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GENERATION OF ANALYTIC SEMIGROUPS
BY STRONGLY ELLIPTIC OPERATORS

UNDER GENERAL BOUNDARY CONDITIONS1
BY

H. BRUCE STEWART

Abstract. Strongly elliptic operators are shown to generate analytic semigroups of
evolution operators in the topology of uniform convergence, when realized under
general boundary conditions on (possibly) unbounded domains. An application to
the existence and regularity of solutions to parabolic initial-boundary value prob-
lems is indicated.

Introduction. Extending the results of a previous paper [19], we propose to prove
a theorem on the generation of analytic semigroups by strongly elliptic operators A
of order 2m in the topology of uniform convergence, under more general boundary
conditions. As before, there is a direct application to parabolic initial-boundary
value problems: we give an existence and uniqueness theorem for such problems,
using the Kato-Tanabe theory for temporally inhomogeneous evolution equations
du/dt + A(t)u = / The topology of uniform convergence in the space variables
yields classical solutions of this parabolic problem which are analytic in time at
each space point; furthermore, the initial values are assumed in the pointwise
continuous sense. Since we treat general boundary conditions, our parabolic
problem is roughly comparable to the one discussed in Arima [4], where existence
and uniqueness are treated (using a fundamental solution of the parabolic prob-
lem), but not analyticity.

The semigroup generation theorem for strongly elliptic operators is by now well
established in the Lp spaces. The L2 case was treated by Browder in [5]; shortly
thereafter Agmon, in [1], gave a method of proving the basic a priori estimate

\\u\\ < (M/\z\)\\iA + z)u\\,    |arg _| < \m + e, (E)

in Lp, and this method has been filled out with existence theorems and used by
several authors, including Friedman [8], Higuchi [9], Lau [14], and Freeman and
Schechter [7]. The work of Lau offers an attractive combination of full develop-
ment and general hypotheses, so we shall borrow Lp results from [14]. We recall
that the Kato-Tanabe theorem applied in the Lp topology gives solutions which are

Received by the editors June 25, 1979.
AMS (MOS) subject classifications (1970). Primary 35K35, 47D05.
'This work was supported in part by the U. S. Department of Energy under contract

EY-76-C-02-0016. Accordingly, the U. S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow others to do so, for U. S.
Government purposes.

© 1980 American Mathematical Society
0002-9947/80/0000-02 1 8/$04.00

299

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



300 H. B. STEWART

analytic in / in an Lp sense; the pointwise analyticity can be deduced indirectly,
but initial values are taken only in the Lp sense.

In the topology of uniform convergence, a semigroup generation theorem also
holds; this was formulated and proved by Masuda [15a] for second-order operators
under Dirichlet boundary conditions, including the case of unbounded space
domain. Generalization was made independently by Masuda (announced in [15b])
and Stewart [19] to higher order operators. The approach of [19], making use of the
method of Agmon, seemed at once more direct than Masuda's, and easier to
generalize. The extension to more general boundary conditions is the subject of the
present paper.

Our results could be extended further to certain strongly elliptic operators of
order 2m whose coefficients have jump discontinuities across smooth nonintersect-
ing interfaces in space; at these interfaces 2m additional continuity conditions are
to be specified for solutions and their derivatives. (For the a priori estimates in Lp,
see e.g. Sheftel [18].) However, if the interfaces are not smooth or if they intersect
each other or the boundary, the problem is more difficult. This case includes
interesting applications (see Oleinik [17], Stewart [20]), but such problems are
probably best solved for second-order operators using special methods.

Another topology for considering elliptic operators is the Holder norm. Although
Holder continuity has been most useful in analyzing elliptic problems, the Holder
norm is not directly suited for a semigroup generation theorem. Recently von Wahl
[22], [23] has remarked that the estimate (E) does not hold with the Holder norm;
this is because the two parts of the Holder norm-the sup norm and the Holder
seminorm-will be associated with different powers of \z\. A correct estimate, albeit
unsatisfactory for proving semigroup generation, can be easily obtained.

This paper comprises four sections. §1 gives the notations and the assumptions
used throughout; the main results are also stated here. §2 proves the a priori
estimate involving the sup norm. In §3 we give the existence theory needed to
conclude the generation of an analytic semigroup. §4 discusses the application to a
parabolic initial-boundary value problem, which yields a solution analytic in time.

The author again wishes to express his indebtedness to Professor Tosio Kato for
his kind and helpful advice.

1. Notation and main results. We shall consider a linear elliptic operator A of
order 2m defined on an open subset ß of RN. We include the possibility that ß may
be unbounded. Using multi-index notation we define

A = Aix, £>)=__    aaix)Da,       x G ß,
\a\<.2m

where D is the vector with ith component D¡ = (3/3x,), and D" =
DX'D22 • ■ ■ Df,". Of particular interest are the highest order terms of A; to
separate these we introduce the symbol

A'ix,0 = i~l)m   __    a_(x)r
\a\-2m

for any | e R", with £a defined like Da.
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GENERATION OF ANALYTIC SEMIGROUPS 301

The operator A will have complex coefficients aa(x) subject to the following
assumptions:

(Al) A is uniformly strongly elliptic: there is a constant E > 0 such that for all
x G ß and £ e RN, ReiA'ix, £)) > F|||2m.

(A2) The following smoothness assumptions hold: for \a\ = 2m the aa are uni-
formly continuous on ß with modulus of continuity (¿id); for \a\ < 2m, the aa are
continuous on ß and uniformly bounded by L.

We note that (Al) implies that the root condition is satisfied (cf. Morrey [16, p.
255]): for x G 3ß, and £', tj e R^ tangent and normal, respectively, to 3ß at x,
A\x, £' + \t¡) considered as a polynomial in \ has exactly m roots with positive
imaginary part.

An operator A will act in the open set ß whose boundary 3ß possesses a certain
degree of smoothness; on 3ß a set of m boundary conditions will be imposed via
linear differential boundary operators Bk = 2|a|<m)i b^D" of order mk < 2m. We
suppose the following (cf. Browder [5], Agmon,Douglis, Nirenberg [3], Lau [14]):

(Bl) The boundary 3ß is uniformly regular of class C2m, that is, each point of the
boundary has a coordinate transformation which locally flattens the boundary, and
all the coordinate transformations {4>,} and their inverses have uniformly bounded
and continuous derivatives of order 2m.

(B2) Let B'kix, £) be the symbol of the highest order terms of Bkix, D) and
following the root condition define

m

m+(a,x,c)= _l(A-\-+(r))

where \+ are the roots of A\x, £ -I- Xtj) with positive imaginary part. We require
the complementing condition, that the polynomials B'kix, £' + \r¡) in A be linearly
independent modulo M +. Furthermore, we require this condition in the following
uniform sense (since 3ß may be unbounded): If A(x, |) is the determinant of the
coefficients of the B'kix, £ + An) (mod M+), then A(x, |) > A > 0 for all x G 3ß
and £ S R".

(B3) The coefficients b* of the Bk satisfy the smoothness assumptions: all
coefficients have derivatives of order 2m — mk, denoted D2m~mkb^, uniformly
continuous with modulus to'(ô) and uniformly bounded by L' on 3ß.

The Lp estimates which we shall start from use the norms

ll"IU¿'w=  2 |[«]!,,_,(_).
0<i</

on the Sobolev spaces Wz/'p(ß). Under smoothness assumption (Bl), if j < 2m the
space ^''(ß) is the completion in its norm of the space C °°(ß) of functions with
infinitely many bounded derivatives on ß. W{¿.iü) shall be all functions which are
in W^iü n B) for all closed bounded sets B.
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302 H. B. STEWART

Our special interest will be the space C0(ß) of continuous functions uniformly
bounded on ß and tending to zero as x —» oo. The norm in this space is the
maximum magnitude on ß, denoted by || • ||C(_). The space C(ß) of functions with

j continuous and bounded derivatives has norm

||"IUc(ñ)=    __   |["]|,c(„).

I["1Im«-   2   ||^«||c(_).
Introducing a variation on notation in Lau [14], we shall use the following norms

depending on a complex parameter z (and also on the order 2m of A):

«Mk*- 2 l*r,/2*ll>]!«/(_)•
0<t<j

JHUc-  2 l-r,/21[«]|,c(_r
0<KJ/ V  '

These powers of \z\ arise in developing a priori estimates for iA + z). For fixed z
these norms are equivalent to the norms in WJ* and CJ respectively. Finally we
need a rather complicated seminorm which was essentially introduced by Masuda
to make the sup norm estimate work. The genesis of this seminorm can be traced in
§2.

.iml*.- 2 i^ri^iu
|Y|=2~

\\U\\q,z  =    SUp   ||w||_«(_(Xo,r2)nS2)>
*0e_

with rz = r0\z\~x/2m and 5(x0, r2) being the open ball of radius rz about x0. (The
positive constant r0 will be determined below.)

Using this notation, we state the main a priori estimate to be proved in the next
section.

Theorem 1. Assume (A1)-(A2), (B1)-(B3), and let q > N. Then there are positive
constants e, M, Ap, and r0 such that for any u in

%iA) = {u G C0(ß) s.t. u G W^iti), Au G C0(ß), andBku = Ofor 1 < k < m),

the estimate

l*|.H_,-i.c + .|["]L*. < M\\^A + zHc (i.i)
holds for all complex z in the truncated sector |arg z| < \-n + e, \z\ > X. In particu-
lar, the right side bounds \z\ \\u\\c.

Remark. We state once and for all that the constants (e, M, A0, and r0) depend
on q and on E, L, co, A, L', «', and ß.

As previously in [19], it may be necessary to alter the space C0(ß) slightly to
obtain the semigroup generation theorem. This is because the boundary conditions
may include, explicitly or implicitly, the condition u = 0 on some part or all of 3ß;
in that case any uniform limit of functions satisfying the boundary conditions
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GENERATION OF ANALYTIC SEMIGROUPS 303

would also vanish on the same part of 3ß, so tyftiA) would not be dense in C0(ß).
To insure a densely defined operator we introduce

C+0(ß) = completion in C0(ß) of %iA).

This is clearly independent of q, since it consists of functions in C0(ß) which vanish
on 3ß where required by the boundary conditions. From this we set

^*o(A) = [uG GiftiA), q > N, with u and Au in C„0(ß)}.

Theorem 2. Assuming (A1)-(A2), (B1)-(B3), the operator — At0 with domain
tf) m0iA) generates an analytic semigroup in the space C#0(ß) with norm || • ||c.

Finally, our application is the following temporally inhomogeneous parabolic
initial-boundary value problem.

Theorem 3. Consider the parabolic problem

du/dt + Ait)uit, x) = fit, x),        t > 0, x G ß,
w(0, x) = w0(x),        X E ß,

Bkit)uit, x) = 0,        1 < k < m, x G 3ß, (1.2)

where Ait),Bkit) satisfy (A1)-(A2), (Bl)-(B3)/or ß, uniformly for t > 0; u0 and fit)
are in CMiü)\_and fit), daa/dt, and diD^'^b^/dt satisfy a Holder condition in t
uniformly on ß, e.g. \\fit) — fis)\\c < \t — s\r. Then (1.2) has a unique solution as an
abstract evolution equation in Ct0(ß), with the following concrete properties:

(i) i/(f, x) is uniformly continuous in [0, F] X ß, and the initial values w0(x) are
taken on continuously.

(ii) du/dt exists and is continuous in (0, T] X ß.
(iii) For t > 0, uit, x) has x-derivatives up to order 2m — 1 in the continuous sense

and of order 2m in the Lq sense, q > N, and the boundary conditions are satisfied
continuously.

(iv) ///, aa, and D2m~m"b£ are analytic in t, uniformly in ß, in a small sector in the
complex plane about [0, T], then so is uit, x)for a slightly smaller sector about (0, T].

(v) If in addition to (iv) /, aa, and D2m~n%kb^ are Holder continuous in x, then
uit, x) has Holder continuous x-derivatives of order 2m and satisfies the differential
equation in the continuous sense.

2. Estimate. The proof of estimate (1.1) of Theorem 1 goes much as in [19] under
Dirichlet boundary conditions. We start by establishing Lp estimates for (/I + z) in
the norm 2|| • \\2mj) in the simplified case of homogeneous constant coefficient
operators on a whole or half-space. The idea for this step is due to Agmon [1].
From the Lp estimates we deduce estimates involving J| • ||2m-i,c an(l |[']l2m,_» v*a
the Sobolev lemma and a dilation of coordinates to obtain the correct dependence
on \z\. All this is still for constant coefficients. The general case requires the usual
sort of localization argument, but with a special choice of constants.

The present derivation differs in one aspect from [19]: it will be necessary to
carry along certain norms of boundary values. Following Agmon, Doughs, and
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304 H. B. STEWART

Nirenberg [3, p. 648], if f is the value on 3ß of a function v G WJ,p(ü), then we
define

where the infimum is taken over all such v having boundary value f. For
boundary values <b = if, . . . , <bm), f = Bku, we define

m

IML-i/, - 2 |[>]|2---t-i/„-
We start with a strongly elliptic operator A * having constant coefficients of order

2«i only, satisfying (Al) and the bound of (A2). The domain will be either R^, or
the half-space R+ with boundary conditions B\ at xN = 0. Each boundary condi-
tion will also have constant coefficients of highest order mk only, satisfying (B2)
and the bound of (B3). For these constant coefficient cases we have the following
Lp estimates.

Lemma 1. Let A* and {Bk} be the constant coefficient operators above. For
1 <p < oo, there are positive constants e, M, such that for all u G W2m'p(R!l) with
compact support in B(0, I),

I4r|«|*-, < M{\\iA* 4- z)u\\LP +\[B*u]\2m_x/p) (2.1)
holds for R+ for |argz| < \-n + e.  The same estimate holds on RN without the
boundary values.

Proof. The idea, due to Agmon [1], consists of defining a new operator F in
R"+1by

F=,4»-r-(-l)V»(3/3/)2m

which will be elliptic for \9\ < \m + e, where e > 0 depends on E and L. The a
priori estimates of Agmon, Doughs, and Nirenberg [3] hold for T, and by choosing
suitable functions on the cylinder ß X R in the domain of F one deduces (2.1). See
[19] for Dirichlet boundary conditions, and Lau [14] for the general case. (We use
seminorms of B%u where Lau uses norms; but our statement is clearly permitted by
the homogeneity of orders of A* and of the B\. Cf. the proof of Theorem 14.1 in
[3].)   D

We now pass to the local estimates involving C norms.

Lemma 2. Let q > N and set 9 = N/2mq. Under the same conditions as Lemma 1
we have the estimate

|*|,Ml2--..c +l*l'IMk_. < "I'l'dM*+ *HL« +l[fiHL-,/9}- (2-2)
Proof. First fix z = z0, |z0| = 1, (but allowing the argument to vary). If q > N,

the Sobolev lemma gives

zJ|"||2m-l,C < •^r0||M||2»n,£.«»

which leads to (2.2) for z0. To regain the dependence on \z\ we dilate the spatial
coordinates by a factor depending on |_|. Define p = |z|_1/2m, y = p~xx, and
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GENERATION OF ANALYTIC SEMIGROUPS 305

u'(y) = p 2mu(x). Derivatives and integral norms of „' are to be understood
consistently in the variable y. If u G W2m-q(RN+) and B%u = <i>*(x) on x^ = 0,
1 < k < m, then u' G W2m-9(R^) and B\u' = p2m~mkf(y). Furthermore (A* + z)u
= (A* + p2mz)u'. By including the effect of change of variable of integration, we
find

1104« + Z)U\L, = pN/<\\iA* + p2-z)u'\\L„

IWk-.,, = P2m-^-(2m-^+N/"\[B"u']\2m_x/q.

Now we set z0 = p2mz; substituting into (2.2), we pass from u' and |z0| = 1 to the
general case of u and z.

Proof of Theorem 1. We proceed as follows. First the constant coefficient
estimate (2.2) is extended to variable coefficient operators whose leading
coefficients vary only slightly. By a smooth change of coordinates this leads to
local estimates in a general domain ß with smooth boundary. The local estimates
are combined by taking their supremum. Finally a careful choice of localization
parameters will adjust the (A + z) term in the inequality to give (1.1).

Let A, B he defined on G = B(0, 8) n R+ with variable coefficients satisfying
(Al), (A2), (B2), (B3). Let u G W2m-q(RN+) have support in G and satisfy the
boundary conditions Bu = $ at xN = 0. Choose A* = A'(0, D) and B* = B'(0, D),
constant coefficient operators consisting of the highest order terms of A, B
evaluated at x = 0. We may apply Lemma 2. If we write

A* = A-    __    (aa(x) - aai0))D« -    __    _„(„)_)«
|_|=2m \a\<2m

and similarly for 5s, we get from (2.2)

|^H|2--,,C+|^|[«]|2m,_,

< M|z|*{||04 + z)«||_, + W|[»]|2m>£, + L\\u\\2m_hL,

+ IML-,/, + "HMU* + ̂ 'Mta-U'J     (2-3)
where by assumption (A2), w = w(r3) = sup|a„(x) - aa(0)|, and w' similarly bounds
the variation of highest order coefficients of B; L and L' are the coefficient
bounds. We have used the fact that

\[DaU~\\lm-mk-\/q < ||M|||a|+2---t,_«(G)

which follows from the definition of the boundary norms. As usual we subtract the
extra terms on the right of (2.3) from both sides: for the oi, w' terms by choosing
0 < 8 < 50 with 50 small enough, for the L, L' terms by choosing \z\ > X0 with À0
large enough. In the latter instance, we note that

||„|[,,_,(G) < (meas G)x/"\\u\[j,c,C) < K8^\\u\\j,CIG)

and
Il   il     n ^-ii l/2ffi||     m
z|«||«||2m-l,C   >\Z\ ||"||2m-l,C
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306 H. B. STEWART

for \z\ > 1, so we need

ÍAo/2m > MiL + mL')K8^q\rj (2.4)

which is possible because with q > N, 9 < l/2w. We thus have estimate (2.2) for
slightly varying coefficients. The hypothesis that the function u has compact
support is now essential, as is the lower bound for \z\.

Now consider a point x0 on the smooth boundary 3ß of ß. By assumption (Bl), a
smooth coordinate transformation 5> maps B(x0, r0) n ß into .8(0, 5) n R+ and
flattens a part of 3ß into the plane yN = 0. It is well known that such a change of
variable preserves the properties (Al), (A2), (B2), and (B3) of A and B. Thus one
verifies that (2.2) maps into a local estimate for A, B in ß.

Of course u need not have compact support in B(x0, r0), so instead of u we shall
consider fu, where <i>0 is a localizing function. Let f = fix — x0)/r), where <j> is
infinitely differentiable with support in 5(0, 1) and identically 1 on 5(0, {-). The
choice of r (< r0) will be made later. Let G' = B(x0, r) n ß and G" = B(x0, \r) n
ß. (Interior points are treated in similar fashion.) We have

|4H|2m-l,C(G») +l2f|[»]L,_<(G»)  <lZUIIMl2--1.C(G') +lZl1[<í>0"]|2-,_,(c.)
< M\z\9{\\iA + z),f>0„||_,(c, +|[*(<M)]|2-->/9}-

Expanding A(fu) = <¡>(>Au + ■ ■ ■    (where the dots represent terms with lower
order derivative of u multiplied by derivatives of <b0), and similarly for B(fu), and
noting that D"f < À>~|a|, we bound the expression displayed above by

< M\z\e{\\iA + *M_«<_0 +||>]|2l__l/, + r-M2--i._^o)

< M\z\e{rN/%A + z)«|C(O0 + r-,+*/*||i#||2m_I,aoo},

assuming that u G tyßiA). Now we take the supremum over all x0 in ß and get

|^|2||"||2--.,c(n)+|^|^supJ[«]|2miL,(i)(W2)n_)

< M\z\9{rN/*\\(A + z)„||c(n) + r-x + N/"\\u\\2m_hC(Q)}.

We now choose constants (this was incorrectly explained in [19]). Let \¡ and rQ be
as above (to subtract the u and L terms from (2.3)). Set r = Kr0\z\~x/2m; the right
side becomes

< MKN/"\\(A + z)«|C(0) + MK-x+N/"\z\x/2m\\u\\2m_XtC(Q)

after absorbing r0 into M. Now choose K large enough to subtract the last term
from both sides (the exponent — 1 + N/q is negative). This leaves the desired
inequality. (It may be necessary to increase Aq further to guarantee r < r0.)   □

Remark. The proof requires a z-dependent localization argument, even in the
simplest case A = A*, ß = R^. If we try to pass from Lemma 2 directly to (1.1), we
find that the support of u would be restricted to a ball of radius inversely
proportional to \z\x^2m.

3. Existence. Theorem 1 can be translated into a semigroup generation theorem
provided the existence of solutions of (A + z)u = f can be shown. In that case
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iA + z) will have a right inverse, and the necessary resolvent estimate is an easy
consequence of (1.1).

We define the realization Aß of A to be the operator with domain ^iA) c
C0(ß) and range in C0(ß) given by Aßu = Au for each u in the domain. For this
realization we have:

Theorem 4. Let (A1)-(A2), (B1)-(B3) hold, and suppose q > N. Then Aß is a
closed operator independent of q, which we call A0. For \z\ > Aq and |arg z\ < \m + e,
A0 + z has a bounded right inverse on C0(ß).

Proof. That Aß is closed follows from the a priori estimate of Theorem 1, to
which the definition of ^HA) has been adapted.

To show that Aß + z has dense range, consider / G C°°(ß) having compact
support. Then in particular/ G F*(ß), and according to Theorem 2.7 of Lau [14],
the realization of A in W2m'q(Q,) has a right inverse, i.e. the equation iA + z)u = /
has a solution u G W2m-qiti) satisfying Bu = 0. It follows that u G C2m_1(ß) and
of course u G Wx2™'qiü). Since u G C'(ß) n Lq(ü), it must be that in the case of
unbounded ß, u(x) —»0 as |x| —* oo. Thus u is in C0(ß). Since/ is also in C0(ß), it
follows from (A + z)u = /that Au G C0(ß) as well. This shows that u G ^(A).

Thus Aß + z has dense range in C0(ß) for z in a sector S of the complex plane.
(For the moment Aq depends on q.) By the Closed Range Theorem, Aß + z maps
onto C0(ß). Let q' > q. For z G Sq n Sq,, it is clear from range(y4^ + z) =
range(Aß' + z) = C0(ß) that we must have %iA) = %(A).

Thus we define A0, independent of q, and from Theorem 1 the inverse of A0 + z
is bounded by a constant over \z\.   □

We have almost shown that — A0 generates an analytic semigroup (cf. Kato [10,
Chapter IX]). The operator A0 lacks only a domain dense in C0(ß). To obtain this,
we call on the space C„0(ß) as defined in § 1.

Proof of Theorem 2. To show that the realization Am0 of A with domain
ty t0iA) is densely defined, consider C~(ß), the set of infinitely differentiable
functions with compact support in ß — T, where T is the closed subset of 3ß where
Bu = 0 implies u = 0. This set of functions is dense in C<0(ß), and for u G
C£(ß), we see that Au G C„0(ß). (Here we use the continuity of the lower order
coefficients of A for the first time.)

One sees readily that A „,0 is closed and that A „0 + z has bounded inverse on
C*0(ß)- Thus the hypotheses of the analytic semigroup generation theorem are
satisfied by - A m0.    □

4. Application. We have now proved Theorem 2, that a strongly elliptic operator
with general boundary conditions generates an analytic semigroup in the topology
of uniform convergence. Such a semigroup Uit) gives uniquely determined solu-
tions of the abstract evolution problem du/dt + Au = 0, m(0) = u0. More specifi-
cally, this corresponds to a temporally homogeneous parabolic initial-boundary
value problem. Since the topology is uniform convergence on the space domain ß,
we find that the solution uit, x) is analytic on / for each x, and takes on the initial
values m0(x) continuously.
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By calling on the Kato-Tanabe theory of evolution equations with time-depen-
dent domain, our results also lead to information about temporally inhomogeneous
parabolic problems. Rather than give proofs in detail, we will only sketch the main
lines along which one can proceed.

We shall refer to another realization of A, Aq, which is close to Aß, but with
domain independent of A. Let 9C? be the Banach space obtained by completing
L*(ß) (or equivalently C0(ß)) under our norm || • ||9r. Furthermore, let
II ' \\2m-\/q,z De tnc boundary norm based on || • ||?7, and 6Hq the completion of the
boundary space W2m-1/M(3ß) (cf. ADN [3, p. 699], Lau [14, p. 43]). We also
introduce Lu to stand for iAu, Bxu, . . . , Bmu).

Theorem 5. Let (A1)-(A2), (B1)-(B3) be satisfied, and choose q > N. The
operator Lq with domain

% = [u G C0(ß) with Dau G %qfor \a\ < 2m}

is a closed mapping from C0(ß) into %q X GHq for which

|*| H|2--,.c + «|[«3W < M\2\"{\\(A + *)«.*. +l*J*-i/f}     (41>
for |_| > \y, |arg z\ < jw + e, and for all u G 6Ùq. The operator

Lq + z = ÜA + z)u, Bxu, ..., Bmu)

has right inverse on %q X sHq.

Proof. The result is essentially contained in the proofs of Theorems 1 and 4. In
the former, we simply refrain from introducing || • ||c on the right of the a priori
estimate. To prove the rest we note that if u G G¡)q, Lqu is indeed in %q X 6Hq, and
(4.1) for any fixed z shows that Lq is closed. The invertibility of Lq + z follows as
in Theorem 4 from results of Lau in L?(ß).    □

Remark. We assume below that A + z is invertible for z = 0, which is no loss of
generality for parabolic problems; we simply replace A by A + X and solve
dv/dt + iA + X)v = exp(-Ai)/with v = exp(-Ai)"-

Proof of Theorem 3. We restrict ourselves to an outline. The hypotheses of the
Kato-Tanabe theorem (cf. Kato [11, Theorem 3.1], or Kato and Tanabe [12]) are:
(1) that —Ait) for fixed t generate an analytic semigroup, uniformly in t; (2) that
(3/3í)(^4(í) + z)"1 exist in a sector |arg z\ < \ir + e and be bounded in norm by a
constant over \z\; (3) that (d/dt)(A(t))~x be Holder continuous in / in operator
norm.

We know that hypothesis (1) is satisfied by the realizations -A^0(t) in C„0(ß).
To check (2), we first let

[A(t + h) + z]uit + «)=/(/)

and apply [Lit) + z]_1[L(/) + z] to the difference quotient «-1[u(f + «) - «(/)] to
see that formally

- d/dtiAit) + z)-1 D (L(i) + z)-%it)iAit) + z)~x (4.2)

where L,(0 is formed with coefficients daa/dt and db£/dt. We consider the three
operators on the right of (4.2), in their sequence of application, realized in the
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spaces
C*>(Q) -> % -* %q x % -, c,0(ß).

Making use of Theorem 5, one can complete (4.2) to give an operator on all of
C.j.r/ß). Using the sequence of norms

INIc^lHk^H^ONk' +M¿.ri/ft.M*l INIc («)
we obtain the bound required by (2).

The same relation (4.2), which is now an equality, is used to verify hypothesis (3).
Because of our assumptions on the coefficients, /,,(/) is clearly /-Holder continuous
in the appropriate norms in (4.3). For L(/)~', choose vit) a solution of /l(r)t>(0 =
/, Bit)vit) = g, and similarly for vis) at s. Putting |u(r) — _(.)| in the estimate of
Theorem 5, we can then deduce the Holder continuity in / of L(/)_1. The
hypotheses of the Kato-Tanabe theorem are satisfied.

Conclusions (i)-(iv) of Theorem 3 are translations of the Kato-Tanabe conclu-
sions into concrete form in the topology of uniform convergence. Conclusion (iv)
that «(/, x) has Holder continuous x-derivatives of order 2m if the coefficients
aait, x) are Holder continuous in x, is proved as in [15a] (see [19]) by extending
uit, x) to complex t -» | + ñj and treating the elliptic equation

[i-A^)m + A+ (3/30 ]u(É + ir,, x) = /(£ + ft,, x)

as an elliptic regularity problem,    fj
Remark. By using another result of Kato and Tanabe, we may perturb Lit) by

any lower-order operator whose coefficients are Holder continuous in t uniformly
in x (cf. Lau [14, p. 46]). In effect this means that only the highest order coefficients
need have Holder continuous /-derivatives.

In order to prove the continuous differentiability in x up to order 2m, we
imposed extra smoothness assumptions on the coefficients. The conditions of
Holder continuity in x are expected for this type of problem. However we have also
imposed analyticity in /, which allows us to stay in the realm of elliptic theory. As
remarked in the introduction, the holomorphic semigroup estimate is not valid in
Holder norms, so that approach to regularity is apparently not open. Noting this,
von Wahl [22], [23] has considered fractional powers of elliptic operators in Holder
spaces, and proved certain regularity theorems for a linear parabolic initial-
boundary value problem like (1.2) with Dirichlet boundary conditions, based on
elliptic theory. Unfortunately, as noted in [23], this approach also encounters some
difficulty with the derivatives of order 2m. With parabolic methods Arima [4] has
proved full 2 m order differentiability in x for solutions of (1.2), under smoothness
assumptions weaker than ours.
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