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Abstract. The strongly interacting sector in the E6 inspired composite Higgs

model (E6CHM) with baryon number violation possesses an SU(6) × U(1)L

global symmetry. In the weakly-coupled sector of this model the U(1)L symme-

try associated with lepton number conservation is broken down to a ZL
2

discrete

symmetry, which stabilizes the proton. Near the scale f � 10 TeV the SU(6)

symmetry is broken down to its SU(5) subgroup, giving rise to a set of pseudo-

Nambu-Goldstone bosons (pNGBs) that involves the SM-like Higgs doublet, a

scalar coloured triplet and a SM singlet boson. Because f is so high, all baryon

number violating operators are sufficiently strongly suppressed. Nevertheless,

in this variant of the E6CHM the observed matter–antimatter asymmetry can be

induced if CP is violated. The pNGB scalar coloured triplet plays a key role in

this process and leads to a distinct signature that may be detected at the LHC in

the near future.

1 Introduction

The presence of baryon asymmetry and dark matter in the Universe provides strong evi-

dence for physics beyond the Standard Model (SM). Over the last forty years a number of

new physics mechanisms for baryogenesis have been proposed, including GUT baryogenesis

[1–7], baryogenesis via leptogenesis [8], the Affleck-Dine mechanism [9, 10], electroweak

baryogenesis [11], etc . Here we study baryon asymmetry generation within the E6 inspired

composite Higgs model (E6CHM).

Composite Higgs models involve two sectors (for a review, see Ref. [12]). One of them

contains weakly-coupled elementary particles with the quantum numbers of all SM gauge

bosons and SM fermions. The second, strongly interacting sector results in a set of bound

states that, in particular, include the Higgs doublet and massive fields with the quantum num-

bers of all SM particles. These massive fields are associated with the composite partners of the

quarks, leptons and gauge bosons. In composite Higgs models the elementary states couple

to the composite operators of the strongly interacting sector, leading to mixing between these

states and their composite partners. Therefore at low energies those states associated with the

SM fermions (bosons) are superpositions of the corresponding elementary fermion (boson)

states and their composite fermion (boson) partners. In this framework, which is called par-

tial compositeness, the SM fields couple to the composite states, including the Higgs boson,

with a strength which is proportional to the compositeness fraction of each SM field. The ob-

served mass hierarchy in the quark and lepton sectors can be accommodated through partial
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compositeness if the fractions of compositeness of the first and second generation fermions

are rather small. In this case the off-diagonal flavour transitions, as well as modifications

of the W and Z couplings associated with these light quark and lepton fields are somewhat

suppressed. On the other hand, the top quark can be heavy if the right-handed top quark tc

has a sizeable fraction of compositeness.

In the minimal composite Higgs model (MCHM) [13] the strongly interacting sector pos-

sesses a global SO(5) × U(1)X symmetry that contains the SU(2)W × U(1)Y subgroup. Near

the scale f the SO(5) symmetry is broken down to SO(4) so that the SM gauge group remains

intact. Such a breakdown of the global SO(5) symmetry gives rise to four pseudo-Nambu-

Goldstone bosons (pNGBs) which form the Higgs doublet. The couplings of the weakly-

coupled elementary states to the strongly interacting sector explicitly break the SO(5) global

symmetry. As a result, the pNGB Higgs potential arises from loops involving elementary

states. Because of this the quartic Higgs coupling λ in the Higgs effective potential is sup-

pressed. The global custodial symmetry SU(2)cust ⊂ SU(2)W ×SU(2)R, which remains intact,

protects the Peskin-Takeuchi T̂ parameter against new physics contributions. Experimental

limits on the value of the parameter |Ŝ | � 0.002 imply that mρ = gρ f � 2.5 TeV, where mρ is

a scale associated with the masses of the set of spin-1 resonances and gρ is a coupling of these

ρ-like vector resonances. This set of resonances, in particular, involves composite partners of

the SM gauge bosons.

While in composite Higgs models partial compositeness substantially reduces the con-

tributions of composite states to dangerous flavour-changing processes, this suppression is

not sufficient to satisfy all constraints. Adequate suppression of the non–diagonal flavour

transitions can be obtained only if f is larger than 10 TeV. This bound on the scale f can

be considerably alleviated in the composite Higgs models with additional flavour symmetries

FS. In models with FS = U(2)3
= U(2)q × U(2)u × U(2)d symmetry, the constraints origi-

nating from the Kaon and B systems can be satisfied even for mρ ∼ 3 TeV. For low values of

the scale f the appropriate suppression of the baryon number violating operators and the Ma-

jorana masses of the left-handed neutrino can be achieved provided global U(1)B and U(1)L

symmetries, which guarantee the conservation of baryon and lepton numbers, respectively,

are imposed.

2 E6CHM with baryon number violation

In the E6 inspired composite Higgs model (E6CHM) the Lagrangian of the strongly inter-

acting sector is invariant under the transformations of an SU(6) × U(1)L global symme-

try. This model can be embedded into N = 1 supersymmetric (SUSY) orbifold Grand

Unified Theories (GUTs) in six dimensions which are based on the E6 × G0 gauge group

[14]. At some high energy scale, MX , the E6 × G0 gauge symmetry is broken down to

the SU(3)C × SU(2)W × U(1)Y × G subgroup where SU(3)C × SU(2)W × U(1)Y is the SM

gauge group. The gauge groups G0 and G are associated with the strongly coupled sector.

Multiplets from this sector can be charged under both the E6 and G0 (G) gauge symmetries.

The weakly–coupled sector comprises elementary states that participate in the E6 interactions

only. It is expected that in this sector different multiplets of the elementary quarks and leptons

are components of different bulk 27–plets, whereas all other components of these 27–plets

should acquire masses of the order of MX . The appropriate splitting of the 27–plets can occur

within the six–dimensional orbifold GUT model with N = 1 supersymmetry (SUSY) [14] in

which SUSY is broken near the GUT scale MX . (Different phenomenological aspects of the

E6 inspired models with low-scale SUSY breaking were recently examined in [15]-[32].).

In this orbifold GUT model all fields from the strongly interacting sector reside on the

brane where E6 symmetry is broken down to the SU(6) that contains an SU(3)C × SU(2)W ×

2
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U(1)Y subgroup. Thus at high energies the Lagrangian of the composite sector respects SU(6)

symmetry. The SM gauge interactions violate this global symmetry. Nevertheless, SU(6) can

remain an approximate global symmetry of the strongly interacting sector at low energies if

the gauge couplings of this sector are substantially larger than the SM ones. Around the scale

f the SU(6) symmetry in the E6CHM is expected to be broken down to its SU(5) subgroup, so

that the SM gauge group is preserved. Since E6CHM does not possesses any extra custodial

or flavour symmetry, the scale f should be larger than 10 TeV. Such a breakdown of the

SU(6) global symmetry gives rise to a set of pNGB states, which includes the SM–like Higgs

doublet.

In the E6CHM the U(1)L global symmetry, which ensures the conservation of lepton num-

ber, suppresses the operators in the strongly coupled sector that induce too large Majorana

masses of the left–handed neutrino. In the weakly–coupled elementary sector this symmetry

should be broken down to

ZL
2 = (−1)L , (1)

where L is a lepton number, to guarantee that the left–handed neutrinos gain small Majorana

masses. The ZL
2

discrete symmetry, which is almost exact, forbids operators that give rise to

rapid proton decay.

All other baryon number violating operators are sufficiently strongly suppressed by the

large value of the scale f , as well as the rather small mixing between elementary states and

their composite partners. Indeed, the operators responsible for ∆B = 2 and ∆L = 0 are given

by

L∆B=2 =
1

Λ5

[

qiq jqkqm(dc
ndc

l )∗ + uc
i dc

jd
c
kuc

mdc
ndc

l

]

, (2)

where qi are doublets of left-handed quarks, uc
i

and dc
j

are the right-handed up- and down-

type quarks and i, j, k,m, n, l = 1, 2, 3. The n − n̄ mixing mass is δm ≃ κΛ6
QCD
/Λ5, where

κ ∼ 1 and ΛQCD ≃ 200 MeV. For Λ ∼ few × 100 TeV one finds the free n − n̄ oscillation

time to be τn−n̄ ≃ 1/δm ≃ 108 s. This value of τn−n̄ is quite close to the present experimental

limit [33]. Searches for rare nuclear decays caused by the annihilation of the two nucleons

NN → KK, that can be also induced by the operators (2), result in a similar lower limit on

Λ, around 200 − 300 TeV. At the same time the small mixing between elementary states and

their composite partners in the composite Higgs models leads to Λ � few × 100 TeV when

f � 10 TeV.

Although the U(1)B global symmetry associated with baryon number conservation is not

imposed here we assume that the low energy effective Lagrangian of the E6CHM is invariant

with respect to an approximate ZB
2

symmetry, which is a discrete subgroup of U(1)B, i.e.

ZB
2 = (−1)3B , (3)

where B is the baryon number. The ZB
2

discrete symmetry does not forbid baryon number

violating operators (2). Nevertheless it provides an additional mechanism for the suppression

of proton decay.

The embedding of the E6CHM into a Grand Unified Theory (GUT) based on the E6 ×G0

gauge group implies that the SM gauge couplings extrapolated to high energies using the

renormalisation group equations (RGEs) should converge to some common value near the

scale MX . In the E6CHM an approximate unification of the SM gauge couplings can be

achieved if the right–handed top quark tc is entirely composite and the sector of weakly–

coupled elementary states involves [14]

(qi, dc
i , ℓi, ec

i ) + uc
α + q̄ + d̄c + ℓ̄ + ēc , (4)

3
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where α = 1, 2 and i = 1, 2, 3. In Eq. (4) we have denoted the left-handed lepton doublet

by ℓi and the right-handed charged leptons by ec
i
, while the extra exotic states q̄, d̄c, ℓ̄ and

ēc, have exactly opposite SU(3)C × SU(2)W × U(1)Y quantum numbers to the left-handed

quark doublets, right-handed down-type quarks, left-handed lepton doublets and right-handed

charged leptons, respectively. The set of elementary fermion states (4) is chosen so that

the weakly–coupled sector involves all SM fermions except the right–handed top quark and

anomaly cancellation takes place.

Using the one–loop RGEs one can find the value of α3(MZ) for which exact gauge cou-

pling unification takes place in the E6CHM

1

α3(MZ)
=

1

b1 − b2

[

b1 − b3

α2(MZ)
−

b2 − b3

α1(MZ)

]

, (5)

where bi are one–loop beta functions, with the indices 1, 2, 3 corresponding to the U(1)Y ,

SU(2)W and SU(3)C interactions. Since all composite states form complete SU(5) multiplets,

the strongly interacting sector does not contribute to the differential running determined by

(bi − b j) in the one–loop approximation. Then, it is rather easy to find that, for α(MZ) =

1/127.9 and sin2 θW = 0.231, exact gauge coupling unification within the E6CHM takes

place near MX ∼ 1015
− 1016 GeV, with α3(MZ) ≃ 0.109 . This estimate indicates that for

α3(MZ) ≃ 0.118 the SM gauge couplings can be reasonably close to each other at very high

energies around MX ≃ 1016 GeV.

The E6CHM implies that the dynamics of the strongly coupled sector gives rise to the

composite 10 + 5 multiplets of SU(5). These multiplets get combined with q̄, d̄c, ℓ̄ and ēc,

forming a set of vector–like states. The only exceptions are the components of the 10–plet that

correspond to tc, which survive down to the electroweak (EW) scale. In the simplest scenario

the composite 10+5 multiplets of SU(5) may stem from one 15–plet and two 6–plets (61 and

62) of SU(6). These SU(6) representations decompose under SU(3)C × SU(2)W × U(1)Y as

follows:

15 → Q =

(

3, 2,
1

6

)

,

tc
=

(

3∗, 1, −
2

3

)

,

Ec
=

(

1, 1, 1

)

,

D =

(

3, 1, −
1

3

)

,

L =

(

1, 2,
1

2

)

;

6α → Dc
α =

(

3̄, 1,
1

3

)

,

Lα =

(

1, 2, −
1

2

)

,

Nα =

(

1, 1, 0

)

,

(6)

where α = 1, 2. In Eq. (6) the first and second quantities in brackets are the SU(3)C and

SU(2)W representations, while the third ones are the U(1)Y charges. Because tc is ZB
2

-odd, all

components of the 15–plet should be odd under the ZB
2

symmetry. After the breakdown of

the SU(6) symmetry a 5–plet from the 15–plet and 5–plet from the 62 compose vector–like

states. This means that all components of 62 should be ZB
2

-odd. Hereafter the components of

61 multiplet are assumed to be ZB
2

–even.

In general all fermion states mentioned above gain masses which are larger than f . Here

we assume that N1 is considerably lighter than other fermion states and has a mass which is

somewhat smaller than f . The mixing between the SM singlet states N1 and N2 should be

suppressed because of the approximate ZB
2

symmetry.
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3 Baryon asymmetry generation

The breakdown of the SU(6) symmetry to its SU(5) subgroup near the scale f � 10 TeV gives

rise to eleven pNGB states that can be parameterised by

Ω
T
= Ω

T
0
Σ

T
= e

i
φ0√
15 f

(

Cφ1 Cφ2 Cφ3 Cφ4 Cφ5 cos
φ̃
√

2 f
+

√

3

10
Cφ0

)

,

C =
i

φ̃
sin

φ̃
√

2 f
, φ̃ =

√

3

10
φ2

0
+ |φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 + |φ5|2 ,

(7)

Ω
T
0 = (0 0 0 0 0 1) , Σ = eiΠ/ f , Π = Π

âT â .

where T â are broken generators of SU(6). The masses of all pNGB states tend to be consider-

ably lower than f . Thus these resonances are the lightest composite states in the E6CHM. The

set of pNGB states involves one real SM singlet scalar, φ0, one SU(2)W doublet H ∼ (φ1 φ2),

that corresponds to the SM–like Higgs doublet, as well as SU(3)C triplet of scalar fields

T ∼ (φ3 φ4 φ5). The collider signatures associated with the presence of the SM singlet

scalar, φ0, were examined in Ref. [34, 35].

The Lagrangian, that describes the interactions of the pNGB states, in the leading approx-

imation can be written as

LpNGB =
f 2

2

∣

∣

∣

∣

∣

DµΩ
∣

∣

∣

∣

∣

2

. (8)

The pNGB effective potential Ve f f (H, T, φ0) can be obtained by integrating out the heavy

resonances of the strongly coupled sector. It is induced by the interactions of the elementary

fermions and gauge bosons with their composite partners that violate the SU(6) symmetry.

In the E6CHM substantial tuning, at a level ∼ 0.01%, is needed to get v ≪ f and a 125 GeV

Higgs boson. In the framework of models similar to the E6CHM it was demonstrated that

there exists a part of the parameter space where the SU(2)W × U(1)Y gauge symmetry is

broken to U(1)em, whilst SU(3)C remains intact [36, 37]. In these models the SU(3)C triplet

of scalars, T , is substantially heavier than the SM–like Higgs boson.

Since the Higgs boson is a ZB
2

-even state, all other pNGB states should also be even

under the ZB
2

symmetry. As a consequence, the SU(3)C scalar triplet can decay into up and

down antiquarks. Because the fractions of compositeness of the first and second generation

quarks are very small the decay mode T → t̄b̄ has to be the dominant one. At the energies

E � f all baryon number violating operators are strongly suppressed. Thus baryon number is

conserved to a very good approximation and T manifests itself in the interactions with other

SM particles as a diquark, i.e. an SU(3)C scalar triplet with B = −2/3. At the LHC, the

SU(3)C scalar triplet can be pair produced resulting in the enhancement of the cross section

for the process pp→ TT̄ → tt̄bb̄.

In the E6CHM the baryon asymmetry can be generated via the out–of equilibrium decays

of N1, provided N1 is the lightest composite fermion in the spectrum. Because mT ≪ f the

decays N1 → T + d̄i and N1 → T ∗ + di are allowed, resulting in final states with baryon

numbers ±1. The Lagrangian, that describes the interactions of N1 and N2 with T and down-

type quarks, is given by

LN =

3
∑

i=1

(

g∗i1Tdc
i N1 + g

∗
i2Tdc

i N2 + h.c.

)

. (9)

In the exact ZB
2

symmetry limit, gi1 = 0. The approximate ZB
2

symmetry ensures that

|gi1| ≪ |gi2|.

5
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The process of the generation of the baryon asymmetry is controlled by the three CP

(decay) asymmetries

ε1, k =
ΓN1dk

− ΓN1d̄k

∑

m

(

ΓN1dm
+ ΓN1d̄m

) , (10)

where ΓN1dk
and ΓN1d̄k

are partial decay widths of N1 → dk + T ∗ and N1 → dk + T with

k,m = 1, 2, 3. These decay asymmetries vanish at the tree level because [38]

ΓN1dk
= ΓN1d̄k

=
3|gk1|2

32π
M1 . (11)

In Eq. (11) M1 is the Majorana mass of N1.

Nevertheless, non–zero contributions to the CP asymmetries may arise from the inter-

ference between the tree–level amplitudes of the N1 decays and the one–loop corrections to

them. Since T couples primarily to the third generation fermions, |g31| ≫ |g21|, |g11| and

|g32| ≫ |g22|, |g12|. This hierarchical structure of the Yukawa interactions implies that the

decay asymmetries ε1, 2 and ε1, 1 are much smaller than ε1, 3 and can be ignored in the lead-

ing approximation. Assuming that N1 is much lighter than other composite fermion states

including N2 and mT ≪ M1, so that mT can be neglected, the direct calculation of one–loop

diagrams gives

ε1, 3 ≃ −
1

(4π)

|g32|2√
x

sin 2∆ϕ , ∆ϕ = ϕ32 − ϕ31 , (12)

where x = (M2/M1)2, M2 is the Majorana mass of N2, g31 = |g31|eiϕ31 and g32 = |g32|eiϕ32 . The

decay asymmetry (12) vanishes if CP invariance is preserved, i.e. all Yukawa couplings are

real. The absolute value of the CP asymmetry |ε1, 3| attains its maximum when ∆ϕ = ±π/4.

In order to calculate the total baryon asymmetry induced by the decays of N1, one needs

to solve the system of Boltzmann equations that describe the evolution of baryon number

densities. Because the corresponding solution has to be similar to the solutions of the Boltz-

mann equations for thermal leptogenesis, the generated baryon asymmetry can be estimated

using an approximate formula [38]

Y∆B ∼ 10−3
(

ε1, 3η3

)

, (13)

where η3 is an efficiency factor, that varies from 0 to 1, and Y∆B is the baryon asymmetry

relative to the entropy density, i.e.

Y∆B =
nB − nB̄

s

∣

∣

∣

∣

∣

0

= (8.75 ± 0.23) × 10−11 . (14)

A thermal population of N1 decaying completely out of equilibrium without washout effects

would result in η3 = 1. However, washout processes reduce the generated baryon asymmetry

by the factor η3. The induced baryon asymmetry should be partially converted into lepton

asymmetry due to (B + L)–violating sphaleron interactions [39, 40]. Here we ignore these

processes.

In the strong washout scenario the efficiency factor η3 can be estimated as follows

η3 ≃ H(T = M1)/Γ3 ,

Γ3 = ΓN1d3
+ ΓN1d̄3

=
3|g31|2

16π
M1 , H = 1.66g

1/2
∗

T 2

MPl

,
(15)

6
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where H is the Hubble expansion rate and g∗ = nb+
7

8
n f is the number of relativistic degrees

of freedom in the thermal bath. In the SM g∗ = 106.75, while in the E6CHM g∗ = 113.75 for

T � f . Eqs. (15) indicate that the efficiency factor η3 increases with diminishing of |g31|. For

very small values of this coupling η3 becomes close to unity. For example, when |g31| ≃ 10−6

and M1 ≃ 10 TeV the efficiency factor η3 ≃ 0.25.

Figure 1. Logarithm (base 10) of the absolute value of the CP asymmetry ε1, 3 as a function of logarithm

(base 10) of ∆ϕ for |g32| = 1 (solid line) and |g32| = 0.1 (dashed line) in the case when g11 = g21 = g12 =

g22 = 0 and M2 = 10 · M1.

When η3 ∼ 0.1 − 1, the induced baryon asymmetry is determined by the CP asymme-

try ε1, 3. From Eqs. (12) it follows that for a given ratio M2/M1 the decay asymmetry ε1, 3

is set by |g32| and the combination of the CP–violating phases ∆ϕ but does not depend on

the absolute value of the Yukawa coupling g31. Since the Yukawa coupling of N2 to SU(3)C

scalar triplet T and b-quark is not suppressed by the ZB
2

symmetry, |g32| can be relatively

large, i.e. |g32| � 0.1. In Fig. 1 we explore the dependence of |ε1, 3| on ∆ϕ for |g32| = 0.1

and |g32| = 1. We fix (M2/M1) = 10. The maximum absolute value of ε1, 3 grows mono-

tonically with increasing of |g32|. The results presented in Fig. 1 demonstrate that the decay

asymmetry, ε1, 3, attains its maximum absolute value, ∼ 10−4 − 10−2, for ∆ϕ ≃ π/4. For

such large values of |ε1, 3| a phenomenologically acceptable baryon density can be obtained

only if η3 = 10−5 − 10−3. When η3 ∼ 0.1 − 1 and |g32| ≃ 0.1 a phenomenologically ac-

ceptable value of the baryon density, corresponding to ε1, 3 � 10−7 − 10−6 can be in-

duced if ∆ϕ is rather small, i.e. ∆ϕ � 0.01. Thus the appropriate baryon asymmetry can

be generated within the E6CHM even in the case when CP is approximately preserved.

A.W.T. was supported by the University of Adelaide and the Australian Research Council through the
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