1989).
- K. Shokat et al., Nature 338, 269 (1989).
- S. J. Pollack, G. R. Nakayama, P. G. Schultz, Science 4
- 242, 1038 (1988) S. Pollack and P. G. Schultz, J. Am. Chem. Soc. 111, 5. 1929 (1989)
- 6. H. Eisen, E. Simms, M. Potter, Biochemistry 7, 4126 (1968).
- 7. T. C. Bruice and S. J. Benkovic, Bioorganic Mechanisms (Benjamin, New York, 1966).
- J. Haimovich *et al.*, *Biochemistry* 11, 2389 (1972).
 D. Haselkorn, S. Friedman, D. Givol, I. Pecht, *ibid.* 13, 2210 (1974); M. Gavish, R. Dwek, D. Givol, 9. ibid. 16, 3154 (1977) 10. J. Hochman, D. Inbar, D. Givol, ibid. 12, 1130
- (1973); J. Hochman et al., ibid. 15, 2706 (1977).
- 11. S. Dower and R. Dwek, in Biological Applications of Magnetic Resonance, R. G. Schulman, Ed. (Academic Press, New York, 1979), pp. 271–303.
 12. R. Dwck et al., Nature 266, 31 (1977).
- R. Leatherbarrow, W. Jackson, R. Dwek, Biochemistry 21, 5124 (1982); M. Gavish et al., Mol. Immunol. 16, 957 (1979).
- 14. F. Marston, Biochem. J. 240, 1 (1986). 15. A. Skerra and A. Plückthun, Science 240, 1038
- (1988). M. Better et al., ibid., p. 1041.
 K. Nagai and H. Thøgersen, Nature 309, 810
- (1984); Methods Enzymol. 153, 461 (1987). 18
- K. Fujikawa, M. Legaz, E. Davie, Biochemistry 11, 4882 (1972).

- 19. G. Dixon, Biochem. J. 55, 170 (1953). The inhibition constant (Ki) was determined from a Dixon plot of initial rate data from hydrolysis reactions with 0.5 and 1 μM 1 in 400 μ l of buffer 100 mM potassium phosphate, pH 6.8, containing 1 to 15 M DNP Lys.
- J. Holbrook and V. Ingram, *Biochem. J.* 131, 729 (1973). Chemical modification was performed by addition of 2 µl of a 100 mM solution of diethylpyrocarbonate in acetonitrile to an ongoing hydrolysis reaction containing 215 nM Fv(Y34HL) and 4 µM 1 in 400 µl of 100 mM potassium phosphate, pH 6.0. Within 1 min the activity was completely inhibited.
- 21. The second-order rate constant for hydrolysis of 1 by 4-methylimidazole (k4-MeIm) was calculated from the pseudo-first-order rate constant, obtained by plotting the initial rate of coumarin release versus [4MeIm], in 400-µl reactions containing 10 to 40 mM 4-methylimidazole, pH 6.8, and 10 µM 1. The

- value for k_{4-MeIm} was $0.90 \pm 0.06M^{-1}$ min⁻¹. 22. E. Kabat et al., Sequences of Proteins of Immunological Interest (Department of Health and Human Services, Washington, DC, ed. 4, 1987); A. L. M. Bothwell et al., Nature 298, 380 (1982).
- 23. K. Nakamaye and F. Eckstein, Nucleic Acids Res. 14, 9679 (1986); T. Kunkel, Proc. Natl. Acad. Sci. U.S.A. 82, 488 (1985).
- J. Inbar, M. Rotman, D. Givol, J. Biol. Chem. 246, 24 6272 (1971).
- 25 U. Laemmli, Nature 227, 680 (1970).
- 26. K. Taira and S. Benkovic, J. Med. Chem. 31, 120 (1988).
- We thank K. Nagai (pLcIIFXβ), S. Pollack (coumarin substrates), and G. Nakayama (DNP-Lys sepharose) for generously providing necessary materials. Supported by the Department of Energy (subcontract C87-101226) and the National Science Foundation (CHE 8822412) 19 May 1989; accepted 11 July 1989

Lineage-Specific Requirement of c-abl Function in Normal Hematopoiesis

DANIELE CARACCIOLO, MAURO VALTIERI, DONATELLA VENTURELLI, Cesare Peschle, Alan M. Gewirtz,* Bruno Calabretta*

Structural abnormalities of the c-abl proto-oncogene are found in hematopoietic cells of more than 90 percent of individuals with chronic myelogenous leukemia. Therefore c-abl may be important in normal as well as malignant hematopoiesis. Normal human hematopoietic progenitor cells were exposed to three different c-abl sense or antisense oligodeoxynucleotides, and the effects on myeloid and erythroid colony formation were examined. The c-abl antisense oligodeoxynucleotides inhibited myeloid, but not erythroid, colony formation. The c-abl sense oligodeoxynucleotides and bcr sense and antisense oligodeoxynucleotides were not inhibitory in this assay. These data show that c-abl is critical in normal myelopoiesis and may explain the relatively selective expansion of leukocytes in patients with chronic myelogenous leukemia.

HE C-abl PROTO-ONCOGENE EN-

codes a protein with tyrosine kinase activity. Although the functional significance of the protein is unknown (1, 2), it is known that more than 90% of chronic myelogenous leukemia (CML) patients have c-abl structural alterations in their leukocyte DNA (2). These structural alterations are caused by the translocation of c-abl from chromosome 9 to the breakpoint cluster region (bcr) on chromosome 22, resulting in the formation of bcr-abl hybrid genes. The

Ematologia ed Oncologia, Roma, Italy. A. M. Gewirtz, Departments of Medicine, Pathology

B. Calabretta, Department of Pathology, Medicine, and Fels Research Institute, Temple University School of Medicine, Philadelphia, PA 19140. most characteristic clinical feature of the chronic phase of CML is an increase in mature and immature myeloid elements in bone marrow and peripheral blood (3). Kinetic studies indicate that these abnormal cells do not proliferate or mature faster than the normal counterpart (4). Rather, the basic defect underlying the exuberant granulopoiesis in CML appears to be an expansion of the myeloid progenitor cell pool in bone marrow and peripheral blood (5). Although hematopoiesis in the chronic phase of CML is altered, it retains some normal features. These observations raise the possibility that c-abl function is required during normal human hematopoiesis.

Inhibition of specific gene functions by exposing target cells to synthetic antisense oligomers (6) was used to investigate the role of c-myb in normal human hematopoiesis (7, 8). We have now used the same technique to show that exposure of early and late hematopoietic progenitors to c-abl antisense oligomers inhibits in vitro myelopoiesis and spares erythropoiesis. This suggests a lineage-specific requirement of c-abl function in normal hematopoiesis.

D. Caracciolo, Istituto di Medicina ed Oncologia Sperimentale, Sezione di Ematologia, Torino, Italy, and De-partment of Pathology, Temple University School of Medicine, Philadelphia, PA 19140.

M. Valtieri, Istituto Superiore di Sanita, Laboratorio di Ematologia ed Oncologia, Roma, Italy, and Department of Pathology, Temple University School of Medicine, Philadelphia, PA 19140.

D. Venturelli, Department of Pathology, Temple University School of Medicine, Philadelphia, PA 19140. C. Peschle, Istituto Superiore di Sanita, Laboratorio di

and Thrombosis Research, Temple University School of Medicine, Philadelphia, PA 19140.

^{*}To whom correspondence should be addressed.