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The obtainment of a dynamical logic gate (DLG), which is a device capable of

implementing several logic functions using the same model, has been one of the goals

of the scientific community. Dynamical systems, specifically those that display chaotic

behavior, have been widely used to emulate different logic gates which are the basis of

general-purpose computing. In this study, we present a methodology based on unstable

dissipative systems of type 1 (UDS-1), a kind of dynamical system capable of generating

multi-scrolls and multi-stability. Using these two features, we codify inputs, subsequently,

we get the adequate output, developing in this way a dynamical (reconfigurable) logic

gate that performs any of the sixteen possible logic functions of two inputs. A highlight of

the proposed methodology is that the selection of the desired logic gate is realized just

by varying a couple of parameters.

Keywords: unstable dissipative systems, multi-stability, reconfigurable computing, reconfigurable logic gate,

dynamical logic gate

1. INTRODUCTION

In the last decades, a vast quantity of budget and effort has been invested to design and construct a
unique device capable of implementing several logic gates into the same structure. In 1998, Sinha
and Ditto showed the capacity of lattices of coupled logistic maps to emulate NOR gates, resulting
in chaos computing [1]. From this pioneering study, several schemes have been exploited, these
include chaotic continuous and discrete dynamical systems [2–7]; piece-wise linear (PWL) systems
[8, 9]; resonators controlled by noise intensity [10]; cellular neuronal networks [11]; memristive
devices [12, 13], and doping-free bipolar junction transistors controlled by polarity [14]. In chaos
computing, chaotic elements are exploited to act as different logic functions by changing parameters
so that these devices are more flexible than the silicon-based architectures.

On the other hand, multi-stability is intrinsically present in physics, chemistry, biology, among
other fields [15]. It is defined as the coexistence of multiple possible final stable states. The final state
to which the system will converge depends on the initial conditions [16]. In the dynamical systems
field, multi-stability is an important feature related to dissipative systems. Unstable dissipative
systems are those that have a focus-saddle equilibrium point responsible for stable and unstable
manifolds, but also, the sum of their eigenvalues is negative [17].

In most of the previously presented approaches related to chaos computing, the sensitivity
to the initial conditions of chaotic elements is exploited to obtain logic gates; however, it could
be a disadvantage when an experimental implementation is realized due to small variations in
the voltages or a little differences in the tolerance of components. In this study, we present a
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methodology based on the capacity of displaying multi-stability
of unstable dissipative systems of type 1 (UDS-1) to implement
a dynamical logic gate (DLG), also known as a reconfigurable
logic gate. In our proposed method, logic zeros and logic ones
are codified through one of the clearly distinguishable possible
final states of the multi-stable USD-1. Although we obtain logic
gates using multi-stability, which is closely related to the initial
conditions, we take advantage of the concept of the basin of
attraction, so that a vast set of initial conditions will produce
the same response in our system. This gives the advantage to
our model of being easily reliable and repeatable. An important
aspect of our methodology is that by just varying two parameters,
we can get the complete spectrum of two-input logic functions
(16 logic gates), which represents an advantage in terms of
time and resources for the future electronic implementation
of the model.

The remaining of this article is structured as follows: In
Section 2, we provide the fundamental theory of UDS-1. Our
proposed methodology is explained in Section 3. Results for the
DLG are shown and discussed in Section 4. Finally, in Section 5,
some conclusions about this article are given.

2. UNSTABLE DISSIPATIVE SYSTEMS
FUNDAMENTALS

In the same spirit of Campos-Cantón et al. [18], let us consider
the following dynamical system:

ẋ = Ax, (1)

where x = [x1, x2, x3]
T ∈ R

3 is the state vector, A = [aij] ∈ R
3×3

denotes a linear operator and it is a non-singular matrix. Also, let
3 = {λ1, λ2, λ3} be the set of eigenvalues of matrix A.

The system given by Equation (1) is called an UDS-1, if the
following two statements are satisfied:

1. Focus-saddle equilibrium condition. The matrix A must
possess one negative pure real eigenvalue λ1, whereas λ2,3 are
complex conjugate with a positive real part.

2. Dissipativity condition. The system is dissipative, if
∑3

i=1 Re(λi) < 0.

Moreover, a UDS-1 is capable of displaying multi-scrolls if an
adequate commutation control law is applied to it. A simple way
to generate multi-scrolls consists of applying a PWL function
to modify the system dynamics by changing the position of
equilibrium points. Thus, if an additive term B is applied to
Equation (1), it can be rewritten as:

ẋ = Ax+ B, (2)

where B = [b1, b2, b3]
T ∈ R

3 is a real vector, and it works as
a discrete commutation function dependent on the state x. B
changes depending on which domain Di ⊂ R

3 the trajectory
is located. The main idea is dividing the full phase space into
domains, in other words,R3 = ∪k

i=1Di. With this last regard, and
supposing B = [0, 0, b3]

T , then the switching function is given by:

b3 =























β1, if x ∈ D1;

β2, if x ∈ D2;

...
...

βk, if x ∈ Dk.

(3)

Because A is a non-singular matrix, the equilibrium point of
the system given by Equation (2) is located at x∗ = −A

−1B.
Specifically, equilibrium points are x∗i = −A

−1βi with i =

1, 2, . . . , k. In this way, the system will have as equilibrium points
as domains Di are defined.

3. METHODS

In order to design a DLG, we start considering the following
system in its canonical form:

ẋ = Ax =





0 1 0
0 0 1

−0.5 −0.7 −0.5









x1
x2
x3



 , (4)

whose eigenvalues are 3 = {λ1 = −0.6358, λ2 = 0.0679 +

0.8842i, λ3 = 0.0679 + 0.8842i}; and
∑3

i=1 Re(λi) = −0.5 <

0. Thus, system of Equation (4) satisfies the two conditions
mentioned in Section 2 to classify it as a USD-1.

The next step in our methodology consists of forcing the
system in Equation (4) to generate n scrolls. It is important to
mention that the number of scrolls n to be generated can be
arbitrarily chosen and increased, the only requirement is that
n ≥ 2. In our case, we decide to generate three scrolls. Therefore,
we add the commutation vector B to Equation (4) and we can
rewrite it as:

ẋ = Ax+ B =





0 1 0
0 0 1

−0.5 −0.7 −0.5









x1
x2
x3



 +





0
0
b3



 , (5)

as we desire to generate three scrolls, then the same quantity of
equilibrium points are necessary and we want them arbitrarily
located at x∗e1 = (−3, 0, 0), x∗e2 = (0, 0, 0), x∗e3 = (3, 0, 0), which
are equispaced only along the x1 plane. Also, let us remember that
each equilibrium point is located in x∗i = −A

−1βi, this leads to
x∗i = −2βi. Hence, we need to define the switching function b3
and each βi, which are described as:

b3 =







1.5 if x1 < −1.5,
0 if −1.5 ≤ x1 ≤ 1.5,

−1.5 if x1 > 1.5
(6)

where the commutation surfaces among domains are located at
-1.5 and 1.5 to preserve the shape and symmetry of the scrolls.

Up to now, we have constructed a UDS-1 with the capability
of generating three scrolls. In Figure 1 are plotted projections
of the states of the system given by Equations (5) and
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(6) for several planes. The plot in Figure 1A corresponds
to the x1x2 plane, where it is possible to distinguish the
three scrolls clearly. Figure 1B is the projection onto the
x1x3 plane; whereas Figure 1C shows the projection in
the x2x3 plane.

The following step is controlling the system described by
Equations (5) and (6) with the aim of transforming it into amulti-
stable system. To achieve this goal, first, let us define the negative
reciprocal of element a33 as µ = −1/a33, and second, let us
multiply the last row of matrix A and the switching function b3
times µ.

ẋ = Ax+ B =





0 1 0
0 0 1

− 0.5
0.5 − 0.7

0.5 − 0.5
0.5









x1
x2
x3



+





0
0

− 1
0.5b3



 , (7)

The parameter µ induces multi-stability to the system
but leaves the dissipativity unchanged. Now, each scroll we
previously generated with the system described by Equations (5)
and (6) have become a possible final stable state to which the
systemwill converge depending on the initial conditions. In other
words, the system will converge to one of these three scrolls
depending on whether its initial condition belongs to the basin
of attraction of the scroll. Figure 2 shows these possible final
states to which the system can converge. Figure 2A corresponds
to the initial condition x(0) = (−2.5,−1, 0); Figure 2B to x(0) =
(1.1,−1, 0); and finally, Figure 2C to x(0) = (2.5,−1, 0).

To develop a system capable of emulating all possible two-
input logic functions, we have built a simple three-node network
in which each node is a multi-stable UDS-1 governed by
Equation (7). The topology of this network is shown in Figure 3.
Node 1 and node 2 act as inputs, whereas node 3 works as the
output of the DLG. In the example, we are using to explain our
methodology, the number of scrolls matches with the number of
nodes in the network, but there is no relationship between these
two quantities.

As it was previously explained, the multi-stable UDS-1 of
Equation (7) can converge to three final attractors depending on
the initial conditions, in such a way that we can choose two of
these attractors to codify logical zeros and ones. Arbitrarily, we
decide that if the multi-stable UDS-1 is converging to the left
attractor (Figure 2A), then it will represent a logical zero. On the
other hand, if the multi-stable UDS-1 is converging to the right
attractor (Figure 2C), then this will be coded as a logical one. The
initial condition (x0, y0, z0) = (−3, 0, 0) and (x0, y0, z0) = (3, 0, 0)
belong to the basin of attraction of the left and right attractor,
respectively. Thus, we can define the target point (x, y, z) =

(I1,2 ∈ {−3, 3}, 0.001, 0) to be reached through feedback control.
Taking these assumptions into consideration, the dynamics of
node 1 acting as the first input is described by:

ẋ1 = y1 − k(x1 − I1), (8)

ẏ1 = z1 − k(y1 − 0.001), (9)

ż1 = −0.5µx1 − 0.7µy1 − 0.5µz1 + µbn1, (10)

where the switching function bn1 is:

bn1 =







1.5 if x1 < −1.5,
0 if −1.5 ≤ x1 ≤ 1.5,

−1.5 if x1 > 1.5
(11)

The dynamics of node 2 which works as the second input is
given by:

ẋ2 = y2 − k(x2 − I2), (12)

ẏ2 = z2 − k(y2 − 0.001), (13)

ż2 = −0.5µx2 − 0.7µy2 − 0.5µz2 + µbn2, (14)

whose commutation function is:

bn2 =







1.5 if x2 < −1.5,
0 if −1.5 ≤ x2 ≤ 1.5,

−1.5 if x2 > 1.5
(15)

How input node 1 and node 2 interconnect with the output
node 3 considers the following linear affined system:

h(I1, I2) = α · i+ γ , (16)

where i = (I1, I2)
T is a column vector whose elements I1,2 ∈

{−3, 3}; α = (α1,α2) ∈ R
2 and γ ∈ R are system parameters

to be adjusted to obtain the desired logic gate. Function h results
from summing the scalar product α · i plus an offset given by γ .
The output of the system is ruled by:

I3(h) =

{

3, if |h| < κ;

−3, otherwise .
(17)

where κ ∈ R is defined as a threshold.
Therefore, the dynamics of node 3 behaving as output is

governed by:

ẋ3 = y3 − k(x3 − I3),

ẏ3 = z3 − k(y3 − 0.001),

ż3 = −0.5µx3 − 0.7µy3 − 0.5µz3 + µbn3,

(18)

with the function bn3 governed by:

bn3 =







1.5 if x3 < −1.5,
0 if −1.5 ≤ x3 ≤ 1.5,

−1.5 if x3 > 1.5
(19)

The networked system described by Equations (10)–(19)
emulates any of the possible sixteen two-input logic functions
whose truth tables appear in Table 1. ⊥ represents the
contradiction or null; I1I2, AND; I1I

′
2, inhibition of I2; I1,

transfer of I1; I
′
1I2, inhibition of I1; I2, transfer of I2; I1⊕I2, XOR;

I1 + I2, OR; (I1 + I2)
′, NOR; (I1 ⊕ I2)

′, XNOR; I′2, complement
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FIGURE 1 | Projections of the system given by equations. axplusbmethod and b3method onto the planes of R3. The plot (A) corresponds to x1x2 plane; (B) is the

projection onto x1x3 plane; and (C) is the projection in x2x3 plane.

FIGURE 2 | Projections onto the x1x2 plane of the three final possible attractors of the multi-stable system of equation (7). axplusbmultimethod. Plot (A) corresponds

to the initial condition x(0) = (−2.5,−1, 0); Plot (B) to x(0) = (1.1,−1, 0); and Plot (C) to x(0) = (2.5,−1, 0).

of I2; I1 + I′2, implication (I2 implies I1); I′1, complement of I1;
I′1 + I2, implication (I1 implies I2); (I1I2)

′, NAND; ⊤, tautology
or identity.

The selection of logic gate functionality is realized by adjusting
system parameters α1, α2, γ , and κ so that Equations (16) and
(17) are satisfied simultaneously. Depending on the values of I1
and I2, Equation (16) will have one of the results shown in the
third column ofTable 2. These results will fall or will not be inside

the interval (−κ , κ) according to the truth table of the desired
logic function we desire to obtain. If h of Equation (16) falls in the
open interval (−κ , κ) defined in Equation (17), then I3 = 3 which
represents a logical one and the output node 3 will converge to the
left attractor; otherwise, I3 = −3 what is defined as a logical zero
and the output node 3 will converge to the right attractor.

In the following lines, we briefly explain the selection of
parameters for the case of the AND (I1I2) gate, but an analog
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FIGURE 3 | Topology of the three-node network used to develop a dynamical

logic gate (DLG).

TABLE 1 | Truth tables for all the sixteen possible two-input logic functions

expressed in Boolean variables (0 and 1).

I1 I2 ⊥ I1I2 I1I
′

2 I1 I′1I2 I2 I1 ⊕ I2 I1 + I2

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

I1 I2 (I1 + I2)
′ (I1 ⊕ I2)

′ I′2 I1 + I′2 I′1 I′1 + I2 (I1I2)
′ ⊤

0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

TABLE 2 | Values of h(I1, I2) in Equation 16.

I1 I2 h(I1, I2)

-3 -3 −3α1 − 3α2 + γ

-3 3 −3α1 + 3α2 + γ

3 -3 3α1 − 3α2 + γ

3 3 3α1 + 3α2 + γ

TABLE 3 | List of the system parameters α2 and γ used to emulate each

logic function.

Logic function ⊥ I1I2 I1I
′

2 I1 I′1I2 I2 I1 ⊕ I2 I1 + I2

α2 0.0 0.5 -0.5 0.0 -0.5 0.5 0.8 0.5

γ 4.5 -4.0 -4.0 -3.0 4.0 -3.0 0.0 -2.0

Logic function (I1 + I2)
′ (I1 ⊕ I2)

′ I′2 I1 + I′2 I′1 I′1 + I2 (I1I2)
′ ⊤

α2 0.5 -0.8 0.5 -0.5 0.0 -0.5 0.5 0

γ 4.0 0.0 3.0 -2.0 3.0 1.0 2.0 0

procedure is necessary for the rest of the logic gates. First, we
fix the threshold κ = 3. According to the truth table of AND
gate shown in the fourth upper column of Table 1, only when
I1 = 3 and I2 = 3, the sum hmust fall inside the interval (−3, 3);
the remaining combinations of I1 and I2 will fall outside (−3, 3).
In such a way, the following inequalities must be accomplished
simultaneously:

−3α1 − 3α2 + γ < −3 ∨ 3 < −3α1 − 3α2 + γ ,

−3α1 + 3α2 + γ < −3 ∨ 3 < −3α1 + 3α2 + γ ,

3α1 − 3α2 + γ < −3 ∨ 3 < 3α1 − 3α2 + γ ,

3α1 + 3α2 + γ > −3 ∧ 3 > 3α1 + 3α2 + γ .

(20)

FIGURE 4 | Map of regions for parameters α2 and γ of DLG.

TABLE 4 | Comparative frame among several approaches already presented and

our proposal of DLG.

Reference Number of

obtained logic

gates

Number of

parameters to

configure

Li et al. [7] 11 1

Peng et al. [8] 7 3

Peng et al. [9] 16 2

Guerra et al. [10] 2 1

Rivera-Durón et al. 16 2

After algebraic calculations, it is possible to determine that
α1 = 0.3, α2 = 0.5, and γ = −4.0 are one of the several
combinations that satisfy the corresponding inequalities in the
system Equation (20).

4. RESULTS

The parameter selection is not unique, there are several
combinations of α1,α2, γ , and κ that can satisfy Equations (16)
and (17). For this reason, we utilized a computer code to
determine the set of system parameters to obtain each of the
sixteen two-input logic functions for a constant value of κ = 3.
After inspecting the results, we noticed that the value of α1 =

0.3 appeared in all the cases, therefore, we can assume that α1

is constant too. This last represents an advantage because the
functionality of the DLG only depends on the values of α2 and
γ , which can result in the optimization of time and resources
in the future experimental realization of the DLG. A map for
parameters α2 and γ to select functionality of DLG is shown in
Figure 4. The complete list of the system parameters that we used
to emulate each logic function is shown in Table 3, it is important
to remark that in all the cases κ = 3 and α1 = 0.3.
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FIGURE 5 | Temporal evolution of the input nodes and for the output node emulating the logic functions shown in the upper part of Table Truth Tables. The plot in (A)

corresponds to the input node 1. Plot (B) corresponds to the temporal evolution of input node 2. bot is represented in plot (C); I1 I2 in plot (D); I1 I2’ in plot (E); I1 in plot

(F); I1’I2 in plot (G); I2 in plot (H); I1 plus I2 in plot (I); I1+I2 in plot (J).
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FIGURE 6 | Temporal evolution of the input nodes and for the output node emulating the logic functions shown in the lower part of Table TruthTables. The plot in (A)

corresponds to the input node 1. Plot (B) corresponds to the temporal evolution of input node 2. (I1+I2)’ in plot (C); (I1 ⊕ I2)’ in plot (D); I2’ in plot (E); I1 + I2’ in plot (F);

I1’ in plot (G); I1’ + I2 in plot (H); (I1 I2)’ in plot (I); top in plot (J).
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TABLE 5 | The truth table for the full adder.

Cin I1 I2 Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The three first columns correspond to the inputs, whereas the remaining ones, to the

outputs.

FIGURE 7 | Logic diagram of the full adder whose truth table is shown in

Table 5.

We can compare our proposal with respect to other
approaches to measure the benefits between the achieved logic
gates and the number of parameters to be configured. In this
sense, Table 4 shows a comparative frame among previously
presented studies and our proposal of DLG. From this table, it
is possible to observe that [10] achieves only a pair of logic gates
(AND, OR) by varying the resonator’s operation parameters. The
study in Peng et al. [8] obtains seven logic gates (⊥, AND, OR,
NAND, NOR, XOR,⊤) by tuning three parameters. Eleven logic
gates (⊥, AND,OR, NAND,NOR, XNOR, I2, I

′
2, I

′
1+I2, I1+I′2,⊤)

were achieved in Li et al. [7] by varying a single parameter. Special
mention deserves the work done in Peng et al. [9], in which
authors got all the possible two-input logic gates as well as we
did in our approach through the tuning of a pair of parameters.

Numerical simulations were realized to prove the correct
performance of the developed DLG. We started simulations
letting the three nodes behave freely so that µ = 1 and they are
not in a multi-stable regime for time 0 ≤ t ≤ 500. Then, we
set µ = −1/0.5 to get multi-stability in all the nodes, and we
configured I1 of node 1 to be I1 = −3 for 500 < t ≤ 1500 and
I1 = 3 for 1500 < t ≤ 2500; in analogous way, I2 of the node 2
was configured to be I2 = −3 for t ∈ {(500, 1000]∪(1500, 2000]},
and I2 = 3 for t ∈ {(1000, 1500] ∪ (2000, 2500]}. In this way,
the four possible combinations of I1 and I2 shown in the first two
columns of Table 2were accomplished. The plots of the temporal
evolution of the input node 1 are shown in Figures 5A, 6A,
whereas the plots in Figures 5B, 6B correspond to the temporal
evolution of input node 2. The behavior of the output node 3

is plotted in Figures 5, 6. ⊥ is represented in Figure 5C; I1I2 in
Figure 5D; I1I

′
2 in Figure 5E; I1 in Figure 5F; I′1I2 in Figure 5G;

I2 in Figure 5H; I1⊕I2 in Figure 5I; I1+I2 in Figure 5J; (I1+I2)
′

in Figure 6C; (I1 ⊕ I2)
′ in Figure 6D; I′2 in Figure 6E; I1 + I′2

in Figure 6F; I′1 in Figure 6G; I′1 + I2 in Figure 6H; (I1I2)
′ in

Figure 6I; ⊤ in Figure 6J. From Figures 5, 6 is possible to note
the fast response time of the output node, this is because of
the control law we added which yields the system to an initial
condition into the basin of attraction of the desired attractor but
also, this control law avoids falling in any of the equilibrium
points of the system.

Now, let us implement a full adder to prove the performance
of the DLG when it is executing compound functions. The full
adder is a combinational circuit that realizes the arithmetical sum
of three bits. I1 and I2 are the bits to be added, whereas Cin

is the input carry bit coming from a previous sum. Due to the
sum of three bits varies from 0 to 3, the circuit needs two bits to
correctly represent the addition; these bits are S and Cout , which
are the sum and the output carry, respectively. The truth table
for the full adder is shown in Table 5. From the truth table is
possible to determine the logic functions S = Cin ⊕ I1 ⊕ I2 and
Cout = CinI1+CinI2+I1I2. The logic diagram to configure the full
adder consists of seven logic gates (G1 to G7), and it is displayed
in Figure 7. Again, we launched the numerical simulations with
all the nodes behaving freely so that µ = 1 and they are not in
a multi-stable regime for time 0 ≤ t ≤ 250, after this time, we
set µ = −1/0.5 to get multi-stability in all the nodes. To achieve
the eight possible combinations in the inputs of the full adder,
we proceeded as follows: first, we configured Cin at node 1 to be
Cin = −3 for 250 < t ≤ 1250 and Cin = 3 for 1250 < t ≤ 2250;
second, I1 at the node 2 was configured to be I1 = −3 for
t ∈ {(250, 750] ∪ (1250, 1750]}, and I1 = 3 for t ∈ {(750, 1250] ∪
(1750, 2250]}; finally, I2 at node 3 was fixed to be I2 = −3 for
t ∈ {(250, 500] ∪ (750, 1000] ∪ (1250, 1500] ∪ (1750, 2000]},
and I2 = 3 for t ∈ {(500, 750] ∪ (1000, 1250] ∪ (1500, 1750] ∪
(2000, 2250]}. The temporal evolution of the full adder is plotted
in Figure 8. The plots in Figures 8A–C correspond to Cin, I1, and
I2, respectively. Figure 8D displays the behavior of G1 which is
configured as XOR gate (I1 ⊕ I2). Figure 8E shows the evolution
of the AND gate G2 (I1I2). In Figure 8F is plotted the AND
gate G3 (I1Cin). Figure 8G is showing the evolution of the AND
gate G4 (I2Cin). Figure 8H shows the temporal evolution of G5

configured as OR gate and which receives in its inputs the signals
coming from G2 and G3. The signal coming from G4 and G5

are received by G6 and whose output corresponds to Cout , this
is shown in Figure 8I. Finally, G7 processes the signal coming
from G1 and Cin and its output results in the sum S, which is
plotted in Figure 8J.

Our proposal of DLG can be taken into an electronic
realization through currently available electronic components.
Since the core of DLG is composed of three ordinary differential
equations, they can be implemented using operational amplifiers
(OP-AMP) in the basic configurations (integrator, inverted adder,
and inverted), resistors, and capacitors. From an engineering
viewpoint, the computational complexity and hardware cost
to implement a DLG through a three-node network could be
elevated compared with the current logic devices. For this reason,
we have as future work to achieve the same results here reported
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FIGURE 8 | Temporal evolution of the nodes in the full adder. The plot (A) corresponds to Cin; (B) to I1; (C) to I2; (D) to G1; (E) to G2; (F) to G3; (G) to G4; (H) to G5;

(I) to G6 which is Cout; and (J) to G7 which is the sum S.
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but just using a single UDS-1 for each DLG, which will decrease
the prices and the design tasks. However, our approach has the
advantage that the programming to implement several functions
can be quite quick and it can be done on the fly. Also, another
advantage we can elucidate is related to a research issue; whereas
in the traditional digital logic devices, as the FPGAs, the states
updating is governed by a master clock so that the updating
occurs in a synchronous way; in our device, we can add a delay
element to investigate autonomous Boolean networks, a kind of
dynamical system where the state updating happens when there
exists a transition in any input. In this way, we can study the effect
of delays in autonomous Boolean networks.

5. CONCLUSION

We presented a methodology to design a DLG using a multi-
stable UDS-1. We constructed a three-node network of multi-
stable UDS-1. In this topology, a couple of nodes act as inputs
of the logic gate, whereas the remaining node is the output or
response. Using a pair of the different final states (attractors)
of the multi-stable system, we were able to codify Boolean ones
and zeros, and subsequently, we obtain the adequate response to
emulate all the possible two-input logic functions (16 logic gates).
We are sure that our results are relevant because we just need to
adjust a pair of parameters to select the functionality of the DLG,

this could be important in terms of time and cost in the future
experimental realization of this DLG.
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