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ABSTRACT

We describe a technique of constructing an anisotropic lattice of coupled subunits and apply it to assemblages of excitable myocardial

cells conducting an electric impulse. The cells are assumed arranged in a planar network comprising a few thousands of cells, each

having at most eight connections to neighbors. The connections are characterized as being one of four kinds: horizontal, vertical,

diagonal and inversely diagonal. The connectivity in the cellular network is constructed randomly with prescribed fractions of each

of the four kinds of connections. These fractions are taken from literature and characterize certain types of cardiac tissues, the left

ventricle in particular. The nodes in the network correspond to cells, which are treated as point objects described by ordinary differential

equations. For the model of the left ventricle we study spreading of the action potential initiated by an impulse stimulus of a small

cluster of cells.
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1 INTRODUCTION

Biological systems may be often treated as subsystems interact-

ing with each other, creating thereby a compound unit displaying

collective dynamics that cannot be displayed by a single subunit.

The most conspicuous example is a tissue made up of cells. The

interactions are based largely on the mass and charge exchange.

Generally, the system includes subunits/cells with complex chem-

ical kinetics interacting via electro-diffusive fluxes. The system

may be seen as a network or a lattice possessing certain con-

nectivity of its nodes. The network may have a regular connec-

tivity, but a more appropriate view is to include local irregulari-

ties while maintaining an overall characteristic structure. In this

work we apply this idea on cardiac tissue. This, along with others,

such as nerve tissue [1] (predominantly composed of neurons and

glial cells), liver (consisting of hepatocytes), oocytes of the frog

Xenopus [2] or pancreatic insulin secreting beta-cells [3] is a

group of cells that are characterized by excitability or oscillatory

behavior. These properties are the key for many physiological

functions. Oscillations of Ca2+ ions in hepatocytes are essential

for their proper function [4], likewise repetitive increase in calcium

levels in muscle cells initiate contraction of muscle fibers [1].

Many mammalian cells contain gap junctions, which are

channels that connect the cytosol of neighboring cells. Gap junc-

tions enable them to communicate and transmit signals via sec-

ond messengers. The channels themselves are complex struc-

tures with complex dynamics. In cardiac muscle, gap junctions

mediate transfer of action potential coupled with mechanical con-

traction. Dynamics of the heart may include various pathologi-

cal conditions such as different types of arrhythmias or ischemia.

Such disorders can be accompanied by a reduced number of gap

junctions [5]. It is therefore of great interest to understand the
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role of gap junctional coupling in cellular networks and its ef-

fect on the formation of these states. Previous work elucidated

some aspects of dynamics of wave patterns in cellular networks

and effects of irregularities and varying coupling strength. Stabil-

ity of planar waves in two-dimensional (2D) arrangement of ex-

citable cells with nonuniform distribution of coupling strengths

was examined for two regular topologies of cells having four

or six neighbors [6]. Spiral wave break up in a rectangular ar-

ray of excitable cells with four coupled neighbors and its per-

sistence in the array with incomplete connectivity [7] has been

numerically studied. Effect of spatial heterogeneities in a layer of

coupled chicken heart cells on spiral wave generation and break

up was studied experimentally and modeled using a cellular

automaton model on a 2D lattice [8]. Role of extraneous perturba-

tions on spiral wave formation was modeled in a 2D grid of cells

with eight coupled neighbors [9, 10].

This paper attempts to further clarify the issue of anisotropy/

coupling relations by constructing a class of networks with con-

nectivity corresponding to the heart tissue and examining basic

dynamical properties of spreading excitation waves. To achieve

this goal, we use existing software systems for construction of

networks based on Python programming environment [11, 12],

build an extension allowing us to generate specific types of net-

works, and develop a programme translating the network into

a software for stability and bifurcation analysis and dynamical

simulations [13].

2 NETWORK OF HEART CELLS

Contraction of heart cells – myocytes – is a complex process

that is initiated by depolarization of the cytoplasmic the mem-

brane. This depolarization is generated in the right atrium, where

a bundle of specialized cells called the sino-atrial (SA) node is

located. These cells spontaneously oscillate, i.e., there is peri-

odic cytoplasmic membrane depolarization/repolarization. At the

resting state there is a constant membrane depolarization. Upon

external stimulation exceeding a threshold voltage, action poten-

tial (AP) is generated which is transmitted to neighboring cells.

Then the membrane repolarizes and the whole process is repeated.

The sinoatrial node impulse spreads through the atrial contractile

myocytes to the atrio-ventricular (AV) node, which provides a sig-

nificant delay in the action potential (approximately 0.1 s). This

allows the chamber to fill the entire volume of blood before ven-

tricles are excited and contracted. AP is then spreading through

the Hiss bundle, which is the only place that electrically connects

atrium and ventricle. It is therefore a crucial element in the trans-

mission of the AP to the ventricles. Hiss bundle extends through

the septum (wall between the ventricles) and is split into left and

right parts, containing very elongated cells called Purkinje fibers.

These are linked to the myocytes in ventricles. These cells are

specialized in rapid transmission of the AP.

There are many types of myocytes in the heart. Of interest here

are contractile myocytes, which are mostly longitudinal cells with

one nucleus. The cells are strongly mutually linked both mechan-

ically and chemically. Areas in which the cells connect in the lon-

gitudinal direction are called intercalated disks. They are located

at the longitudinal ends of the myocytes and clearly define their

boundaries [16]. In these areas there are different kinds of inter-

cellular connections. Desmosomes provide mechanical connec-

tions of myocytes. For this work, the most important connections

are gap junctions (GJ) – the regions containing aqueous pores

that connect the cytosol of adjacent cells. GJs allow cells to com-

municate chemically and electrically by allowing ions, metabolites

and other small molecules (up to about 1000 Da [14]) to diffuse.

They also allow for transmission of the action potential [15].

Within the myocyte itself, the AP is spreading along its mem-

brane, which is then said to be excitable. Transport through the

membrane is mediated by two main mechanisms. The first of them

is an active transport, which uses energy (mostly in the form

of ATP) to transport particles along the electro-chemical gradi-

ent. The second one is a passive transport, which takes place

spontaneously against electro-chemical gradient. The passive

transport is often facilitated by specific channels. At steady state

the membrane has certain nonzero voltage. In electrophysiology,

it is customary to measure the potential within cells with respect

to the external environment, which is assigned zero potential.

According to this convention the membrane has a negative rest-

ing voltage. An increase of voltage (potential increase in the cy-

tosol) is known as depolarization. The process by which the volt-

age decreases after membrane depolarization is called repolar-

ization. Hyperpolarization occurs when the voltage drops below

the resting level. Sodium or calcium ions incoming through spe-

cific channels are the major cause of the depolarization. The

same effect has the flow of negatively charged chloride anions

that are transported from the cytosol into the extracellular envi-

ronment. Other pumps and channels are involved, in particular

Ca2+ channels of L-type. Resting voltage of cells in the heart is

about −80 to −90 mV. During depolarization the voltage rises to

+30 mV. Most of the channels are voltage gated [17].

Figure 1 shows a typical arrangement of myocytes in the tis-

sue. The myocytes may be branched, which allows for connec-

tions to other cells in various spatial directions. Although majority
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Figure 1 – An example of cardiac muscle tissue. Myocytes are oriented horizontally, rounded shapes are nuclei, short vertical

bars are intercalated disks, branching of individual cells occurs throughout the region (modified from [17]).

of gap junctions occur in intercalated disks, the cells are coupled

via GJ to all surrounding cells even though not to the same ex-

tent. Thus the network is anisotropic. Our model of the network

attempts to capture the outlined features.

3 MODEL OF THE AP IN A SINGLE CELL

The primary model to describe the action potential in an isolated

myocyte is based on the theory of Hodgkin & Huxley for nerve

cells [18]. The model can be schematically written as an elec-

trical circuit, where the membrane is represented by a capacitor

and each channel is a combination of a resistance and a volt-

age source; all channels are connected in parallel. The model is

purely empirical and the parameters are chosen so that the re-

sults match the data. Here we adopted a ventricular model pub-

lished by Beeler & Reuter (BR) [19]. It elaborates on the Hodgkin-

Huxley approach and explicitly involves intracellular calcium and

Ca2+ channel. This model captures the AP dynamics of a general

mammalian heart on a semi-quantitative level (based on experi-

ments with dog, sheep, calf and cat hearts) and does not provide

detailed description of later models, e.g., see Luo & Rudy [20] or

Ten Tusscher et al. [21]. Nonetheless, relative simplicity of the

BR model is preferred in this study. Figure 2 shows schematically

four channels involved: sodium (Na), potassium (K1), calcium

(Ca) and a general channel (X1).

The model involves eight variables, the membrane voltage

Vm , concentration of Ca2+ and six other variables describing

the states of individual channels:

dVm

dt
= −

(

1/Cm
)(

iK1+iX1+iNa+is−iexternal
)

, (1)

[Ca]i

dt
= −10−7is + 0.07

(

10−7 − [Ca]i
)

, (2)

yk

dt
=

(

yinfk − yk
)/

τk, k = 1, . . . , 6 , (3)

where the current densities through the four channels are

iK1 = 0.35

{

4
(

exp0.04(Vm+85) −1
)

exp0.08(Vm+53) + exp0.04(Vm+53)

+
0.2(Vm + 23)

1− exp−0.04(Vm+23)

}

, (4)

iX1 = y1
0.8

(

exp0.04(Vm+77) −1
)

exp0.04(Vm+35)
, (5)

iNa =
(

gNa y
3
2 y3y4 + gNaC

)(

Vm − ENa
)

, (6)

is = gs y5y6
(

Vm − Es
)

,

Es = − 82.3− 13.0287 ln
(

[Ca]i
)

(7)

and iexternal represents a stimulating current pulse applied for a

brief time (1 ms) causing the cell membrane to excite.

The variables yk describe various states of the channels

whose dynamics is given by the characteristic times τk and rest-

ing states yinfk as follows,

τk = 1/(αk + βk), (8)

yinfk = αk/(αk + βk). (9)

Values of all the empirical constants αk, βk of the model are

found in [19]. Values of channel conductivities gNaC and gs are
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Figure 2 – Schematic representation of the myocardial membrane with four types of channels used in the BR model.

Figure 3 – Bifurcation diagram in the plane of gNaC and gs ; region 1 – bistability, regions 2 and 3 –

excitability, region 4 – periodic oscillations, full line – limit point (or saddle-node) bifurcation, dashed

line – Hopf bifurcation, circle – Bogdanov-Takens point (Hopf curve touches the saddle-node curve).

the main adjustable parameters which we use as bifurcation pa-

rameters; the values of the other parameters gNa = 4 mS/cm2,

ENa = 50 mV, Cm = 1µF/cm2 are taken from [19]. Figure 3

shows the parameter plane given by gs and gNaC decomposed

into regions with different dynamical modes.

The curves have been obtained by using the program Cont

[13] for numerical continuation, stability and bifurcation analysis.

Of main interest are the regions 2 and 3 corresponding to excitable

dynamics. The figure shows, that the model admits also periodic

oscillations (physiologically admissible) and bistability (physio-

logically irrelevant). For dynamical simulations of networks we

chose a point from the excitable region corresponding to gs =

0.09 mS/cm2 and gNaC = 0.003 mS/cm2. For perturbations

we used iexternal = 30µA/cm2 for a time duration of 1 ms.

4 CONNECTIVITY OF THE NETWORK

As mentioned earlier, cardiac cells interact mainly via gap junc-

tions. We assume here that the AP is spreading quickly along

the cell membrane and much more slowly across the GJ, which

leads to a discrete-space model, in which each cell is treated as

a point object forming a node in the discrete cellular network. An

isolated node is described by Eqs. (1)-(9). When coupled into a
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network, coupling terms need to be added. The GJ can be seen

as an aqueous pore in which case we can use the Nernst-Planck

(NP) equation of electro-diffusion. The cytosol does not flow be-

tween cells and so the driving forces are those of concentration

difference and potential difference. Assuming that the membrane

channels do not carry any charge and assuming isotropic intercel-

lular space between the membranes of the neighboring cells, the

potential difference in the NP equation is equal to the voltage dif-

ference between membranes. Since the concentration difference

of calcium ions is small and the charge transferred between cells

is mainly due to potassium ions, which have by far the highest

concentration, the coupling term between cells j and k is signifi-

cantly expressed only in the charge balance, Eq. (1), and the corre-

sponding current density is iGJ = gV (Vm,cell j − Vm,cell k),

where gV is the conductivity of the gap junction. This term is

widely used in literature, e.g. [7].

In general, Eq. (1) for each cell in a network will have sum

of the coupling terms running over all cells that are coupled to

the current cell. To conform with the experimental observations

of the coupling structure, such as that indicated by Figure 1, the

corresponding network is expected to have certain degree of ir-

regularity.

When formulating dynamical equations for such a network,

a software tool is needed to generate the explicit expressions for

coupling terms in the right-hand sides of the differential equa-

tions. For simulations we use the home-made Fortran package

Cont [13], which includes the LSODE [22] as a differential equa-

tions solver. On the other hand, the freely available software tool

NetworkX [11] for formulating and handling complex networks is

written in Python. We decided to use the class Graph from the

library of NetworkX and write a program heartnet specifying a

user-defined class Sit as a subclass of Graph. Sit is an n by m

matrix, corresponding to a planar array of cells, in which each

node/cell can be connected up to eight neighbors in horizontal,

vertical, diagonal and inverse diagonal directions. Despite being

only two-dimensional, this approach does respect structure seen

in planar preparations of the heart tissue, where the cells are pre-

dominantly coupled horizontally, but they are attached to one an-

other also in the vertical direction and because of the branchings

(having either X or Y shape) also in two diagonal directions. Cou-

plings are generated randomly but the user can prescribe weights

for each of the directions. No-flux and periodic boundary con-

ditions can be generated as well as a number of other features

such as assignment of nodes that will be perturbed externally.

For example, a network can be generated by running heartnet:

import heartnet

G = heartnet.Sit(10, 30,

max num of connections = 5,

x = [0.1, 0.3, 0.2, 0.4],

s = [0.3, 0.5, 0.3, 1.0],

fill equally = True,

linear chains = False,

periodic = False),

where G denotes the generated network, which will have 300

nodes in 10 rows and 30 columns, each node will have at most 5

connections with preference on the nodes having the lowest num-

ber of connections. The network will have approximately 10%

of nodes in inverse diagonal, 20% in diagonal, 30% in vertical

and 40% in horizontal directions. Complete connectivity in hor-

izontal direction (linear chains) is not enforced. Also, weights

for coupling strength in all four directions are provided (vector

s). Information on various aspects of the underlying graph can

be obtained by using functions provided by the library NetworkX.

Figure 4 displays the resulting network.

Figure 4 – Schematic of the 10 by 30 network specified in the text.

In addition, another Python program contwrap has been cre-

ated to generate a Fortran subroutine defining right-hand sides

based on the network G (or any other network from the class

Graph ), a Fortran subroutine defining the initial external stim-

ulation and input data for running the simulation and continua-

tion program Cont [13] (our Python programs as well as Cont

are available from the corresponding author). All of these are

large files that would be very inconvenient to generate manually.

5 NETWORK DYNAMICS

In simulations on two-dimensional continuous-space domains,

it is often assumed that the heart tissue is isotropic. Propagat-

ing circular waves or rotating spirals were observed, the latter as-

sociated with certain arrhythmias. Yet a question remains, how

anisotropy and discontinuity of tissue affects the characteristics

of the AP spreading. A more realistic view of the cardiac tissue is

obtained using the generated network as outlined above. Kanno

& Saffitz [23] examined the connectivity in various parts of the
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cardiac tissue and found that there are four types of couplings be-

tween adjacent cells as shown in Figure 5.

They evaluated fractions of each of the connection types in

several parts of cardiac tissue. For the left ventricle they provide

the following numbers: type a) 29%, type b) 18%, type c) 19%,

type d) 34%. Types a) and d) are directly comparable with our

vertical and horizontal connectivities, types b) and c) are indis-

tinguishable in our connectivity scheme, thus we consider them

jointly and assume that diagonal and inverse diagonal directions

are represented equally, that is, to each is assigned 18.5%. In

addition, the weights for coupling were taken as fractions of the

area available in each direction, namely, 1 for horizontal and ver-

tical directions and 0.375 (average of 0.5 and 0.25) for diagonal

and inverse diagonal connections.

An example of 50 by 50 network corresponding to the left

ventricle is shown in Figure 6.

Figure 5 – Four type of coupling between myocytes; a) vertical, b) diagonal with

large connection area, c) diagonal with small connection area, d) horizontal.

Figure 6 – Network used in dynamical simulations of the spreading waves of AP in the left ventricle, full circles

denote externally stimulated cells.
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Figure 7 – Depolarization wave stimulated in the middle of the domain of 50 by 50 cells with topology corresponding to the left ventricle;

a) gV = 2.1 mS/cm2, b) gV = 0.27 mS/cm2. The number at the top of each panel is time in ms elapsed from the instant of stimulation.

The dynamical simulations using the network in Figure 6

provide a circular, rapidly spreading depolarization wave for a high

coupling strength gV , see Figure 7a. The wave has rough edges,

which is due mainly to anisotropy and to a lesser extent to the

discrete lattice. If the coupling strength is decreased, the wave

spreads much more slowly and highly irregularly, which again is

mainly the effect of anisotropy, see Figure 7b. A similar pattern

emerges even when the perturbation is located out of the center

and appears also in an array of 100 by 100 cells; thus it is not

due to boundary effects. There is a clear tendency toward creating

spirals, even though the stimulation creates a transient rather than

permanent rotating wave. Nonetheless, this observation points to

a significant loss of regularity of the depolarization wave when

the gap junctional coupling is weak.
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6 DISCUSSION AND CONCLUSIONS

We have shown that anisotropy of cellular networks correspond-

ing to excitable myocardial tissue can have a profound effect on

the dynamics of the spreading action potential. This effect is due

to locally uneven conditions for signal transmission across the

network and is most pronounced when the coupling strength is

weak. Such situation may become prominent in an older myo-

cardial tissue since the number of gap junctions is decreasing

with age [5]. Tendency toward more complex patterns in a situ-

ation of weakened coupling in a heterogeneous array has been

observed experimentally in a chicken heart cell culture and simu-

lated by a cellular automaton by Bub et al. [8]. In contrast, Pan-

filov [7] carried out simulations showing that if one large spiral

already exists as a stable dynamical pattern, it can break up into

a complex pattern involving many fragments by increasing the

coupling strength. The spiral can be recovered from the turbu-

lent pattern by randomly leaving out some intercellular connec-

tions. We have not examined stability of a spiral initially exist-

ing in a regular cellular system, therefore direct comparison with

our results cannot be made. Nonetheless, as pointed out in [7],

the mechanism leading to spiral fragmentation at elevated cou-

pling strengths is likely different from the mechanism generating

complex spiralling patterns at weak coupling, such as those in-

dicated in Figure 7b. Fishler et al. [6] found in their numerical

simulations employing regular arrays with four or six neighbors

that dispersion in local coupling strengths implies a planar wave

with rough leading edge, but the edge tends to become smooth

when the coupling strength in transversal direction is increased.

In our case the leading wavefronts do not show smoothening with

increased gV . This can be explained by different model construc-

tion: heterogeneity in the model discussed here is introduced

through randomness in the connectivity rather than via variation

of local coupling strengths.

The approach presented here has certain limitations, one of

them being a rather low number of cells involved in the net-

work and calculations for extended networks are needed. None-

theless, an increased number of cells is unlikely to alter the main

conclusion that anisotropy can potentially be an important factor

in explaining occurrence of various types of cardiac arrhythmia.

Another limitation is confinement to spatially two-dimensional

geometries. However, the method of generating anisotropic net-

works is easily extendable to three spatial dimensions. The ad-

vantage of using Python to produce source code for the dynami-

cal solver is that it is tailor-made and helps in using the computer

memory efficiently which in turn is a first step toward effectively

solving large-scale networks.
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