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Abstract— This paper presents an algorithm that generates
collision-free trajectories in three dimensions for multiple ve-
hicles within seconds. The problem is cast as a non-convex op-
timization problem, which is iteratively solved using sequential
convex programming that approximates non-convex constraints
by using convex ones. The method generates trajectories that ac-
count for simple dynamics constraints and is thus independent
of the vehicle’s type. An extensive a posteriori vehicle-specific
feasibility check is included in the algorithm. The algorithm is
applied to a quadrocopter fleet. Experimental results are shown.

I. INTRODUCTION

When working with multiple flying vehicles, critical
phases (such as takeoff and landing) can benefit strongly
from the use of an algorithm that allows for collision-
free trajectory planning. In this paper, we propose a simple
method based on sequential convex programming (SCP) [1]
to plan trajectories for multiple vehicles in 3D space. The
goal is to transition from an initial set of states – consisting of
position, velocity and acceleration of each vehicle – to a final
one, while maintaining a minimum distance between vehicles
and satisfying additional trajectory constraints. The approach
is applied to quadrocopters (Fig. 1), but can be readily used
for different platforms by modifying the constraints. This
work was inspired by the work on SCP by Wang at al. [2].

Sophisticated methods for generating quadrocopter tra-
jectories that account for vehicle constraints can be found
e.g. in [3] and [4]. In this paper, we minimize the total
thrust required to fly the trajectories and introduce avoidance
constraints to couple the trajectories of multiple vehicles. We
assume that the vehicle is able to track the generated trajec-
tories (by means of an appropriate controller), provided that
they satisfy a feasibility check. Decoupling the extensive fea-
sibility check from the trajectory planning algorithm results
in a simple and flexible method for generating collision-free
trajectories for multiple vehicles within seconds. A method
for aircraft trajectory planning with avoidance constraints
that also exploits simplified dynamics and constraints can
be found in [5]. Two recent surveys, [6] and [7], present
various research on motion planning for UAVs.

In robotics, the generation of trajectories with avoidance
constraints has been extensively studied. According to [8],
two different approaches exist: planning and reacting. The
planned approach generates feasible paths ahead of time;
whereas the reactive approach typically uses an online colli-
sion avoidance system to respond to dangerous situations,
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as in [9]. The two methods can also be combined. This
work focuses on a planned approach. The planning can be
performed in a decentralized fashion [10] or centralized [11]
as in this paper. Trajectory generation with avoidance con-
straints for multiple vehicles has been studied, among others,
for differential-drive robots [12], underwater vehicles [13]
and aircrafts [14]. Collision-free trajectories generation is
also central to pattern formation research [15], [16].

Our approach results in trajectories for multiple vehicles
that are simultaneously executed. Although it is straightfor-
ward to account for the presence of obstacles by imposing
minimum distances between vehicles and given obstacle
points, in the following sections we assume that the envi-
ronment is obstacle-free.

This paper is organized as follows: In Section II, we
state the collision-free trajectory generation problem as
an optimization problem entailing non-convex constraints.
Section III explains how SCP allows us to approximate
non-convex constraints by using convex ones, such that
the framework of quadratic programming can be used to
effectively solve the problem. Section IV describes the
overall algorithm, including an a posteriori feasibility check
of the resulting trajectories. Finally, Section V presents
experimental results and discusses the computational effort of
the algorithm. A video demonstrating collision-free quadro-
copter motion is attached to this work and found online
at http://youtu.be/wwK7WvvUvlI. Enough detail is
given such that the algorithm can be easily implemented on
other platforms.

II. TRAJECTORY OPTIMIZATION FOR MULTIPLE

VEHICLES WITH AVOIDANCE CONSTRAINTS

The goal is to generate collision-free trajectories for N
vehicles, allowing a transition in a given time T from an
initial set of states to a final set of states (position, veloc-
ity, and acceleration). The trajectories must satisfy various

Fig. 1. Multiple quadrocopters flying collision-free trajectories in the ETH
Flying Machine Arena.



constraints, including physical limits of the vehicle, space
boundaries and avoidance constraints.

In this section, we state the trajectory planning problem as
an optimization problem. We thus define an objective func-
tion that we want to minimize, a free optimization variable,
simple dynamics describing the evolution of the trajectories,
and inequality and equality constraints. The proposed method
may be used to generate trajectories for any arbitrary type of
vehicle. However, the vehicle type influences the choice of
some constraints. We will comment on this at various points
in the text.

A. Trajectory dynamics

In the following, we denote with pi[k] ∈ R3 the position of
vehicle i at discrete times k ∈ {1, . . . , K}. Its velocity and
acceleration are indicated by vi[k] and ai[k], respectively.
The trajectory of vehicle i obeys the simple discretized
dynamics equations:

vi[k + 1] = vi[k] + h ai[k], (1)

pi[k + 1] = pi[k] + h vi[k] +
h2

2
ai[k], (2)

where h is the discretization time step.

B. Optimization variable

The optimization variable χ ∈ R3NK consists of the
vehicles’ accelerations at each time step k. From (1) and (2),
it follows that the position and velocity of each vehicle at
any time k are affine functions of χ. The velocity of vehicle
i at time k, k > 1, is given by

vi[k] =vi[1] + h
(
ai[1] + ai[2] + . . . + ai[k − 1]

)
, (3)

while the position is expressed by

pi[k] =pi[1] + h(k − 1)vi[1] (4)

+h2

2

(
(2k − 3)ai[1] + (2k − 5)ai[2] + . . . + ai[k − 1]

)
.

Expressions (3) and (4) can be cast into matrix form,
mapping acceleration to velocity and position, for later use
when defining the constraints.

C. Objective function

The optimality criterion is chosen to be the sum of the
total thrust at each time step, which, for a quadrocopter, is
given by

f0 =
N∑

i=1

K∑

k=1

‖ai[k] + ~g‖2
2 , (5)

where ~g is the gravity vector [3]. Based on our experience,
this choice results in smooth trajectories. Equation (5) can be
expressed as a quadratic function of the optimization variable
χ, resulting in

f0(χ) = χT Pχ + qT χ + r. (6)

D. Convex constraints

Initial and final states are given for each vehicle. This in-
troduces equality constraints on the initial and final position,
velocity, and acceleration. Furthermore, to meet a vehicle’s
physical constraints, velocity, acceleration and jerk (the third
derivative of the position) can be constrained. When dealing
with quadrocopters, it is necessary to introduce constraints
on acceleration and jerk. Finally, space boundaries limit the
allowable position in space. The aforementioned constraints
can be expressed by affine functions of χ in the form of
equality and inequality constraints:

Aeqχ = beq, (7)

Ainχ � bin, (8)

where the inequalities are expressed element-wise. Below,
we introduce these constraints in more detail, highlighting
those specific to quadrocopters.

1) Initial and final states: As stated above, position,
velocity, and acceleration are defined for each vehicle at time
k = 1 and k = K. Note that the initial position and velocity
are already taken into account in (3) and (4). We must
thus introduce 12 constraints for each vehicle accounting
for the initial acceleration, and final position, velocity and
acceleration in three dimensions. This results in the following
matrices

Aeq ∈ R12N×3NK , beq ∈ R12N . (9)

2) Position: The working space is usually limited, adding
position constraints as follows:

pmin,l ≤ pi,l[k] ≤ pmax,l, l ∈ {x, y, z}, ∀i, k. (10)

In our case, this results in 6NK inequality constraints.
3) Velocity: Similarly, boundaries on velocity can be

specified. However, in limited indoor space operations the
quadrocopter can never reach its maximum velocity. There-
fore, velocity is not constrained here.

4) Acceleration: On a quadrocopter, the collective thrust
is limited by a minimum and a maximum thrust value, de-
noted by fmin and fmax, respectively. Taking quadrocopter
dynamics into account, the condition reads as

fmin ≤
√

(ai,x)2 + (ai,y)2 + (ai,z + g)2 ≤ fmax, (11)

which results in a quadratic constraint. Instead, to simplify
and speed up the solution to the problem, we decouple the
single directions by constraining each coordinate separately.
We thus have:

amin,l ≤ ai,l[k] ≤ amax,l l ∈ {x, y, z}, ∀i, k, (12)

where, in our case, the limits are chosen such that (11) is
satisfied for the extremal case. We thus have:
√

(amax,x)2 + (amax,y)2 + (amax,z + g)2 ≤ fmax , (13)

g + amin,z ≥ fmin . (14)

This fits the affine formulation presented above and con-
tributes with 6NK additional inequality constraints.



5) Jerk: Analogously, for each coordinate we derive jerk
constraints. Bounded jerk implies continuity in the accelera-
tion, which for a quadrocopter corresponds to continuity in
the attitude [3]. In our case, constraining the jerk is therefore
necessary to obtain feasible trajectories. We thus have,

jmin,l ≤ ji,l[k] ≤ jmax,l l ∈ {x, y, z}, ∀i, k, (15)

where j[k] = (a[k] − a[k − 1])/h. This adds 6N(K − 1)
inequality constraints to the problem.

E. Non-convex collision avoidance constraints

The vehicles must not collide during the transition from
the initial states to the final states. This is captured by the
following non-convex constraints:

‖pi[k] − pj [k]‖2 ≥ R, ∀i, j, i 6= j, ∀k, (16)

which guarantee a minimum distance R between vehicles
at each time k.

In this section, we stated an optimization problem, which
allows the generation of trajectories for multiple vehicles
from a set of initial states to a set of final states. Because of
the collision avoidance constraint (16), the problem is non-
convex.

In the following section, we introduce SCP, a local op-
timization method that allows the approximation of non-
convex constraints.

III. SEQUENTIAL CONVEX PROGRAMMING

Sequential convex programming is a local optimization
method for non-convex problems [1]. The idea is to replace
non-convex constraints with convex approximations around
a previous solution χq . The convex problem is solved
iteratively, starting from an initial guess χ0. The method
iterates until a stop condition is satisfied. SCP is a heuristic
method and may fail to find the optimal solution. Moreover,
the result depends on the initial guess χ0. Nevertheless,
according to [1] it often works well and finds a feasible
solution with satisfactory, if not optimal, objective value.
This was confirmed in our numerous experiments (see Sec. V
for details).

A. Approximated collision avoidance constraints

The collision avoidance constraint (16) at iteration (q +1)
is linearized around the previous solution χq using a first-
order Taylor expansion

∥
∥pq

i [k] − pq
j [k]
∥
∥

2
+ (17)

ηT
[(

pi[k] − pj [k]
)
−
(
pq

i [k] − pq
j [k]
)]

≥ R

with

η =
pq

i [k] − pq
j [k]

∥
∥pq

i [k] − pq
j [k]
∥
∥

2

,

where pq
i is the position of vehicle i corresponding to the

solution χq , cf. (4). Equation (17) can be cast into affine
form, adding NcK inequality constraints with Nc = N(N −
1)/2.

B. Resulting quadratic program

With approximation (17), the non-convex trajectory plan-
ning problem can be formulated as a quadratic program,
since the objective function is quadratic and the constraint
functions are affine [17]:

minimize χT Pχ + qT χ + r

subject to Aeqχ = beq (18)

Ainχ � bin,

where χ ∈ R3NK , Aeq ∈ R12N×3NK , Ain ∈ RM×3NK ,
with M = 23.5KN − 6N + 0.5KN2.

Quadratic programs can be solved very efficiently using
existing software packages such as [18]. Further, if the
optimization problem is feasible (i.e., if there exists χ that
satisfy the constraints), then there exists a local minimum
that is globally optimal. In practice, convex optimization
problems are tractable for a large number (hundreds, if not
thousands) of decision variables and constraints.

C. The sequential convex programming loop

The SCP loop consists of the following steps:
1) Problem parameters: First, the discretization step h

is chosen. With the given trajectory duration T , we have
K = T/h + 1, where h is chosen such that K ∈ N.

2) Starting point: As explained above, the SCP algorithm
iteratively solves a convex problem around a previous so-
lution χq . It thus requires a starting point χ0, which is
chosen to be the solution to (18) without the avoidance
constraint (17). This is motivated by the fact that the resulting
trajectories of the problem without avoidance constraints are
often close to the ones of the actual problem.

3) Stopping conditions: The problem is iterated with χq

being the solution to the approximate QP (18) at iteration q,
until the following conditions are satisfied:

1) χq is an optimal solution of the approximate convex
problem.

2) χq fulfills the non-convex avoidance constraint (16).
3) Convergence in the objective value is achieved, i.e.

|f0(χq−1)−f0(χq)| < ε, where ε is a tuning parameter.

In our setup, the problem converges in less than four
iterations. Results are shown in Sec. V-A.2.

D. Discussion

The solution returned by the SCP algorithm (if any exists)
results in trajectories that fulfill the constraints introduced in
Sec. II-D and Sec. II-E. However, this method has two main
limitations.

First, some constraints (in our case, the jerk and acceler-
ation) are only approximations of vehicles’ physical limits,
and there is therefore no guarantee that the trajectories are
feasible. Including true vehicle dynamics (even if simplified)
results in a larger problem dimension and in a potentially
nonlinear problem. Both effects lead to a much longer
solution time. In addition, the definition of the dynamics
and constraints is vehicle specific. One solution to bypass
this issue is to be very conservative in the choice of the



Fig. 2. Collision-free trajectories demonstrated for a 2D scenario. The circles show the positions of the vehicles (and the required minimum distance) in
the xy-plane at subsequent times from left to right. The lines indicate the resulting trajectories.

limit values in (12) and (15), so that the resulting trajectory
is likely feasible. However, this excludes too many feasible
trajectories.

Second, the constraints are satisfied only at discrete times
k: The actual trajectories are found by linear interpolation
and may, for example, not fulfill the minimum distance re-
quirement between discrete times. This issue, can be readily
addressed with a smaller time step h. However, this increases
the problem dimension.

The solution adopted in this paper is to use an external
algorithm to verify the feasibility of the trajectories returned
by the SCP. On the one hand, this allows us to abstract the
trajectory generation problem, which is thus almost totally
independent from the specific vehicle dynamics. On the
other hand, the feasibility test is performed on the interpo-
lated trajectories, addressing possible constraint violations
between discrete times. In the next section, we introduce the
overall algorithm and explain how we deal with infeasible
trajectories.

IV. THE ALGORITHM

The overall algorithm consists of the following
steps:

1: Initialization: Check if initial and final states satisfy the
constraints. Select initial values for h and T .

2: Solve the SCP, as described in Sec. III.
3: Check the resulting trajectories for feasibility.

If they are feasible, exit. Otherwise, adjust T or h and
go back to 2.

A. Initialization

Firstly, the initial and final states must satisfy the con-
straints. Secondly, initial values for the discretization time
step h and the trajectory duration T are chosen. Our results
show that a medium time step h (e.g. h = 0.2 s) is
often sufficient to fulfill the minimum distance requirement
between discrete times, with the advantage of keeping the
problem dimension small. The choice of T depends on the
desired duration of the transition from the initial set of states
to the final one. Keep in mind that a small T will more likely
violate the vehicle’s physical limits, thus the initial guess
must be tailored to the capabilities of the vehicle. Notice
that a big value of T results in a larger problem dimension.
In our approach, h and T are modified if the trajectories

resulting from the SCP step are infeasible (see Sec. IV-C).
However, an appropriate initial choice will avoid unnecessary
iterations (see Sec. V-A.3) and speed up the generation of
feasible trajectories.

B. Feasibility check

The discrete trajectories resulting from the SCP step are
first linearly interpolated and then checked for feasibility
with respect to the vehicle’s physical limits and position
constraints.

1) Vehicle’s physical limits: We developed a method that
uses a first-principles model of the quadrocopter dynamics,
to relate the quadrocopter trajectory to the required rotational
rates and rotor forces. These are constrained by actuator and
sensor limitations. The algorithm requires a trajectory in the
3D space and a yaw profile. In this paper, we assume a
constant yaw angle and use the algorithm presented in [19]
for a sophisticated feasibility check.

The method also provides guidelines for designing feasible
trajectories for quadrocopters. The main conclusion is that
the jerk must be bounded. Intuitively, requiring a bounded
jerk implies continuity in the quadrocopter’s attitude. Thus,
the constraints of the SCP (acceleration and jerk) allow the
algorithm to return a solution that is likely to be feasible.

2) Position constraints: The trajectories resulting from
the SCP step are guaranteed to meet position and avoid-
ance constraints only at discrete time steps k. Therefore,
constraints (10) and (16) are verified for the interpolated
trajectories as well.

C. Parameter adaptation

If the trajectories resulting from the SCP step are not
feasible because of the vehicle’s physical limits, we increase
the trajectory duration time T and recompute the SCP step.
This is motivated by the fact that with T → ∞, the input
converges to zero and a feasible solution must be found.

Instead, if position constraints are violated between dis-
crete times, we decrease h and restart the SCP with a finer
resolution. Both adjustments result in a larger problem di-
mension.

V. RESULTS

The resulting trajectories are smooth. Fig. 2 shows the
evolution of the position of 5 vehicles over time for a
2D case. In the following, we present some results on the
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Fig. 3. The average computation time per SCP iteration as a function of
the number M of inequality constraints (50 trials for each case). The error
bars indicate the standard deviation. The grey area indicates the average
time needed for the initialization of the algorithm.

computational time and on the application of this method to
quadrocopters in the ETH Flying Machine Arena (FMA).

A. Computational effort

We present here some results of the needed computational
time. All our experiments were conducted on a PC running
Windows 7, and equipped with an Intel Core 2 Duo CPU
E8500 @3.16 Ghz and 6 GB of RAM. The next three ex-
periments assume that the vehicles must transition between
randomly picked positions (with zero initial and final velocity
and acceleration) in a 6 x 6 x 6 m space. Minimum distance
between vehicles is R = 1 m.

1) Computational time: We run the algorithm with differ-
ent values for N and K. Fig. 3 shows the average time nec-
essary to complete a single SCP iteration for various values
of M , which indicate the number of inequality constraints,
see (18). We can conclude that the value of M is a reasonable
indication of the time necessary to compute a solution.

A typical operational scenario in the FMA (e.g. a takeoff
phase) that involves 5 vehicles performing 3-second long
trajectories with h = 0.2 s results in M = 2050. The total
computation time of feasible trajectories is on average 0.31 s.

2) Necessary SCP iterations: The total number of SCP
iterations necessary for the solution χq to converge is shown
in Fig. 4. Usually, the algorithm converges in less than
4 iterations. The large deviation depends on the initial
configuration of the vehicles, which is randomly picked as
explained above. Intuitively, the number is larger if the final
trajectories deviate a lot from the ideal straight ones.

3) Parameter adaptation: The algorithm adapts the pa-
rameters T and h if the resulting trajectories are not feasible
(see Sec. IV-C). We generated trajectories for different values
of N using T = 3 s and h = 0.2 s as initial values. Fig. 5
shows how often the algorithm needs to adapt the parameters
depending on the number of vehicles in the space. It is
clear from the results that a good initial guess must take
into account the number of vehicles crowding the space.
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Fig. 4. The average number of SCP iterations as a function of the
number N of vehicles (800 trials per case). The error bars indicate the
standard deviation.
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Intuitively, with many vehicles in the space trajectories are
longer, since they have to avoid each other.

B. Experimental testbed

We demonstrate our algorithm on small custom quadro-
copters in the Flying Machine Arena, a 10 x 10 x 10 m testbed
for quadrocopter research. The space is equipped with a
motion capture system that provides precise vehicle position
and attitude measurements at high rates. This information is
sent to a PC, which runs algorithms and control strategies,
and sends commands to the quadrocopter at approximately
60 Hz. More details on the testbed can be found in [20].

C. Online generation of feasible collision-free trajectories

The algorithm is currently used for takeoff and land-
ing operation with multiple vehicles in the FMA. The
video attached to this submission and available online
(http://youtu.be/wwK7WvvUvlI) demonstrates the
speed of the algorithm. In the first part of the video, the
destination points are selected ahead of time and collision-
free trajectories are pre-computed. All the trajectories are
stored before execution. In the second part of the video,
however, the next set of destination points is picked at ran-
dom while the vehicles are still en-route, demonstrating that
the algorithm is fast enough to be used in real-time. Fig. 6
shows an example of collision-free trajectories generated by
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the algorithm and actually flown in the FMA. The initial and
final points are randomly picked.

VI. CONCLUSIONS

The method presented in this paper allows for the gen-
eration of collision-free trajectories for multiple vehicles
within seconds. This algorithm is currently successfully
used in the FMA when working with multiple vehicles. It
allows for takeoff and landing from arbitrary locations, safely
leading the quadrocopters to the desired points in space.
The algorithm is also incorporated into a software tool that
allows us to easily generate quadrocopter choreographies for
a pre-processed music piece. It enables us to create smooth
transition motions between different motion primitives when
creating dance performances with quadrocopters [21].

The algorithm is generally independent of the vehicle’s
type. However, knowledge about the vehicle influences the
choice of the appropriate inequality constraints, and leads to
more reliable results. In addition, if linear expressions do not
capture vehicle constraints precisely enough, an appropriate
vehicle-specific feasibility check is necessary.

Decoupling complex vehicle dynamics and constraints
from the trajectory generator simplifies the planning problem
and results in a fast and efficient way for generating collision-
free trajectories. Planning trajectories while accounting for
vehicle constraints is complex. Checking a posteriori if a
trajectory satisfies these constraints is fast, and can be done
using a complex vehicle model. This paper demonstrates
the effectiveness of this approach, when applied to quadro-
copters. The approach can be similarly applied to other
vehicles and problems.
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