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Generation of Bessel Functions on High Speed
Computers

The generation of values of sets of functions such as the Bessel functions

Jnix) and Ynix) is a problem which one encounters frequently in numerical cal-

culations. The present paper is concerned with describing a method which has

been found particularly useful on high speed computers. The basic idea is due to

J. C. P. Miller and is described in detail [as applied to the Bessel functions /„(*)]

in the introduction to the second volume [1] of Bessel functions published by

BAAS. The tables in the BA volume were computed by hand as were the tables by

Fox [2]. However, the method is particularly suited to large scale computers. In

preparing a general purpose routine to compute J„ix) and Y„ix) one is faced with

various obstacles. The power series representation of Jnix) is useful for values of

x which are not too large. In addition to the slowness of convergence the form of

Ynix) becomes complicated. The asymptotic expansions of J„ix) and Ynix) are

useful when x is large with respect to re. In the regiqn where both re and x are large

neither of these representations is useful and a third form must be used. It is clear

that any program which employs these representations and which should be

generally useful must automatically choose the proper form for computation. The

method of Miller avoids these difficulties and provides a simple algorithm not only

for Jnix) but for many other functions with a similar behavior.

Specifically, the method is as follows (the theory supporting the method is

given in [1], p. xvii):

1. Choose k larger than the greater of re or x, assume Jk+\ = 0, Jk = a ^ 0,

where a is some arbitrarily chosen constant.

2. If z = 1/x, generate the sequence Jk-i, Jk~2, • • ■ , Ji, Jo from the recur-

rence relation

J p—i = 2pzJ p — Jp+i

starting with p = k. If k is chosen sufficiently large we will obtain Jp = cJp for

desired values of p ranging from p = 0 to p = re.

3. To determine the constant c use the functional relation

CO

Jo   +   2¿_, Jim   =   1.
m=l

The choice of k offers no difficulty since the calculation may be done iteratively.

Thus, starting with a value of k > max (re, x) we perform the calculations in (2)

and (3) once and then repeat with k increased by a fixed amount. The results ob-

tained are compared in accordance with a preassigned tolerance and the process

is repeated until the criteria for acceptance are satisfied. In practice, if the values

of Jp are desired for p = 0, 1, • • • , « the comparison need only be made at

p = w. It is advisable to employ floating point arithmetic and choose a as small

as possible.

4. To generate the functions Ynix) we employ the following representation

for Yoix),

Yoix) = (2/t) w{*S + T} + ,¿*=!o-a]
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where y is Euler's constant. We note that the series part here employs the same

values Jik as occur in the calculation of the normalization constant c.

5. Compute Fi(x) from the relation

7l(x)Fo(x) - 7o(x)F1(x) = 2/ttx.

6. Generate Fp(x) in a forward direction for p = 1, 2, • • • , w — 1 from the

recurrence relation

Fp+1 = 2pzYp - F,_i.

The method may be employed in a similar manner for other sets of functions. In

the following we outline the procedure for some of the functions for which it may

be employed.

Modified Bessel Functions 7n(x) awo" Kn{x). Here the recurrence relation

(descending order) for 7n(x) is

7p_i = 2pzlp + Ip+i

while the normalization can be obtained from the relation

7o + 2 £ 7m = e*.
m—l

While there is an analogous relation for Ko(x) corresponding to that for Fo, the

possible loss of significant digits makes it unfeasible to use. To compute K0(x) the

integral representation

Ka(x) =   /    exp ( — x cosh u) du
Jo

will be convenient for all values of x > .01. (Alternatively one may use polynomial

approximations given by Allen [3].) The relation

KJo + Koh = 1/x

will yield Ki while the recurrence relation (ascending order)

Kp+i = 2pzKp + Kp-i

may be used to generate as many values of Kp+i as may be desired.

Spherical Bessel Functions jn(x) and w„(x). The spherical Bessel Functions

i»(x) = -\/x/2x 7„+j(x) may be generated with the aid of the recurrence relation

(descending order)

jp-i - (2p + i)q/P - iîH-i

with the normalization constant determined from the fact that jfo = sin x/x. To

determine the function w„(x) = ( —1)"+1 \Ar/2x /_(„+j)(x) we have

cos x      .                sin x      cos x
Wo =-:— and Wi =  — - — -——

and it is convenient to compute these functions directly and compute as many

further values of np as desired with the previous recurrence relation (ascending

order) which is also satisfied by nv.
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Modified Bessel Functions of Half-Integral Order. The functions

*'» = VV/2x 7n+i(x)

kn = (-iy+i Vï/2x Kn+i(x)

both satisfy the recurrence relation

(2p + l)zip = zp_i — iP+1

and may be computed in a fashion entirely similar to the computation of the

spherical Bessel functions. We have also

sinh x

,        re-*(x + 1)
kl = -2x~2-•
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Remarks on the Disposition of Points in
Numerical Integration Formulas

1. Introduction. Numerical integration formulas of degree 2 (i.e., exact for

polynomials of at most degree 2) consisting of w + 1 equally weighted points have

been developed for certain regions in w-dimensional Euclidean space. Thacher

[1] discusses the equations which a formula of this type must satisfy for regions

which are invariant under the group of linear transformations which leave the

w-cube with vertices (±a, ±a, • • • , ±a) invariant; we call these symmetric re-

gions. Hammer and Stroud [2] give two such formulas for the w-simplex. Hammer

[3] has shown that a set of 2« equally weighted points lying on the coordinate axes

form a formula of degree 3 for any symmetric region.

In section 2 of this note we show that the formulas of degree 2 discussed by

Thacher can be described geometrically. We also show that there is a similar class

of formulas for the regular w-simplex. In section 3 we describe geometrically a

wide class of formulas of degree 3 containing 2w points for symmetrical regions.
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