Purdue University

Purdue e-Pubs

Generation of Configuration Space Obstacles II: The Case of Moving Algebraic Surfaces

Chanderjit Bqajajj

Myung-Soo Kim
Report Number:
86-586

[^0]This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

GENERATION OF CONFIGURATION SPACE OBSTACLES: THE CASE OF MOVING ALGEBRAIC SURFACES

Chandrajit Bajaj
Myung-Soo Kim

CSD-TR-586
March 1986

Generation of Configuration Space Obstacles: The Case of Moving Algebraic Surfaces ${ }^{\dagger}$
 Chanderjii Bajaj and Myung-Soo Kim
 Department of Computer Science, Purdue University, West Lafayette, IN 47907.

Abstract

We present algebraic algorithms to generate the boundary of configuration space obstacles arising from the translatory motion of convex objects amongst conver obstacles. Both the boundaries of the objects and obstacles are given by patches of algebraic surfaces.

1. Introduction

Using configuration space ($C-$ Space) to plan motion for a single rigid object amongst physical obstacles, reduces the problem to planning motion for a mathematical point amongst "grown" configuration space obstacles, (the points in C-Space which correspond to the object overlapping one or more obstacles), Lozano-Perez (1983). For example, a rigid polyhedral object in compliant motion, viz., in conainuous contact with the boundary of obstacles in 3-Dimensions can be represented as a point constained to move on the three (or higher) dimension boundaries of grown obstacles embedad in 6-Dimension C-Space, Donald (1984). The technique thus relies, (and this is in general the more difficult part), in efficiently generating the boundary of C-Space obstacles. Numerous applications such as robot motion in workcells, automated assembly, numerical machining, part tolerancing, etc., exist where gross and fine motion planning in C-space have been used, Lozano-Perez, Mason and Taylor (1984), Tiller and Hanson (1984).

Early uses of the confguration space approach were, Freeman (1975), Adamowicz and Albano (1976), Udupa (1977), and more recently, Lozano-Perez and Wesley (1979), Lozano-Perez (1983), Lozano-Perez, Mason and Taylor (1984), Schwartz and Sharir (1983), Sharir and Schorr (1984), Franklin and Akman (1984), Canny (1984), Donald (1984), Yap (1985), Bajaj and Kinn (1987a, b). The only efficient algorithms known for generaing C-Space obstacles have been for polyhedral (degree 1) surface objects and obstacles, using methods for efficiently computing convex hulls, Lozano-Perez (1983), and recently efficient convolution algorithms for Minkowski addition, Guibas and Seidel (1986). However it has progressively become easier for geometric modeling systems to deal with objects that are defined by quadrics (degree 2) and higher degree surfaces, Requicha and Voelcker (1983). Further, motion planning in these sophisticated modeling environments, for example for process simulation, Hopcroft and Krafft (1985), suggests the need to characterize and efficiently generate the surface boundary of C-Space obstacles arising from the motion of objects amongst obstacles with curved surface boundaries. The methods based on generating a cylindrical cell decomposition of free C-Space, though applicable for general objects and obstacles defined by semi-algebraic sets, are computationally too restrictive, Schwart and Sharir (1983), Yap (1985).

The main convributions of this paper are as follows. In $\S 3$ we show that the boundary of C-Space obstacles for general curved objects moving with only translation can be viewed as either the convolution between the obstacle boundary and the reversed object boundary (reversed with respect to a reference point on the object) or as certain envelopes of boundary surfaces of the moving reversed object with the reference point moving on the physical obstacle. Next in $\S 4$ we give algebraic algorithms to

[^1]generate the curves and surfaces which make up the boundary of the three dimensional C-Space obstacles. Here we only consider objects and obstacles which are convex. These objects and obstacles are represented by a general algebraic boundary representation model discussed in $\S 2$. Crucial too here is the internal representation of curves and surfaces, i.e., whether they are parametrically or implicitly defined ${ }^{\dagger}$. We present algorithms for both these intemal representations. Further in $\$ 5$ we show how to construct the topology of the C-space obstacle boundary. Use is made of a Gaussian (spherical) model discussed in §2.

2. Geometric Models

2.1. Solid Algebraic Model

In a boundary representation an object with general algebraic surfaces consists of the following:
(I) A finite set of vertices usually specified by Cartesian coordinates.
(2) A finite set of directed edges, where each edge is incident to two vertices. Typically, an edge is specified by the intersection of two faces, one on the left and one on the right. Here left and right are defined relative to the edge direction as seen from the exterior of the object Further an interior point is also provided on each edge which helps remove any geomeaic ambiguity in the representation for high degree algebraic curves, Requicha (1980). Geometric disambiguation may also be achieved by adding tangent and higher derivacive information at singular vertices, Hoffmann and Hoparoft (1986).
(3) A finite set of faces, where each face is bounded by a single oriented cycle of edges. Each face also has a surface equation, represented either in impicit or in parametric form. The surface equation has been chosen such that the gradient vector points to the exterior of the object.
In addition edge and face adjacency information is provided. Additional conventional assumptions are also made, e.g., edges and faces are non-singular, two distinct faces intersect only in edges, an auxiliary surface is specifed for each edge where adjacent faces meet tangenrially, etc. The objeets and obstacles that we consider are solids and are assumed to enclose non-zero finite volume. Hence non-regularities such as dangling edges and dangling faces which depending on one's viewpoint enclose zero or infinite volume, are not permitred. The C-spaces that we construct are also regularized in this fashion and assumed to be solids enclosing non-zero finite volume.

2.2. Gaussian Model

Let S^{2} be the unit sphere in R^{3}, and $B d r(S)$ be the boundary surface of a convex set $S \subset R^{3}$. $B d r(S)$ is homeomorphic to S^{2}. The Gaussian Map of S is defined as follows. For any set $K \subset B d r(S)$, we shall define a set $N(S, K) \subset S^{2}$ as follows. A point $e \in S^{2}$ belongs to $N(S, K)$ if there exists a point $p \in K$ and a supporting plane L_{p} at p such that the exterior nommal to L_{p} translated to the center of S^{2} has e as its end point. This set $N(S, K)$ is called the Gaussian Image of K. The function $N(S, \cdot): P(B d r(S)) \rightarrow P\left(S^{2}\right)$ is called the Gaussian Map of S, where $P(B d r(S))$ and $P\left(S^{2}\right)$ are the power sets of $B d r(S)$ and S^{2}. It is a bjjective map and its inverse $N^{-1}(S, \cdot): P\left(S^{2}\right) \rightarrow P(B d r(S)$) is called the Inverse Gaussian Map of S. For any $G \subset S^{2}$, the Inverse Gaussion Image of G is defined as $N^{-1}(S, G)$. The Gaussian Curvature of $p \in$ $B d r(S)$ is the limit of the racio (Area of $N(S, K)$)/ (Area of K) as K shrinks to the point p, see Pogorelov (1978), Hom (1986).

[^2]
Gaussian Image of Faces, Edges and Yertices

Since all faces are patches of algebraic surfaces, we may assume that each face of a convex object is either a strictly convex face (Gaussion Curvature is positive on each point), a convex ruled surface patch, or a planar patch. The Gaussian Model of a curved object then consists of a finite set of verices, edges and faces on the surface of a unit sphere as follows.
(1) For a strictly convex face F, the Gaussian Image $N(S, F)$ is a patch of S^{2} with its boundary curves determined by the normals to the tangent planes of F at the boundary. That is, the boundary of $N(S, F)$ consists of the set of points $\nabla f(p)|\| \nabla f(p)| \mid$ for $p \in \cup_{E \in T} E$, where Γ is the set of boundary edges of F. For a ruled surface patch $F, N(S, F)$ is a degenerate curve on S^{2}. And for a planar patch $F, N(S, F)$ is a degenerate point on S^{2}.
(2) For an edge E, there are two faces F and G intersecting in E. By subdividing E if necessary, we may assume that F and G meet either transversaliy or tangentially along E. When F and G met cransversally along E, each point $p \in E$ determines two different points n_{F} and n_{G} on S^{2} determined by the exterior nomals of the cangent planes of F and G at $p . N(S, p)$ is the geodesic arc γ_{p} connenting n_{F} and n_{G} on S^{2} and $N(S, E)=\bigcup_{p \in E} \gamma_{p}$ is a patch of S^{2}. $N(S, E)$ has 4 boundary curves, one is the set of points $\nabla f(p) /\|\nabla f(p)\|$ for $p \in E$, one is the set of points $\nabla g(p) /\|\nabla g(p)\|$ for $p \in E$, and the others are the geodesic arcs $\gamma_{p_{1}}$ and γ_{p}, where $f=0$ and $g=0$ are the surface equations of F and G, and p_{1} and p_{2} are verices of E. When F and G mest tangentially along $E, N(S, E)$ is a degenerate curve on $S^{2} . N(S, E)$ is the common boundary curve of $N(S, F)$ and $N(S, G)$. That is, it is the set of points $\nabla f(p) /\|\nabla f(p)\|=\nabla g(p) /\|\nabla g(p)\|$ for $p \in E$, When F and G are planar patches, E is a linear edge and $N(S, E)$ is a degenerate geodesic arc γ connecting n_{F} and n_{G} on S^{2}, where n_{F} and n_{G} are the exterior normals of F and G.
(3) For a vernex p, suppose that there are k adjacent faces (ordered in a counter-clockwise direstion) F_{1}, $F_{2}, \ldots, F_{\mathrm{k}}$ intersecing at p. Each face F_{i} determines a point n_{i} on S^{2} determined by the normal of F_{i} at p. Let $\gamma_{i}(i=1, \ldots, k)$ be the geodesic arc (greatest circle) on S^{2} connacting n_{i} and n_{i+1} where n_{k+1} $=n_{1}$. Then $N(S, p)$ is the convex patch on S^{2} bounded by the cycle of geodesic arcs $\gamma_{k}, \gamma_{2}, \ldots, \gamma_{2}$. When F_{i} and F_{i+1} is tangent on p, γ_{i} is a degenerate point. In the special case of all k faaes being tangent at $p, N(S, p)$ is a degenerate point $N(S, p)$ can also be a degenerate geodesic arc on S^{2} when $B d r(S)$ is locally non-smooth only along a curve which is tangent at p. Otherwise, $N(S, p)$ is a pacch on S^{2}.

Topologry of Gaussian Model

The Gaussian Image of $\operatorname{Bdr}(S)$ covers S^{2} completely and subdivides S^{2} into faces, edges and vertices as described above. We shall fudge the physical distinctions of face, edge and verex of S^{2} a little bit and deal with the degenerate edges and vertices in the same way as with the faces. Let us assume the Gaussian Image of each face, edge and ventex is a generic face of S^{2}. If any of these Gaussian Images are not faces, we can represent this fact by tagging it as degenerate curves or degenerate points and consider it as faces. By using the connectivity graph of $\operatorname{Bdr}(S)$ we can connect these generic faces with the correct topology. We can further include the edges and vertices determined by these faces into the connectivity graph of the Gaussian Image. The edge equations and ventex coordinates are given by the face boundary equations described above. Doing it in this way, we construct a graph on S^{2} with degenerate curves and points considered as generic faces tagged appropriately.

Figure 1 (b) and (d) show the Gaussian Models for the convex objects in Figure 1 (a) and (c). In Figure I (a), all the faces are strictly convex, and all the edges and vertices are defined by transversally intersecting faces. The $\operatorname{Bdr}(S)$ is non-smooth on each edge and vertex and only on the edges and verices.

Hence, the Gaussian Images for faces, edges and vertices are all patches of S^{2}. In Figure 1 (c), the face F_{3} is a ruled surface and the face F_{2} is a planar patch. The corresponding Gaussian Images are a degenerate curve and a degenerate point. Further since faces F_{1} and F_{3} are tangent to each other along E_{2}, the Gaussian Image of E_{2} is a degenerate curve.

3. C-space Obstacles, Convolution and Envelopes

Let A be a moving object with its reference point at the origin and B be a fixed obstacle in the 3dimensional real Euclidean plane R^{3}. Both A and B are modeled by the above boundary representations. For the sake of notation and preciseness in our usage we make the following definitions. For S, P and $Q \subset$ R^{3}, we denote $\operatorname{Int}(S)$ as the interior of $S, B d r(S)$ as the boundary of S, and $C l(S)=\operatorname{Int}(S) \cup B d r(S)$ as the closure of S. Note that $A=C l(A)$ and $B=C l(B)$ by regularity. Further, the exterior of S is denoted by $\operatorname{Exf}(S)=C l(S)^{c}$ (the complement of $\left.C l(S)\right)=R^{3} \sim C l(S)$, where the set difference $P-Q=$ $\left\{p \in R^{3} \mid p \in P\right.$ and p nomem $\left.Q\right\}$. Note that $I n t(S)$ and $E x t(S)$ are open sets. We also have $d(p, q)$ as the Euclidean distance between p and $q ; N B_{\varepsilon}(p)=\left\{q \in R^{3} \mid d(p, q)<\varepsilon\right\}=\varepsilon$-neighborhood around a point p; $-S=\{-p \mid p \in S\}=$ Minkowski inverse, $P \pm Q=\{p \pm q \mid p \in P$ and $q \in Q\}=$ Minkowski sum and difference.

Throughout we consider object A to be free to move with fixed orientation. In this case configuration space is also 3-dimensional We denote A_{p} to be $A+\{p\}$ where $p \in R^{3}$. One also needs the following definitions (1) $A_{\bar{p}}$ is free from $B \leftrightarrows A_{\bar{p}} \cap B=$ empty. (2) $A_{\bar{p}}$ collides with $B \leq \operatorname{Int}\left(A_{\bar{p}}\right) \cap \operatorname{Int}(B) \neq$ empry (3) $A_{\bar{p}}$ contacts with $B \leqq A_{\bar{p}} \cap B \neq$ empty and $\operatorname{Int}\left(A_{\bar{p}}\right) \cap \operatorname{Int}(B)=$ empry (Note that these conditions imply $\operatorname{Bdr}\left(A_{\bar{p}}\right) \cap \operatorname{Bdr}(B) \neq$ empty.) (4) $C O(A, B)=C$-space obstacle due to A and $B=$ $\left\{\vec{p} \in R^{3} \mid A_{\bar{p}} \cap B \neq\right.$ emply $\}$. (5) O-Envelope $(-A, B)=$ Outer envelope due to $-A$ and $B=\left\{\bar{p} \in R^{3} \mid \bar{p} \in\right.$ $B d r\left((-A)_{p}\right)$ for some $p \in \operatorname{Bdr}(B)$, and \bar{p} nomem $\operatorname{Inr}\left((-A)_{q}\right)$ for any $\left.q \in B\right\}$ (Having $q \in B$ as opposed to $q \in B d r(B)$ implies that only tie outer envelope is considered.) (6) Convolution $(B d r(-A), B d r(B))=$ Convolution of $B d r(-A)$ and $B d r(B)=\left\{\bar{p}=R^{3} \mid \bar{p}=p-q\right.$ where $p \in B d r(B)$ and $q \in B d r(A)$ and B has an outward normal direccion at p exactly opposite to an outward norinal A has at q \}.
We now note the following.
Theorem 3.1: $C O(A, B)=B-A$
Proof: Lozano-Perez and Wesley (1979).
$>$ From the above Theorem and our prior definitions we obtain,
Corollary 3.2 : (1) $C O(I n t(A), I n t(B))=\operatorname{Int}(B)-\operatorname{Int}(A)=B-\operatorname{Int}(A)$ (This is an open set)
(2) $A_{\bar{p}}$ is free from $B \leq \bar{p} \in \operatorname{Ext}(C O(\operatorname{Int}(A), \operatorname{Int}(B)))$
(3) $A_{\bar{p}}$ collides with $B \leq \bar{p} \in \operatorname{Int}(C O(\operatorname{Int}(A), \operatorname{Int}(B)))$
(4) $A_{\bar{p}}$ conracts with $B \leq \vec{p} \in \operatorname{Bdr}(C O(\operatorname{Int}(A), \operatorname{Int}(B)))$

We next obtain the following imporant characterizations,
Lemma $3.3: \operatorname{Bdr}(C O(\operatorname{Int}(A), \operatorname{Int}(B)))=0-$ Envelope $(-A, B)$
Proof: $(\square):$ Let $\bar{p} \in \operatorname{Bdr}\left(C O(\operatorname{Int}(A), \operatorname{Int}(B))\right.$, then $A_{\bar{p}}$ contacts with B, (Corallary 3.2 (4)), and $\exists p$ $\in B d r\left(A_{\bar{p}}\right) \cap B d r(B)$. Since $p-\bar{p} \in B d r(A)$, we have $\bar{p}-p \in B d r(-A)$ and $\bar{p} \in B d r\left((-A)_{p}\right)$ for $p \in$ $B d r(B)$. Further \bar{p} nomem $\operatorname{Int}\left((-A)_{q}\right)$ for any $g \in B$. Assuming the contrary, if $\bar{p} \in \operatorname{lnt}\left((-A)_{q}\right)$ for some $q \in B$, then $\bar{p} \in B-\operatorname{Int}(A)=\operatorname{Int}(B)-\operatorname{Int}(A) \bullet \operatorname{Int}(C O(\operatorname{Int}(A), \operatorname{Int}(B))$), (contradiction).
(2) : Let $\bar{p} \in O-$ Envelope $(-A, B)$, then $\bar{p} \in B d r\left((-A)_{p}\right)$ for some $p \in B d r(B)$, and \bar{p} nomem $\operatorname{Int}\left((-A)_{q}\right)$ for any $q \in B$. Equivalenty, $p \in B d r\left(A_{\bar{p}}\right) \cap B d r(B)$ and q nomem $\operatorname{Int}\left(A_{\bar{p}}\right)$ for any $q \in$ B. This implies $A_{\bar{p}} \cap B \neq e m p t y$ and $\operatorname{Int}\left(A_{\bar{p}}\right) \cap \operatorname{Int}(B)=$ empty. Hence, $A_{\bar{p}}$ contacts with B.

Theorem $3.4: B d r(C O(A, B)) \subset O-$ Envelope $(-A, B) \subset C o n v o l u t i o n(B d r(-A), B d r(B))$
Proof: (1) Using Theorem 3.3 we show $\operatorname{Bdr}(C O(A, B)) \subset B d r(C O(\operatorname{Int}(A), \operatorname{Int}(B)))$: For any $\bar{p} \in$ $C O(A, B), A_{\bar{p}} \cap B \neq$ empry, equivalently $\bar{p} \in C l(C O(I n t(A), \operatorname{Int}(B))$), (Corollary 3.2 (2)). Hence, $\operatorname{CO}(\operatorname{Int}(A), \operatorname{Int}(B)) \subset \operatorname{CO}(A, B) \subset \operatorname{Cl}(C O(\operatorname{Int}(A), \operatorname{Int}(B)))$ and $C l(C O(A, B))=$ $\operatorname{Cl}(\operatorname{CO}(\operatorname{Int}(A), \operatorname{Int}(B))) . \quad$ Since $\operatorname{Int}(C O(\operatorname{Int}(A), \operatorname{Int}(B))) \subset \quad \operatorname{Int}(C O(A, B))$, we have $\operatorname{Bdr}(C O(A, B)) \subset B d r(C O(I n t(A), \operatorname{Int}(B)))$.
(2) $O-$ Envelope $(-A, B) \subset$ Convolution $(B d r(-A), \operatorname{Bdr}(B))$: For any $\bar{p} \in O-$ Envelope $(-A, B)=$ $B d r(C O(\operatorname{Int}(A), I n t(B)))$, since $A_{\bar{p}}$ contacts with B at some $p \in \operatorname{Bdr}(B), A_{\bar{p}}$ has an outward normal direction at p which is opposite to an outward nomal direction B has at p. For $q=p-\bar{p} \in \operatorname{Bdr}(A)$, we have $\bar{p}=p-q$ and B has an outward normal direction at p exactly opposite to an outward normal A has at q. Thus $\vec{p} \in$ Convolurion ($B d r(-A), B d r(B)$). Also see Guibas, Ramshaw, and Stolif (1983).

In the special case when both A and B are convex, both the set containments of Theorem 3.4 become equalities. This follows from the properties of convexity. In particular we use the following simple fact. For convex A and B, if $A_{\bar{p}}$ and B have opposite outward normal directions at $p \cong B d r\left(A_{\bar{p}}\right) \cap B d r(B)$, then there is a common supporting plane P_{p} such that $A_{\bar{p}}$ and B are on opposite sides of the plane P_{p}, Kelly and Weiss (1979).

Theorem 3.5 : For convex A and B, we have $\operatorname{Bdr}(C O(A, B))=0$-Envelope $(-A, B)=$ Convolurion ($B d r(-A), B d r(B)$).
Proof : Using Theorem 3.4, all we need .to show is Convolution $(B d r(-A), B d r(B)) \subset$ $B d r(C O(A, B))$ for convex A and B. Suppose $\bar{p} \in \operatorname{Conyolution~}(B d r(-A), B d r(B)$). We first show \bar{p} nomem $\operatorname{Ext}(C O(A, B))$. If $\bar{p} \in \operatorname{Ext}\left(C O(A, B)\right.$, then $\exists \varepsilon>0$ such that $\left(A_{\bar{p}} \div N B_{\varepsilon}(0)\right) \cap B=$ empry and $C l\left(A_{\bar{p}}\right) \cap C l(B)=$ empry. Hence, \bar{p} nomem $B d r\left((-A)_{p}\right)$ for any $p \in B d r(B)$, (contradiction), and so \bar{p} nomem Ext $(C O(A, B))$. Now, we show \bar{p} nomem $I n t\left(C O(A, B)\right.$. Since $\exists p \in B d r\left(A_{\bar{p}}\right) \cap$ $B d r(B)$ such that $A_{\bar{p}}$ and B have opposite outward normal directions at p, a common supporting plane P_{p} separates $A_{\bar{p}}$ and B. For any $\varepsilon>0$, let e be an outward normal vector to B at p such that $\|e\| \|=$ E and e is orthogonal to P_{p}, then $A_{(\rho+e)}$ and B are separated by the banded region bounded by $P_{(\sigma+c)}$ and P_{p}, and so $A_{(\bar{p}+c)} \cap^{B=}=$ empry. Hence, \bar{p} nomem $\operatorname{lnt}(C O(A, B)$. Thus \bar{p} nomem Int $(C O(A, B))$ $\cup E x t(C O(A, B))$ implies $\bar{p} \in \operatorname{Bdr}(C O(A, B))$.
This may then suggest a natural method for handling non-convex object and obstacle shapes. One first obtains a convex decomposition consisting of the union of convex pienes and then generates the C-space obstacle as the union of C-space obstacles for convex object and obstacle pairs. Such convex decompositions are possible for polyhedral objects, see Chazelle (1984). However not all objents with algebraic curve and surface boundaries pemit decompositions consisting of the union of convex pieces, Bajaj and Kim (1987c). For example a complete toroidal surface cannot be decomposed into the union of convex pieces. To obtain convex decomposition of general curved solid objects (say in terms of union, intersection and difference) is a difficult and as yet unsolved problem, see Requicha and Voelcker (1983). Direct methods of computing C-space obstacle boundary of objects with non-convex boundary are computationally quite involved and intricate, and further research needs to be done. Thus for the rime being one is restricted to considering convex shaped objects and obstacles.

4. Generating the Boundary of C-space Obstacles

Suppose S be $-A$ or $B, p \in B d r(S)$ be a boundary point, $E \subset B d r(S)$ be an edge, and $F \subset B d r(S)$ be a face. Let $\left(F_{S}, N_{F_{J}}\right)$ be a pair such that $F_{S} \subset B d r(S)$ is a face and $N_{F_{J}}=N\left(S, F_{S}\right)$, where $N(S, \cdot)$ is the

Gaussian Map of S. $\left(E_{S}, N_{E_{s}}\right)$ be a pair such that $E_{S} \subset \operatorname{Bdr}(S)$ is an edge and $N_{E_{s}} \subset N\left(S, E_{S}\right)$ with $N_{E_{s}} \cap$ $N(S, p) \neq$ empty for all $p \in E_{S} .\left(p_{S}, N_{p_{t}}\right)$ be a pair such that $p_{S} \in B d r(S)$ is a vertex and $N_{p_{t}} \subset N\left(S, p_{S}\right)$ with $N_{p_{k}} \neq e m p r y$. Further let K_{B} be F_{B}, E_{B} or p_{B}, and Ie: G_{-A} be F_{-A}, E_{-A} or p_{-A}. There are nine ($K_{B}, G_{-\Lambda}$) pairs. We define sub-compatible and comparible pairs as follows.
(1) K_{B} and G_{-A} are sub-compatible $\leq=>N\left(B, K_{B}\right) \cap N\left(-A, G_{-A}\right) \neq$ empty
(2) $\quad\left(K_{B}, N_{K_{z}}\right)$ and $\left(G_{-A}, N_{G_{\lrcorner}}\right)$are compatible $\leq=N_{K_{\Omega}}=N_{G_{\mu}}$

Further denote by $K_{B} \infty G_{-A}$ that K_{B} and G_{-A} are sub-compatible. Since only sub-compatible pairs can contribute to the Convolution, one can show that Convolution $(B d r(-A), B d r(B))=\cup_{K_{g}, G_{A}}$ Convolution $\left(G_{-A}, K_{B}\right)$, where Convolurion $\left(G_{-A}, K_{B}\right)=$ Convolution of G_{-A} and $K_{B}=\left\{\bar{p} \in R^{3} \mid \bar{p}=p+q\right.$ where $p \in K_{B}$ and $q \in G_{-A}$, and B has an outward normal direction at p in the same direcrion as an outward normal A has at q]. We can further refine the right-hand side to be a union of only the compatible pairs as follows. For a sub-compatible (K_{B}, G_{-A}) pair, let $N\left(K_{B}, G_{-A}\right)=N\left(B, K_{B}\right) \cap N\left(-A_{,} G_{-A}\right)$ be the nonempty intersection of two Gaussian images of K_{B} and $G_{-A} . K\left(K_{B}, G_{-A}\right)=N^{-1}\left(B, N\left(K_{B}, G_{-A}\right)\right) \subset K_{B}$ and $G\left(K_{B}, G_{-A}\right)=N^{-1}\left(-A, N\left(K_{B}, G_{-A}\right)\right) \subset G_{-A}$ be the Inverse Gaussian Images of $N\left(K_{B}, G_{-A}\right)$. Then $\left(K\left(K_{B}, G_{-A}\right), N\left(K_{B}, G_{-A}\right)\right)$ and $\left(G\left(K_{B}, G_{-A}\right), N\left(K_{B}, G_{-A}\right)\right)$ are compatible. One can easily show that Convoluion $(B d r(-A), B d r(B))=\cup_{K, m G_{-A}}$ Convolution $\left(G\left(K_{B}, G_{-A}\right), K\left(K_{B}, G_{-A}\right)\right.$. Hence, we only ned to consider compatible pairs to generate the Convolurion.

When ($K_{B}, N_{K_{P}}$) and ($G_{-A}, N_{G_{H}}$) are compatible with at least one of K_{B} or G_{-A} being a vertex, the Convolution generation is esperially easy, ie. Convolution $\left(G_{-\lambda}, K_{B}\right)=K_{B}+G_{A A}$. Let $C h(p)=$ the characteristic set of $p=\{\bar{p}=p+q \mid N(B, p) \cap N(-A, q) \neq e m p r y\}$. $\operatorname{Ch}(E)=\cup_{p \in E} C h(p)$ is called the characterisric set of E, and $C h(F)=\bigcup_{p \in F} C h(p)$ is called the characteristic set of F. One can easily show that Convolution $(B d r(-A), B d r(B))=\left(\cup_{F \in \Gamma_{2}} C h(F)\right) \cup\left(\cup_{E \in \Gamma_{2}} C h(E)\right) \cup\left(\cup_{p \in \Gamma_{3}} C h(p)\right)$, where Γ_{1} is the set of all faces of $B d r(B), \Gamma_{2}$ is the set of all ediges of $B d r(B)$, and Γ_{3} is the set of all vertices of $B d r(B)$.

Growing Faces

For a face $F \subset \operatorname{Bdr}(B)$, one can easily show that $\operatorname{Ch}(F)=$ $\left(\cup_{F^{\prime}-F}\right.$ Convolurion $\left(G\left(F, F^{\prime}\right), K\left(F, F^{\prime}\right)\right) \quad \cup \quad\left(\cup_{E \infty F}\right.$ Convolurion $\left.(G(F, E), K(F, E))\right) \quad \cup$ $\left(\cup_{q \rightarrow F}\right.$ Convolurion ($q, K(F, q)$). One can use $\$ 4.1$ to compute Convolution $\left(G\left(F, F^{\prime}\right), K\left(F, F^{\prime}\right)\right.$) and §4.2 to compute Convolurion $(G(F, E), K(F, E)$), while directly computing Convolution $(G(F, q), K(F, q))=K(F, q)+\{q\}$ as a simply translated surface patch.

Growing Edges

For an edge E E $\operatorname{Bdr}(B)$, one can easily show that $\operatorname{Ch}(E)=$ $\left(\cup_{F-E}\right.$ Convolution $\left.(G(E, F), K(E, F))\right) \cup \quad\left(\cup_{E^{\prime}-E}\right.$ Convolution $\left.\left(G\left(E, E^{\prime}\right), K\left(E, E^{\prime}\right)\right)\right) \quad \cup$ $\left(\cup_{q-E}\right.$ Convolurion $(q, K(E, q))$). One can use $\S 4.2$ to compute Convolution $(G(E, F), K(E, F)$), and $\S 4.3$ to compute Convolution ($G\left(E, E^{\prime}\right), K\left(E, E^{\prime}\right)$), while dirently computing Convolution ($q, K(E, q)$) $=$ $\{q\} \div K(E, q)$ as a simply translated edge segment

Growing Vertices

For a vertex $p \in \operatorname{Bdr}(B)$, one can easily show that $C h(p)=\left(\cup_{F \rightarrow p} \operatorname{Convolution~}(G(p, F), p)\right) \cup$ $\left(\cup_{E \rightarrow p}\right.$ Convolution $\left.(G(p, E), p)\right) \cup\left(\cup_{q-p}\right.$ Convolution ($\left.q, p\right)$). Since one has Convolution $(G(p, F), p)$ $=G(p, F)+\{p\}$, Convolution $(G(p, E), p)=G(p, E)+\{p\}$, and Convolution $(q, p)=\{q+p\}$, computing Ch (p) is easy.

Note: (1) For a non-smooth edge E and a non-smooth vertex p the convolution edge Convolution $(G(p, E), p)=G(p, E)+\{p\}$ is a non-smooth edge, and (2) for non-smooth verices p and q the convolution vertex Convolution $(q, p)=\{q+p\}$ is a non-smooth vertex. As we will see in $\S 4.3$, (3) we can also have a non-smooth convolution edge Convolution (E_{-A}, E_{B}) for parallel edge pair E_{-A} and E_{B}. These are all the non-smooth edges and verices we can have on the C-space obstacle boundary. As we see in this classification, all the non-smooth edges and verices on the C-space obstacle boundary result from very special orientations between the non-smooth edges and verices of A and B. Most of the non-smoothness of A and B are removed while generaing the C-space boundary. This smoothing effect of convolution generation raises another question of how to compute and specify the boundary of a convoIution surface path. Since most of adiacent convolution fases meet tangentially to each other, computation of the intersecting edge may be quite unstable. Auxiliary surfaces need to be derermined which intersect transversally with the convolution surfaces and thereby boundary curves of the convolution faces.

In §§4.1-4.3 we consider both the implicit and rational parametric representation of surface pacches since not all algebraic curves and surfaces have rational paramerrization, see Walker (1978). For the class of rational algebraic curves and surfaces (which have. a rational paramerric form), algebraic algorithms also exist for converting between the implicit and parameric representations. However their efficiency are limited to curves and surfaces of low degree, see Abhyankar and Bajaj (1987a, b, c).

4.1. Generating Convolution ($F_{-\lambda}, F_{B}$)

In this section, we consider how to generate the agebraic surface equation, edges and vertices of a convolution surface patch Convolurion $\left(F_{-A}, F_{B}\right)$. We can use Theorem 4.1 for the case of F_{-A} and F_{B} being implicitly defined algebraic surfaces. Corollary 4.1 is useful when F_{A} is implicit and F_{B} is parameric, or the other way around. Corollary 4.2 is useiul when boun F_{-A} and F_{B} are parameurically defined. For sub-compatiole F_{B} and $F_{-\Lambda}$, we are using the notations $N\left(F_{B}, F_{-A}\right)=N\left(B, F_{B}\right) \cap$ $N\left(-A, F_{-A}\right), K\left(F_{B}, F_{-A}\right)=N^{-1}\left(B, N\left(F_{B}, F_{-A}\right)\right) \subset F_{B}$, and $G\left(F_{B}, F_{-A}\right)=N^{-1}\left(-A, N\left(F_{B}, F_{-A}\right)\right)=F_{-A}$.

Theorem 4.1 : Let $F_{B} \subset \operatorname{Bdr}(B)$ be a patch of an algebraic surface $f=0$ with gradients ∇f. Further let $F_{-A} \subset B d r(-A)$ be a patch of an algebraic suráace $g=0$ with gradients ∇g, and suppose that F_{B} and F_{-A} are sub-compatible. Then Convolution $\left(F_{-A}, F_{B}\right)=$ Convolution $\left(G\left(F_{B}, F_{-A}\right), K\left(F_{B}, F_{-A}\right)\right)$ is the set of poins $\bar{p}=(\bar{x}, \bar{y}, \bar{z})=p \div q=(x+\alpha, y \div \beta, z \div \gamma)$ such that

$$
\left\{\begin{array}{l}
f(x, y, z)=0 \text { and } p=(x, y, z) \in K\left(F_{B}, F_{-\Lambda}\right) \tag{1}\\
g(\alpha, \beta, y)=0 \text { and } q=(\alpha, \beta, \gamma) \in G\left(F_{B}, F_{-A}\right) \\
\nabla f \times \nabla g=0 \\
\nabla f \cdot \nabla g>0
\end{array}\right.
$$

Proof : Since (3)-(4) imply ∇f and ∇g are in the same direction, (3)-(4) are equivalent to the outward normal direcion of B at p to be the same as that of $-A$ at q.
We use Theorem 4.1 as follows. First substitute $x=\bar{x}-\alpha, y=\bar{y}-\beta$ and $z=\bar{z}-\gamma$ in the above equations (1) and (3). Then one can obtain the implicit algebraic equation of the Convolution ($F_{-\lambda}, F_{B}$) in terms of \bar{x}, \bar{y} and \bar{z} by eliminacing α, β and γ from the equations (1)-(3). The vector equation $\nabla f \times \nabla g=0$ gives 3
scalar equations. Since one of these equations is redundant, we can have 2 independent scalar equations from (3). Hence, we have 4 equations and eliminate 3 variables α, β, γ to get an implicit equation in terms of $\bar{x}, \bar{y}, \bar{z}$. Elimination of variables can be performed by computing resultants on pairs of equations, however this in general leads to extraneous factors and special care needs to be taken in performing this step, van der Waerden (1950). Systematic elimination of variables, a prosess also known as implicitization, based on Kronecker's elimination method can be adopted to avoid extaneous factors but is limited by its exceedingly high computation time, Bajaj (1987). A closed form resultant for simultaneous elimination of $n-1$ variables from n equations is as yet unknown for $n \geq 3$ and is a major unsolved problem of algebraic geomety, see Abhyankar (1976). For special types of surfaces (called bi-mic parameric surfaces) however a closed form Cayley resultant proves suffcient in simultaneously elininating 2 variables from 3 equacions, Dixon (1908).

In computing the implicit equation of the C-spoce surfaces a time complexity analysis may be done as follows. Let Res $(d)=$ time complexity of computing the resultant of two j-variate polynomials of maximum degree d. The best known time complexity of Resj $(d)=O\left(d^{2 j+1} \log d+d^{2 j} \log ^{2} d\right)$, Collins (1971). On substituing $x=\bar{x}-\alpha, y=\bar{y}-\beta$ and $z=\bar{z}-\gamma$ in equations (1) and (3) one has to expand each term $c_{i j k} \cdot x^{d_{i}} \cdot y^{d} \cdot z^{4}=c_{i j k} \cdot(\bar{x}-\alpha)^{4} \cdot(y-\beta)^{4} \cdot(z-\gamma)^{4}$ where $d_{i}+d_{j}+d_{k} \leq d$. This is necessary because in computing resultants to eliminate, say α, one needs to simplify the equations to be polynomials in α with coefficients in $\bar{x}, \bar{y}, \bar{z}, \beta, \gamma . f_{1}, f_{x}, f_{y}$ and f_{t} have $O\left(d^{3}\right)$ terms of this form, and expansion of each term takes $O\left(d^{3}\right)$ muldiplications. Hence, the overall time complexity for expansion and simplification is $O\left(d^{6}\right)$. By Bezout theorem, when we take a resultant of a degree d_{1} equation and a degree d_{2} equation, the degree of the resulting equation is $d_{1} \cdot d_{2}$. If we are eliminating' α, β and γ pairwise, the total time complexity is bound by $O\left(\operatorname{Res}_{6}\left(d^{d}\right)+\operatorname{Res}_{5}\left(d^{2}\right)+\operatorname{Res}_{4}\left(d^{4}\right) \div d^{6}\right) \approx O\left(d^{36} \log d\right)$. Further the degree of the convolution faces may be as high as $O\left(d^{8}\right)$ where original faces of A and B were with maximal degree d.

Corollary $4.1:$ Let $F_{B} \subset B d r(B)$ be a patch of an algebraic suriace $f=0$ with graiients ∇f. Further let $F_{-A} \subset B d r(-A)$ be a paramerric surface pacch $G(\mu, v)=(\alpha(u, v), \beta(u, v), \gamma(u, v))$ with gradients $G_{\mu} \times G_{v}$, and suppose that F_{B} and $F_{-\lambda}$ are sub-compatible. Then Convolurion $\left(F_{-A}, F_{B}\right)=$ Convolution $\left(G\left(F_{B}, F_{-A}\right), K\left(F_{B}, F_{-A}\right)\right.$ is the set of points $\bar{p}=(\bar{x}, \bar{y}, \bar{z})=p+q=$ $(x \div \alpha(u, v), y+\beta(u, v), z+\gamma(u, v))$ such that

$$
\left\{\begin{array}{l}
f(x, y, z)=0 \text { and } p=(x, y, z) \in K\left(F_{B}, F_{-A}\right) \tag{I}\\
q=(\alpha(u, v), \beta(u, v), \gamma(u, v)) \in G\left(F_{B}, F_{-\lambda}\right) \\
\nabla f \times\left(G_{u} \times G_{v}\right)=0 \\
\nabla f \cdot\left(G_{u} \times G_{v}\right)>0
\end{array}\right.
$$

First substicute $x=\bar{x}-\alpha(u, v), y=\bar{y}-\beta(u, v)$ and $z=\bar{z}-\gamma(u, v)$ in the above equations (1) and (3). Then one can obtain the implicit algebraic equation of the Convolution ($F_{-\lambda}, F_{B}$) in terms of \bar{x}, \bar{y} and \bar{z} by eliminating u and v from the equations (1) and (3) by computing resultants. Since (3) gives 2 independent scalar equations, we have 3 equations and eliminate 2 variables u, v to get an impicit equation.

Since $G(u, v)$ is a racional paramerric surface, we have $\alpha(u, v)=p(u, v) / w(u, v)$, $\beta(u, v)=q(u, v) / w(u, v)$ and $\gamma(u, v)=r(u, v) / w(u, v)$ for polynomials $p(u, v), q(u, v), r(u, v)$ and $w(u, v)$ of maximum degree d. At this time the expansion of each term $c_{j j k} \cdot x^{d^{4}} \cdot y^{d_{1}} \cdot z^{d^{4}}=$ $c_{i j k} \cdot w(u, v)^{d-d-d_{i}-d_{j}} \cdot(w(u, v) \cdot \bar{x}-p(u, v))^{d_{d}} \cdot(w(u, v) \cdot \bar{y}-q(u, v))^{d_{j}} \cdot(w(u, v) \cdot \bar{z}-r(u, v))^{d_{2}} / w(u, v)^{d} \quad$ is harder than the case of Theorem 4.1. Again $f_{1} f_{x}, f_{y}$ and f_{z} have $O\left(d^{3}\right)$ terms of this form, and expansion of each term takes $O\left(d^{9}\right)$ multiplications. Hence, the overall time complexity for expansion and simplification prior to elimination is $O\left(d^{22}\right)$.

The case of F_{B} being a parametric surface and F_{-A} being an algebraic surface is similar to Corollary 4.1.

Corollary 4.2: Let $F_{B} \subset B d r(B)$ be a parametric surface patch $F(s, t)=(x(s, t), y(s, t), z(s, t))$ with gradients $F_{s} \times F_{1}$. Further let $F_{-\lambda} \subset B d r(-A)$ be a parametric surface patch $G(\mu, v)=(\alpha(\mu, v), \beta(u, v), \gamma(u, v))$ with gradients $G_{\mu} \times G_{v}$, and suppose that F_{B} and F_{-A} are subcompatible. Then Convolution $\left(F_{-A}, F_{B}\right)=C o n v o l u t i o n ~\left(G\left(F_{B}, F_{-\lambda}\right), K\left(F_{B}, F_{-\Lambda}\right)\right)$ is the set of points $\vec{p}=(\bar{x}, \bar{y}, \bar{z})=p+q=(x(s, r) \div \alpha(u, v), y(s, t)+\beta(u, v), z(s, t)+\gamma(u, v))$ such that

$$
\left\{\begin{array}{l}
p=(x(s, t), \gamma(s, t), z(s, t)) \in K\left(F_{B}, F_{-A}\right) \tag{1}\\
q=(\alpha(u, v), \beta(u, v), \gamma(u, v)) \in G\left(F_{B}, F_{-A}\right) \\
\left(F_{s} \times F_{I}\right) \times\left(G_{u} \times G_{v}\right)=0 \\
\left(F_{s} \times F_{t}\right) \cdot\left(G_{u} \times G_{v}\right)>0
\end{array}\right.
$$

One can obtain the implicit algebraic equation of the Convolurion $\left(F_{-\lambda}, F_{B}\right)$ by eliminating s, t, u and v from the equations $\bar{x}=x(s, t) \div \alpha(u, v), \bar{y}=y(s, t) \div \beta(u, v), \bar{z}=z(s, t) \div \gamma(u, v)$ and the above equation (3). Since (3) gives 2 independent scalar equations, we have 5 equations and need to eliminate 4 variables s, t, u, v to get an implicit equation.

Boundary Edges of Convolution (F_{-A}, F_{B})

For sub-compatible face pairs F_{B} and F_{-A} which are relaively open with respect to $\operatorname{Bdr}(B)$ and $B d r(-A)$, each boundary edge E_{N} of $N\left(F_{B}, F_{-A}\right)\left(=N\left(B, F_{B}\right) \cap N\left(-A, F_{-A}\right)\right)$ is either a segment of a boundary edge of $N\left(B, F_{B}\right)$ or a segment of a boundary edge of $N\left(-A, F_{-A}\right)$. Further E_{N} is either (a) a segment of the common boundary edge of $N\left(B, F_{B}\right)$ and $N\left(B, E_{B}\right)$ for some edge E_{B} of F_{B}, or (b) a segment of the common boundary edge of $N\left(-A, F_{-A}\right)$ and $N\left(-A, E_{-A}\right)$ for soms edge $E_{-\Lambda}$ of F_{-A}. Simiiarly, each boundary edge $E_{C O(\Lambda, B)}$ of the surface patch Convolution $\left(F_{-A}, F_{B}\right)$ is either (a) a segment of the common boundary edge of Convolution $\left(F_{-A}, F_{B}\right)$ and Convolution $\left(C I\left(F_{-A}\right), E_{B}\right)$, or (b) a segment of the common boundary edge of Convolution $\left(F_{-A}, F_{B}\right)$ and Convolution $\left(E_{-A}, C l\left(F_{B}\right)\right.$, where $C l\left(F_{B}\right)$ and $C l\left(F_{-A}\right)$ ere the closures of F_{B} and F_{-A} with respect to $B d r(B)$ and $B d r(-A)$. Edges of type (a) are described in Theorem 4.2, edges of type (b) can be descriod similariy. Let sub-Convolution $T_{T_{x}}\left(G_{-A}, K_{B}\right)=$ subConvolution of G_{-A} and K_{B} restricted to the normal directions $T_{N^{\prime}}=\left\{\bar{p} \in R^{3} \mid \vec{p}=p \div q\right.$ where $p \in K_{B}$ and $q \in G_{-A}$, and B has a unit outward normal direction n_{p} at p which is the same as a unit outward normal A has at q where $n_{p} \in T_{N}$ \}. Since the Gaussian Image of $E_{C O(A, s)}$ is some edge E_{N} of $N\left(F_{B}, F_{-A}\right)$, one can easily show $E_{C O(A, B)}=s u b-C o n v o l u r i o \pi_{E_{N}}\left(C l\left(F_{-A}\right), C l\left(F_{B}\right)\right)$.

Theorem 4.2 : Let F_{B} and F_{-A} be a sub-compatible face pair, E_{B} be an edge of F_{B} and E_{N} be a boundary edge of $N\left(F_{B}, F_{-A}\right)$ such that E_{N} is a segment of the common eage $N\left(B, E_{B}\right) \cap$ $C l\left(N\left(B, F_{B}\right)\right)$. Suppose E_{B} is the common edge of two surface pacches F_{B} and \hat{F}_{B}, where F_{B} is a patch of an algebraic surface $f=0$ with gradients ∇f, and \dot{F}_{B} is a patch of an algebraic surface $\hat{f}=0$ with gradients $\nabla \hat{f}$. Then
(A) the convolution edge $E_{C O(A, B)}=s u b-C o n v o l u t i o n_{E_{x}}\left(C l\left(F_{-1}\right), C l\left(F_{B}\right)\right)$ due to the normal directions E_{N} is the set of points $\bar{p}=(\bar{x}, \vec{y}, \bar{z})=p+q=(x+\alpha, y+\beta, z+\gamma)$ such that

$$
\left\{\begin{array}{l}
f(x, y, z)=0 \text { and } p=(x, y, z) \in C l\left(K\left(F_{B}, F_{-A}\right)\right) \tag{1}\\
\hat{f}(x, y, z)=0 \text { and } p=(x, y, z) \in C l\left(\hat{F}_{B}\right) \\
g(\alpha, \beta, \gamma)=0 \text { and } q=(\alpha, \beta, \gamma) \in C l\left(G\left(F_{B}, F_{-A}\right)\right) \\
\nabla f \times \nabla g=0 \\
\nabla f \cdot \nabla g>0
\end{array}\right.
$$

(B) The surface patch defined by (1) and (3)-(5) and the surface patch defined by (2)-(5) intersect along the convolution edge $E_{C O(A, B)}$.
Proof : (A) The surface patch defined by (1) and (3)-(5) is the face Convolution (F_{-1}, F_{B}) and all its boundary edges and verices. Since (1)-(2) resrict the set of points p to the subsegment E_{B}^{\prime} of E_{B} such that $E_{B}^{\prime}=N^{-1}\left(B, E_{N}\right)$, (1)-(5) define the convolution edge $E_{C O(A, B)}$.
(B) Since $E_{C O(A, B)}$ is the common solution of (1)-(5), $E_{C O(A, B)}$ is the common edge of the surface patch defined by (1) and (3)-(5) and the surface patch defined by (2)-(5).
By using an auxiliary surface if necessary we may assume each edge E_{B} is the common edge of two transversally intersecting surface patches F_{B} and \hat{F}_{B}. Then in most of the cases $E_{C O(\lambda, B)}$ can also be represented as a common edge of two tansversally intersecting surface patches. When these two surface patches intersect tangenuially, one may use different auxiliary surface patch \hat{F}_{B}. For two surfaces defined impicitly by $h(x, y, z)=0$ and $\hat{h}(x, y, z)=0$ which meet tangentially along the curve C, an auxiliary surface which intersects h and \hat{h} transversally may also be obtained by considering surfaces $k=\alpha h+\beta \hat{h}=0$ where α and β are arbirary polynominals in three variables x, y and z. These additional surfaces k also intersect both h and \hat{h} along the curve C and are said to belong to the ideal of tie curve C. For suitable α and β auxiliary surfaces which meet h and \hat{h} transversally may be constructed.

The case of a boundary edge E_{-A} of F_{-A} being defined by two transversally intersecting surface patches gives a similar result. Further the cases of $F_{B}, \hat{F}_{B}, F_{-A}$, or \hat{F}_{-A} being paramerric surfaces give similar results. Also the time and degree complexity analyses are similar to those of Theorem 4.1 and Corollaries 4.1-4.2.

Boundary Vertices of Convolurion (F_{-A}, F_{B})

For a sub-compatible face pair F_{B} and $F_{-\Lambda}$ which are relatively open with respect to $\operatorname{Bdr}(B)$ and $\operatorname{Bdr}(-A)$, each boundary vertex e_{N} of $N\left(F_{B}, F_{-\Lambda}\right)\left(=N\left(B, F_{B}\right) \cap N\left(-A, F_{-A}\right)\right.$ is either (a) a boundary vertex of $N\left(B, F_{B}\right)$, (b) a boundary vertex of $N\left(-A, F_{A}\right)$, or (c) the intersection of one edge of $N\left(B, F_{B}\right)$ with another eage of $N\left(-A, F_{-\lambda}\right)$. in the case of (a), suppose p is the vertex of F_{B} and q is a point of F_{-A} such that $p \in N\left(B, e_{N}\right)$ and $q \in N^{-1}\left(-A, e_{N}\right)$, then the point $p \dot{+} q$ is the venex of Convolurion $\left(F_{-A}, F_{B}\right)$ such that $p+q \in N^{-1}\left(C O(A, B), e_{N} . q \in F_{-1}\right.$ can be computed by solving $g=0$ and $\nabla g /\|\nabla g\|=e_{N}$. The case of (b) is similar to the case of (a). in the case of (c), the intersection e_{N} of one edge of $N\left(B, F_{g}\right)$ with another edge of $N\left(-A, F_{-A}\right)$ can be computed by Theorems 5.1-5.3. Suppose $p \in \operatorname{Bdr}\left(F_{B}\right)$ and $q \in$ $B d r\left(F_{-A}\right)$ be such that $p \in N^{-1}\left(B, e_{N}\right)$ and $q \in N^{-1}\left(-A, e_{N}\right)$ where $\operatorname{Bdr}\left(F_{B}\right)$ and $\operatorname{Bdr}\left(F_{-A}\right)$ are the boundaries of F_{B} and F_{-A} with respect to $B d r(B)$ and $B d r(-A)$, then $p+q$ is the vertex of Convolurion $\left(F_{-A}, F_{B}\right)$ such that $p+q \in N^{-1}\left(C O(A, B), e_{N}\right) . p \in F_{B}$ can be computed by solving $f=0$ and $\nabla f /\|\nabla f\|=e_{N}$ and $q \in F_{-A}$ can be computed by solving $g=0$ and $\nabla g /\|\nabla g\|=e_{N}$.

4.2. Generating Convolution $\left(F_{-A}, E_{B}\right)$ and Convoluion $\left(E_{-A}, F_{B}\right)$

In this section, we consider how to generate the algebraic surface equations, edges and verrices of convolution surface patches Convoluion (F_{-A}, E_{B}) and Convolution (E_{-A}, F_{B}). We can use Theorem 4.3 for the case of E_{B} being defined by the intersection of two implicit algebraic surfaces and F_{-A} being an implicit algebraic surface. The other combinaions of implicit and paramerric surfaces defining E_{B} and $F_{-\Lambda}$ have similar results as easy Corollaries of Theorem 4.3. Similar results hold for generating Convolution (E_{-A}, F_{B}).

Theorem 4.3: Let $E_{B} \subset \operatorname{Bdr}(B)$ be the common edge of two faces F_{B} and \hat{F}_{B}, where F_{B} and $\hat{F}_{B} \subset$ $B d r(B)$ are patches of algebraic suffaces $f=0$ with gradients ∇f and $\hat{f}=0$ with gradients $\nabla \hat{f}$. Further let $F_{-A} \subset B d r(-A)$ be a patch of an algebraic surface $g=0$ with gradients ∇g. Suppose that E_{B} and
$F_{-\Lambda}$ are sub-compatible. Then Convolution $\left(F_{-A}, E_{B}\right)=$ Convolution $\left(G\left(E_{B}, F_{-A}\right), K\left(E_{B}, F_{-A}\right)\right.$ is the set of points $\bar{p}=(\bar{x}, \vec{y}, \bar{z})=p+q=(x+\alpha, y+\beta, z+\gamma)$ such that

$$
\left\{\begin{array}{l}
f(x, y, z)=\hat{f}(x, y, z)=0 \text { and } p=(x, y, z) \in K\left(E_{B}, F_{-A}\right) \tag{1}\\
g(\alpha, \beta, \gamma)=0 \text { and } q=(\alpha, \beta, \gamma) \in G\left(E_{B}, F_{-A}\right) \\
\nabla_{\delta} \cdot(\nabla f \times \nabla \hat{f})=0 \text { and } \frac{\nabla g}{\left\|\nabla_{g}\right\|} \in N_{E,}
\end{array}\right.
$$

Proof : (3) is equivalent to an outward normal direction of B at p to be the same as.one of the outward normal directions of $-A$ at q.
One can obtain the implicit algebraic equation of the Convolution $\left(F_{-A}, E_{B}\right)$ in a similar way as in Theorem 4.1. When the face $F_{-\lambda}$ is a parameric surface pach $G(u, v)=(\alpha(\mu, v), \beta(\mu, v), \gamma(u, v))$ with graajents $G_{u} \times G_{v}$, one can obtain the corresponding Corollary by changing every ∇g into $G_{\mu} \times G_{\nu}$ and the statement " $g(\alpha, \beta, \gamma)=0$ and $q=(\alpha, \beta, \gamma) \in G\left(E_{B}, F_{-A}\right)^{n}$ into $\quad " q=(\alpha(\mu, v), \beta(u, \nu), \gamma(u, \nu)) \in G\left(E_{B}, F_{-A}\right)^{\prime}$ in the above Theorem. One can make similar changes to get corresponding Corollaries for the case of F_{B} and/or \hat{F}_{B} being parametric surface patches.

When two faces F_{B} and \hat{F}_{B} are tangent to each other along E_{B}, Convolurion (F_{-A}, E_{B}) is a degenerate curve on the C-space obstacie boundary. Actually, it is a common edge of two convolution faces generated in § 4.1.

Boundary Edges of Convolution $\left(F_{A}, E_{B}\right)$

For a sub-compatible edge-face pair E_{B} and F_{-A} where F_{-A} is relatively open with respect to $B d r(-A)$ and E_{B} is relatively open with respect to the intersecrion curve of two algebraic surfaces $f=0$ and $\hat{f}=0$ defining faces F_{B} and \hat{F}_{B}, each boundary edge E_{N} of $N\left(E_{B}, F_{-A}\right)\left(=N\left(B, E_{B}\right) \cap N\left(-A_{1}, F_{-1}\right)\right.$ is either a segment of a boundary edge of $N\left(B, E_{B}\right)$ or a segment of a boundary edge of $N\left(-A, F_{-A}\right)$. Further E_{N} is either (a) a segment of the common edge of $N\left(B, E_{B}\right)$ and $N\left(B, F_{B}\right)$ for some face F_{B} adjacent to E_{B}, (b) a segment of the common edge of $N\left(-A, F_{-A}\right)$ and $N\left(-A, E_{-A}\right)$ for some edge E_{-A} of $F_{-\lambda}$, or (c) a segment of the common edge of $N\left(B, E_{B}\right)$ and $N\left(B, p_{B}\right)$ for a verex p_{B} of E_{B}. Similarly, each boundary edige $E_{C O(A, B)}$ of the surface patch Convolution $\left(F_{-A}, E_{B}\right)$ is either (a) a segment of the common edge of Convolution $\left\{F_{-A}, E_{B}\right)$ and sub-Convolution ${ }_{C l(N(B, F,)}\left(C l\left(F_{-A}\right), C l\left(F_{B}\right)\right)$, (b) a segment of the common edge of Convolution $\left(F_{-A}, E_{B}\right)$ and Convolution ($E_{-A}, C l\left(E_{B}\right)$), (c) a segment of the common edge of Convolution (F_{-A}, E_{B}) and Convolution ($\left.C l\left(F_{-A}\right), p_{B}\right)$ where $C l\left(F_{-A}\right)$ is the closure of F_{-A} with respect to $B d r(-A)$ and $C l\left(E_{B}\right)$ is the closure of E_{B} with respect to the intersection curve of two algebraic surfaces $f=0$ and $\hat{f}=0$ defining faces F_{B} and \hat{F}_{B}. Edges of type (a) have been described in Theorem 4.2, edges of type (b) are described in Theorem 4.4, and edges of type (c) are described in Theorem 4.5. The proofs of Theorems 4.4-4.5 are similar to that of Theorem 4.2.

Theorem 4.4 : Let E_{B} and F_{-A} be a sub-compatible edge-face pair, $E_{-\lambda}$ be an edge of F_{-A} and E_{N} be an edge of $N\left(E_{B}, F_{-A}\right)$ such that E_{N} is a segment of the common edge $N\left(-A, E_{-A}\right) \cap$ $C l\left(N\left(-A, F_{-A}\right)\right)$. Suppose $E_{-\lambda}$ is the common edge of two surface patahes F_{-A} and \hat{F}_{-A}, where F_{-A} is a patch of an algebraic surface $g=0$ with gradients ∇g, and \hat{F}_{-A} is a patch of an algebraic surface $\hat{g}=0$ with gradients $\nabla \hat{g}$. Then
(A) the convoluion edge $E_{C O(A, B)}=$ sub-Convolution $E_{E_{\pi}}\left(C l\left(F_{-A}\right), C l\left(E_{B}\right)\right)$ due to the normal directions E_{N} is the set of points $\bar{p}=(\bar{x}, \bar{y}, \bar{z})=p+q=(x+\alpha, y+\beta, z+\gamma)$ such that

$$
\left\{\begin{array}{l}
g(\alpha, \beta, \gamma)=0 \text { and } q=(\alpha, \beta, \gamma) \in C l\left(G\left(E_{\beta}, F_{-A}\right)\right) \tag{1}\\
\hat{g}(\alpha, \beta, \gamma)=0 \text { and } q=(\alpha, \beta, \gamma) \in C l\left(\hat{F}_{-\Lambda}\right) \\
f(x, y, z)=\hat{f}(x, y, z)=0 \text { and } p=(x, y, z) \in C l\left(K\left(E_{B}, F_{-\Lambda}\right)\right) \\
\nabla g \cdot(\nabla f \times \nabla \hat{f})=0 \text { and } \frac{\nabla g}{\square \cdot} \in N\left(E_{B}, F_{-\lambda}\right)
\end{array}\right.
$$

(B) The surface patch defined by (1) and (3)-(4) and the surface patch defined by (2)-(4) intersect along the convolution edge $E_{C O(A, B)}$.
When the surface patches of (B) intersect tangentially, one may use different auxiliary surface patch \hat{F}_{-A}. One may also select an auxiliary surface paich intersecting transversally to the surface patches of (B) from the ideal of the curve C defining the edige $E_{C O(A, B)}$.

Theorem 4.5 : Let E_{B} and F_{A} be a sub-comparible edge-face pair, $p_{B}=\left(x_{1} y, z\right)$ be a vertex of E_{B} and E_{N} be a boundary edge of $N\left(E_{B}, F_{-A}\right)$ such that E_{N} is a segment of the common edge $C l\left(N\left(B, E_{B}\right)\right) \cap N\left(B, p_{B}\right)$. Suppose E_{B} is the common edge of two transversally interseating surface patches F_{B} and \hat{F}_{B}, where F_{B} is a patch of an algebraic surface $f=0$ with gradients ∇f, and \hat{F}_{B} is a parch of an algebraic surface $\hat{f}=0$ with gradients $\nabla \hat{f}$. Further let $n=\nabla f\left(p_{B}\right)$ and $\hat{n}=\nabla \hat{f}\left(p_{B}\right)$. Then
(A) the convolution edge $E_{C O(A, B)}=s u b-C o n v o l u t i o n_{E_{X}}\left(F_{-A}, C l\left(E_{B}\right)\right.$) due to the normal direccions E_{N} is the set of all the points $\bar{p}=(\bar{x}, \bar{y}, \bar{z})=p_{B}+q=(x+\alpha, y+\beta, z+\gamma)$ such that

$$
\left\{\begin{array}{l}
g(\alpha, \beta, \gamma)=0 \text { and } q=(\alpha, \beta, \gamma) \in C l\left(G\left(p_{B}, F_{-A}\right)\right) \tag{1}\\
\nabla g \cdot(n \times \hat{n})=0 \\
\nabla g \cdot(n-(n \cdot \hat{n}) \hat{n}) \geq 0 \\
\nabla g \cdot(\hat{n}-(n \cdot \hat{n}) n) \geq 0
\end{array}\right.
$$

(B) The surface patch defined by (1) and the surface patch defined by (2)-(4) intersect along the convolution edge $E_{C O(\Lambda, B)}$
When the surface patches of (B) intersect tangentially, one may select an auxiliary surface patch intersecting rransversally to the surface patches of (B) from the ideal of the curve C defining the edge $E_{C O(A, B)}$.

Boundary Vertices of Convolution (F_{-A}, E_{B})

Each vertex of Convolution $\left(F_{-A}, E_{B}\right)$ is a vertex of Convolution (F_{-A}, F_{B}) for some adjacent face F_{B} of E_{B}. Hence, one can use the same methods as in $\S 4.1$.

4.3. Generating Convolurion (E_{-A}, E_{B})

In this section, we consider how to generate the algebraic surface equation, edges and vertices of a convolution surface patch Convolution $\left(E_{-\lambda}, E_{B}\right)$. We can use Theorem 4.6 for the case of both E_{-A} and E_{B} being defined by two implicit algebraic surfaces. The other combinations of implicit and parametric surfaces defining E_{-A} and E_{B} have similar resuls as easy Corollaries of Theorem 4.6.

Theorem 4.6: Let $E_{B} \subset B d r(B)$ be a segment of the common edge of two faces F_{B} and \hat{F}_{B}, where $F_{B} \subset B d r(B)$ is a patch of an algebraic surface $f=0$ with gradients ∇f and $\hat{F}_{B} \subset B d r(B)$ is a pasch of an algebraic surface $\hat{f}=0$ with gradients $\nabla \hat{f}$. Further let $E_{A} \subset B d r(-A)$ be a segment of the common edge of two faces F_{-A} and \hat{F}_{-A}, where $F_{-A} \subset B d r(-A)$ is a patch of an algebraic surface $g=0$ with gradients ∇g and $\hat{F}_{-A} \subset B d r(-A)$ is a patch of an algebraic surface $\hat{g}=0$ with gradients $\nabla \hat{g}$. Suppose that E_{B} and E_{-A} are sub-compatible. Then Convolurion $\left(E_{-A}, E_{B}\right)=$ Convoluion $\left(G\left(E_{B}, E_{-A}\right), K\left(E_{B}, E_{-A}\right)\right.$ is the set of points $\bar{p}=(\bar{x}, \bar{y}, z)=p+q=(x+\alpha, y+\beta, z+\gamma)$ such that

$$
\left\{\begin{array}{l}
f(x, y, z)=\hat{f}(x, y, z)=0 \text { and } p=(x, y, z) \in K\left(E_{B}, E_{-A}\right) \tag{1}\\
g(\alpha, \beta, \gamma)=\hat{g}(\alpha, \beta, \gamma)=0 \text { and } q=(\alpha, \beta, \gamma) \in G\left(E_{B}, E_{-A}\right) \\
\frac{\lambda \cdot \nabla f+(1-\lambda) \cdot \nabla \hat{f}}{1|\lambda \cdot \nabla f+(1-\lambda) \cdot \nabla \hat{f}|]} \in N\left(E_{B}, E_{-A}\right) \text { and } \\
\frac{\mu \cdot \nabla g+(1-\mu) \cdot \nabla \hat{g}}{\cdot} \in N\left(E_{B}, E_{-A}\right) \text { for some } 0 \leq \lambda_{n} \mu \leq 1
\end{array}\right.
$$

Proof: (3) is equivalent to an outward normal direction of B at p to be the same as an outward normal direction of $-A$ at q.
One can obtain the implicit algebraic equation of the Convolution $\left(E_{-A}, E_{B}\right)$ in a similar way as in Theorem 4.1. When the face F_{B} is a paramerric surface patch $F(s, t)=(x(s, r), y(s, t), z(s, t))$ with gradients $F_{s} \times F_{i}$, one can obtain the corresponding Corollary by changing every ∇f into $F_{s} \times F_{1}$ and the statement $" f(x, y, z)=0$ and $p=(x, y, z) \in K\left(E_{B}, E_{-A}\right)^{n}$ into ${ }^{n} p=(x(s, t), y(s, t), z(s, t)) \in K\left(E_{B}, E_{-A}\right)^{n}$ in the above Theorem. One can make similar changes to get corresponding Corollaries for the case of $F_{B}, \hat{F}_{B}, F_{-A}$ and/or $\hat{F}_{-\lambda}$ being paramerric surface patches.

When F_{B} and G_{B} are tangent to each other along E_{B}, or H_{-A} and K_{-A} are tangent to each other along E_{-A}, Convolution $\left(E_{-A}, E_{B}\right)$ is a degenerate curve on the C-space obstacle boundary and is a common edge of two convolution faces generated in $\S 4.2$. In the special case of F_{B} and G_{B} being tangent along E_{B}, and also H_{-A} and K_{-A} being tangent along E_{-A}, Convolution $\left(E_{-A}, E_{B}\right)$ is either a degenerate curve or a degenerate point.

Let $N_{E_{f}}(p)=N_{E_{j}} \cap N(S, p)$, then $N_{E_{f}}(p)$ is a geodesic arc on S^{2}. When two line segments in a plane intersects, either there is a unique intersection point or they overlap encirely on the same line. One can show a similar fact for minimal geodesic arcs on S^{2} as follows.

Fact $4.1:$ If $N_{E_{,}}(p) \cap N_{E_{-}}(q) \neq$ empty, either (1) $N_{E_{i}}(p) \cap N_{E_{-}}(q)$ is a point or (2) $N_{E_{1}}(p)=$ $N_{E_{-1}}(q)$.

By subdividing E_{B} and E_{A} if necessary, we may assume only one of the conditions (1) or (2) holds for the whole edges E_{B} and E_{-A}. We call E_{B} and E_{-A} to be parallel if the condition (2) holds on the whole edges E_{B} and E_{-A}. If E_{B} and E_{-A} is a parallel edge pair, the Convolution (E_{-A}, E_{B}) generated in Theorem 4.5 is a degenerate curve on the C-space obstacle. Otherwise it is a surface pach.

Boundary Edges of Convolurion (E_{-A}, E_{B})

For a sub-comparible edige pair E_{B} and E_{-A} where E_{B} (resp. E_{-A}) is relacively open with respect to the intersection curve of two algebraic surfaces $f=0$ and $\hat{f}=0$ dafining faces F_{B} and \hat{F}_{B} (resp. $g=0$ and $\hat{g}=0$ defining faces F_{-A} and \hat{F}_{-A}), each edge E_{N} of $N\left(E_{B}, E_{-A}\right)$ is either a segment of an edge of $N\left(B, E_{B}\right)$ or a segment of an edge of $N\left(-A, E_{A}\right)$. Further E_{N} is either (a) a segment of the common edge of $N\left(B, E_{B}\right)$ and $N\left(B, F_{B}\right)$ for some face F_{B} adjacent to E_{B}, (b) a segment of the common edge of $N\left(-A, E_{-A}\right)$ and $N\left(-A, F_{-A}\right)$ for some face F_{-A} adjacent to E_{-A} (c) a segment of the common edge of $N\left(B, E_{B}\right)$ and $N\left(B, p_{B}\right)$ for some verex p_{B} of E_{B}, or (d) a segment of the common edge of $N\left(-A, E_{-A}\right)$ and $N\left(-A, p_{-A}\right)$ for some vertex P_{A} of E_{-A}. Similarly, each boundary edge $E_{C O(A, B)}$ of the surface patch Convolution $\left(E_{-A}, E_{B}\right)$ is either (a) a segment of the common edge of Convolurion $\left(E_{-A}, E_{B}\right)$ and Convolution $\left(C l\left(E_{A}\right), F_{B}\right)$, (b) a segment of the common edge of Convolution $\left(E_{-A}, E_{B}\right)$ and Convolution $\left(F_{-A}, C l\left(E_{B}\right)\right)$, (c) a segment of the common edge of Convolution $\left(E_{-A}, E_{B}\right)$ and Convolution $\left(C l\left(E_{A}\right), p_{B}\right)$, or (d) a segment of the common edge of Convolurion $\left(E_{-A}, E_{B}\right)$ and Convolution ($p_{-A}, C l\left(E_{B}\right)$). Edges of type (a)-(b) have been described in Theorem 4.4. In the case of (c), Convolution $\left(C l\left(E_{-A}\right), p_{B}\right)$ is a degenerate curve segment which is non-smooth on $B d r(C O(A, B))$ and also equals to the edge $E_{C O(A, B)}$. Hence, $E_{C O(A, B)}$ is the common edige of the face Convolurion $\left(E_{-A}, E_{B}\right)$ with the face Convolution $\left(E_{-A}, \hat{E}_{B}\right.$) for some edge \dot{E}_{B} adjacent to p_{B} (or with the fase Convolution $\left(F_{-A}, p_{B}\right)$ for some face F_{-A} adjacent to $\left.E_{-A}\right)$. Since $B d r(C O(A, B)$) is non-smooth on $E_{C O(A, B)}, E_{C O(A, B)}$ can be represented as a common edge of two transversally intersecting convolution surface pacches. The case of (d) is similar w the case of (c).

Boundary Vertices of Convolution (E_{-A}, E_{B})

For sub-compatible edge pairs E_{B} and E_{-A}, each vertex e_{N} of $N\left(E_{B}, E_{-A}\right)\left(=N\left(B, E_{B}\right) \cap\right.$ $N\left(-A, E_{-A}\right)$) is either (a) a vertex of $N\left(B, E_{B}\right)$, (b) a vertex of $N\left(-A, E_{-A}\right)$, or (c) the intersection of one edge of $N\left(B, E_{B}\right)$ with another edge of $N\left(-A, E_{-A}\right)$. In the case of (a), suppose p is a vertex of E_{B} and q is a point of E_{-A} such that $p \in N\left(B, e_{N}\right)$ and $q \in N\left(-A, c_{N}\right)$, then the point $p+q$ is the vertex of Convolurion $\left(E_{-A}, E_{B}\right)$ such that $p+q \in N^{-1}\left(C O(A, B), \varepsilon_{N}\right)$. Further suppose that E_{-A} is the common edge of two faces F_{-A} and \hat{F}_{-A} defined by $g=0$ and $\hat{g}=0$ respectively, then the point $q=(\alpha, \beta, \gamma) \in E_{-A}$ can be computed by solving $g=\hat{g}=0$ and $(\nabla g \times \nabla \hat{g}) \cdot e_{N}=0$. The case of (b) is similar to the case of (a). In the case (c), this intersection is also the intersection of one edge of $N\left(B, F_{B}\right)$ with another edge of $N\left(-A, F_{-A}\right)$ where F_{B} is a face adjacent to E_{B} and F_{-A} is a face adjacent to F_{-A}. This case has been considered in §4.1,

5. Obtaining Gaussian Model of C-space Obstacles

We now show how to construct the Gaussian (Spherical) Model of $C O(A, B)$, see Figures 2 (a)-(c). Let $S^{2}{ }_{B}$ and $S^{2}{ }_{-A}$ be the Gaussian Models of B and $-A$. These deñe graphs on S^{2} with degeneracies tagged appropriately. Let a new graph $S^{2}{ }_{C O}(A, B)$ on S^{2} be defined as the overiay of S_{B}^{2} and S^{2}.A. Then $S^{2}{ }_{C O}(A, B)$ is the Gaussian Model of $C O(A, B)$ and derermines all sub-compasible face, edge and verex pairs between $B d r(B)$ and $B d r(-A)$. Further the topology of the faces, edges and vertices of $\operatorname{Bdr}(C O(A, B))$ is given by the topology of the faces, edges and verices of $S^{2} C O(A, B)$. Construction of $S^{2} C_{C(A, B)}$ requires compuring the intersections of edges of S_{B}^{2} with edges of $S^{2}-A$. These intersections can be computed by using Theorems 5.1-5.3. Edges of S_{B}^{2} or S_{-A}^{2} are either minimal geodesic arcs on the unit sphere or curve segments of the form $\nabla f(p) /\|\nabla f(p)\|$ for $p \in E$ where $f=0$ is a face equation and E is an edge of this face. Note this curve segment is well defined since we are assuming the nonsingularity of each face on its boundaries. By the regularity and convexity of the object we may assume that the end points of each minimal geodesic arc are not antipodal points of each other. Hence, for two end points n_{1} and n_{2} of a minimal geodesic arc one has $\lambda \cdot n_{1}+(1-\lambda) \cdot n_{2} \neq 0$ and $\left(\lambda \cdot n_{1}+(1-\lambda) \cdot n_{2}\right) / \| \lambda \cdot n_{1}+(1-\lambda) \cdot n_{2}| |$ is well denned. The intersection of two minimal geodesic arcs can be computed by Theorem 5.1. The intersection of one general curve segment and one minimal geodesic arc can be computed by Theorem 5.2. The intersection of two general curve segments can be computed by Theorem 5.3.

Next by using a spherical sweep algorithm where one can move a great circle around the sphere and amongst the edge segments, it is possible to compute all the overiay curve intersections. The details are somewhat intricate but a generalization of moving a line in a plane-sweep algorithm

Theorem 5.1 : Let γ be a minimal geodesic arc connecting n_{1} to n_{2} on S_{B}^{2} and γ be a minimal geodesic are connecring n_{1}^{\prime} to n_{2}^{\prime} on S_{-A}^{2}. Then γ and γ intersect at $\left(\lambda \cdot n_{1}+(1-\lambda) \cdot n_{2}\right) /\left[\mid \lambda \cdot n_{1}+\left(1-\lambda_{2}\right) \cdot n_{2}\right] \mid$ if and only if

$$
\left\{\begin{array}{l}
\left(\lambda \cdot n_{1}+(1-\lambda) \cdot n_{2}\right) \times\left(\mu \cdot n_{1}^{\prime}+(1-\mu) \cdot n_{2}^{\prime}\right)=0 \tag{1}\\
\left(\lambda \cdot n_{1}+(1-\lambda) \cdot n_{2}\right) \cdot\left(\mu \cdot n_{1}^{\prime}+(1-\mu) \cdot n_{2}^{\prime}\right)>0
\end{array}\right.
$$

for some $0 \leq \lambda, \mu \leq 1$.
Proof : (1)-(2) are equivalent to that $\lambda \cdot n_{1}+(1-\lambda) \cdot n_{2}$ is in the same direction as $\mu \cdot n_{1}^{\prime}+(1-\mu) \cdot n_{2}^{\prime}$ for some $0 \leq \lambda, \mu \leq 1$.
Since the vector equation (1) gives two independent scalar equations in two variables λ, μ, one can solve this system of polynomial equations either numerically or symbolically, Buchberger, Collins, and Loos (1982).

Theorem 5.2 : Let γ be a curve segment on $S^{2}{ }_{B}$ given by the set of points $\nabla f(p) / \| \nabla f(p)| |$ for p $\in E_{B}$, where $E_{B} \subset B d r(B)$ is the common edge of two faces F_{B} and \hat{F}_{B}, F_{B} is a patch of an algebraic surface $f=0$ with gradients ∇f and \hat{F}_{B} is a patch of an algebraic surface $\hat{f}=0$ with gradients $\nabla \hat{f}$. And, let γ be a minimal geodesic arc connecting n_{1} to n_{2} on $S^{2}{ }_{-A}$. Then γ and γ^{\prime} intersect at $\nabla f(p) /\|\nabla f(p)\|$ if and only if

$$
\left\{\begin{array}{l}
f(x, y, z)=\hat{f}(x, y, z)=0 \text { and } p=(x, y, z) \in E_{B} \tag{I}\\
\nabla f \cdot\left(n_{1} \times n_{2}\right)=0 \\
\nabla f \cdot\left(n_{1}-\left(n_{1} \cdot n_{2}\right) n_{2}\right) \geq 0 \\
\nabla f \cdot\left(n_{2}-\left(n_{1} \cdot n_{2}\right) n_{1}\right) \geq 0
\end{array}\right.
$$

Proof: (2)-(4) are equivalent to that ∇f is in the same direction as $\lambda \cdot n_{1}+(1-\lambda) \cdot n_{2}$ for some $0 \leq \lambda$ ≤ 1. (1) restricts the solution for p to the edge E_{B}.

Since (1)-(2) give three equarions in three variables x, y, z, one can solve this system of polynomial equations. The case of γ being a minimal geodesic arc on $S^{2}{ }_{B}$ and γ being a general curve segment on $S^{2}{ }_{-A}$ is similar to Theorem 5.2.

Theorem 5.3: Let γ be a curve segment on $S^{2}{ }_{B}$ given by the set of points $\nabla f(p) /\|\nabla f(p)\|$ for p $\in E_{B}$, where $E_{B} \subset \operatorname{Bdr}(B)$ is the common edge of two faces F_{B} and \hat{F}_{B}, F_{B} is a patch of an algebraic surface $f=0$ with gradients ∇f and \hat{F}_{B} is a patch of an algebraic surface $\hat{f}=0$ with gradients $\nabla \hat{f}$. And, let γ^{\prime} be a curve segment on $S^{2}-\mathrm{A}$ given by the set of points $\nabla g(q) /\|\nabla g(q)\|$ for $q \in E_{-A}$, where $E_{-\lambda} \subset B d r(-A)$ is the common edge of two faces $G_{-\lambda}$ and $\hat{G}_{-\lambda}, G_{-\lambda}$ is a patch of an algebraic surface $g=0$ with gradients ∇g and \hat{G}_{A} is a pacch of an algebraic surface $\hat{g}=0$ with gradients $\nabla \hat{g}$. Then γ and γ intersect at $\nabla f(p) /\left\|\nabla_{f}(p)\right\|$ if and only if

$$
\left\{\begin{array}{l}
f(x, y, z)=\hat{f}(x, y, z)=0 \text { and } p=(z, y, z) \in E_{B} \tag{1}\\
g(\alpha, \beta, \gamma)=\hat{g}(\alpha, \beta, \gamma)=0 \text { and } q=(\alpha, \beta, \gamma) \in E_{-A} \\
\nabla f \times \nabla g=0 \\
\nabla f \cdot \nabla g>0
\end{array}\right.
$$

Proof : (3)-(4) are equivalent to that ∇f is in the same direztion as ∇g. (1) restricts the soltuion for p to the edge E_{B} and (2) restricts the solution for q to the edge E_{-A}.
Since the vector equation (3) gives two independent scalar equations, one has six scalar equarions in six variables from (1)-(3) and can solve this system of polynomial equations.

Each face of the overlay graph $S^{2} \cos (A, B)$ corresponds to a compatible pair ($\left.\left(K_{B}, N_{K_{4}}\right),\left(G_{-A}, N_{G_{4}}\right)\right)$ of faces, edges and vertices of $B d r(B)$ and $B d r(-A)$. Note that we consider the degenerate curves and degenerate points as generic faces of $S^{2}{ }_{C O(A, B)}$. Using the formula defining K_{B} and G_{-A} one can compute the equation for Convolution (G_{-A}, K_{B}). The edges and verices of each face Convolution (G_{-A}, K_{B}) can be computed by using the boundary informations of K_{B} and G_{A}.

6. Conclusion

We have described algebraic algorithms for computing C-space obstacles using boundary representations and Gaussian Image geomerric models. The numerical information defining the faces, edges and vertices of the C-space obstacle boundary were obtained by solving systems of multivariate polynomial equations. The symbolic soiucion by means of resultants, though computationally extensive, yieids the implicit algebraic equations of the curves and surfaces on the C-space obstacle boundary. The topological
information defining the adjacency relationalships of faces, edges and verices of the C-space obstacle boundary were obtained by constructing and merging (or overihying) the Gaussian Image models of the individual moving objects and obstacles.

In comparison with the algorithms for obtaining the C-space obstacle boundary for planar case, Bajaj and Kim (1987a), one notes for the C-space obstacle generacions in space an extensively large increase in complexity both in obtaining the numerical and topological information. A significant problem that arises in the C-space generaion for curved objects is the analysis of singularities. White all types of point singularities that arise in planar curves can be completeiy analyzed by the quadratic transformations of Abhyankar (1983), the singularities in algebraic surfaces are considerably harder to deal with. The complete analysis of singularities in plane curves also allows one to deal with the topological constructions of C-space obstacles for non-convex algebraic curved moving objects and obstacles as well, see Bajaj and Kim (1987a). Analysis of the possible point and curve singularities that may arise in C-space obstacle surfaces may be achieved by a canonical (algorithmic) procedure of mapping the singular surface to a non-singular algebraic variety (a process also termed as "blowing up" the singularity) and recently given by Abhyankar (1982, 86). This is an area for important future research, for is solution would also lead to obtaining C-space obstacles for non-convex curved solid moving objects and obstacles - the curenty immediate open problem
7. Acknowledgements

We are grateful to the anonymous referees for their comments and suggestions.

8. References

Abhyankar, S., (1976)
Historical Ramblings in Algebraic Geomery and Related Algebra, American Mathemarical Monthly, 83, 6, 409-448.
Abhyankar, S., (1982)
Weighted Expansions for Canonical Desingularization, Lecrure Notes in Mathematics, 910 , Springer-Verlag.
Abhyankar, S. S., (1983)
Desingularization of Plane Curves, Proc. of the Symp. in Pure Mathematics, 40, 1, 1-45.
Abhyankar, S. S., (1986)
Good Points on a Hypersurface, Manuscript.
Abhyankar, S., and Bajaj, C., (1987a)
Automatic Rational Parameterization of Curves and Surfazes I: Conics and Conicoids, Computer Aided Design, 19, 1, 11-14.
Abhyankar, S., and Bajaj, C., (1987b)
Automatic Rational Parameterization of Curves and Surfaces II: Cubies and Cubicoids, Compurer Aided Design, (to appear).
Abhyankar, S., and Bajaj, C., (1987c)
Automatic Rational Parameterizarion of Curves and Surjaces III: Algebraic Plane Curves, Computer Science Technical Report CSD-TR-619, Purdue University.
Adamowicz, M., and Albano, A., (1976)
Nesing two-dimensional shapes in rectangular modules, Computer Aided Design, 2, 1, 27-33.
Bajaj, C., (1987)
Algorithmic Implicitization of Rational Curves and Surfaces, Manuscript.
Bajaj, C., and Kim, M., (1987a)

Generation of Configuration Space Obstacles III: The Case of Moving Algebraic Curves, Proc. 1987 IEEE International Confercnce on Robotics and Automanion, North Carolina, 979-984, Modified version to appear in Algorithmica.
Bajaj, C., and Kim, M., (1987b)
Compliant Motion Planning with Geometric Models, Proc. the Third ACM Symposium on Computational Geometry, Waterloo, Canada
Bajaj, C., and Kim, M., (1987c)
Convex Hull and Convex Decomposition of Objects Bounded by Algebraic Curves, Computer Science Technical Report CSD-TR-677, Purdue University.
Buchberger, B., Collins, G., and Loos, R.,(editors), (1982)
Compuer Algebra. Symbolic and Algebraic Computation, Computing Supplementum 4, Springer Verlag, Wien New York
Canny, J., (1984)
Collision Detection for Moving Polyhedra, A.I. Memo 0. 806, MIT.
Chazelle, B., (1984)
Convex Paritions of Polyhedza: A lower bound and worst-case optimal algorithm, SIAM J. on Compuing, 13, 3, 488-507.
Collins, G., (1971)
The Calculacion of Mulivariate Polynomial Resultants, Journal of the ACM, 18, 4, 515-5\$2.
Dixon, A., (1908)
The Eliminant of Three Quantics in Two Independent Variables, Proc. London Mathematical Sociery, 2, 6, 468-478.
Donald, B., (1984) Motion Planning with Six Degrees of Freedom A.I. Technical Report 791, MIT.
Frankin, W., and Akman, V., (1984)
Shortest Paths Between Source and Goal Points Located On/Around a Convex Polyhedron, 22nd Allerton Conference on Communication, Control and Computing, 103-112.
Freeman, H., (1975)
On the packing of arbitrary shaped templates, Proc. 2nd USA-Japan Computer Conference, 102107.

Guibas, L., Ramshaw, L., and Stolfi, J., (1983)
A Kineric Framework for Computational Geometry, Proc. 24th Annual Symp. on Foundations of Computer Science, 100-111.
Guibas, L., and Seidel, R, (1986)
Compuing Convolutions by Reciprocal Search, Proc. of 2nd ACM Symposium on Computational Geomerry, 90-99.
Hoffmann, C., and Hoperoft, J., (1986)
Geometric Ambiguities in Boundary Representation, TR86-725, Computer Science, Comell University.
Hoproft, J., and Krafft, D., (1985)
The Challenge of Robotics for Computer Science, Manuscript
Hom, B.K.P., (1986)
Robot Vision, McGraw-Hill Book Co, MIT Press.
Kelly, P., and Weiss, M., (1979)
Geometry and Convexity, John Wiley \& Sons, New York.
Lozano-Perez, T., (1983)
Spatial Planning: A Configuration Space Approach, IEEE Trans. on Computers, v.C-32, 108-120.

Lozano-Perez, T., and Wesley, M.A., (1979)
An algorithm for planning collision free paths among polyhedral obstacles, Comnunications of the $A C M, 22,560-570$.
Lozano-Perez, T., Mason, M., and TayIor, R., (1984)
Automatic Symthesis of Fine-Motion Strategies for Robots, The Intl. J. of Roborics Research, v. 3, 1, 3-24.
Pogorelov, A.V., (1978)
The Minkowski Multidimensional Problem, Winston, New York.
Requicha, A., (1980)
Representations of Rigid Solid Objects, Springer Lecture Notes in Computer Science, 89, 2-78.
Requicha, A., and Voelcier, H., (1983)
Solid Modeling: Current Status and Research Directions, IEEE Comp. Graphics and Appl., 25-37.
Schwartz, J. and Sharir, M., (1983)
On the Piano Movers Problem: II, General Techniques for Computing Topological Properties of Real Algebraic Manifolds, Adv. Appl. Math. 4, 298.351.
Sharir, M., and Schorr, A., (1984)
On Shortest Paths in Polyhedral Spazes, SIAM J. on Compwing, 15, 1, 193-215.
Tiller, W., and Hanson, E., (1984)
Offsets of Two-Dimensional Profile, IEEE Computer Graphics \& Applications, Sept, 36-46.
Udupa, S., (1977)
Collision detecrion and avoidance in computer controlled manipulators, Proc. 5 th Int. Joint Conf. Artificial Intelligence, MiT, 737-748.
van der Waerden, B., (1950)
Modern Algebra, Frederick Ungar Pub. Co., New York
Walker, R., (1978)
Algè̇raic Curves, Springer Verlag, New York.
Yap, C., (1985)
Algorithmic Motion Planning, Manuscript.

[^0]: Bqajajj, Chanderjit and Kim, Myung-Soo, "Generation of Configuration Space Obstacles II: The Case of Moving Algebraic Surfaces" (1986). Department of Computer Science Technical Reports. Paper 505. https://docs.lib.purdue.edu/cstech/505

[^1]: t Research supported in part by NSF grant DCI-85 21356 and a David Ross Fellowship.

[^2]: i A unit sphere is implicilly given as $x^{2}+y^{2}+z^{2}-1=0$ and in rational parametrie form as $x=\left(1-s^{2}-i^{2}\right) /\left(1+s^{2}+t^{2}\right)$, $y=2 s /\left(1+s^{2}+r^{2}\right)$ and $z=2 r /\left(1+s^{2}+r^{2}\right)$.

