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We propose a level-resolved protocol in a hybrid architecture for connecting a superconducting
qubit and a magnon mode contained within a microwave cavity (resonator) to generate the local and
global entangled states, enabling a wide range of applications in quantum communication, quantum
metrology, and quantum information processing. Exploiting the high-degree of controllability in such
a hybrid qubit-photon-magnon system, we derive effective Hamiltonians at the second- or the third-
order resonant points by virtue of the strong counter-rotating interactions between the resonator and
the qubit and between the resonator and the magnon. Consequently, we can efficiently generate the
Bell states of the photon-magnon and the qubit-magnon subsystems and the Greenberger-Horne-
Zeilinger state of the whole hybrid system. We also check the robustness of our protocol against
the environmental noise by the Lindblad master equation. Our work makes this hybrid platform of
high-degree of controllability a high-fidelity candidate for the realization of the maximally-entangled
multiple states.

I. INTRODUCTION

Hybrid quantum systems have attracted great atten-
tions due to their diversified applications in quantum
computing [1], quantum communications [2], and quan-
tum sensing [3]. During the past decade, the hybrid
quantum systems consisting of the collective spin exci-
tations in the ferromagnetic crystals have been applied
to novel quantum technologies [4–9] by virtue of the
long coherent-time of the magnet-spin ensemble. The
strong dipole-transition for efficiently coupling to the
microwave photons and phonons allows the construc-
tion of the hybrid magnon-photon, magnon-phonon, and
magnon-photon-phonon systems in both theoretical pro-
posals [10–12] and experimental demonstrations [13–16].
In more recent experiments [17, 18], a hybrid qubit-
photon-magnon system has been realized, opening a new
avenue to studying the intermediate transitions by the
interaction Hamiltonian of different constituents. It is
expected to have many interesting applications, includ-
ing providing a platform to generate hybrid entangled
states.
The entangled states [19] are essential ingredients for

extracting quantum advantage in the quantum commu-
nication protocols [20], such as quantum key distribu-
tion [21], quantum secret sharing [22], and quantum se-
cure direct communication [23]. Many quantum plat-
forms [24–28] and protocols for preparing and measur-
ing the entangled states have therefore been intensively
pursued for a long time [25, 29–35] and are still under
active investigation. The simplest and the most popular
maximally-entangled-states are Bell states involving only
two discrete systems [19, 36], classified to two groups, i.e.,

|ψ±〉 = (|01〉 ± |10〉)/
√
2 and |ϕ±〉 = (|00〉 ± |11〉)/

√
2.

Here |0〉 and |1〉 are respectively the ground and the ex-
cited states of a two-level system. The Bell states are
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fundamental and important in both quantum cryptogra-
phy [37, 38] and quantum teleportation [39]. In a recent
experiment [13], the single-excitation Bell states |ψ±〉 of
the photon-magnon system have been steadily generated
under the parity-time-symmetry broken condition. How-
ever, how to generate the double-excitation Bell states
|ϕ±〉 in a hybrid photon-magnon system is still an open
question. More generally, the maximally entangled states
for the N -partite discrete quantum systems, such as the
Greenberger-Horne-Zeilinger (GHZ) states [25, 29], i.e.,

(|0〉⊗N + |1〉⊗N )/
√
2 and the Werner (W) states [40, 41],

i.e., (|100 · · · 0〉 + |010 · · ·0〉 + · · · + |000 · · ·1〉)/
√
N , are

also of great practical importance. Note that the mul-
tiple GHZ states are natural extensions of the double-
excitation Bell states |ϕ±〉 and cannot be converted to
the W-states with nonzero probability [19].
This work focuses on generating the local Bell states

|ϕ±〉 and the global GHZ states in a tripartite hybrid sys-
tem consisting of a superconducting qubit and a magnon
mode embedded in a microwave cavity (see the diagram
in Fig. 1), taking advantage of the tunability of the tran-
sition frequencies of qubit [42] and magnon [4] and their
respective strong or ultrastrong couplings to the cavity
mode (resonator). Due to the counter-rotating terms
with no conservation of the excitation-number in the
Rabi interactions [43–45], it is possible to design an ef-
fective Hamiltonian as well as the generation protocol for
connecting states in the whole Hilbert space nearby the
desired multi-excitation resonant points. The effective
Hamiltonian for the interested indirect transitions can be
extracted using the high-order Fermi’s Golden rule [46–
50]. It states that if the shortest path connecting |i〉 and
|f〉 (two eigenstates of the free Hamiltonian) is an nth-
order process, then the effective coupling strength (in the
leading order) between them reads,

geff =
∑

m1m2...mn−1

Vfmn−1
...Vm2m1

Vm1i

(Ei − Emn−1
)...(Ei − Em1

)
, (1)

where Vm2m1
≡ 〈m2|V |m1〉 is the transition matrix ele-

http://arxiv.org/abs/2110.06531v1
mailto:jingjun@zju.edu.cn


2

ment of the interaction Hamiltonian and Ei is the eigen-
value of the ith eigenstate of the free Hamiltonian (with
no degeneracy).
The rest part of the work is organized as follows. In

Sec. II, we introduce the total Hamiltonian of the hy-
brid qubit-photon-magnon system. In Sec. III A, we show
that at a desired point, where the transition frequency of
the qubit is nearly resonant with the frequency sum of
the cavity and magnon modes, an effective Hamiltonian
can be constructed to describe a photon and a magnon
simultaneously excited by annihilating an atomic excita-
tion. This “three-wave-mixing” Hamiltonian is applied to
generate the double-excitation Bell states of the photon-
magnon subsystem in Sec. III B. And then in Sec. III C,
the fidelity of generation is numerically estimated with
experimental parameters. In Sec. IVA, the working point
of our protocol moves to the near-resonant point for the
transition frequency of the qubit and the detuning of the
photon and magnon modes, where one can construct an
effective Hamiltonian to simultaneously excite a qubit
and a magnon by one photon. Then we show that the
GHZ state of the whole hybrid system can be concisely
generated by a three-step scheme in Sec. IVB, whose fi-
delity under dissipation is evaluated in Sec. IVC. The
protocol in Sec. IVB is slightly modified to generate the
Bell state of the qubit-magnon subsystem in Sec. V. We
finally conclude this work in Sec. VI. The derivation de-
tails for the effective Hamiltonians in Secs. III A and IVA
can be found respectively in Appendices A and B.

II. MODEL HAMILTONIAN OF HYBRID

SYSTEM

The hybrid quantum model we considered in this work
consists of a superconducting qubit, a microwave cav-
ity/resonator and a ferromagnetic crystal in the Kittle
mode, as shown in Fig. 1. The interaction between
the qubit and the resonator is described by a general
Rabi model, and simultaneously the magnetostatic mode
(magnon) is coupled to the resonator via the magnetic
dipole interaction. Thus the Hamiltonian for the whole
system [17, 18, 45, 47] (~ ≡ 1) can be written as

H = H0 + V,

H0 = ωaa
†a+ ωmm

†m+ ωqσ+σ−,

V = g(a+ a†)(m+m†) +G(a+ a†)(σx cos θ + σz sin θ).
(2)

Here a(a†) and m(m†) are the annihilation (creation) op-
erators of the photon and magnon modes, respectively.
ωa and ωm are their respective eigen-frequencies. g is
the coupling strength between the magnon and the pho-
ton mode. The two levels of the qubit are labeled by
|g〉 and |e〉, indicating the ground and the excited states,
respectively. The Pauli operators for the qubit are then
written as σ+ ≡ |e〉〈g|, σ− ≡ |g〉〈e|, σx ≡ |e〉〈g|+ |g〉〈e|,
and σz ≡ |e〉〈e| − |g〉〈g|. We do not apply the rotating-
wave approximation to the interaction Hamiltonian V .

The angle θ parameterizes the amount of the longitudi-
nal and the transversal couplings between the qubit and
the resonator, which is adjustable and independent of the
coupling strength G. Arbitrary mixture of the longitu-
dinal and the transversal couplings has been realized in
the circuit-QED experiments [43, 44], where the coupling
strengths can reach the ultrastrong coupling regime.

FIG. 1. A tripartite hybrid system: a single-mode cavity
(resonator) is coupled to a superconducting qubit and a YIG
sphere (in the Kittel mode, a uniform magnetostatic mode)
with the coupling strengths G and g, respectively.

Our approach works in the dispersive regime of the hy-
brid model in Eq. (2), where the coupling strengths are
much smaller than the transition frequencies of the three
subsystems and their detunings, i.e., g,G≪ ωa, ωm, ωq,
|ωa − ωm|, |ωa − ωq|, |ωm − ωq|. However, it is crucial
to know precisely their respective ranges of validity. We
would apply the high-order Fermi’s Golden rule in Eq. (1)
based on the standard perturbation theory to obtain
the effective Hamiltonians at the near-resonant points in
charge of the desired Rabi oscillations, through which we
can generate the Bell states of the photon-magnon sub-
system and the GHZ states of the whole qubit-photon-
magnon system. For each effective Hamiltonian, a pair of
the effective coupling strength geff and the energy shift
δ in the leading order of g and G can be analytically
derived. In Appendices A and B, we will benchmark
the ranges of validity of the coupling strengths g,G by
comparing the analytical results of geff and δ by the ef-
fective Hamiltonian and their numerical simulation over
the whole Hilbert space.

III. GENERATING BELL STATE OF

PHOTON-MAGNON SUBSYSTEM

A. Effective Hamiltonian

In this section, we propose a protocol to generate the
double-excitation Bell state of photon-magnon subsys-
tem. The basic mechanism in this protocol is similar
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to the three-wave mixing schemes [51, 52] in the nonlin-
ear quantum optics. At a special point in the paramet-
ric space, the de-excitation of the superconducting qubit
gives rise to a magnon-photon pair. State transfer occurs
by the Rabi oscillation |e00〉 ≡ |e〉q|0〉a|0〉m ↔ |g11〉,
where |e00〉 and |g11〉 are two eigenstates of the free
Hamiltonian H0 in Eq. (2).

2.66 2.67 2.68 2.69 2.7
2.65

2.66

2.67

2.68

2.69

2.7

FIG. 2. Energy levels and the avoided level crossing for the
states |e00〉 and |g11〉, normalized by ωa and plotted as func-
tions of the qubit transition frequency ωq. The avoided level
crossings of these two eigenstates are distinguished by the
dark circle. Here the parameters are fixed as ωm = 1.7ωa,
θ = π/4, and g = G = 0.1ωa.

As shown in Fig. 2, the interaction Hamiltonian V in
Eq. (2) shifts the point of the avoided level crossing for
|e00〉 and |g11〉 from the exact double-resonant point by
δ, which satisfies ωq = ωa + ωm + δ. In Fig. 2, the eigen-
values En of both states are obtained by a standard nu-
merical diagonalization over the full Hamiltonian in a
truncated Hilbert space. A sufficiently large number of
energy eigenstates have been used to ensure that the re-
sult is not significantly affected by the truncation. The
avoided level crossing is distinguished with a black cir-
cle, demonstrating the nonlinear resonance between the
states |e00〉 and |g11〉 with an effective transition rate
geff . This phenomenon can be well described by the effec-
tive Hamiltonian up to the leading-order process involv-
ing all the coupling strengths, provided that g,G ≪ ωa,
ωm, |ωa − ωm|. The derivation details to obtain the ef-
fective Hamiltonian are provided in Appendix A. In the
subspace spanned by {|e00〉, |g11〉}, we have

Heff = geff (|e00〉〈g11|+ |g11〉〈e00|) , (3)

at the resonant point ωq = ωa + ωm + δ. We find that
the magnitudes of the energy shift

δ = −2G2 cos2 θ

(

1

ωm

+
1

2ωa + ωm

)

− 2g2

ωa + ωm

, (4)

and the coupling strength geff

geff =
2G2g sin(2θ)

ωm(ωa − ωm)
, (5)

are in the second and third orders of the coupling
strengths g and G, respectively. geff achieves the maxi-
mum value when θ = π/4. Then we stick to this sweet
spot in the following.
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FIG. 3. Time evolution of the state population of the ini-
tial state |e00〉 and the target state |g11〉 under various cou-
pling strengths to show the difference between the effective
Hamiltonian and the full Hamiltonian at the avoided-level-
crossing point shown in Fig. 2. (a) g = G = 0.1ωa, (b)
g = 0.1ωa, G = 0.05ωa, (c) g = 0.05ωa, G = 0.1ωa, and (d)
g = G = 0.05ωa.

Under the effective Hamiltonian in Eq. (3), a com-
pleted Rabi oscillation between the states |e00〉 and
|g11〉 could be accurately established with a period of
τ = π/|geff | as demonstrated by the yellow dotted lines
and the purple dash-dotted lines, respectively, in Fig. 3.
We also plot the time evolutions under the full Hamil-
tonian H in Eq. (2), where the blue solid lines and the
red dashed lines represent the state-populations of |e00〉
and |g11〉, respectively. Note all the Rabi oscillations are
ideal by the effective Hamiltonian, while the high-order
effect emerges in the numerical evaluations by the full
Hamiltonian.
Figures 3(a), (b), (c), and (d) vary with decreasing cou-

pling strengths of g and G while fixing the other param-
eters. In the first period of the Rabi oscillation, one can
observe that the maximum population of the state |g11〉
is about Pmax = 0.88, 0.91, 0.95, and 0.98, respectively
under these four situations (see the red-dashed lines).
The practical period of the Rabi oscillation between |e00〉
and |g11〉 becomes longer with smaller coupling strengths
of g and G and it is slightly greater than that determined
by the effective Hamiltonian. Similar to the maximum
population, it is found that the generation time of the
target state τ/2 approaches also the ideal result by the
effective Hamiltonian with decreasing coupling strengths.
The relative errors of the period are about 2.7%, 4.3%,
0.4%, and 0.3% for Figs. 3(a), (b), (c), and (d), respec-
tively. Roughly, the reduction of g has more impacts
than that of G. In general, we can estimate from the
four sub-figures that the analytical results from Heff be-
come gradually close to the numerical results from H by
decreasing the original coupling strengths g and G. It is
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interesting to find that the range of validity of the effec-
tive Hamiltonian has approached the ultrastrong regime
with g = G = 0.05ωa.

B. Generation protocol for Bell state

With the effective Hamiltonian in Eq. (3), one can gen-
erate the Bell state of the photon-magnon subsystem by
the following two-step protocol.
Step-1: The qubit frequency is adjusted to be far-off-

resonant with both the resonator and the magnon modes
(Note the latter two modes has already been set to be off-
resonant). The whole hybrid system is prepared in the
ground state of the free Hamiltonian, i.e., |g〉q|0〉a|0〉m =
|g〉|00〉. Then we perform a single-qubit gate operation
U on the qubit [53] and the operator reads,

U = ei
π

4
~σ·~n =

[

1 ie−iφ

ieiφ 1

]

, (6)

where ~σ ≡ (σx, σy, σz) and ~n = (cosφ, sinφ, 0). It rotates
the qubit into a superposed state

1√
2

(

|g〉+ ieiφ|e〉
)

, (7)

where the phase φ is tunable as desired and determines
the final local phase of the double-excitation Bell states.
For example, when φ = 0, π, the generated Bell state is
(|00〉 ± |11〉)/

√
2.

Step-2: Thus the state of the whole system is now

|ϕ(0)〉 = 1√
2

(

|g00〉+ ieiφ|e00〉
)

. (8)

Then we tune the qubit frequency to be nearly-resonant
with the sum of the frequencies of the photon and
magnon modes in an adiabatic way. As we shown in
Eq. (3), it will create an effective transition rate geff be-
tween the states |e00〉 and |g11〉, and the state |g00〉 is
unaffected. The system state then evolves with time as

|ϕ(t)〉 = 1√
2

[

|g00〉+ ieiφ cos(gefft)|e00〉

+ eiφ sin(gefft)|g11〉
]

.

(9)

After a time T = π/(2|geff |) (one half of the Rabi oscil-
lation), the state evolves to

|ϕ(T )〉 = 1√
2

(

|g00〉+ eiφ|g11〉
)

= |g〉 ⊗ 1√
2

(

|00〉+ eiφ|11〉
)

.

(10)

Then we tune the qubit-frequency faraway from the pre-
ceding point of the avoided level crossing and the Bell
state (|00〉 + eiφ|11〉)/

√
2 of the photon-magnon subsys-

tem can be survival due to the large detuning between
the resonator and the magnon mode.

C. The fidelity of Bell state under dissipation

The fidelity of the generated state can be studied us-
ing the master equation approach by taking into account
the dissipations from all parts of the hybrid system. By
applying the standard Markovian approximation to the
individual external environments (assumed to be at the
vacuum states), we arrive at the Lindblad master equa-
tion for the density operator ρ(t) of the hybrid system
consisting of the qubit, the resonator and the magnon
mode [36],

ρ̇(t) = −i[Hdiag, ρ]

+ κaL[Xa]ρ(t) + κmL[Xm]ρ(t) + γL[S−]ρ(t).
(11)

Here Hdiag indicates that the full Hamiltonian H is now
expressed by its eigenvectors |En〉’s. κa, κm, and γ are
the dissipation rates for the resonator, the magnon, and
the qubit, respectively. And the superoperator L[O] is
defined as

L[O]ρ ≡ 1

2

(

2OρO† −O†Oρ− ρO†O
)

. (12)

Here O = Xa, Xm, S− are the dressed lowering operators,
defined respectively in terms of their bare counterparts
o = a,m, σ− as

O ≡
∑

En>Em

〈Em|(o+ o†)|En〉|Em〉〈En|. (13)

To simplify the robustness estimation of our protocol
but with no loss of generality, we assume all of the de-
coherence rates to be in the same order of magnitude
κa = κm = γ = κ. It is consistent with the relative deco-
herence rates obtained in recent experiments [17, 18, 44],
i.e., κa/ωa ∼ 10−6 − 10−5, κm/ωm ∼ 10−6 − 10−5, and
γ/ωq ∼ 10−6 − 10−5.
The state-generation fidelity F is defined as F (t) =

〈ϕ(t)|ρ|ϕ(t)〉, where |ϕ(T )〉 is the target state. Here the

phase φ is set as zero, then |ϕ(T )〉 = (|00〉+ |11〉)/
√
2.

In Fig. 4(a) and (b), we demonstrate and compare the
generation fidelities F (T ) of the Bell state with no de-
coherence (under the full Hamiltonian rather than the
effective Hamiltonian) and that with dissipation (under
the Lindblad master equation). To be consistent with the
dynamics in Fig. 3, it is shown in Fig. 4(a) that the gen-
eration fidelity is enhanced when the coupling strengths
g and G are reduced. One can see that the fidelity ap-
proaches 0.95 when both the coupling strengths g and
G are reduced to about 0.05ωa. This observation sup-
ports again the validity of our effective Hamiltonian. In
contrast, a smaller coupling strength does not always
give rise to a higher fidelity. As shown in Fig. 4(b), it
is found that the generation fidelity is about 0.77 un-
der the coupling strengths g = G = 0.05ωa, and about
0.90 when g = G = 0.1ωa. A compromise in terms of
the coupling strength in fidelity is expected due to the
fact that the period of the desired Rabi oscillation is in-
versely proportional to the coupling strengths and the
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FIG. 4. The final fidelity F (T ) in the parametric space of the
coupling strengths g and G under (a) κa = κm = γ = 0 and
(b) κa = κm = γ = 10−5ωa. The other parameters are fixed
as ωm = 1.7ωa and θ = π/4.

dissipation becomes more destructive under a longer evo-
lution time. A complete scanning over the parametric
space demonstrates a remarkable working regime for the
generation of the Bell state: 0.07 < g/ωa < 0.13 and
0.05 < G/ωa < 0.1, where we have F > 0.9.

0 0.25 0.5 0.75 1
0.2

0.4

0.6

0.8

1

FIG. 5. Time evolution of the fidelity by the master equa-
tion (11) under different dissipation rates. The other param-
eters are fixed as ωm = 1.7ωa, G = g = 0.1ωa, and θ = π/4.

We then pick up a pair of g and G to plot the fidelity
dynamics under different dissipation rates in Fig. 5. One
can observe that the protocol works well for κ ≤ 10−5ωa,

producing the desired Bell state with a fidelity over 0.90,
close to 0.93 in the situation with no decoherence. The
fidelity F can be maintained above 0.78 even when κ is
enhanced to 10−4ωa. It means that our protocol is robust
even when all the decoherence channels of the hybrid
system are simultaneously switched on.

IV. GENERATING GHZ STATE OF

QUBIT-PHOTON-MAGNON SYSTEM

A. Effective Hamiltonian

This section is devoted to generating the GHZ state
of the whole hybrid system, which shares the same key
step or basic mechanism with the protocol for generat-
ing the Bell state in Sec. III A. At the desired point of
the avoided level crossing, one can prepare the “excited”
state |e11〉 ≡ |e〉q|1〉a|1〉m from |g20〉, where the annihi-
lation of one photon excites the qubit and the magnon
mode simultaneously.

1.4 1.42 1.44 1.46
4.78

4.8

4.82

4.84

FIG. 6. Energy levels and the avoided level crossing for
|g20〉 ↔ |e11〉, normalized by ωm and plotted as functions
of the qubit transition frequency ωq. Here the parameters are
fixed as ωa = 2.4ωm, g = G = 0.1ωm, and θ = π/4.

In Fig. 6, the avoided level crossing for |g20〉 and |e11〉
is distinguished in the dark circle, demonstrating an ef-
fective transition rate |g′eff |. The energy shift ∆ between
the avoided-level-crossing point and the exact double-
resonant point arises from the interaction Hamiltonian
V and then defined by ωq = ωa − ωm +∆. According to
Appendix B, the effective Hamiltonian reads,

H ′
eff = g′eff (|e11〉〈g20|+ |g20〉〈e11|) , (14)

with the effective coupling strength

g′eff = −
√
2G2g sin(2θ)(ωa + 3ωm)

ωaωm(ωa + ωm)
. (15)

And the energy shift reads

∆ = 4G2 cos2 θ

(

1

ωm

− 1

2ωa − ωm

)

+
2g2

ωa − ωm

. (16)
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FIG. 7. Time evolution of the state population of the ini-
tial state |g20〉 and the target state |e11〉 under various cou-
pling strengths to show the difference between the effective
Hamiltonian and the full Hamiltonian at the avoided-level-
crossing point shown in Fig. 6. (a) g = G = 0.1ωm, (b)
g = 0.1ωm, G = 0.05ωm, (c) g = 0.05ωm, G = 0.1ωm, and (d)
g = G = 0.05ωm.

Under the effective Hamiltonian in Eq. (14), a com-
pleted Rabi oscillation between states |g20〉 and |e11〉
could be accurately established with a period of τ =
π/|g′eff | as demonstrated by the yellow dotted lines and
the purple dash-dotted lines, respectively in Fig. 7. To es-
timate the range of validity of the effective Hamiltonian,
we also present the time evolutions under the full Hamil-
tonianH in Eq. (2), where the blue solid lines and the red
dashed lines indicate the states populations for |g20〉 and
|e11〉, respectively. In Figs. 7(a), (b), (c), and (d), one
can observe that the maximum population of the state
|e11〉 in the first period of Rabi oscillation is gradually en-
hanced with the decreasing coupling strengths of g and G
while fixing the other parameters, i.e., Pmax = 0.94, 0.95,
0.96, and 0.98, respectively. While the relative errors of
the period between the effective Hamiltonian and the to-
tal Hamiltonian have no clear dependence on the coupling
strengths. It indicates that our estimation over the effec-
tive coupling rate |g′eff | for the transition |e11〉 ↔ |g20〉
in Fig. 6 is not as accurate as that for the transition
|e00〉 ↔ |g11〉 in Fig. 2.

B. Generation protocol for GHZ state

With the effective Hamiltonian in Eq. (14), one can
generate the GHZ state for the whole qubit-photon-
magnon system by the following three-step protocol.

Step-1: The transition frequency of the superconduct-
ing qubit is tuned to be far-off-resonant with those for
both photon and magnon modes. And the whole system
is initially at the ground state of the free Hamiltonian,
i.e., in the state |g〉q|0〉a|0〉m = |g〉|00〉. Then we rotate

the qubit state into a superposed state

1√
2

(

|g〉 − eiφ|e〉
)

, (17)

with a single-qubit gate

U = ei
π

4
~σ·~n =

[

1 −e−iφ

−eiφ 1

]

, (18)

where ~n = (sinφ, cosφ, 0). The phase φ is tunable as
desired and determines the final local phase in the GHZ
states (|g00〉+ eiφ|e11〉)/

√
2.

Step-2: The state of the whole system is thus written
as

|ϕ′(0)〉 = 1√
2

(

|g00〉 − eiφ|e00〉
)

. (19)

Then we tune the qubit frequency adiabatically into the
nearly-two-photon resonance with the resonator mode,
namely, ωq = 2ωa + δ̃. Note the magnon mode is far off-
resonant from them. In this case, the full Hamiltonian of
the system in Eq. (2) turns out to describe a two-photon
Jaynes-Cummings model [36],

H̃eff = g̃eff (|e00〉〈g20|+ |g20〉〈e00|) , (20)

where g̃eff = −
√
2G2 sin(2θ)/ωa and δ̃ = −2G2/ωa −

2g2/(ωa + ωm) + 2g2/(ωa − ωm) could also be directly
obtained by the high-order Fermi’s Golden rule given in
Eq. (1) or the standard perturbation method in Eq. (A1).

The state |g00〉 is not influenced by H̃eff , and the state
|e00〉 evolves with time as

|ϕ′(t)〉 = 1√
2

[

|g00〉 − eiφ cos(g̃efft)|e00〉

+ ieiφ sin(g̃efft)|g20〉
]

.

(21)

After a time T ′ = π/|2g̃eff |, the state becomes

|ϕ′(T ′)〉 = 1√
2

(

|g00〉+ ieiφ|g20〉
)

. (22)

Step-3: We then tune the qubit frequency into the
near-resonance with the detuning between the photon
and magnon modes, i.e., the avoided-level-crossing point
shown in Fig. 6: ωq = ωa − ωm + ∆. Then driven by
Eq. (14), the state of the hybrid system evolves as

|ϕ′(T ′ + t)〉 = 1√
2

[

|g00〉+ ieiφ cos(g′efft)|g20〉

+ eiφ sin(g′efft)|e11〉
]

.

(23)

After a time T = π/(2|g′eff |), it turns out to be

|ϕ′(T ′ + T )〉 = 1√
2

(

|g00〉+ eiφ|e11〉
)

. (24)

Then we tune the qubit faraway from the resonant point
and the GHZ state (|g00〉 + eiφ|e11〉)/

√
2 can be main-

tained for the transition frequencies of the three subsys-
tems are now far-off-detuning from each other.
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C. The fidelity of GHZ state under dissipation

The generation fidelity of the GHZ state can be
also studied using the standard Lindblad master equa-
tion (11). The fidelity is defined as F (t) = 〈ϕ(T ′ +

t)|ρ|ϕ(T ′ + t)〉 with |ϕ(T ′ + T )〉 = (|g00〉 + |e11〉)/
√
2

in Eq. (24) and φ = 0.

FIG. 8. The final fidelity F (T ) in the parametric space of the
coupling strengths g and G under (a) κa = κm = γ = 0 and
(b) κa = κm = γ = 10−5ωm. The other parameters are fixed
as ωa = 2.4ωm and θ = π/4.

In Fig. 8(a) and (b), we demonstrate and compare the
final fidelity F (T ) of the GHZ state with no decoher-
ence and that under the simultaneous dissipations from
qubit, resonator, and magnon. In Fig. 8(a), one can ob-
serve that a high-fidelity of state-generation can be main-
tained when the coupling strengths g and G are reduced,
being consistent with the Rabi oscillations in Fig. 7. The
fidelity is greater than 0.95 for the coupling strengths
g,G < 0.2ωm and is even close to 0.98 when g = 0.05ωm

and G = 0.05ωm. This justifies our effective Hamiltonian
in Eq. (14). In the presence of the dissipation, however,
the dependence of the fidelity on the coupling strengths
in Fig. 8(b) is not monotonic as shown in Fig. 8(a). For
example, when g = G = 0.05ωm, the generation fidelity
is about 0.70; in contrast, when g = G = 0.1ωm, it is
over 0.95. During the long-time evolution induced by
small coupling strengths, the effect from decoherence on
the fidelity will destroy the fidelity of the final GHZ state.
When 0.1 ≤ g/ωm ≤ 0.17 and 0.1 ≤ G/ωm ≤ 0.17, we
have an optimized regime with F > 0.9.

0 0.25 0.5 0.75 1
0.2

0.4

0.6

0.8

1

FIG. 9. Time evolution of the fidelity of the hybrid GHZ state
under the master equation (11) under different decoherence
rates. Here the parameters are fixed as ωa = 2.4ωm, G = g =
0.1ωm and θ = π/4.

In Fig. 9, we present the dynamics of the generation
fidelity with a fixed pair of g and G. One can observe
that the protocol for the hybrid system works well for κ ≤
10−5ωm, producing a global GHZ state with a fidelity
over 0.95, close to 0.98 in the ideal situation with no
decoherence. It decreases to 0.62 when κ is enhanced to
10−4ωm. The global GHZ state is therefore less robust
than the local Bell state.

V. DISCUSSION

After a minor modification, the protocol for GHZ state
in Sec. IVA can be immediately applied to generate the
double-excitation Bell state of the qubit-magnon subsys-
tem. It is still of a three-step scheme. Step-1 remains in-
variant, i.e., the whole system again starts from Eq. (17):

|ϕ′(0)〉 = 1√
2

(

|g〉q − eiφ|e〉q
)

|0〉a|0〉m. (25)

Step-2: We now tune the qubit frequency to be single-
photon resonant with the resonator mode instead of the
double-photon resonance as in Sec. IVB. Around this
point, the ground state |g00〉 holds and the state |e00〉
undergoes a Rabi oscillation with an effective transition
rate G. Then after an evolution time T ′ = π/(2G), the
system state evolves into

|ϕ′(T ′)〉 = 1√
2

(

|g00〉+ ieiφ|g10〉
)

. (26)

Step-3: We then again tune the qubit frequency to sat-
isfy ωq = ωa−ωm+∆, which is the avoided-level-crossing
point for the states |g10〉 and |e01〉. The effective Hamil-
tonian becomes g′eff(|g10〉〉e01| + |e01〉〉g10|). Although
formally it seems almost the same as Eq. (14), here g′eff
is yet not the same as Eq. (15) since the transition paths
as well as the transition rates connecting |g10〉 and |e01〉
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are not the same as those connecting |g20〉 and |e11〉. In
the current case, it is found that

g′eff = − 2G2g sin(2θ)

ωm(ωa + ωm)
. (27)

And after a time T = π/(2|g′eff |), the state in Eq. (26)
becomes

|ϕ′(T ′ + T )〉 = 1√
2

(

|g00〉+ eiφ|e01〉
)

, (28)

which is the desired Bell state for the qubit-magnon sub-
system, since the middle state for the resonator is now
separable. At this moment, one can tune the qubit fre-
quency faraway from the resonant point and then the Bell
state (|g0〉+ eiφ|e1〉)/

√
2 can be maintained.

VI. CONCLUSION

The protocols for generating local and global entan-
gled states we proposed can be performed in a hybrid
setup consisting of a single superconducting qubit, a mi-
crowave resonator, and a YIG sphere (magnon) [17, 18].
The resonator is simultaneously strongly coupled with
the magnon via the magnetic dipole interaction, and
with the qubit via a general Rabi interaction. In re-
cent experiments [17, 18, 44], the coupling strength be-
tween photon and qubit G/2π ≈ 120 MHz, the coupling
strength between photon and magnon g/2π ≈ 20 MHz,
and the transition frequencies of photon mode, magnon
mode and qubit are almost in the same order of GHz.
Thus the generation time T of our protocols is nearly
about 0.1 ∼ 10µs. Note our target entangled state is
of a “discrete-variable” type rather than a “continuous-
variable” one in Ref. [12]. Our study is of interested in
pursuit of the entangled states with the counter-rotating
interaction and of importance to control the quantum
state in a level-resolved hybrid system.

In conclusion, we have presented a concise protocol
for the deterministic generation of local Bell state of the
photon-magnon or the qubit-magnon subsystems, and
global GHZ state of the whole qubit-photon-magnon sys-
tem. Our protocol relies on the effective Hamiltonian at
the avoided-level-crossing points, which reserves the ef-
fects of the counter-rotating interactions and the leading-
order contributions of the state transitions. By properly
tuning the transition frequency of the superconducting
qubit, various scenarios of “three-wave-mixing” relevant
to either double-excitation Bell state or GHZ state are
constructed. Moreover, the generation fidelities of these
entangled states are numerically estimated with the stan-
dard Lindblad master equation and our protocol is found
to be robust against the external dissipation noises.
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Appendix A: Effective Hamiltonian for generating

Bell state of photon-magnon system

The interaction Hamiltonian V in Eq. (2) including
the photon-magnon coupling and the general Rabi inter-
action between qubit and resonator can be regarded as
a perturbation provided that g,G≪ ωa, ωm, |ωa − ωm|,
while the results are found to have a broader range of
validity in terms of coupling strength. The existence of
V gives rise to nonzero shifts of the eigenstructure of the
unperturbed Hamiltonian H0 in Eq. (2). To the second
order of g,G, the shift of the ith eigenstate |Ei〉 is given
by

ǫ =
∑

n6=i

VinVni
Ei − En

, (A1)

where Vni ≡ 〈En|V |Ei〉 and En is the nth eigenenergy.
Our protocol to generating the Bell state of the photon-
magnon subsystem is based on the “three-wave mixing”
of |e00〉 ≡ |e〉q|0〉a|0〉m ↔ |g11〉, which consists of 12
third-order paths as the leading-order contribution as
plotted in Fig. 10. Due to the high-order Fermi’s Golden
rule in Eq. (1) or the standard perturbation theory [48],
the third-order effective coupling strength between any
eigenstates |i〉 and |j〉 of the unperturbed Hamiltonian
H0 is given by

geff =
∑

n,m 6=i,j

VjnVnmVmi

(Ei − En)(Ei − Em)
. (A2)

Consequently, the effective Hamiltonian in the inter-
ested subspace spanned by {|e00〉, |g11〉} can be ex-
pressed as

Heff = (ωq + ǫ1)|e00〉〈e00|+ (ωa + ωm + ǫ2)|g11〉〈g11|
+ geff (|e00〉〈g11|+ |g11〉〈e00|) ,

(A3)
where ǫ1 and ǫ2 are the energy shifts of the states |e00〉
and |g11〉, respectively, due to the interaction Hamilto-
nian V , and geff is the effective coupling strength (transi-
tion rate). These three coefficients are to be determined
by summarizing all the leading-order contributions from
the paths connecting the initial state |e00〉 and the target
state |g11〉 in Eqs. (A1) and (A2).
We first consider the energy shift ǫ1 of state |e00〉.

Summarizing all paths from |e00〉 to itself through one
intermediate state, i.e., |e00〉 → |e10〉 → |e00〉 in
Fig. 10(a), |e00〉 → |g10〉 → |e00〉 in Fig. 10(b), and
|e00〉 → |e11〉 → |e00〉 in Fig. 10(c), we can obtain the
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FIG. 10. All 12 third-order (leading-order) paths connecting
the states |e00〉 and |g11〉. (a), (b), and (c) are distinguished
by the first intermediate state. Solid lines represent the cou-
pling between photon and magnon, and dashed (dotted) lines
mark the coupling between photon and qubit via the transi-
tion induced by σx (σz) in the general Rabi model.

second-order energy correction (shift) ǫ1 for the state
|e00〉 according to Eq. (A1):

ǫ1 =
G2 sin2 θ

−ωa

+
G2 cos2 θ

ωq − ωa

− g2

ωa + ωm

. (A4)

Similarly, we have the energy shift

ǫ2 =
G2 sin2 θ

−ωa

+
G2 cos2 θ

ωa − ωq

− 2G2 cos2 θ

ωq + ωa

− 3g2

ωa + ωm

, (A5)

for the state |g11〉. Note a completed Rabi oscillation
between |e00〉 and |g11〉 demands an exact resonant con-
dition in Eq. (A3), i.e., the diagonal terms in the first line
ofHeff becomes the identity operator in the subspace. We

thus have ωq + ǫ1 = ωa + ωm + ǫ2 and then

δ ≡ ωq − ωa − ωm = ǫ2 − ǫ1

= −2G2 cos2 θ

(

1

ωq − ωa

+
1

ωa + ωq

)

− 2g2

ωa + ωm

= −2G2 cos2 θ

(

1

ωm

+
1

2ωa + ωm

)

− 2g2

ωa + ωm

− 2G2 cos2 θ

[

1

ω2
m

+
1

(2ωa + ωm)2

]

δ +O(δ2)

= A−Bδ +O(δ2),

where

A ≡ −2G2 cos2 θ

(

1

ωm

− 1

2ωa + ωm

)

− 2g2

ωa + ωm

,

B ≡ 2G2 cos2 θ

[

1

ω2
m

+
1

(2ωa + ωm)2

]

,

and O(δ2) represents all the higher orders of δ than the
first order in Taylor expansion. Then δ is consistently
solved as δ = A/(1+B) up to the second-order correction.
Note B ≈ O(G2/ω2

a), so that up to the second-order of
coupling strengths g and G, we have

δ = −2G2 cos2 θ

(

1

ωm

+
1

2ωa + ωm

)

− 2g2

ωa + ωm

. (A6)
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FIG. 11. (a) and (b), Comparison between the numerically
evaluated energy shift |δ| (in units of ωa) from the full Hamil-
tonian (blue dots) and the corresponding analytical results
in Eq. (A6) from the third-order perturbation theory (orange
solid line), respectively. (c) and (d), Comparison between
the numerically evaluated effective coupling strength 2|geff |
(in units of ωa) (blue dots) and the corresponding analytical
results in Eq. (A7) from the third-order perturbation the-
ory (orange solid line), respectively. Here ωm = 1.7ωa and
θ = π/4 and in (a) and (c) G = 0.1ωa and in (b) and (d)
g = 0.1ωa.

Next we consider the leading-order contributions to the
effective coupling strength geff from all the 12 three-order
paths in Fig. 10 connecting |e00〉 and |g11〉, e.g., |e00〉 →
|e10〉 → |g00〉 → |g11〉. The transition rate for each path
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up to the third order of the coupling strengths g and G
can be obtained by virtue of Eq. (A2). In Fig. 10(a), we
have

g1 =
G2g sin(2θ)

ωa(2ωa + ωm)
,

g2 =
G2g sin(2θ)

2ωaωm

,

g3 =
G2g sin(2θ)

ωa(2ωa − ωq)
≈ G2g sin(2θ)

ωa(ωa − ωm)
,

g4 = −G
2g sin(2θ)

2ωaωq

≈ − G2g sin(2θ)

2ωa(ωa + ωm)
.

In Fig. 10(b), we have

g5 = − G2g sin(2θ)

(ωq − ωa)(ωq − 2ωa − ωm)
≈ G2g sin(2θ)

ωaωm

,

g6 = − G2g sin(2θ)

(ωq − ωa)(ωq − ωm)
≈ −G

2g sin(2θ)

2ωaωm

,

g7 = − G2g sin(2θ)

(ωq − ωa)(ωq − 2ωa − ωm)
≈ G2g sin(2θ)

ωm(ωa − ωm)
,

g8 = − G2g sin(2θ)

2(ωq − ωa)ωq

≈ − G2g sin(2θ)

2ωm(ωa + ωm)
.

And in Fig. 10(c), we have

g9 =
G2g sin(2θ)

(ωa + ωm)(2ωa + ωm)
,

g10 =
G2g sin(2θ)

2ωm(ωa + ωm)
,

g11 =
G2g sin(2θ)

(ωa + ωm)(ωq − 2ωa − ωm)
≈ − G2g sin(2θ)

ωa(ωa + ωm)
,

g12 =
G2g sin(2θ)

2(ωa + ωm)(ωq − ωm)
≈ G2g sin(2θ)

2ωa(ωa + ωm)
.

The total effective coupling strength therefore reads

geff =

12
∑

k=1

gk =
2G2g sin(2θ)

ωm(ωa − ωm)
. (A7)

Eventually, the effective Hamiltonian in Eq. (A3) be-
comes

Heff = geff (|e00〉〈g11|+ |g11〉〈e00|) . (A8)

Both δ and geff can also by numerically evaluated in
the whole Hilbert space of the full Hamiltonian. They
can be shown around the avoided-level-crossing points in
Fig. 2. To demonstrate the ranges of validity of Eqs. (A6)
and (A7), the analytical and numerical results for their
magnitudes are directly compared in Fig. 11 as functions
of the normalized coupling strengths g/ωa and G/ωa, re-
spectively. In Figs. 11(a) and (b), one can observe that
the energy shifts do match with their numerical results
for the normalized coupling strengths g,G ≤ 0.15ωa. In
Figs. 11(c) and (d), the effective coupling strengths are

expected to provide good description for the normalized
coupling strengths g ≤ 0.1ωa and G ≤ 0.12ωa. For an
even larger g and G, higher-order contributions have to
be considered to capture the whole effect from the inter-
action Hamiltonian V modifying the eigenstates of the
bare system. Note Eqs. (A6) and (A7) provide up to the
second-order and the third-order expressions for δ and
geff , respectively.

Appendix B: Effective Hamiltonian for generating

GHZ state of the whole hybrid system

This Appendix contributes to generating the GHZ
state of the whole hybrid system by virtue of an ef-
fective Hamiltonian that yields the Rabi oscillation be-
tween the desired states |e11〉 and |g20〉. Similar to Ap-
pendix A, we also need to find out all the paths connect-
ing these two states by the full Hamiltonian (2) in the
leading-order. And then we can determine both the en-
ergy shifts and the effective transition rate for them. In
contrast to the “three-wave mixing” applied in the gener-
ation of the Bell state of the photon-magnon subsystem,
here the procedure occurs around the near-resonant point
ωa ≈ ωq + ωm.
The effective Hamiltonian in the subspace spanned by

{|e11〉, |g20〉} can be also expressed by

H ′
eff = (ωq + ǫ′1)|e11〉〈e11|+ (ωa − ωm + ǫ′2)|g20〉〈g20|

+ g′eff (|e11〉〈g20|+ |g20〉〈e11|) ,
(B1)

where ǫ′1 and ǫ′2 are the individual energy shifts in-
duced by the second-order transitions for the states |e11〉
and |g20〉 to themselves, respectively, such as |e11〉 →
|e21〉 → |e11〉, and g′eff is the effective coupling strength
from |e11〉 to |g20〉 in the leading order.
Summarizing all paths from |e11〉 to |e11〉 through an

intermediate state, one can obtain the second-order en-
ergy correction (shift) ǫ′1 according to Eq. (A1):

ǫ′1 = −G
2 sin2 θ

ωa

− G2 cos2 θ

2ωa − ωm

− 2G2 cos2 θ

ωm

− 3g2

ωa + ωm

.

(B2)
In the same way, we have the energy shift ǫ′2

ǫ′2 = −G
2 sin2 θ

ωa

+
2G2 cos2 θ

ωm

− 3G2 cos2 θ

2ωa − ωm

+
2g2

ωa − ωm

− 3g2

ωa + ωm

(B3)

for the state |g20〉. These two shifts are required to fill
the gap between ωa and ωq+ωm to facilitate a completed
Rabi oscillation between |e11〉 and |g20〉. Thus up to the
second-order of the coupling strengths g and G, we have

∆ ≡ ωq − ωa + ωm = ǫ′2 − ǫ′1

≈ 4G2 cos2 θ

(

1

ωm

− 1

2ωa − ωm

)

+
2g2

ωa − ωm

.
(B4)
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FIG. 12. (a) and (b), Comparison between the numerically
evaluated energy shift |∆| (in units of ωm) from the full Hamil-
tonian (blue dots) and the corresponding analytical results in
Eq. (B4) from the third-order perturbation theory (orange
solid line), respectively. (c) and (d), Comparison between
the numerically evaluated effective coupling strength 2|g′eff |
(in units of ωm) (blue dots) and the corresponding analytical
results in Eq. (B5) from the third-order perturbation the-
ory (orange solid line), respectively. Here ωa = 2.4ωm and
θ = π/4 and in (a) and (c) G = 0.1ωm and in (b) and (d)
g = 0.1ωm.

Next we consider all the leading-order contributions
to the effective coupling strength connecting |g20〉 and

|e11〉, e.g., |g20〉 → |g01〉 → |e00〉 → |e11〉. By virtue
of Eq. (A2) and collecting all 18 paths, one can get the
effective coupling strength

g′eff = −
√
2G2g sin(2θ)(ωa + 3ωm)

ωaωm(ωa + ωm)
(B5)

up to the third order of the coupling strengths g and
G. Thus the effective Hamiltonian in Eq. (B1) can be
eventually written as

H ′
eff = g′eff (|e11〉〈g20|+ |g20〉〈e11|) . (B6)

Both ∆ and g′eff , as shown around the avoided-level-
crossing point in Fig. 6, can be justified by comparing the
preceding analytical results and the numerical simulation
over the whole Hilbert space. In Fig. 12, their magni-
tudes are plotted as functions of the normalized coupling
strengths g/ωm or G/ωm. In Figs. 12(a) and (b), it is
demonstrated that the energy shifts in Eq. (B4) describe
well the numerical results at least for the normalized cou-
pling strengths g,G ≤ 0.2ωm, which are definitely of the
ultrastrong coupling regime. While in Figs. 12(c) and
(d), one can see that the effective coupling strengths yield
perfect results for the normalized interaction strengths
g/ωm ≤ 0.1 and G/ωm ≤ 0.15. For an even larger g
and G, higher-order contribution has to be considered to
capture the whole effect from the interaction Hamiltonian
modifying the eigenstructure of the bare system.
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