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Abstract: We report generation of an ultrafast supercontinuum extending into the mid- 

infrared in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF) pumped by 1.7 

µm light from an optical parametric amplifier. The simple fiber structure offers shallow 

dispersion and flat transmission in the near and mid-infrared, enabling the generation of 

broadband spectra extending from 270 nm to 3.1 µm, with a total energy of a few µJ. In 

addition, we demonstrate the emission of ultraviolet dispersive waves whose frequency can 

be tuned simply by adjusting the pump wavelength. SR-PCF thus constitutes an effective 

means of compressing and delivering tunable ultrafast pulses in the near and mid-infrared 

spectral regions. 

© 2017 Optical Society of America 

OCIS codes: (320.6629) Supercontinuum generation; (320.0320) Ultrafast optics; (060.5295) Photonic crystal fibers. 
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1. Introduction 

Broad-band supercontinuum (SC) sources have multiple applications in, for example, 

spectroscopy [1], synthesis of ultrashort pulses [2], optical coherence tomography [3] and 

microscopy [4]. SC generation received a significant boost with the advent of photonic crystal 

fiber (PCF), which offers long well-controlled diffraction-free path-lengths—a significant 

advance over bulk or free-space systems [5]. In addition, PCF enables the dispersion to be 

engineered over a wide range, for example permitting anomalous dispersion at near-infrared 

(NIR) wavelengths, which allows soliton dynamics to be used in the generation of ultrabroad 

supercontinua [5]. 

While silica-based solid-core PCFs are convenient for SC generation in the NIR and 

visible regions, it is not possible to further extend the spectrum into deep ultraviolet (DUV) 

due to color-center-related damage, nor into the mid-infrared (MIR) because of strongly 

increasing absorption. Materials with wider transmission windows, such as fluoride glass, in 

principle overcome these limitations [6, 7], but at the cost of mechanical fragility and more 

complex fabrication. In addition, the generated SC energy is limited by the damage threshold, 

which for solid materials is much lower than for gases. 

Generating high-energy supercontinua that extend into both the DUV and the MIR is of 

great interest, given the importance of these spectral regions in spectroscopy [8, 9] and 

biomedicine [10]. Gas-filled hollow-core PCF (HC-PCF) provides an attractive alternative to 

solid-core fibers, since it offers a much higher damage threshold as well as very low 

absorption (by suitable choice of gas). Furthermore, it allows easy and precise pressure-tuning 

of the nonlinearity and dispersion, enabling precise control of the dynamics of SC generation 

[11]. Kagomé-style HC-PCFs, in particular, have been successfully used to generate 

supercontinua extending from the vacuum ultraviolet to the NIR [12]. More recently single-

ring HC-PCFs (SR-PCFs), with a simpler transverse structure than kagomé HC-PCFs, have 

been shown to provide excellent transmission at longer wavelengths [13], making them ideal 

for the generation of MIR supercontinua [14]. In this paper we report the generation of a 

broad SC spanning more than 3 octaves from the DUV to the MIR, with a total energy of a 

few µJ. Ultraviolet (UV) light is generated by dispersive wave emission from self-compressed 

pump pulses, and is wavelength tunable by tuning the pump wavelength, pressure and pulse 

energy. 
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2. Single-ring hollow-core photonic crystal fiber

Figure 1(a) shows a scanning electron micrograph of the transverse structure of the SR-PCF 

used in this work. It consists of a hollow core surrounded by six non-touching silica 

capillaries arranged within a hexagonal jacket. The core diameter is D ~51 µm, the inner 

diameter of the hollow capillaries is d ~21 µm, and the thickness of the capillary walls is 

~340 nm. Strong phase-mismatch between the light in the core and the modes supported by 

the hollow capillaries prevents the core radiation from leaking into the cladding, thus 

allowing the fiber to guide through anti-resonant reflection of core light. While the conditions 

for anti-resonant guidance are satisfied for the fundamental core-mode in a broad wavelength 

range, except for a few well-defined resonances of the capillary walls, it has been recently 

shown that for d/D ~0.68 the higher-order LP11-like mode of the core is phase-velocity 

matched to the fundamental mode of the cladding capillaries, making the hollow-core fiber 

effectively endlessly (for all guided wavelengths) single mode (hESM) [15]. Since the fiber in 

Fig. 1(a) has d/D ~0.41, far from the hESM condition, we expect higher-order modes (HOMs) 

to play a role in the nonlinear dynamics, as we shall see below. 

Fig. 1. (a) Scanning electron micrograph of the transverse structure of the SR-PCF. (b) 

Measured (solid blue line) and simulated (dashed black line) loss of the SR-PCF. The FEM 

only accounts for confinement loss, i.e., the attenuation of silica (shown separately by the 

dotted red line) is not included. The two insets show the simulated profile of the fundamental 

modes at 1.7 µm (central wavelength of the pump pulses used in the experiments) and 3.2 µm. 

(c) Calculated effective index for the LP01-like core mode. It has a very smooth profile 

following the capillary model, except for a small, localized resonance at ~680 nm. (d) Group-

velocity dispersion parameter β2 calculated analytically through the capillary model, showing 

the tunability of the dispersion. 

In contrast to kagomé-style HC-PCFs, the simpler structure of SR-PCF yields a flatter 

transmission spectrum, with just a few loss bands whose wavelengths are straightforwardly 

predictable [15]. Figure 1(b) shows that the loss of the fiber is limited to a few dB/m 

throughout the NIR, out to ~2.4 µm (limit of the broadband source used to measure the fiber 

attenuation). Although this loss is negligible for our work—the observed dynamics takes 

place in only a few cm of HC-PCF—it has been already shown that SR-PCFs can provide 

much lower attenuation [16]. Finite element modeling (FEM), represented by the dashed-

black curve in Fig. 1(b), predicts that the confinement loss will increase dramatically beyond 

2.7 µm. The distinct loss peaks at 2.9 and 3.2 µm we attribute to higher order capillary modes 
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that hybridize with the modes of the capillary walls, causing their index to rise and phase-

match to the core mode (see inset in Fig. 1(b)). Note that although the loss calculations 

neglect the absorption of fused silica in the MIR (indicated by the dotted red curve in Fig. 

1(b)), this does not significantly affect the results since the fraction of fundamental core mode 

power in the glass is 0.002% at 1.7 µm, 0.04% at 2.9 µm and 0.2% at 3.2 µm (see inset in Fig. 

1(b)). As a consequence we would expect the spectrum (see the next section) to extend further 

into the MIR if lower loss SR-PCFs were used, for example by increasing the core diameter. 

The almost loss-band-free transmission results in a very smooth wavelength-dependence of 

the modal refractive index, as shown in Fig. 1(c), where the calculated effective index of the 

LP01-like core mode is plotted versus wavelength. Interestingly, the hybrid capillary modes 

(mentioned above) that appear as the confinement loss increases do not significantly affect 

the dispersion of the system. In contrast, phase-matching to a capillary wall resonance is 

responsible for the fluctuation in the effective index at ~680 nm. The shallow profile of the 

effective index [15] makes the system ideal for exploiting soliton dynamics and generating a 

SC. 

As in the case of kagomé-style HC-PCFs, the weakly anomalous geometrical dispersion 

can be balanced by the normal dispersion of the filling gas [11]. The group-velocity 

dispersion β2 can be readily calculated using a simple analytical model for wide-bore 

capillaries, well suited to SR-PCFs [15]. The zero-dispersion-wavelength (ZDW) is tunable 

from the visible to the NIR, and as a consequence soliton dynamics is enabled when a NIR or 

MIR pulse is launched inside the fiber, enabling SC generation and emission of resonant 

radiation in the form of dispersive waves, as will be discussed in the following section. 

Fig. 2. Experimental set-up. The pump pulses were generated by an optical parametric 

amplifier, and are temporally characterized using a home-built SHG-FROG. The pulses were 

spatially filtered and expanded through the focusing lens L1, the collimating lens L2 (both 

made of CaF2) and a pin-hole (PH) with a 100 µm aperture. The beam is then focused through 

the CaF2 lens L3 into the SR-PCF, placed inside a gas cell connected to a vacuum pump and a 

gas line. The pump pulses enter the gas cell through a CaF2 window. The divergent beam at the 

fiber output exits the gas cell through another CaF2 window, and is then collimated by a 

parabolic mirror (PM) and sent to the diagnostic systems. 

3. Experimental results

The experimental set-up is shown in Fig. 2. As pump pulses we used the idler signal of an 

optical parametric amplifier, tunable between 1.6 and 2.3 µm, with energy up to 100 µJ, 

repetition rate 1 kHz and almost transform-limited duration of 28.5 fs (measured with a 

home-built second-harmonic generation frequency-resolved optical gating system). These 

pulses were launched into the SR-PCF described in Section 2 after passing through a spatial 

filter. Total insertion losses of 10% were achieved for low-energy (< 1 µJ) pulses; for higher 

energies the transmission decreased because of nonlinear absorption and photo-ionization of 

the gas. The SR-PCF was enclosed in a gas cell, which could be either evacuated or filled 

with gas. The output beam was collimated and diverted to diagnostics for spectral and beam 

profile characterization. 
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The upper plot in Fig. 3(a) shows the results when 10 µJ-pulses centered at 1.7 µm were 

launched into a 5-cm-long SR-PCF filled with krypton at 18 bar. With these parameters, the 

ZDW is ~1045 nm, thus placing the pump pulses in the anomalous dispersion regime. The 

soliton order is 13, below the threshold for modulational instability, rendering the soliton 

dynamics coherent [5]. The NIR-MIR spectrum (solid-red line) was measured using a 

semiconductor-detector-based monochromator (not intensity calibrated), while the spectrum 

in the visible-UV was characterized with a calibrated CCD-based spectrometer (solid-blue 

line). The output spectrum for low-energy pumping (~500 nJ) is shown for comparison (solid-

black line). All the spectra are scaled so as to account for the wavelength-dependent 

divergence of the beam leaving the fiber. The measured spectrum shows that in-fiber soliton 

dynamics generates a SC covering more than 3 octaves from the DUV to the MIR, the 30 dB 

limits being at 270 nm on the blue side, and 3.1 µm on the red side. The total energy 

contained in the SC is 4 µJ, measured with a thermal power sensor. Note that the spectrum is 

continuous between the DUV and MIR and well above the noise floor of the spectral 

measurements (corresponding to –45 dB for the visible-UV and –37 dB for the MIR). 

Although the spectrum extends to the loss-band at 680 nm, where a core wall resonance is 

excited, no damage is observed in the fiber. 

 

Fig. 3. (a) The red curves show the spectrum measured by a monochromator in the near/mid-

infrared, and the blue curves by a CCD-based spectrometer in the visible/UV. The black 

dashed lines mark the ZDW of the system, and N and A denote normal and anomalous 

dispersion. The positions of the dispersive wave peaks are marked by the initials DW. Upper 

plot: pump pulse energy 10 µJ, Kr pressure 18 bar. The black curve shows the spectral 

intensity (normalized to the maximum of the red spectrum)) generated with low-energy pump 

pulses (~500 nJ). Lower plot: pulse energy 4 µJ and Kr pressure 10 bar. (b) Simulations of the 

spectral (upper) and temporal (lower) evolution of a Gaussian pulse with an energy of 5 µJ 

propagating along a 5-cm-long SR-PCF filled with krypton at 18 bar. The dashed line in the 

spectral plot indicates the ZDW. (c) Upper: Far-field profile of the supercontinuum beam 

filtered at 490 nm and imaged onto a CCD camera. Lower: Fourier transform of the spectral 

intensity in the lower part of (a). 

Two main features are evident in the measured spectra. The first is a band of resonant 

radiation in the DUV, peaking at 347 nm, caused by phase-matching of the self-compressed 

broadband pump soliton to UV light in the normal dispersion regime. The spectral position of 

the dispersive wave agrees well with the predictions of the nonlinear phase-matching 

condition [17]: 

 sol 1 sol sol C( ( ) ( )[ ] / 2 0Pβ ω β ω β ω ω ω γ) − − − − =  (1) 

where β is the linear propagation constant, ωsol the central angular frequency of the soliton, β1 

the inverse of the group velocity, γ the nonlinear fiber parameter and PC the peak power of the 

soliton at the maximum compression point. When the fiber used is filled with krypton at 18 

bar, γ = 2.1 × 10−6 (W × m)−1, β1 = 3.34 ns/m and PC = 630 MW. A second clear feature is the 
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spectral recoil of the pump: consequent to the emission of resonant radiation in the UV 

region, the soliton wavelength red-shifts so as to conserve the total energy. This frequency-

downshift, which has physical origin entirely different from the Raman self-frequency shift 

[18], is adiabatic owing to the smooth dispersion landscape and enhances the MIR extension 

of the supercontinuum. 

To illustrate how the system dynamics can be engineered for a given application, a second 

measurement (Fig. 3(a), lower) was performed at a pressure of 10 bar and a lower input 

energy (4 µJ, corresponding to soliton order 8). The lower soliton order leads to smoother 

self-compression, and although the supercontinuum has lower spectral intensity in the visible 

(though still above the noise-floor of the CCD-based spectrometer) and extends less far into 

the MIR (the 30 dB limit being at ~2.9 µm), a more distinct dispersive wave band appears at 

310 nm. 

An additional feature that is evident in the measurements is a quasi-periodic modulation 

of the spectral intensity. We attribute this to inter-modal beating between the fundamental and 

low loss higher-order modes (especially the LP11-like mode)—a consequence of the sub-

optimal d/D ratio [15]. This is supported by inspection of the output mode profile (Fig. 3(c), 

upper), imaged in the far-field with a CCD camera after filtering out a 10 nm-wide band, 

centered at 490 nm, from the SC shown in the lower plot in Fig. 3(a). It is clear that the 

profile is a mixture of LP01 and LP11-like modes. To further check this, the lower plot in Fig. 

3(c) shows the Fourier transform of the SC spectral intensity [19], from which we see that the 

interference period observed on the spectrum corresponds to a delay of 53 fs, which is the 

separation between the two modes at the pump wavelength after ~2.5 cm of co-propagation 

inside the fiber. 

In Fig. 3(b) we show the spectral (upper) and temporal (lower) evolution of the pulse as it 

propagates along the fiber, simulated using the unidirectional field equation [20]. The 

parameters used in the simulations are the same as in the experiment shown in the upper plot 

in Fig. 3(a), except that the input Gaussian pulse energy was set to 5 µJ (10 µJ in the 

experiment) to compensate for nonlinear absorption in the gas not taken into account in the 

simulations. The modeling shows that the pump pulse undergoes an initial stage of self-

compression during which its spectrum massively broadens, followed by generation of a UV 

dispersive wave. The simulations included only the LP01-like core-mode, so that the 

modulation observed in the measured spectrum is not present, providing further confirmation 

of its origin in excitation of HOMs. The simulated spectral evolution shows qualitative 

agreement with the measured spectrum, reproducing all the main features observed in Fig. 

3(a), i.e., the presence of a dispersive wave peaking at ~347 nm, the spectral recoil that red-

shifts the soliton as it propagates, and the extension of the SC out to ~3.1 µm. As discussed in 

section 2, we attribute the long-wavelength cut-off of the SC spectrum to confinement loss in 

the fiber, which becomes very significant from 2.7 µm onwards. 

These results demonstrate that the system can generate high-energy, ultra-wide 

supercontinua in the MIR wavelength range. Compared to other successful schemes that have 

been proposed [21], it has the advantage of easy implementation, without need for coherent 

recombination. As the SC spectrum is expected to be fully coherent, it would be possible to 

compress it using a suitable dispersive element and obtain nearly single-cycle pulses in the 

MIR spectral region [2]. For applications that require the SC to be in a pure fundamental 

mode, the use of a SR-PCF with a suitable d /D ratio would allow for complete elimination of 

the HOM contributions observed here [15]. However, the fabrication of large core SR-PCFs 

featuring d/D ~0.68 and capillary walls thin enough to provide the required dispersion 

presents technical difficulties that are yet to be overcome. 
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Fig. 4. (a) Tuning the wavelength of the dispersive wave by varying the pump wavelength. 

Pulses of wavelength 1.6 (lower plot), 1.7 (middle plot) and 1.8 µm (upper plot) are coupled 

into the single-ring HC-PCF filled with krypton at 10 bar. The generated dispersive waves 

peak at 322, 310 and 305 nm, respectively. (b) Phase-mismatch between linear waves and the 

pump soliton for the same parameters considered in (a). 

4. Wavelength-tunability of the system

The flat, broad transmission profile of the SR-PCF makes it very versatile. For example, it is 

possible to tune the position of the emitted dispersive waves just by changing the input 

wavelength of the pulses launched into the fiber: this means that pump pulses with different 

central wavelengths can be compressed to single-cycle durations using the same SR-PCF, 

something never demonstrated in other broadband-guiding PCFs such as kagomé-style HC-

PCF. 

Figure 4(a) displays the dispersive wave spectra emitted in the SR-PCF filled with 10 bar 

of krypton (ZDW at 820 nm) when it is pumped with ultrashort pulses of 1.6, 1.7 and 1.8 µm 

central wavelengths. The energy of the input pulses was chosen so as to yield a soliton order 

of ~8, resulting in clean self-compression and dispersive wave emission. As the pump 

wavelength shifts over 200 nm, the nonlinear dynamics change smoothly, resulting in the 

emission of dispersive waves tunable over 17 nm. This is predicted by the phase-matching 

condition Eq. (1), as can be seen in Fig. 4(b), where the phase-mismatch is plotted versus 

wavelength. It is well known that the idler pulses generated by a white-light seeded OPA are 

intrinsically CEP-stable, a property that is expected to be transferred to the entire SC, since 

the soliton-based broadening process is coherent [22]. 

As demonstrated in earlier work, the dispersive wave frequency can also be tuned by 

varying the gas pressure, the input pulse energy or the gas species [17]. Together with the 

performance of the system in the MIR, this makes SR-PCF a unique vehicle for simultaneous 

access of many different spectral regions, raising the prospect of novel ultrafast pump-probe 

arrangements. 

5. Conclusions and outlook

Gas-filled SR-PCF can be used to generate ultrabroadband spectra extending from the UV to 

the MIR. The SR-PCF structure combines the advantages of kagomé HC-PCFs (pressure 

control of the nonlinear and dispersive properties) with a much simpler microstructure that is 

easier to fabricate and almost free of intrusive loss bands. The improved performance of SR-

PCF in the MIR makes it possible to generate a SC more than three octaves wide, with a total 

energy of 4 µJ, from pump pulses of 10 µJ. The system is highly versatile, permitting the UV 

dispersive waves to be wavelength-tuned by changing the pump wavelength without need to 

alter the system. Further improvements are expected if SR-PCFs with larger core-diameters 

are used so as to reduce loss in the MIR, allowing the spectrum to extend to even longer 

wavelengths; or arranging for endlessly single-mode operation so as to obtain cleaner output 

beam profiles. 

The spectra generated are coherent and broad enough to support few-cycle pulses. With 

suitable filtering, propagation through dispersion compensating materials or reflection at 
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phase-compensating mirrors, the SC pulses can be compressed [2], making this compact, 

versatile system an interesting ultrafast source for spectroscopy both in the MIR molecular 

fingerprinting region [6], where all molecules have phononic bond resonances, and in the UV 

region, where single-photon excitations and electronic resonances can be addressed [9]. The 

versatility and compactness of the source also makes it attractive for broadband MIR seed 

generation for amplification in the new generation of OPCPA based field synthesizers [21]. 
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