

Generation of Concurrency Control
Code using Discrete-Event Systems

Theory
Christopher Dragert, Juergen Dingel, Karen Rudie

Presented by David Gerhard

Motivation
● Optimal usage of today's Multi-core systems

requires parallel executable Software
● Efficient and correct concurrent source code is

hard to write and debug

→ facilitate development of concurrent source
code

Introduction
● Automatic generation of concurrency control

code
● Input

– Source code without concurrency control
– Informal specification of the desired concurrent behaviour

● Output
– Source code with concurrency controls

Introduction
● Aims

● No Deadlocks
● No Starvation
● Minimally restrictive

→ using control theory (Discrete-event System)

DES - Supervisor-Plant
● System(Plant) modelled as a finite-state

automaton (FSA)
● Transitions in FSA are called events

– Events can be controllable or uncontrollable
● Supervisor modelled as a FSA

● Enables or disables controllable events

Supervisor

Plant

EventControl Action

Process Overview

Uncontrolled
Source Code

Informal
Specification

Controlled
Source Code

Process Overview

Uncontrolled
Source Code

Informal
Specification

Controlled
Source Code

Event-Marked
Source Code

Formal
Specification DES Supervisor

DES Plant

Relevant Events
● Find relevant events for concurrency control

● Example
– Enter/Exit Critical Section → relevant
– Accessing shared variable → non-relevant

● Mark events in the source code
● Differentiate controllable and uncontrollable

events

Example
● 5 Threads with

dependencies
● 1 → 2,3,4
● 5 → 4

1

2 3 4

5

Code example for Thread 3:

public void run() {

// relevant event: T3-start
System.out.println(id);
doWork();

}

DES Plant
● Build a Finite-state automaton (FSA)

representing all possible event sequences for
each Thread
● Build control-flow graph(CFG) from source code
● Reduce CFG

– All relevant events remain
– All non-relevant events important for CFG structure

remain

Example
Code example for Thread 3:

public void run() {

// relevant event: T3-start
System.out.println(id);
doWork();

}

run() { Sys...

doWork 2}

1 22
T3-start

T3-start

Process Overview

Uncontrolled
Source Code

Informal
Specification

Controlled
Source Code

Event-Marked
Source Code

Formal
Specification DES Supervisor

DES Plant

Formal Specification
● Specifies the allowed subset of event

sequences
● FSA for each restriction
● Only restrictive

Example

1 T1-finish

T5-finish

T1-finish, T2-start, T3-start,
T4-start, T5-finish

1 T5-finish

T1-finish, T2-start, T3-start

T1-finish, T2-start, T3-start,
T4-start, T5-finish

22

22

DES Supervisor
● Only one supervisor (simplification)
● Different FSA's need to be combined into a

monolithic specification
● Scalability issue

Process Overview

Uncontrolled
Source Code

Informal
Specification

Controlled
Source Code

Event-Marked
Source Code

Formal
Specification DES Supervisor

DES Plant

Code Generation
● Supervisor needs to block non allowed

controllable events
● Generates a Semaphore for each controllable event

set to the initial state
● Supervisor state changing function

enables/disables controllable events

Example – Thread 3
//relevant event: T3start

while (true) {

if(Synchronizer.stateChangeTest("T3start",
Synchronizer.T3start))

break;
Synchronizer.T3start.acquireUninterruptibly();
Synchronizer.T3start.release();

}

Example – Supervisor I
public static synchronized Boolean stateChangeTest(String event,
Semaphore eventBlocker) {

if (!(eventBlocker == null)) {

if (!eventBlocker.tryAcquire()) {
return false;

}
eventBlocker.release();

}

changeSupervisorState(event);

return true;

}

Example – Supervisor II
private static void changeSupervisorState(String event) {

if (event.equals("T1finish")) {
switch(Synchronizer.stateTracker) {
case(0):

Synchronizer.T3start.release();
Synchronizer.T2start.release();
Synchronizer.stateTracker = 1;

break;
case(1):
...

Verification
● Discrete-event theory is proven correct and non

blocking
● Formal proof for algorithm is still needed
● Modelchecker (Java Pathfinder)

● Input not reliable!

Limitations
● No dynamic threads generation allowed
● Monolithic supervisor not very efficient
● Starvation not properly addressed

Conclusion
● DES theory can be applied to concurrency
● Chosen FSA-based version of DES not

expressive enough
● Further work needed

Questions

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

