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We propose two models for pattern formation in early embryogenesis. The first 
deals with patterns in motile mesenchymal cells; the second treats patterns in 
epithelial sheets. In the mesenchymal model, cells exert tractions which deform 
the extracellular matrix within which they move. This in turn affects their motion. 
The model field equations are formulated and analysed, and applied to two widely 
studied phenomena: skin-organ primordia for feather and scale patterns, and the 
development of cartilage patterns in limb bone formation. The model for epithel
ial pattern formation consists of viscoelastic field equations with a calcium
controlled contraction trigger. Preliminary analysis is presented which demon
strates the existence of travelling wave solutions. 

1. Biological background 

DEVELOPMENT OF SPATIAL PATIERN and form is one of the central features of 

embryogenesis. Although genes certainly playa role, genetics says nothing about 

the actual mechanisms which produce the patterns which emerge as an organism 

progresses from egg to its adult form. 

A variety of mathematical models have been proposed for generating pattern, 

the most widely studied being reaction-diffusion mechanisms (Turing, 1952; 

Murray, 1977; Meinhardt, 1982). In these models, 'morphogens' (chemicals) react 

and diffuse at different rates to produce spatially inhomogeneous patterns in 

morphogen concentration via the mechanism of diffusion-driven instabilities. The 

idea is that cells in a developing embryo respond to small concentration differ

ences in the morphogen and execute the appropriate morphogenetic movements. 

While there is no doubt that chemical processes must play a central role in 

development, nevertheless, finding these elusive morphogens is proving remarka

bly difficult. There are a few cases, however, where chemically directed processes 

have been identified, e.g. cAMP-induced aggregation in the slime mold Dictyos

telium; recently, Goodwin, Murray, & Baldwin (1984) have suggested that 
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calcium could be the morphogen in the periodic pattern of hairs in a whorl in the 

single-celled alga Acetabularia. 

In this paper we take a different approach to the problem of biological pattern 

formation. Rather than view the morphogenesis as a 'reading out' of a chemical 

prepattern, we take the view that the mechanical morphogenetic movements 

themselves generate the pattern. The two models we propose are rooted in 

macroscopically measurable quantities and on generally accepted properties of 

embryonic cells. 

In animal development the basic body plan is more or less laid down in the first 

few weeks (e.g. the first 4 weeks in man, and not much more in the case of a 

giraffe, which has a gestation period of nearly 460 days). It is during this crucial 

early period that we expect pattern and form generating mechanisms such as we 

propose here to operate. 

Many morphogenetic processes involve coordinated movement of cell popula

tions. Fibroblasts are tissue cells of particular importance: they secrete an 

extracellular matrix (ECM) and can generate enormous contractile forces as they 

crawl about. A number of factors are known to affect the movement of these 

embryonic cells (Trinkaus, 1983): 

(a) Even during random motion, cells appear to be strongly forward biased in 

their movements. This is especially pronounced when cells migrate in groups. 

(b) Chemotaxis, whereby cell motion is biased up or down a concentration 

gradient. 

(c) Contact guidance, in which orientations in the substratum within which the 

cells crawl induce a preferred direction. 

(d) Haptotaxis, where the cells move up an adhesive gradient. 

(e) Galvanotaxis, in which electric fields provide a preferred direction of 

motion (usually toward the cathode). 

(f) Contact inhibition of cell motion during encounters with other cells. 

We shall describe a simple model mechanism which encapsulates these effects. We 

will find that regular patterned aggregates of cells can emerge from the above 

mechanisms, which are suggestive of certain biological patterns. 

The mesenchymal cell model is based on the following important property of 

motile cells: cells migrating in an elastic medium (ECM) exert tractions which 

deform the ECM and so bias the motion of the cells (Harris, Stopak, & Wild, 

1981). A preliminary version of the model is given in Murray, Oster, & Harris 

(1983), and a detailed biological discussion is given in Oster, Murray, & Harris 

(1983). While we shall not include all of the above effects which influence cell 

motion, it will be clear how these can easily be incorporated into the field 

equations and their effects assessed. 

Odell, Oster, Burnside, & Alberch (1981) have shown how mechanical forces 

can generate morphogenetic movements in epithelial sheets. Their model is built 

around the notion of a contractile actomyosin fibre bundle; they construct a 

detailed finite-element model for an epithelial cell which can deform when 

chemically triggered (see Odell et al., 1981). In Section 5 we shall present a 

continuum alternative to the finite-element model of Odell et al. and demonstrate 

the model's potential for propagation of epithelial contraction waves. 
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2. Field equations for mesenchymal morphogenesis 

We consider a continuum model where n(r, t) denotes the cell density at r. The 

cells migrate within an elastic matrix medium which, for simplicity, we take to be 

a linear elastic material. The model consists of three equations: (1) a cell 

conservation equation which describes the kinematics of cell motion; (2) a 

conservation equation for the matrix material; (3) a mechanical equation which 

reflects the balance of forces between the contracting cells and the elastic matrix 

material. 

2.1 Cell Conseroation Equation 

The general form of the conservation equation is 

an 
-=-V'I+M 
at 

(1) 

where 1 is the flux of cells (number crossing a unit area in unit time), and M is the 

mitotic (proliferation) rate. We shall take M to be simply a logistic growth: 

M = rn (N - n), where r is the initial proliferation rate and N the maximum cell 

density. We include in the flux, 1, the following transport effects. 

(i) Convection. Let u(r, t) be the displacement vector of the ECM; that is, a 

material point initially at position r undergoes a displacement to the point r + u. 

Then nUl == nau/at represents the flux of cells convected along with the matrix. 

(ii) Random Dispersal. Cells tend to disperse in a random way when in a 

homogeneous isotropic medium (we neglect the phenomenon of forward bias; it 

can be included by the methods discussed in Okubo (1980), Chap. 5). Classical 

Fickian diffusion models random motion by a flux term 11 = - Dl V n. In the 

present setting such a term models the response of cells to local (short range) 

variations in cell density. This can be seen by writing the Laplacian in the form 

(2) 

where nay is the average cell concentration in a sphere of radius R and volume V, 

defined by: 

nav=~ f n(r+s)ds 
41TR Jv 

(3) 

If the integrand in (3) is expanded in a Taylor's series and nay substituted in (2), 

the proportionality factor is 10/3. 

In developing embryos mesodermal cells are at a fairly high density, and 

classical diffusion which applies to dilute systems is perhaps not sufficiently 

accurate. Moreover, the cells extend long filopodia which can potentially sense 

densities beyond nearest neighbours, and so respond to local average density. This 

non-local effect on diffusive dispersal has been considered by Othmer (1969) in 

the setting of chemical diffusion, and by Cohen & Murray (1981) in an ecological 

context. The flux of cells in such circumstances of high density becomes 

J D =-D1Vn+D2V
3 n (4) 
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When inserted into (1) this gives rise to a biharmonic term. Note that this 

biharmonic diffusion term is also stabilizing if D2 > O. To see this consider the 

biharmonic diffusion equation 

n t = -V 'I D = -D2V4 n+D t V
2 n 

and look for solutions of the form n - e~t+ik .r, where k is any wave vector. 

Substituting this into the last equation gives the dispersion relation A = 
-D2 k 4 -Dt k 2 <0 for all wave numbers k. So n ~O as t~oo, which implies n=O 

is stable. Thus stability is enhanced by the biharmonic term. 

(iii) Haptotaxis. The traction exerted by the cells on the matrix generates 

gradients in the matrix density. 

We associate the density of matrix, denoted by per, t), with the density of 

adhesive sites for the cell lamellae to attach to. Cells free to move in an adhesive 

gradient tend to move up it, since the cells can get a stronger grip on the denser 

matrix. This results in a net flux of cells up the gradient with an average drift 

velocity which, on the simplest assumption, is proportional to V p. Thus the 

haptotactic flux term has the form Ih = an V p. By the same philosophy which led 

us to include a nonlocal diffusion flux, we may also add a nonlocal haptotactic 

term. Thus the total haptotactic flux is 

I h =anV(p+a'V2 p) (5) 

where the parameter a > 0 and a' :::;; O. We should mention here, however, that the 

inclusion of nonlocal effects are not central to the model. 

With these effects the cell conservation equation (1) becomes 

an =V' (DtVn - D 2V3 n)-V. anVp-V. (n au) + rn(N - n) 
at at 

(6) 

We have not included in (6) such effects as galvanotaxis which may well operate 

in developing embryos. However, it is easy to add such terms: if <I> is the electric 

potential, then the galvanotactic flux can be written 1 G = ~n V <1>. Another effect 

which we shall not include in our analysis is contact guidance by directional cues 

in the ECM. For example, matrix strains encourage specific directions for move

ment as opposed to others. This can be incorporated into the equation for n by 

making the diffusion coefficients functions of the elastic strain tensor E == 
MVu + (Vu)"tl The qualitative form of the dependence on E can be deduced from 

experiments. 

2.2 Cell-Matrix Interaction Equation 

Since the time scale is long and the dimensions of typical developmental 

processes are small we can ignore inertial effects in the mechanical equation of 

motion. Therefore, we assume that the traction forces generated by the cells are 

essentially in mechanical equilibrium with the viscoelastic restoring forces de

veloped in the matrix, and the body forces tethering the matrix material to its 

surroundings. The matrix consists of fibrous material whose mechanical properties 

have not yet been well characterized (personal communication from D. Stopak, 
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1983). However, as a reasonable first approximation we shall model the compo

site of cells and matrix as a linear, isotropic, viscoelastic material with stress 

tensor U. Thus the mechanical balance equation has the form 

V· U+ pF=O (7) 

where F is the vector of external forces applied to the system. U can be written 

U= UECM+Ucell 

where the matrix stress tensor UECM is 

UECM=lLl£,+1L20)+1E (e+vOl) 
+v 

(8a) 

(8b) 

Here ILl and 1L2 are the shear and bulk viscosities, respectively, of the ECM, e the 

strain tensor, 0 = V • u the dilatation, E and v the elastic modulus and Poisson 

ratio and (3 a measure of the nonlocal effect. In (8a) we have used the abbrevia

tion v == v/(1- 2v). The term T(n) in (8b) is the contribution to the stress from the 

cell tractions. Since when cells become densely packed they are inhibited from 

movement, and it is likely that their tractions decrease, we shall take T(n) to be a 

saturating function of cell density. The actual form must be determined from 

experiment; here we shall use the form 

T(n) = m/(1 + An). t (9) 

Here T > 0 is a measure of the traction force generated by a cell, which can be 

extraordinarily large: experiments show that T is of the order of 10-2 N m- 1 of 

cell edge (Harris, Wild, & Stopak, 1980). If we include a nonlocal effect in Ucell we 

write 
Ucell = p[T/(1 + An)](n + 'YV

2
n)1 

where 'Y measures the magnitude of the nonlocal effect. Inclusion of this nonlocal 

effect is probably more important than the corresponding term in the motility 

equation. 

F in equation (7) represents the body forces on the matrix-cell system. In the 

applications we have in mind, the cell-matrix material is attached to a substratum 

of underlying tissue, and we shall model these restraining forces as linear: 

F=-psu (10) 

where s (>0) is an elastic parameter characterizing the substrate attachments. 

The force equation for the mechanical equilibrium between the cells and the 

ECM can now be written from (7) and (10) as 

V· (1L1£'+1L20)+~(£+vOI)+~(p+(3V2P)I)-SPU =0 (11) 
1+v 1+An 

A nonlinear effect which we have not included here is the stress alignment of 

the matrix fibres. This would have to be modelled by including more elastic 

t Recent experimental evidence suggests that 'T may decrease for n large: in this case An2 should 

replace An. 



56 J. D. MURRAY AND G. F. OSTER 

constants. However, one effect of fibre alignment is to increase the apparent 

elastic modulus, an effect we can treat in the isotropic approximation by letting E 

be an increasing function of the dilatation, 8. We shall include this effect in the 

epithelial model discussed below. 

2.3 Matrix Conseroation Equation 

The conservation equation for the matrix material, p(r, t), is 

aplat = -V· (pUt) + S(n, p, u) (12) 

where S(n, p, u) is the rate cells secrete matrix material. In the following we shall 

consider cases wherein the secretion term can be neglected. 

Equations (6), (11), and (12) constitute the model equations. The dependent 

variables are the density fields n(r, t), p(r, t) and the displacement field u(r, t). 

The model involves twelve parameters: {D1, D 2 , a, r, N, IJ-l> 1J-2, A, /3, s, E, v}. All 

of these are in principle measurable, and some are currently being investigated. 

In order to assess the relative importance of the various effects, and for the 

other usual reasons, we form dimensionless equivalents of the model equations 

using a general length and time scale, Land T, respectively, and take the initial 

matrix density to be uniform at Po. Then we define the following dimensionless 

quantities: 

r*= r/L, t* = tIT, u*= ulL, V* =LV, 8* = 8, 

E*=E, y*=y/L2, n*=nIN, s*=sPoL2(1+v)/E, 

a*=apoTIL2, /3*=/3/L2, A*=AN, p*=plpo, (13) 

Di=DITIL2, D!=D2TIL 4
, r*=rNT, 

T* = 'TPoN(l + v)/E, IJ- t = lJ-i(1 + v)/ET (i = 1, 2). 

Depending on what time scale we· are concerned with we can reduce the set of ten 

parameters by one. For example, if we choose T as the mitotic time, 1/(rN), then 

r* == 1. Similarly, we could choose T so that a * == 1 or IJ- i == 1 for i = 1 or 2. For 

simplicity in the analyses below we shall take A * = 0, but as will be clear, A * #: 0 

can easily be incorporated into the analysis. 

In summary, the dimensionless field equations we shall discuss here are: 

an/at = D 1V
2n-D2V

4n-aV . nVp-V· (nu.)+rn(l-n) (14a) 

V . [IJ-IE t + 1J-28tl + e+ ii81 + m(p + /3V2n)I] = psu (14b) 

aplat + V • (pu.) = 0 (14c) 

where we have dropped the asterisks for notational convenience. Note that the 

dimensionless parameters, all of which are positive, fall into two groups: 

{a, Db D 2 , T, r, f3} associated with the cell properties, and {IJ-l> 1J-2, ii, s} associated 

with the matrix properties. 
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3. Linear analysis and pattern formation potential 

In order to model the spatial patterns that arise in embryonic development the 

model equations must give rise to spatial inhomogeneities. The model is nonlinear 

and there is little hope of finding useful analytical solutions; therefore, we are 

presently engaged in investigating their properties numerically. However, some 

insight into the model's behaviour can be gleaned by a linear analysis. 

One of the applications of the theory is to the pattern formation process that 

accompanies the formation of skin organ primordia for feathers and scales. The 

initial cell aggregations which form these primordia differ in cell density from the 

surrounding tissue by fairly small amounts. Therefore, it is worthwhile to pursue 

the evolution of small perturbations of a uniform field, not only for the insight it 

provides for guiding numerical work, but also since the patterns themselves may 

involve solutions that fall within the linear regime. 

The nontrivial uniform steady state of (14) is 

n =p= 1, u=o. (15) 

The linear stability of this solution is found in the usual way, by seeking solutions 

of the linearized equations from (14a,b,c), namely 

flt - D l V
2 n+ D 2V

4 n+aV2p+ B, +rn = 0, (16) 

V • [(#LIE, + #L2Bt1) + (E + v(1)+ {m + Tp + T(3V2p)I]-su = 0, (17) 

and 

Pt +(Jt =0, (18) 

where we have replaced n by n -1 and p by p -1 for algebraic convenience. 

We seek solutions to the linearized equations by looking for solutions of the 

form 
(n, p, u) ex e<TI+ik . r (19) 

where k is the wave vector and u is the linear growth factor (not to be confused 

with the stress tensor). Substituting (19) into (16), (17), and (18) gives the 

dispersion relation u = u(k2) as solutions of the quadratic equation 

(20a) 

where the coefficients b(k 2
) and c(k 2

) are given by 

b(k
2
) = #LD2k6+ (#LDl + (3T)k

4
+(1 + W-2T)k

2
+s } 

c(e) = T(3D2k 8 +[T«(3D l - D 2)+ D2]k6+ 

+ [T(r(3 - D1-a)+ Dl +sD2]e+(r+sD1 -I"r)e+ rs. 

(20b) 

Here we have set #L = #Ll + #L2 and T, #L, and s replace T/(l + iI), #L/(1 + iI), and 

sl(1 + iI), respectively. 

For any wave number k, if the solution to (20a), u(k2), has its real part positive, 

then the linear solution (19) is unstable. From (20), if k 2 = 0, the spatially 

homogeneous case, b > 0 and c > 0 since all the parameters are positive. So 
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u = -c/b < 0, and hence the solutions are stable. Thus for Re [u(k
2

)] > 0 to exist 

we must have k 2 # 0 for at least some k. All the solutions (19) with these k are 

then linearly unstable, and grow exponentially with time. These unstable modes 

will evolve into finite-amplitude spatially structured solutions. Heuristically, it 

appears from the physics of the nonlinear system (14) that such exponentially 

growing solutions will not grow unboundedly. Numerical solution of the full 

nonlinear system bears this out. The linearly unstable solutions probably have 

some predictive value as to the qualitative character of the finite-amplitude 

solutions. This predictive ability of the linear analysis is usually limited to small 

wave numbers as is frequently the case with reaction-diffusion models (Murray, 

1981b). 

From the quadratic dispersion relation (20) the only way a solution with 

Re(u»O can exist is if b(k2
) or c(k 2

) is negative. Since the only negative terms 

involve the traction parameter, 'T, a necessary condition for the model equations 

to admit spatially heterogeneous solutions is that 'T > O. It is also clear from the 

physics of the mechanism that this has to be the case, since without traction, there 

is no aggregative term in the equations. So sufficient conditions for spatially 

structured solutions to exist are those which ensure that b(k2
) < 0 or c(k 2

) < 0 for 

some e>O. The expressions for b(k 2
) and c(k 2

) in (20) determine the domains in 

parameter space where spatially inhomogeneous linearly unstable solutions exist. 

They also give the bifurcation surfaces in the parameter space; that is, the surfaces 

which separate homogeneous from inhomogeneous solutions. It is algebraically 

very complicated to determine these surfaces in general. In any case, because of 

the dimensionality of the system it would be of little conceptual help in under

standing the basic features of the pattern formation process. It is more instructive ' 

to consider various special cases whereby we assume one or more of the various 

factors affecting cell motion and matrix deformation to be negligible. One result is 

to produce several simpler model mechanisms which are all capable of generating 

spatial patterns. Which mechanism is most appropriate for a given situation must 

be determined by the biology. We list here several interesting special cases of the 

model equations. 

(i) D2 = {3 = 0: no long range cell interactions. 

a = 0: no haptotaxis 

r = 0: no cell division 

From (14) the model reduces to 

n. = Dl V2 n - V • (nu,), 

V • [(ILl £, + lLiJ,1) + (e + vel) + mpI] = su, 

and 

p,+V· (pu,) =0. 

From the dispersion relation (20) 

u(k 2
) = [-b+ (b 2 -4ILk 2 c)!]J(2ILk 2

), 

b(k2
) = IJ.Dlk4+ (1- 2'T)k 2 + s, 

(21a) 

(21b) 

(21c) 

(22a) 

(22b) 
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FIG. 1. Qualitative in vitro behaviour of the cell traction with time: '1"0 is a typical base value of the 

order of 10-2 N m-1 per cell edge. 

and 

(22c) 

It is known that in vitro the traction generated by a cell can increase with time 

qualitatively as shown in Fig. 1. Therefore, we take T as the bifurcation parame

ter, so that as T increases the uniform steady state bifurcates to a spatially 

unstable state at T = Tc (if Tc < 1), which is the value of T where the minimum of 

b(k 2
) is zero. From (20), the critical values of T and k

2 are: 

(23a) 

and 

(23b) 

The dispersion relation is illustrated in Fig. 2a. 

An even simpler model which still exhibits spatial structure has Dl = O. Here, 

from (22), 0">0 for all wave numbers k 2 >s/(2T-l) if T>t. The corresponding 

dispersion relation is illustrated in Fig. 2b. However, in this case there is an 

a a 

(a) 

FIG. 2. Dispersion relation u = u(k 2
) for two particularly simple model systems (a) equations (21), (b) 

equations (21) with Dl = O. Unstable wave numbers are denoted by a heavy line. 
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infinite range of unstable wave numbers which suggests that the ultimate spatial 

structure depends intimately on the initial conditions. 

(ij) Dl = D2 = 0: no cell diffusion, 

a = 0: no haptotaxis, 

#J-l = 1L2 = 0: no viscoelastic effects in the matrix equation. 

Here the model (14) reduces to a remarkably simple system which, in one spatial 

dimension, is 

and 

n. + (nu,)x - rn(l- n) = 0, 

a 
- [u" +m(p+ (3pxx)]-psu = 0, 
ax 

Pt + (PUr)x = o. 

The dispersion relation in this case has, from (20), 

b := T(3e+ (1-2'T)k 2 + s 

and 

C = T{3rk 4 +r(1-T)k2 + rs. 

(24a) 

(24b) 

(24c) 

The a-(e) is plotted in Fig. 3. Note that the range of unstable wave numbers is 

finite, and that there are two bifurcation values for the traction parameter, 'T. This 

example illustrates the remarkable richness of pattern formation potentialities 

which even simple cases of (14) can exhibit. Murray & Oster (1984) discuss a 

a a a lUI I I 
I I 
I I 
I I 
I I 
I I 

k 2 
0 

k 2 

0 

~ 
o~----------~~ 

I~ I (l) (2) 

I 'c <.<.c 

(a) (b) (c) 

a a 

0 
k 2 k 2 

r:.P) '0(2) I c 
I 

(d) (el 

FIG. 3. illustrative dispersion relations u = cr(F) for the model system (24): unstable wave numbers 

are denoted by a heavy line. 
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variety of special cases of (14) which exhibit a finite range of unstable modes, and 

others which have an infinite range of unstable wavenumbers. 

From the viewpoint of biological applications, two- and three-dimensional 

patterns are of great interest. With the experience gained from reaction-diffusion 

spatial patterns we expect that the simulated patterns will reflect the qualitative 

features of the linear analyses. This motivates us to look for possible symmetries 

in the solutions. We do this by taking the divergence of (17) to yield the system 

n, + D 2V
4 n - D 1V

2n+aV2p +8, + m = 0, (25a) 

V2[8, + (1 + iJ)8 + TP+ Tf3V2 p]-s8 = 0, (25b) 

and 
p,+8, =0. (25 c) 

Relevant solutions to this set of equations are not trivial to determine. However, 

we can look for solutions which are spatially periodic: 

x(r+ m(all + [(2) = x(r) (26) 

where X = (n, U, p), m and I are integers and (alb ~ are independent vectors. Such 

solutions tesselate the plane. From the linear system (25), the class of periodic 

solutions include at least the eigenfunctions of 

V
2 t/1 + k 2 t/1 = 0, n . V t/I = 0, (27) 

where n is the unit normal vector on the domain boundary. With these boundary 

conditions the solutions of (25) are periodic. Regular plane periodic tesselation 

has the basic symmetry groups of the square, rhombus, and hexagon solutions. 

For the hexagonal solutions: 

(hexagon) 

and hence 

t/I(r, cf» = i{cos [kr sin (cf> + 7T/6)] + cos [kr sin (cf> - 7T/6)] 

+ cos [kr sin (cf> -7T/2)]}, 

t/I(r, cf» = t/I(r, cf> + 7T/3) = Ht/I(r, cf» 

(28) 

which shows that the solution is invariant under the hexagonal rotation H. Typical 

hexagonal solutions are illustrated in Fig. 4b. The hexagonal pattern is of 

particular biological significance, as we discuss below. 

Solutions with square rotational invariance have the property 

(square) 

and hence 

t/I(x, y) = ![ cos kx + cos ky] 

t/I(r, cf» = ![cos (kr cos cf» + cos (kr sin cf>)] (29) 

and 

t/I(r, cf» = t/I(r, cf> + 7T/2) = St/I(r, cf» 

where S is the square rotation. This is illustrated in Fig. 4a. 

The rhombic solution, illustrated in Fig. 4c, with 8 the rhombic angle, is 

(rhombus) 

and hence 

t/I(r, cf» = !{cos (kr cos cf» + cos [k cos (cf> - 8)]} 

cf>(r, cf>; 8) = t/I(r, cf>+7T; 8) = Rt/I(r, cf>; 8) 

where R is the rhombic rotation. 

(30) 
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(a) 

o 
(b) 

(c) 

FIG. 4. Plane periodic pattern solutions of equation (27): (a) square, (b) hexagonal, (c) rhombic. 

Perhaps it should be mentioned here that the spectrum of spatial patterns 

possible with the mechanism (14) is much greater than that possible with even a 

three-component reaction-diffusion system. For example, Penrose (1979) has 

suggested that certain singularities observed in dermal ridges cannot be generated 

by a vector field model, but can arise from a symmetric tensor field, such as stress 

or strain. The analytical and numerical study of the cell traction model (14) has 

only just begun. 

4. Biological applications of the model 

Generation of regular patterns of cell aggregation occurs in many situations in 

early embryogenesis. We have already mentioned the cases of feather and scale 

primordia and the condensations of precartilage cells in bone formation. Here we 

discuss both of these in somewhat more detail and point out some other areas 

where the model may find some relevance. 

4.1 Periodic Patterns of Feather Germs 

Feather primordia first appear as local thickenings of the epidermis, called 

placodes, underlain by local aggregations of dermal cells, called papillae. Al

though it is not yet settled whether the placodes or the papillae appear first, 



GENERATION OF BIOLOGICAL PATIERN AND FORM 63 

transplant experiments indicate that the spatial pattern is dictated by the dermis 

(Sengel, 1976). Recent work by Davidson (1983) demonstrates that the primordia 

appear sequentially: a central column of dermal cells forms which subsequently 

breaks up into a row of papillae in an anterior-posterior sequence. Then lateral 

rows of papillae form sequentially from anterior to posterior between the initial 

condensations. 

These observations indicate that it is appropriate to model the initial row of 

papillae by a one-dimensional column of cells and look for the conditions for 

spatial instability. This is stage 1 in Fig. 5. The critical wavelength, like, at which 

the pattern appears should give an estimate of the spacing of the condensations. 

Indeed, the situation wherein the uniform solution bifurcates to a spatially 

inhomogeneous one may not be relevant: the sequential appearance of the 

papillae that Davidson (1983) observes may well be generated by a kinematic 

parameter wave which sweeps down the column. There is some indication that 

this wave is related to the age of the tissue; in this case we can sequentially raise, 

say, the traction parameter, T, down the column and observe the pattern. 

Stage I 
Periodic array 
Dorsal midline 

-

Stage 2 

+-------w-------+ 

Wavelength 

Stage 3 

-

! ... 

FIG. 5. Model morphogenesis of feather/scale primordia. The papillae wave length is a function of the 

ECM parameters (II-, Po, E, v, s) and the cell parameters (a, T, fJ, D 1, D 2 , r, N). Epidermis mitosis is 

enhanced and inhibited by the underlying tension and compression respectively. 
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Simulations show that the spacing obtained in this sequential fashion is nearly the 

same as that obtained from a homogeneous bifurcation. This is not expected to be 

the case in two or three dimensions. 

The pattern of matrix strains set up by the initial row of papillae produces 

minima in a staggered row lateral to the central row. This clearly biases the 

formation of the secondary condensations to these locations (stage 2 of Fig. 5), 

since the effects of cell traction are less dominated by the existing rows. Thus we 

can see how hexagonal patterns arise, as shown in stage 3 of Fig. 5. Numerical 

simulations, to be presented elsewhere, bear out this scenario. 

One of the most useful aspects of forming dimensionless equivalents of the 

model equations is that it is possible to assess how different physical effects trade 

off against one another. For example, from (13) we see that in model (21), say, 

the effect of reducing the cell traction, T, has the same effect as increasing the cell 

density or decreasing the elastic modules, E. Thus an important caveat in 

interpreting experimental manipulations is that quite different cell or matrix 

alterations can produce compensating, and therefore equivalent, results (see 

Oster, Murray, & Harris, 1983). 

4.2 Cartilage Condensations in Limb Morphogenesis 

In developing limb buds aggregations of chondrocytes presage the cartilage 

patterns which later ossify into bones. The chondrocytes are mesenchymal cells 

such as we have been considering, and so the possibility is attractive that the same 

sequential pattern formation mechanism discussed for the feather germs applies to 

this situation. This situation is discussed in detail in Oster et al. (1983), and the 

scenario is illustrated in Fig. 6. The argument is, briefly, as follows. 

As the limb bud grows, the domain is only slightly ellipsoidal in cross-section. 

Thus the first bifurcation produces a single central aggregation of cells. As these 

cells condense, the stress generated is directed radially inwards toward the limb 

axis. This radial stress deforms the cross-section, making it even more elliptical. 

The changing geometry, in turn, induces a secondary bifurcation in a fashion 

similar to that discussed in a reaction-diffusion model by Murray (1981a). Thus 

~umerus __ 

~Radius 

Ulna 

l-diamensional wavelength 

FIG. 6. Bifurcation scenario for cartilage formation in the developing chick limb. 
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the condensation of cells influences the shape of the domain, which in turn 

controls the sequence of bifurcations. This sequence of bifurcations need not be 

generated completely by a changing geometry; as the above discussion concerning 

dimensionless ratios shows, it can result from a combination of variations in other 

parameters. 

Recent experimental evidence from amphibians suggests that the osmotic 

properties of the ECM may be important (P. Alberch, 1983; personal communi

cation). A principle component of the ECM is hyaluronate which, under 

physiological conditions, exists in a highly swollen osmotic state. Just at the time 

of condensation the chondrocytes commence to secrete hyaluronidase, an enzyme 

which degrades the hyaluronate. This probably leads to an osmotic collapse 

(syneresis) of the matrix gel, which brings the cells close enough together to 

initiate active contractions. Cell motility may only be a secondary effect under this 

scenario. This situation requires only a small modification of the matrix mechani

cal equation to include osmotic effects. In particular, we must add a term to the 

stress tensor which models the swelling pressure, 'IT., of the ECM and its control 

by the hyaluronate. We shall discuss this important modification in a subsequent 

publication. 

4.3 Animal Coat Patterns 

In a series of papers Murray (1979, 1981a,b) showed that many of the patterns 

observed on mammalian coats could be generated with a morphogen based 

reaction-diffusion model. The patterns thus generated were considered the pre

patterns for the melanoblast cells-the precursors of the pigment forming melano

cytes. The evidence presented for such a theory was based on observational 

comparisons and on certain developmental constraints which were dictated by the 

geometry and the scale of the animal's surface at the time the prepattern was laid 

down. 

However, the melanoblast cells which form the pattern migrate from the neural 

crest early in development. Since our model here deals directly with such 

migratory cells, it is perhaps more directly applicable to the patterns found on 

mammalian coats. Indeed, in view of the above discussion as to the relative 

richness of patterns which can be obtained from the cell traction model as 

compared with morphogen models, it is clear that we can obtain not only similar 

patterns to those from the reaction-diffusion mechanism, but others which the 

morphogen model cannot produce. Since the partial differential equations (14) are 

also domain- and boundary-dependent in the same way as the morphogen model, 

the same kind of developmental constraints found by Murray (1979, 1981a,b) 

apply to the mechanical model. A more detailed description of this problem will 

be presented elsewhere. 

4.4 Wound Healing 

The disfiguring scars produced from wounds, particularly those associated with 

burns, result principally from 'wound contracture'--deformations of the tissue 
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resulting from the traction forces generated by the dermal cells migrating into the 

wound region. The shape of the boundary is known to affect the amount of 

scarring. The cell traction model appears to offer the possibility of designing 

surgically induced wound perimeter geometries which could minimize contracture 

scarring. This is a free-boundary-value problem of great complexity, and even 

numerical simulation will not be easy. However, the possible benefits accruing 

from such a program would unquestionably be worth some effort. 

4.5 Rejection of Artificial Joints 

One of the problems associated with artificial hip joints is that the cement for 

fixing them in place inside the femur frequently does not form a good bond with 

the living tissue. The concepts used in setting up the mechanism discussed here 

have suggested that a method of obtaining a better bond is to use an adhesive 

which is sufficiently porous to allow migration of cells into it. Experimental work 

on this is currently in progress (Y. K. Liu, 1984; personal communication). 

5. A continuum model for epidermal sheets 

The second major tissue system that constitutes the early embryo is the 

epithelia. Here the cells which, unlike the mesenchyme, are not actively motile 

but are arranged in layers, or sheets. These sheets bend and deform during 

morphogenesis. In most cases, epithelial morphogenesis evolves due to the shape 

changes of the individual cells and cells tend to maintain contact with their 

nearest neighbours (there are important exceptions to this, but we shall not be 

concerned with those here). Moreover, many morphogenetic processes, including 

the skin primordia, depend on the chemical and mechanical interaction between 

the mesenchymal cells and the epithelial cells upon which they crawl. Indeed, 

tissue interactions are one of the major phenomena associated with the develop

ing embryo (Wessells, 1977). 

Odell et al. (1981) proposed a finite-element model for epithelial sheets. This 

model was based on the cytological observation that many epithelia have an apical 

band of contractile micro filaments whose contractions can deform the cell. They 

demonstrated that many morphogenetic movements of epithelial sheets could be 

understood, at least in part, as resulting from the mechanical interactions between 

the constituent cells. Their model was based on the assumption that the microfila

ment bundle which controls the cell shape could be triggered to contract by an 

internal release of calcium (Odell et al., 1981; Oster & Odell, 1984) or by 

mechanically stretching the cell (Odell et al., 1981). In this section we generalize 

the discrete model of Odell et al. to a continuum model, which has the 

advantage of allowing some analytical treatment, as well as enhancing our 

understanding of the mechanics of cytogels. 

5.1 Some Biological Facts About Cytogel 

The cellular cytoplasm near the periphery of the cell consists largely of a 

viscoelastic gel: a network of macromolecular fibres composed mostly of actin and 
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myosin, the same molecules involved in muscle contraction. This cytogel is a 

dynamic structure: the cell can regulate the degree of assembly and crosslinking of 

the fibres as well as their propensity to contract actively. By regulating the sol-gel 

equilibrium of the gel and its state of contraction, the cell can carry out an 

astounding variety of motile phenomena and shape changes. We shall not 

endeavour to model all of the complexity of this system, but rather focus on a few 

physical properties which are sufficient to understand the morphogenesis of 

epithelial sheets. In particular, we shall not model explicitly the sol-gel transi

tions, but incorporate the equivalent mechanical effect into the gel constitutive 

relation. 

Chemical control of contractility is largely attributable to the local concentra

tion of free calcium in the cytogel. Calcium regulates the activity of the solation 

and gelation factors as well as the activity of the actomyosin contractile 

machinery. At low calcium levels the gel is highly crosslinked and stable. As 

calcium concentrations rise to the micromolar level the gel commences to solate 

partially, and to contract actively. If the calcium level rises too high, however, the 

gel becomes so solated that it cannot support any stress. Thus there is a 'window' 

of calcium concentration which is optimal for contractile activity. 

5.2 A Mechanical Model for Cytogel Contractility 

It turns out that in many embryological processes the reticulation of cytogel 

into cells is not essential for carrying out the process; for example, mitotic 

inhibitors which prevent cell division do not inhibit such phenomena as 

pseudogastrulation in amphibian eggs. Moreover, organisms such as Physarum 

are able to carry out major morphogenetic movements without benefit of cell 

partitions (Oster & Odell, 1984). Therefore, we shall model an epithelial sheet 

as a continuum of cytogel; this means that we shall ignore the membrane that 

delimits each cell. 

As for the mesenchymal model, inertial forces are negligible, and the mechani

cal equation of motion can be written as 

Voa+pF=O (3]) 

where a is the stress tensor, F, the body forces and p the cytogel density. As 

before, we shall assume that the viscoelastic stress, a, can be decomposed into a 

linear viscous term, av, and an elastic stress, aE: 

a=ay+aE 

= (ILIE t + 1L20tl) + [E/(l + V)](E+ ;'01)+ Tl (32) 

'T is the contribution of the active traction to the elastic stress, and the coefficients 

1Li> E, and v have the same significance as in the mesenchymal model; in this 

model, however, the parameters will not be constant. The relationship between 

the two models is this: the mesenchymal model viewed the cell-matrix material as 

an elastic continuum in which were embedded motile contractile units: the cells. 

Here, the elastic continuum also has contractile units: the actomyosin 

crossbridges. However, since we shall not deal with the solation of the gel 
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network, we do not have to account for the motion of the contractile units apart 

from the deformation of the gel itself. In this model the role of the cells is 

replaced by the chemical trigger for contraction, free calcium ion, which we 

denote by c(r, t). We model the constitutive parameters /-L, E, and T as follows. 

(i) Viscosity. The severing of the gel network by the calcium activated sola

tion enzymes results in a precipitous drop in the apparent viscosity. Indeed, this 

has many of the aspects of a phase transition, and so we model /-Li(C) by the 

sigmoidal curve shown in Fig. 7a. 

(ii) Elasticity. A characteristic property of actomyosin fibrils is that as they 

shorten, the amount of overlap of the actin fibres increases, and also the number 

of active crossbridges. Therefore, as a fibre contracts it grows stronger. Moreover, 

when a fibrous material is strained, the fibres tend to align and the apparent 

elasticity increases. To model this latter effect we would have to abandon the 

isotropic model, and so we content ourselves with modelling these nonlinear 

effects by assuming that E decreases with dilatation, 9, as shown in Fig. 7b. 

(iii) Active Traction. Once the actomyosin machinery has been triggered to 

contract, the fibres commence to generate contractile stresses. Once again, the 

onset of contraction is rather sudden, in the micromolar range. Therefore, we 

model the active stress contribution, T, by the sigmoidal curve shown in Fig. 7c 

(Oster & Odell, 1984). Alternatively, we can view the traction stress, -T(C) as 

the new rest configuration to which the fibres attempt to contract (Odell et al., 

1984). Any displacement of the epithelium is resisted by its attachment to the 

basal lamina in the form of restraining tethers. We model this force by taking 

F = psu where s is a parameter reflecting the strength of the attachment. 

With these modifications, the mechanical equation of motion for the cytogel 

takes the form 

( 
E(9) A ) 

V' /-LiE, + /-L29,' + 1 + }E + v9' + T(C)I] - psu = o. 

5.3 Conseroation Equation for Calcium 

The equation 

fonn 

governing the release and diffusion of calcium, 

ac 
-=DV2c+R(c,E) 
at 

(33) 

c(r, t), has the 

(34) 
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where D is the diffusion coefficient for calcium and R(c, £) is the calcium kinetics 

of release and resequestration. The kinetics has three contributions. 

Calcium is sequestered in membranous vesicles dispersed throughout the 

cytogel. These vesicles have the property of calcium-stimulated calcium release 

(see Oster & Odell, 1984); that is, if the level of free calcium outside the vesicles 

exceeds a certain threshold, it induces the membrane channels to open and the 

vesicles release their internal stores of calcium. How this autocatalytic release 

mechanism works is not yet known; however, we can model it phenomenologi

cally by a threshold kinetics similar to the FitzHugh-Nagumo model for nerve 

excitation. That is, we assume that the release kinetics is governed by a sigmoidal 

(autocatalytic) curve, and that resequestration takes place by a first-order process. 

A typical analytical form for such kinetics is 

(35) 

where a, (3, and li are positive constants. The form of R(c) is S-shaped, as shown 

in Fig. 8a, so that there are two stable equilibria, at 0 and C3' separated by an 

unstable equilibrium at C2. 

The autocatalytic release mechanism can also be triggered by straining the 

cytogel, a phenomenon called 'stretch activation'. This probably is caused by 

depolarizing the vesicle membrane by mechanical deformation. Whatever the 

mechanism, we can add the effect to the release kinetics by introducing a leak 

term, yO, into equation (35), so that the release kinetics has the form 

R(c, £) = ac2 /(1': (3c2
) - lic + yO (36) 

where the positive parameter, "I, is the release rate per unit strain. The effect of 

strain on the release kinetics is shown in Fig. 9b: increasing 0 raises the curve 

until the leftmost equilibrium, Cb disappears, and the system moves to the 

equilibrium at C3. We emphasize that the formula (36) is illustrative-only the 

qualitative features of R(c, £) are important to the functioning of the model. 

Murray (1981) used a similar biochemical 'switch' mechanism to model the 

formation of wing patterns in butterflies. 

Thus the equation of motion for the free calcium concentration is 

R(c) 

OC ac 2 

- = DV2c + 2 lic + yO (37) 
at 1 + (3c 

(a) 

R(c)+y8D 

FIG. 8. 

..... - ... , .... ,. .... 
/ .... 

/ .... 

.... / .... 
.... / .... 
_/ \ 

\ 

(b) 

, c 



70 . J. D. MURRAY AND G. F. OSTER 

The model cytogel consists of the mechanical equation (33) and the coupled 

chemical equation (37). Workers familiar with the theory of thermoelasticity will 

notice a striking similarity in the form of the equations. 

6. Analysis of the model equations 

Proceeding as we did in the mesenchymal model, we form dimensionless 

equivalents of the equations by means of the following substitutions. 

r* = r/L, t* = yt/C3, c* = C/C3, u* = u/L, ) 

s* = psL 2(1 + v)/E(O), IL ~ = YlLi(1 + V)/[C3E(0)] (i = 1,2), 
(38) 

R*(c*) = R(c)/y, D* = DC3/(L 2y), T*(C*) = T(C), 

E*(B*) = (1 + v)E(B)/E(O) 

B* = B, 

where L is a characteristic length scale. Substituting these into the field equations 

(33) and (37), and omitting the asterisks for notational simplicity, we have the 

dimensionless equations for a cytogel continuum: 

v . {1L1E, + 1L2B,' + E(B)[E + vB' + T(C)I]}- su =0 

ac/at = DV2c + ac2/(1 + I3c2) - & + yB 

(39a) 

(39b) 

The boundary conditions for (39) depend on the problem under consideration. 

Typical boundary conditions are periodic or stress-free boundaries for the 

mechanical equation, and impermeable boundaries for the chemistry. 

6.1 Linear Stability Analysis 

Equations (39) have spatially uniform steady-state solutions 

u = B =0, C = Ci (i = 1, 2, 3) (40) 

We carry out a linear stability analysis exactly as in Section 3, by seeking solutions 

of the form exp (at + ik . r). The dispersion relation so obtained is 

(crlLlk2 + k 2+ 2s)[lLk 2cr2 + b(k2)cr + d(k 2)] = 0 (41a) 

where 

(41b) 

and 

d(k 2) = D(l + ii+ E'T;)k 4 +[sD + <y- R;(1 + ii+ E'Ti)]k2- R;s. (41c) 

Here we have employed the notations: 

R~= [dR(C)] 
, dc G' 

and 'T. == [dT(C)] 
, dc G· 

From Figs. 8 and 9, we have 

E'<O, 7"i>O, R~>O, and R;<O (i = 1, 3). (42) 
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So, for i = 1, 3 we have b(k2»0 and d(k 2»0, which shows that the three 

solutions for u(k2) in (41) have Re (u)<O, and hence that the steady states 

u=o, C = Cl and u = 0, 

are linearly stable. The steady state at u = 0, C = C2 is unstable, even in the absence 

of any spatial effects; that is, e == 0, since b(O) = s > 0 d(O) = - R~s < 0 and hence 

u(O»O from (41). In the situation where k 2 fO there is a critical wave number, 

ke, where d (k 2) > 0 if k > ke, which implies stability. 

From the linear analysis it appears that no spatial structure can be generated 

without a contribution from the dermis; that is, e(r)* O. However, suppose that 

the dermis exerts a constant contraction: eo = constant> 0, which we add to the 

right-hand side of (39). Then the steady states are solutions of 

R(c)+eo=o, u=o. 

The qualitative relationships can be seen from Fig. 8b: the effect of eo is the same 

as that of increasing the stretch activation term, 'Ye. If eo is strong enough, the 

curve is raised above the firing level, and the epithelium will be triggered to 

contract. Thus it is clear that a nonuniform dermal cell distribution can trigger the 

epithelial sheet to form placodes. That is, our analysis predicts that the dermal 

papillae may precede the epidermal placodes. Of course, the epidermis could also 

be triggered to disrupt its uniform state by an influx of calcium (or some signal, 

such as a depolarization wave or trigger chemical that stimulated the calcium 

cascade). However, it is an attractive feature of the model that it may depend on 

tissue interactions between the dermis and epidermis to initiate pattern formation. 

6.2 Travelling Wave Solutions 

One of the most interesting features of the model of cytogel model of Odell and 

Oster (1984) is its ability to propagate contraction waves. Intuitively, we expect 

the continuum model we have constructed here to exhibit similar behaviour. As a 

first step in finding such travelling wave solutions we consider the one

dimensional problem. In this case, e = e = u"" and the model equations become 

and 

ILUxxt +~ {E(u",)[(l + iI)u", + T(C)]- su = 0 
ax 

Ct - Dcxx - 'Yu", - R(c) = 0, 

where IL == ILl + IL2. We seek travelling wave solutions of the form 

u(x, t) = U(z), C(x, t) = C(z), and z = x + Vt 

Upon substitution into [43] we find that U(z) and C(z) satisfy 

d
3

U d [dU( A dU )] ILV-
3 
+- E- (l+v)-+T(C) -sU=O 

dz dz dz dz 

and 

d 2 C dU dC 
D-+ 'Y-- V-+ R(C) = O. 

dz 2 dz dz 

(43a) 

(43b) 
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This is a fifth order system whose phase-space analysis is quite difficult. However, 

various approximations can be made. For example, for the propagation of 

contraction waves the dependence of E on e is not crucial. However, in order to 

reduce the dimensionality of the phase space either, or both, of D and I.t must be 

taken as zero. Unfortunately, this is probably a bad assumption, for both are not 

negligible in the biological situation. Thus analytical investigation of the equations 

for travelling waves must remain an open question. However, numerical simula

tions can be done, and Fig. 9 shows one example of the wave profiles obtained 

with the boundary conditions U(±oo) =0, C(-oo)=ct. and C(oo)=C3' the nonzero 

stable steady states. 

The wave speed is computed to be v = (LY/C3) V, where C3 is the largest root 

of R(c) = 0 and V is the dimensionless wave speed. If we use the elastic constant 

s to obtain a length scale, L, the velocity is 

( 
E(O) )~ V 

v= s(l+v) c/ 

from which we see that the speed of the wave varies inversely with the strength of 

the forces attaching the sheet to the substratum. The qualitative dependence of 

the propagation speed on the other parameters is not always so clear, since they 

appear in dimensionless groupings. For example, choosing L as the diffusion 

length v = [DC3/Y rV. 
Numerical studies of the one-dimensional system are currently underway. 

7. Biological applications 

(1) In the marine organism Acetabularia the head regenerates after amputa

tion. During regeneration a variety of events take place, one of which is the 
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appearance of a regular pattern of hair primordia around the stem. It is known 

that calcium ions playa crucial role in the process (Goodwin, Murray, & Baldwin, 

1984). For example, if too little free calcium is present in the surrounding medium 

no pattern evolves. On the other hand, if too much calcium is present pattern 

formation is also inhibited. Associated with this regular pattern are wrinkles in the 

stem near the tip where the pattern appears. The model cytogel we have discussed 

can possibly produce periodic arrays of thickenings which resemble the hair 

primordia; investigation of this system is currently underway. 

(2) Hair cells are the sensory transducers in the inner ear which convert 

acoustical pressure waves into nerve impulses. These cells are covered with 

rod-like protuberances called stereocilia which are packed in regular hexagonal 

arrays (Hudspeth, 1983). Oster, Murray, & Odell (1984) have shown that a 

viscoelastic model closely related to the above model can produce such hexagonal 

arrays. 

(3) By including osmotic pressure effects and the possibility of network de

polymerization, Oster & Perelson (1984) have constructed a cytogel model for 

lamellipodia, the motile appendage of crawling cells. The model is able to account 

for most of the observed properties of cell motion, including contact inhibition, 

traction and strain guidance, chemotaxis and galvanotaxis. 

8. Conclusious 

The development of pattern and form in embryogenesis is immensely complex 

and little of it is yet understood in terms of physical mechanisms, despite a huge 

body of experimental observation. There is no doubt that chemical and mechani

cal processes are involved, but elucidating just how they conspire to bring about 

morphogenetic movements has proved elusive. We have presented here two 

models which show how the interaction of mechanical forces with quite simple 

chemistry can generate patterns which bear a striking resemblance to biological 

structures. 

The models presented here have a different flavour from reaction-diffusion 

models: in the latter a chemical (morphogen) field sets up a prepattern which is 

then read out and interpreted by the cells which then execute some hypothesized 

program of shape change and differentiation. In the mechanochemical models 

above, pattern formation does not precede morphogenesis; rather they evolve 

simultaneously and in synchrony. 

Another distinction between the mechanochemical approach and reaction

diffusion models addresses the issue of experimental accessibility. It has been 

repeatedly emphasized in the morphogenesis literature that 'morphogens', like 

hormones, may act in concentrations so small as to defy detection. Indeed, 

analysis of morphogen models show that since activator and inhibitor substances 

mutually affect one another's production, it may be quite difficult to assess the 

relative i!flportance of a suspected 'morphogen'. In contrast, in the cytogel model 

above, the 'morphogen'-if one insists on using that terminology-is one of the 

most common substances in biological systems: calcium. Moreover, its mode of 

action is not paradoxical; rather the model invokes only its well-documented 
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capacity to regulate actomyosin assembly and contractility. Indeed, both the 

mesenchymal and epithelial models simply reflect the laws of mechanics as applied 

to biological materials--cells and their extracellular environment. All of the 

model parameters are, in principle,· independently measurable. 

We emphasize that these models are only the first attempts to pursue a different 

line of investigation into biological pattern formation and morphogenesis. Deeper 

mathematical and numerical analysis will be necessary to investigate the models' 

potential for explaining biological phenomena, and undoubtably others will see 

how the models must be modified, or even changed in fundamental ways. Most 

importantly, we will consider the models successful, even if they are eventually 

proved incorrect, if they suggest experimental approaches to the study of mor

phogenesis that ultimately lead to the true explanation of one of biology's deepest 

mysteries. 
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