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Generation of Configuration Space Obstacles: The Case of Moving Algebraic Surfacest

Chanderjir Bajaj and Myung-Soo Kim

Department of Computer Science,
Purdue Univmity,

WeslLafayette, IN 47907.

Abstract: We present algebraic algorithms to generate the boundary ofconfiguration space obstacles aris

ing from the translatory molion of convex objecls amongst COTlVe:x. obstacles. Both the boundaries of the

objects and obstacles are given by patches ofalgebraic swfaces.

1. Introduction

Using configuration space (C-Space) to plan motion for a single rigid objecl amonI;st physical obs
tacles. _reduces the problem to plarming motion for a mathematical point amongst "grown" configuration

space obstacles, (the points in C-Space which correspond to the object overlapping one or more obsta

cles), Lozano-Perez (1983). For example, a rigid polyhedral object in compliant motion, viz., in continu

ous contact with the boundary of obstacles in 3-Dimensions can be represented as a point constrained to
move on the three (or higher) dimension boundaries of grown obstacle:s embedded in 6-Dimension

C-Space, Donald (1984). The technique thus relies, (and this is in general the more difficult part), in

efficiently generating the boundary of C-Space obslacles. Numerous applications such as robot motion in

workcells, automated assembly, numerical ma:;hinulg, part tolerancing, etc., exist where gross and fine

motion planning in C-space have been used, Lozano-Perez, Mason and Taylor (1984), Tiller and Hanson
(1984).

Early uses of the configuration space approach were, Freeman (1975), Adamowici and Albano

(1976), Udupa (1977), and more recently, Lozano-Perez and Wesley (1979), Lozano-Perez (1983),

Lozano-Perez, Mason and Taylor (1984), Schwartz and Sharir (1983), Sharir and Schorr (1984), Franklin

and Akman (1984), Canny (1984), Donald (1984), Yap (1985), Bajaj and Kim (1987a, b). The only

efficient algorithms known for generating C-Space obstacles have been for polyhedral (degree 1) surface

objects and obstacles, using m~ods for efficiently computing convex hulls, Lozano-Perez (1983), and

recently efficient convolution algorithms for Minkowski addition, Guibas and Seidel (1986). However it

has progressively become easier for geomenic modeling systems to deal with objects that are defined by

quadrics (degree 2) and higher degree surfaces, Requicha and Voelcker (1983). Further, motion planning in

these sophisticated modeling environments, for example for process simulation, Hopcroft and Krafft

(1985), suggests the need to characterize and efficiently generate the swface boundary of

C -Space obstacles arising from the motion of objects amongst obstacles with curved surface boundaries.

The methods based on generating a cylindrical cell decomposition of free C -Space, though applicable for

general objects and obstacles defined by semi-algebraic sets, are computationally too restrictive, Schwartz

and S","", (1983), Yap (1985).

The main contributions of this pap-"'..T are as follows. In §3 we show that the boundary of

C-Space obstacles for general curved obj~ts moving with only translation can be viewed as either the

convolution between the obstacle boundary and the reversed object boundary (reversed with respect to a

reference point on the object) or as certain envelopes of boundary surfaces of the moving reversed object

with the reference point moving on the physical obstacle. Next in §4 we give algebraic algorithms to

t RestaJcli supponed in panby NSF gr.tDt DCI-&5 21356 and a David Ross Fellowship.
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generate the curves and surfaces which make up the boundary of the three dimensional C-Space obstacles.
Here we only consider objects and obstacles which are convex. These objects and obstacles are
represented by a general algebraic boundary representation model discussed in §2. Crucial too here is tlle

internal representation of curves and surfaces. i.e., whelher they are parametrically or implicitly defined I.

We present algorithms for both these in~maI representations. Further in §5 we show how to construct the

topology of the C-space obstacle boundary. Use is made of a Gaussian (spherical) model discussed in §2.

2. Geometric Models

2.1. Solid Algebraic Model

In a boundary r.:presentation an object with general algebraic surf~es consists of tlJe following:

(1) A finite set of vertices usually specified by Caresian coordinates.

(2) A finite set of directed edges, where each edge is incident [0 twO venices. Typically. an edge is
specified by the intersection of twO faces, one on the left and one on the right Here left and right are
defined relative to the edge direction as seen from the exterior of the object. Fwther an interior point
is also provided on each edge which helps remove any geomelric ambiguity in the representation for
high degree algebraic curves, Requicha (1980). Geomelric disambiguation may also be achieved by

adding tangent and higher derivative infonnarion at singular venices, Hoffmann and Hop:roft
(1986).

(3) A finite set of faces, where each face is bounded by a single oriented cycle of edges. Each face also
has a smface equation. represented either in implicit or in parametric form. The smface equation has

been chosen such that the gradient vector points to the exterior of the object.

In. addition edge and face adjacency information is provided. Additional conventional assumptions are also
made, e.g., edges and faces are non-singular, two distinct faces intersect only in edges, ~ auxiliary surface
is specified for each edge where adjacent faces meet tangentially, etc. The objects and obstacles that we

consider are soliJis and are assumed to enclose non·zero finite volume. Hence non·regularities such as dan

gling edges and dangling faces which depending on one's viewpoint enclose zero or infinite volume, are
not pennitted.. The C-spaces that we construct are also regulari:z.ed in this fashion and assumed to be

solids enclosing non·zero finite volume.

2.2. Gaussian Model

Let S2 be the unit sphere in R 3• andBdr(S) be the boundary surface of a convex set S c R 3 • Bdr(S)

is homeomorphic to S2. The Gaussian Map of S is defined as follows. For any set K c Bdr (S), we shall
define a setN (S. K) c S2 as follows. A point e E S2 belongs 10 N (S. K) if there exists a point p E K and a
supponing plane Lp at p such that the exterior Donnal to Lp translated to the center of S2 has e as its end
point This set N(S, K) is called the Gaussian Image of K. The function N(S, .) : P (Bdr(S)) ---? P (S2) is
called. the Gaussian Map of S, where P(Bdr(S)) and P (S2) are the power sets of Bdr(S) and S2. It is a
bijective map and its inverse N-1(S, .): p(S2) ~ P(Bdr(S)) is called the Inverse Gaussian Map of S. For

any G c S2. the Inverse Gaussian Image of G is defined as N-1(S. G). The Gaussian Curvature of p E

Bdr (S) is the limit of the ratio (Area of N (S. K)) I (Area of 10 as K shrinks to the point p. see Pogorelov

(1978),Hom (1986).

t A unil spheJe is implicitly given B.S ;c'l.+y'l.+z'l._l =0 and in rational parametric form as x = (l_s'l.-z'l.)/(I+s'l.+t'l),
y = 2s1(1+s'l.+r'l.) and z = 2r/(I+s'l.+r'l.),
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Gaussian Imnge of Faces. Edges and Verlic:es

Since all faces are patches of algebraic surfaces, we may assume that each face of a convex object is

either a strictly convex face (Gaussian Curvature is positive on each point), a convex. ruled surface patch.

or a planar patch. The Gaussian Model of a curved object then consists of a finite set of vertices, edges and
faces on the surface of a unit sphere as follows.

(1) For a sttictly convex face F, the Gaussian Image N (S, F) is a patch of S2 with its boundary curves

detennined by the nannals La the tangent planes of F at the boundary. That is, the boundary of

N (S, F) consists of the set of points Vf (P) I I IVf (P) I I for p E U Eer E, where r is the set of

boundary edges of F. For a ruled surface patch P, N(S, F) is a degenerate curve on S2. And for a
planar patehF, N(S. F) is a degenerate point on S2.

(2) For an edge E, there are twO faces F and G intersecting in E. By subdividing E ifnecessaI)', we may
assume that F and G meet either transversally or tangentially along E. When F and G meet transver
sally along E, each pointp E E determines two different pointS 'nF and no on S2 determined by the
exterior normals of the tangent planes ofF and G at p. N (S, p) is the geodesic arc 'Yp conne::ting nF

and 1!c; on S2 and N (S, E) = U
peE

'Yp is a patch of S2. N (S, E) has 4 boundary curves, one is the set

of pointS VI (P) I IIVI (P) II for pEE, one is the set of points Vg (P) I II Vg (P)l J for pEE, and
the others are the geodesic arcs 'Yp , and 'Yp,' where 1= 0 and g = 0 are the surface equations of F and

G. and p 1 and P2 are vertices of E. When F and G meet tangentially along E, N(S, E) is a degen
erate curve on S2. N(S, E) is the common boundary curve ofN(S, F) and N(S. G). That is. it is the
se' 01 points Vf(P) I II Vf(P)11 =Vg (P) I II Vg,(p) II loe pEE, When F and G are planar patehes,
E is a linear edge andN(S, E) is a degenerate geodesic arc 'Yconnecting nF and no on 52, where nF

and no are the exterior normals ofF and G.

(3) For a venex p. suppose that there are J:. adjacent faces (ordered in a counter-clockwise dir>..:::tion) F I'

F 2, ••., Fi intersecting atp. Each face F, detennines a point n, on S2 determined by the nonnal of F,

atp. Let 'Yi (i = I, ..., k) be the geodesic arc (greateSt cin::le) on S2 connecting ni and n'+1 where n~+l

=n1. Then N (S. p) is me convex patch on S2 bounded by the cycle of geodesic arcs 11, 12' •.., "fl:.
When Fi and Fi+1 is tangent on p, Yi is a degenerate point In the special case of all k fa::es being
tangent at p. N(S, p) is a degenerate point N(S. p) can also be a degenerate geodesic arc on S2
when Bdr(S) is locally non-smooth only along a curve which is tangent at p. Otherwise, N(S, p) is
a patch on S2.

Topology of Gaussian Model

The Gaussian Image of Bdr(5) covers S2 completely and subdivides S2 into faces, edges and ver
tices as described above. We shall fudge the physical distinctions of face, edge and vertex of S2 a little bit
and deal with the deg.enerate edges and vertices in the same way as with the faces. Let us assume the
Gaussian Image of each face, edge and venex is a generic face of S2. If any of these Gaussian Images are
not faces, we can represent this fact by tagging it as degenerate curves or degenerate pointS and consider il
as faces. By using the connectivity graph of Bdr(S) we can connect these generic faces with the correct
topology. We can further include the edges and vertices detennined by these faces into the connectivity
graph of the Gaussian Image. The edge equations and venex coordinates are given by the face boundary
equations described above. Doing it in this way. we construct a graph on S2 with deg.enerate curves and
points considered as generic faces tagged appropriately.

Figure 1 (b) and (d) show the Gaussian Models for the convex objects in Figure 1 (a) and (c). In Fig·
me 1 (a), all the faces are smelly convex. and all the edges and vertices are defined by transversally in~·

seeling faces. The Bdr (S) is non-smooth on each edge and vertex and only on the edges and vertices.
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Hence, the Gaussian Images for faces. edges and vertices are all patches of S2. In Figure 1 (e), the face F3

is a ruled surface and me face F 2 is a planar patch. The corresponding Gaussian bnages are a degenerate

curve and a degenerate point Further since faces F I and F 3 are tangem to each other along £2. the Gaus

sian hnage of E 2 is a degenerate curve.

3. C-space Obstacles, Convolution and Envelopes

Let A be a moving object with its reference point at the origin and B be a fixed obslacle in the 3

dimensional real Euclidean plane R3 • Both A and B are modeled by the above boundary representations.

For the sake of nOtation and preciseness in our usage we make the following definitions. For S, P and Q c
R 3

, we denote In' (5) as the inlerior of S, Bdr(S) as the boundary of S, and Cl (5) = Inc (S) UBdr(S) as the

closure of S. Note that A = Cl CA) and B = CI(B) by regularity, Further, the exterior of S is denoted by

Ext (S) = Cl (S)C (the complement of Cl (S» = R 3- CI (S), where the set difference P _ Q =
{P e R 3 IpeP and p nomem Q}. Note thatInt(S) and Exl (S) are open sets. We also have d (P, q) as the

Euclidean distance between p and q; NB c(p) "" {q e R 3 I d(p, q) < e} .. E-neighborhood around a pointp;

-S = { -p I peS} = Minkowski inverse, P ±Q = {p ±q IpeP and q e Q } = Minkowski sum and differ··
ence.

Throughout we consider object A to be free to move with fixed orientation. In this case configuration

space is also 3·dimensional We denote Ap to be A -i- {P} where peR 3. One also needs the following

definitions (1) Ap is free fromB ~> Ap (IE = empty. (2) Ap collides with B ~> Int(Ap) n Int(B) :;=

empry (3) Ap contacts with B ~> Ap(I B :;= empty and Int(Ap) n Int(B) = empry (Note that these con

ditions imply Bdr(Ap) n Bdr(B) :I: empty.) (4) CO (A, B) = C-space obstacle due to A and B =

{p e R 3 I Ap n B :;= empty}. (5) 0 -Envelope(-A, B) = Outer envelope due to -A and B = {p e R 3 IPE

Bdr«-A)p) for some p E Bdr(B), andp nomem Inr«-A),) for any q e B } (Having q E B as opposed to

q e Bdr(B) implies that only the oUler envelope is considered.) (6) Convolution (Bdr(-A), Bdr(B» =

Convolution of Bdr(-A) and Bdr (B) .. {p e R 3 IP= p - q where p E Bdr(B) and q E Bdr(A) and B has

an outward normal direction alp exactly opposite to an outward noITnaI A has at q}.

We now note the following.

Theorem 3.1: CO (A, B) =B-A

Proof: Lozano-Perez and Wesley (1979). 0

>From the above Theorem and our prior definitions we obtain,

Corollary 3.2 : (1) CO (Int(A), Iro (B») = Int(B) -lnr(A) = B -Int (A) (This is an open set)

(2) Ap isfree fromB ~> pE Ext (CO (1m (A),lnr (B)))

(3)Ap coliideswithB ~> pE 1m (CO (Int (A),Int(B)))

(4) Ap conracts withB ~> PE Bdr(CO (lnt (A), In! (B)))

We next obtain the following imponantcharacLerizations,

Lemma 3.3 : Bdr(CO (lnt(A), In1(B))) .. O-Envelope (-A, B)

Proof: (~) : Letp E Bdr(CO (Ii'll (A), Int(B»), then Ap contacts withB, (Corallary 32 (4», and 3 p

E Bdr(Ap) (I Bdr(B). Sincep-p e Bdr(A), we havep-p E Bdr(-A) andp E Bdr«(-A)p) for p E

Bdr(B). Further pnomem Inc ((-A),) for any q E B. Assuming the conrraIy. ifp E Int«-A),) for

some q E B, thenp e B-Int(A) = Inr (BrIn1 (A) "" Int(CO (In! (A),lnt (B))), (conrradiction).

(;2) : Let p e O-Envelope(-A, B), then p E Bdr«-A)p) for some p E Bdr(B), and p nomem

Inr«-A),) for any q E B. Equivalently, p e Bdr(Ap) n Bdr(B) and q nomem Int(Ap) for any q e

B. This implies Ap (lB * empty andIro (Ap) n Int(B) = empty. Hence, Ap contacts withB. 0
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Theorem 3.4 : Bdr(CO (A, E» cO-Envelope (-A, B) c Convolution (Bdr(-A), BdrCD»

Proof: (1) Using Theorem 3.3 we show Bdr(CO (A, B)) c Bdr(CO (In! (A), Inr(B») : For any j5 E

CO (A, B), Ap n B :;e empty, equivalently p E Cl (CO elm (A),lm(S»), (Corollary 3.2 (2». Hence,

CO (/nt(A),Int(B)) c CO (A, B) c C/(CO (lnt (A),/nt(B))) and CI(CO(A,B)) =

Cl(CO (Int(A), Int(B»). Since In/(CO(lnt(A),lnt(B») c Int(CO(A,B», we have
Bd/(CO (A, B)) cBd/(CO (lnt (A),Int (B))).

(2) O-Envelope(-A, B) c Convolution (Bdre-A), BdrCD» : For any pEa-Envelope (-A, B) =

Bdr(CO (Int(A),lnt(B»), since Ap contacts with B al some p E BdrCE), Ap has an outward normal
direction atp which is opposite La an out\vard normal direction B has atp_ For q = p-ji E BdrCA),

we have p= p -q and B has an outward normal direction at p exactly opposite LO an outward normal
A has at q. Thus p E COTlyolurion (Bdr (-A), Bdr(B». Also see Guibas, Ramshaw, and SlOlfi
(1983). 0

In the sp~ial case when both A andB are convex, both the set containments of Theorem 3.4 become equal
ities. This follows from the properties of convexity. In particular we use the following simple fa~t. For
convex A and B, if Ap and B have opposite outward nonna! directions at p 5 Bdr(Ap) n Bdr(B), then

there is a common supporting plane Pp such lhat Ap: and B are on opposite sides of the plane Pp' Kelly and
Weiss (1979).

Theorem 3.5 : For convex A and B, we have Bdr(CO(A, B» = O-Envelope(-A,B) =

Convolurion (Bdr(-A), Bdr (B».

Proof: Using Theorem 3.4, all we need.to show is Convolution(Bdr(-A),Bdr(B» c
Bdr(CO (A, B» for convex. A and B. Suppose p e Convolution(Bdr(-A), Bdr(B». We first show p

nomem Ex1(CO (A, B». Ifp E Ext (CO (A, B», then 3 E > 0 such that (Ap+NB £(0)) n B = empry

and Cl(Ap) n Cl(B) = empry. Hence, p 1lDmem Bdr«-A)p) for any p E Bdr(B), (contradiction),

and sop nomem .Ext(CO(A, B». Now, we show pnomemlnJ.(CO(A, B)). Since 3p E Bdr(Ap) n
Btir(B) such thatAp andB have opposite outward normal directions atp, a common supponing plane
Pp separates Ap and B. For any E> 0, let e be an outward normal veclOr to B at p such that I I e II =

E and e is orthogonal to Pp' then Acp+~) and B are separated by lhe banded region bounded by P (p+.o)

and Pp , and soAlP~) nB = empry. Hence, pnomem fnt (CO (A, B». Thus p 1lDmemint (CO (A, B»

U E.ti (CO (A, B)) implies pE Bd/(CO (A, B)). 0

This may then suggest a natural methcxi for handling 1lDn-convex object and obstacle shapes. One fizst
obtains a convex decomposition consisting of the union of convex pieces and then generaleS the C-space

obstacle as the union of C-space obsta.eles for convex object and obstacle pairs. Such convex decomposi
tions are possible for polyhedral objects, see Chazelle (1984). However not all objects with algebraic
curve and surface boundaries p<"Jrnit d$ompositions consisting of the union of convex pieces, Bajaj and
Kim (1987c). For example a complete lOroidal surface cannOl be decomposed into the union of convex
pieces. To obtain convex decomposition of general curved solid objects (say in terms of union, intersection
and difference) is a difficult and as yet unsolved problem. see Requicha and Voelcker (1983). Direct
methods of computing C-space obstacle boundary of objects with non-convex boundary are computation
ally quite involved and intricate, and further research needs to be done. Thus for the time being one is res
tricted to considering convex shaped objects and obsta.eles.

4. Generating the Boundary of C-space Obstacles

Suppose S be -A or B, p E Bdr (S) be a boundary point, E c Bdr (S) be an edge, and F c Bdr (S) be a
face. Let (Fs, NF,) be a pair such that Fs c Bdr(S) is a face and NF, = N(S. Fs ), where N(S, .) is the
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Gaussian Map of S. (£s. NE.) be a pair such lhal Es eBdr(S) is an edge and N£, eN (S, Es) with NE, n
N(S,p):;:!: empryfor allp E Es. (Ps,Np,) be a pair such thatps E Bdr(S) is a venex andNp, cN(S,ps)

with Np• :;'.: empry. Further let Kg be Fs, Es or Ps, and Ie, G_A. be F-A' E-A, or P-A- There are nine

(Ks•G-A) pairs. We define sub-compalible and compatible pairs as follows.

(1) Kg and G-Ir, are sub-compatible $=:> NCB, Ks ) n N(-A, G-A) -:;!:. empty

(2) (Kg. NK) and (G ....... NG... ) are compatible $=> Nr., = NG_

Further denote by Kg DO G-A. that Kg and G -A are sub-compatible. Since only sub-compatible pairs can

contribute to the Convolution, one can show that Convohujon (BdT (-A), Edr (B)) = U
K...G...

Convolution (G_A., Kg), where Convolution (G_A> Ks ) = Convolution of G_A and Kg = {p E R 3 IP= p + q

where P E KlJ and q E G-t\. andB has an outward normal direction atp in the same direction as an outward
normal A has at q}. We can further refine the right-hand side to be a union of only the compatible pairs as
follows. For a sub-compatible (KB,G_A ) pair, let N(KB.G-.,4.) = N(B,KB) n N(-A. G_A ) be the

nonempty inters~tion of two Gaussian Images of KB and G_A • K(KB• G_A ) =N-1(B. N(KB, G-.,4.» c KB

and G(Ks , G-A,) = N-1(_A. N(KB, G.......» c G_A be the Inverse Gaussian Images of N(KB , G-.,4.). Then
(K(KB , G-A), N(KB • G .......» and (G(KB , G-A), N(KB , G_A» are compatible. One can easily show that
Convolution (Bdr(-A), Bdr(B» = U Convolution(G (KB• G_A ), K(Ks , G_A». Hence. we only

K...G....

need to consider compaJible pairs to generate the Convolution.

When (KB.NK.) and (G-A,NG.J are compatible with at least one of KB or G-A being a vertex, the

Convolution generation is esp~ially easy. ie. Convolurion (G ........ KB) = KB +G........ Let Ch (P) '" the

characteristic set of p = {p=p+q I N(B, p) n N(-A.q) ~ empty}. Ch(E) = UpEECh (P) is called the

characten"stic set of E. and Ch(F) =U Ch(P) is called the characteristic set of F. One can easily
,oF

show that Convolurion(Bdr(-A),Bdr(B» = (U
F

r Ch(F» u (u Ch(E» U (U r Ch(P».e , EE r, pE >

where r t is the set of all faces of Bdr(B), r 1 is the set of all edges of Bdr(B), and r 3 is the set of all ver
tices of Bdr(B).

GrQ'wing Faces

For a face F c Bdr(B). one can easily show that Ch(F) =

(u, Convolution(G (F, F'). K (F, F'») u (u Convolurion (G (F, E), K (F. E») UF_F E..F

(U ConYolurion (q, K(F, q»). One can use §4.1 to compute Convolution (G (F. F'), K(F, F')) and,_F
§42 to compute ConYolurion(G (F. E), K(F, E», while directly computing
Conyolurion (G(F, q), K(F. q)) =K(F, q)+ {q} as a simply translated surface palCh.

Growing Edges

For an edge E E Bdr(B), one can easily show that Ch(E) =

(UF_
E

Convolution (G(E, F), K(E. F») U (UE'_E Convolution(G (E. E'). K (E, E'») U

(U Convolution (q. K(E, q»). One can use §4.2 to compute ConYolunon (G (E, F), K (E, F», and,-E
§4.3 to compute Convolution(G (E. E'), K(E, E'», while dir~tly computing Convolution (q, K(E. q» =

{q}+K (E, q) as a simply translated edge segment.
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Growing Vertices

For a vertex p E BdT(B), one can easily show thal Ch (P) = (u COllllo/urion(G (P, F), p» u
F-F

(u Convolution (G (P, E), p» u (u Convolwion (q. p». Since one has Convolurion (G (P, Fl, p)
£-p q-p

= G (P, F)+ {P}. Convolution(G (P, E),p) = G (P. E)+ {P}, and Convolution (q, p) = {q +p}, computing

Ch(P) is easy.

NOle: (1) For a non-smooth edge E and a non-smooth vertex p the convolution edge

Convolurion (G (P, E), p) = G (P, E) + {P} is a non-smooth edge. and (2) for non-smooth vertices p and q

the convolution vertex Convo[urion(q, p) = {q+p} is a non-smooth verteX. As we will see in §4.3. (3) we
can also have a non-smooth convolution edge Convolution (E_..to Eo) for parallel edge pair E_A and ED'

These are all the non-smooth edges and venices we can have on the C-space obstacle boundary. As we
see in this classification, all the non-smooth edges and vertices on the C-space obstacle boundary result
from very special orientations between the non-smooth edges and vertices of A and B. Most of the
non-smoothness of A and B are removed while generating the C -space boundary. This smoothing eff~t

of convolution generation raises another question of how to compute and specify me boundary of a convo
lution surface patch. Since most of adjacent convolution faces meet tangentially to-each other, computa
tion of the intersecting edge may be quite unstable. Auxiliary surfaces need to be detennined which inter
sect transversally with the convolution surfaces and thereby boundary curves of the convolution faces.

In §4.1--4.3 we consider both the implicit and rational parametric representation of surface patches
since not all algebraic curves and surfaces have rational parametrization, see Walker (1978). For the class
of rational algebraic curves and surfaces (which have. a rational parametric form), algebraic algoritluns
also exist for converting between the implicit and parametric representations. However their efficiency are
limited to CIln'es and surfaces of low degree, see Abhyankar and Bajaj (1987a, b, c).

4.1. Generating Convolution (F........ ,Fs)

In this section, we consider how to generate the algebraic surface equation, edges and vertices of a
convolution surface patch Convolurion(F ........ , Fs ). We can use Theorem 4.1 for the case of F ........ and Fs

being implicitly defined algebraic surfaces. Corollary 4.1 is useful when F ........ is implicit and Fs is
parametric, or the other way around. Corollary 4.2 is useiul when both F-A and Fs are paramemcally
defined. For sub-compatible Fs and F ........ , we are llsing lhe notations N(Fs,F_A ) = N(B,Fs ) n
N (-A, F ........ ), K(Fs , F ........ )=N-1(B, N(Fs , F -A» cFs, and G (Fs.F ........ ) =N-1(-A, N (Fs , F ........ ) c F -/t,'

Theorem 4.1 : Let Fs c Bdr (B) be a patch of an algebraic surface f = 0 with gradients Vj. Further
let F -.4. c Bdr(-A) be a patch of an algebraic surface g =0 with gradients 'Vg, and suppose that FB
and F -A are sub-compatible. Then Conyolurion(F-A' FB ) = Convolution (G (Fs • F ........ ), K(Fs, F -A))

is the set ofpoims p= (X, y. Z) = p +q =(x +a, y+~, z +)') such that

J(x,y,,)~O andp=(x,y,')EK(FB,F-... ) (1)

g(a,P,y)~O and q~(a,P,Y)EG(FB,F-.<) (2)

VJxVg ~ 0 (3)

VJ·Vg > 0 (4)

Proof: Since (3)-(4) imply 'Vfand Vg are in the same direction, (3}-{4) are equivalent to the out·
ward normal direction ofB at p to be the same as that of -A at q. 0

We use Theorem 4.1 as follows. First substitute x =x - a, y = y- ~ and z = z-)' in the above equations
(1) and (3). Then one can obtain the implicit algebraic equation of lhe Convolution(F ......... Fs ) in termS of
x, y and zby eliminating a, ~ and"f from the equations (1)-(3). The vector equation 'VfxVg = 0 gives 3
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scalar equations. Since one of these equations is redundant., we can have 2 independent scalar equations

from (3). Hence, we have 4 equaLions and eliminate 3 variables 0:, p, yto gel an implicit eqU:ll..ion in tenns

of X, y, z. Elimination of variables can be perfonned by computing resultants on pairs of equations, how
ever this in general leads to extraneous fattars and special care needs to be taken in perfonning this step,

van der Waerden (1950). Systematic elimination of variables. a pro:;ess aisa known as implicitization,

based on Kronecker's elimination method can be adopted to avoid eXlTaneQUS factors but is limited by its
exceedingly high computaLion time, Bajaj (1987). A closed fann resultant for simultaneous elimination of

n -1 variables from n equations is as yet unknown for n .<::. 3 and is a major unsolved problem of algebraic

geometry. see Abhyankar (1976). For special types of surfaces (called bi-wc paramelric surfaces) how

ever a closed form Cayley resultant proves sufficient in simultaneously eliminating 2 variables from 3

equations, Dixon (1908).

In computing the implicit equation of the C -space surfaces a time complexity analysis may be done

as follows. Let Resj(d) =< time complexity of computing the resultant of two j-variate polynomials of max

imum degree d. The best known time complexity of Resj(d) = 0 (d 2j+l logd + d 2i log2d), Collins (1971).

On substituting .% =~ - 0., y =y - p and z = z -y in equations (1) and (3) one has to expand each term

Cijt·x.4 .ydl • z4 = Cjjt·~-a)4.cy-p)dl.(i_y)r!, where di +dj +dt :5d. This is necessary because in

computing resultants to eliminate, say a, one needs to simplify the equations to be polynomials in a with

coefficients in :r,y,z,P,r. f, h, I, andh have 0 (d3 ) tenns of this form, and expansion of ~h term takes

o (d3
) multiplications. Hence, the overall time complexity for expansion and simplification is 0 (d6 ). By

Bez:out theorem, when we take a resultant of a degree d 1 equation and a degree d 2 equation, the degree of

the resulting equation is d l ·d2 • If we are eliminating'a, P and y pairwise, the total time complexity is

bound by 0 (Res6(d)+Ress(d2)+Res4(d4)+d6)::: 0 (d 3610gd). Funher the degree of the convolution

faces may be as high as 0 (ds) where original faces ofA and B were with maximal degree d.

Corollary 4.1 : Let FB c Bdr (B) be a patch of an algebraic surface f = 0 with gradients Vf. Further

let F -A, c.Bdr (-A) be a parametric surface patch G(u, v)=(CI(u, v), P(u, v), yCu, v» with gradients

G.. xG~, and suppose that F B and F-A, are sub-compatible. Then Convolurion(F_AtFB) =
Convolwion(G(FB,F-A,),K(FB,F-A,» is the set of points p =< (i,y,Z) =< p+q =

(x + a(u, v), y + P(u, v), z +yCu, v)) such that

/(",y,,)=O and p=(z,y,,)eK(F,.F-..) (1)

q=(a(u,v), ~(u,v), -y(u,v»e G(F"F-..) (2)

~x~x~=O m
<1/'(G"xG,) > 0 (4)

First substitute x. =x - a(u,v), y= y- P(u, v) and z = z - yCu, v) in the above equations (1) and (3). Then

one can obtain the implicit algebraic equation of the Convolurion (F-,',. F B) in terms ofi, y and zby elim

inating u and v from the equations (1) and (3) by computing resultants. Since (3) gives 2 independent

scalar equations, we have 3 equations and eliminate 2 variables u, v to get an implicit equation.

Since G(u,v) is a rational parametric surface, we have a(u,v)=p(u,v)/w(u,v),

P(u,v) =q(u, v) I w(u,v) and )'(u, v) =r(u, v) I w(u, v) for polynomials p (u, v), q(u, v), r(u, v) and w(u, v)

of maximum degree d. At this time the expansion of each term Cjjk·X.d,·/I·Zt!, =

Cijt· w(u, v)d-d,-dJ-d, . (w (u,v) .:x- p (u, v»<1, . (w(u. v)· y- q (u, vnd] . (w(u, v) .Z- r (u, v»t!, I w (u, v)d is

harder than the case of Theorem 4.1. Again f,lz, Iy andlz have 0 (d 3) terJn<; of this form, and expansion of

each term takes 0 (d 9) multiplications. Hence, the overall time complexity for expansion and

simplification prior to elimination is 0 (d l !).
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The case of FE being a parametric surface and F -A being an algebraic surface is similar [0 Corollary

4.1.

Corollary 4.2 : Let Fa c Bdr(B) be a parametric surface patch F (s,t)=(X(S,l), y(s,t), :(S,I» with
gradients FsxFr_ Further let F -A c Bdr(-A) be a parametric surface patch

G(u,v)=(a(u,v), P(u,v), '¥Cu,v» with gradients G",xGv• and suppose that Fa and F_A are sub·

compatible. Then Convolution (F-A. FB ) = Convolurian (G (Fs. F _,..), K (FB • F -,oJ) is the set of

points p= (X, y, Z) = p + q = (x (s. r) + a(u,v), y (S,l) + J3(u, \/), Z (s,n +)'(u,v)) such that

p=(..r(s,t), y(S,I), z(s,!) E K(FB• F -Jr.) (1)

q=(o:{u. \/), p(u,\I), 'j'(u, \/» E G (FB.F ....... ) (2)

~X~)x~x~)=O ~

(F,xF,)· (Go x G.) > 0 (4)

One can obtain the implicit algebraic equation of the Convolurion(F-A.FB) by eliminating s, t, u and v

from the equations i =:r(s,l) + a(u, \/), Y= y{s,t) of- PCu, \/), %=: (s,t) + )'(U. v) and the above equation (3).

Since (3) gives 2 independent scalar equations. we have 5 equations and need to eliminate 4 variables
S, t, U, v to get an implicit equation,

Boundary Edges of Convolution (F -.4,. FB)

For sub-compatible face pairs Fs and F -.4, which are relatively open with respect to Bdr(B) and

Bdr(-A), each boundary edge EN of N(Fs.F-A) (= N(B, Fs) n N(-A, F -A)) is either a segment of a

boundary edge ofN (8, Fs) or a segment of a boundary edge ofN(-A, F -A)' Further EN is either (a) a seg

ment of the common boundary edge of N(B, Fs ) and N(B. Es ) for some edge Es of Fs , or (b) a segment

of the common bound2ry edge ofN(-A. F..,() and N (-A. E-A,) for some edge E-,4 of F -A' Similarly, e2.ch
boundary edge Eco(A.,s) of the surface patch Convolwion (F -A, Fs ) is either (a) a segment of the common

boundary edge of Conyolulion (F -.4., FB) and Convolution (CI(F -.4,), Es ), or (b) a segment of the common

boundary edge of Conyolurion(F-.4,.F8) and Convolution (E-.4,. CI(Fs)), where Cl (Fs ) and Cl (F -.4,) :!re

the closures of FB and F_A. with respect to Bdr(B) and Bdr(-A). Edges of type (a) are described in

Theorem 4.2, edges of type (b) can be described similarly. Let sub-ConllolunonT.(G -A, Ks ) ... sub

Convolution of G-A and Ks restricted to the normal directions TN = { pER 3 Ip = p ;- q where p E KB and

q E G-A., and B has a unit oUt\\'ard DOnnal direction np at p which is the same as a unit outward nonnal A

has at q where n.p E TN}' Since the Gaussian Image of ECO(A,B) is some edge EN of N(FB. F ....... ). one can

easily show Eco(A,s) = sub-ConvolurionE,.(CI (F ..,(). Cl (Fs)),

Theorem 4.2 : Let FB and F -A be a sub-compatible face pair, Es be an edge of Fs and EN be a

boundary edge of N(Fs ,F-.4,) such that EN is a segment of the common edge N(B,EB ) n
Cl(N(B, FB )), Suppose Es is me common edge of two s~ace patches FD and Fs • where FSA is a

patch of an alge~raic surface I = 0 with gradients VI, and FB is a patch of an algebraic surface I = 0

wim gradients VI Then

(A) the convolution edge Eco(A.,B) = sub-ConvolurionE)Cl (F_A). CI(Fs)) due 10 me normal direc

tionsEN is the set ofpoinrs p=(X, y. Z) =p +q = (z+Cl, y + p, Z +Y) such mat

f(x.y.,)=O and p=(x,y,,)eCI(K(F,.F....) (1). .
f(x, y. ,)=0 and p=(x, y. ,)e CI(F,) (2)

g(a,~.y)=O and q=(a,p.y)eCI(G(F,.F.... )) (3)

VfxVg = 0 (4)

Vf·Vg > 0 (5)
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(B) The surface patch defined by (1) and (3}-(5) and the surface patch defined by (2}-(5) intersect

along the convolution edge Eco(A,o),

Proof: (A) The surface patch defined by (1) and (3}-(5) is the face Convolulion(F -A' Fo ) and all its
boundary edges and vertices. Since (l}-(2) reslrict the sel of points p to the subsegment E'0 of Eo

such that E'o = N-1(B. EN). (I}-(5) define the convolution edge Eco{A,B)'

(8) Since ECO(A.Bj is the common solution of (I}-(5), ECO(A.Dj is the common edge of the surface
patch defined. by (1) and (3}-(5) and the surface patch defined by (2)-{5). 0

By using an auxiliary surfa~ if necessary we may assume each edge ED is the common edge of lWO

transversally intersecting surface parches Fo and FD• Then in most of the cases Eco(A..B) can also be
represenled as a common edge of two transversally intersecting swface patches. When these twO swiace

patches intersect tangemially, ~ne may use different auxiliary surface patch PD' For two surfaces defined
implicitly by h(.x.y.z) =0 and h(.x,y,z) = 0 which meet tangentially along the curve C, an auxiliary surface

which intersects h and htransversally may also be. obtained by considering surfaces k = ah +Ph= 0 where

a and pareAarbitrary polynominals in three variables x, y and z. These additional surfaces k also intersect

both h and h along the curve C ~d are said to belong to the ideal of the curve C. For suitable a and paux

iliary surfaces which meet h and h transversally may be constructed.

The case of a boundary edge E_A of F -,I, being defined by twO transversally intersecting surface

patches gives a similar result.. Further the cases of FB• FB• F -A. or F-,I, being paramelric surfaces give
similar results. Also the time and degree complexity analyses are similar to those of Theorem 4.1 and
Corollaries 4.1-4.2.

Boundary Vertices of Convolution (F-A' FD)

For a sub-compatible face pair FB and F -A which are relatively open with respect to Edr (B) and
Bdr(-A). each boundary verex eN of N(Fo. F -,1,) (= N(B. FB) n N(-A. F -A.» is either (a) a boundary

ve..-rex of N(B, FD). (b) a boundary vertex of N(-A. F .......). or (c) the inleISection of one edge of N(B. FB )

with another edge of N(-A. F-,1,). In the case of (a), suppose p is the vertex of Fo and q is a point of F_A

such thatp e N(B. eN) and q e N-1(-A, eN), then the pointp+q is the venex of Convolution (F-,I,. Fa)
such thatp+qe N-1(CO(A, B), eNj' qe F-.A, can be computed by solvingg=Oand Vg I I [Vgll =eN'

The case of (b) is similar to the case of (a). In the case of (c). the imersection eN of one edge ofN (B. Fa)
with another edge of N(-A, F-,I,) can be computed by Theorems 5.1-5.3. Supposep E Bdr(FD) and q E
Bdr(F -,1,) be such that p E N-1(B. eN) and q E N-1(_A. eN) where Bdr(FB ) and Bdr(F-,1,) are the boun
daries of FB and F_A with respect to Bdr(B) and Bdr(-A), then p+q is the verex of

Convo/wion(F -A. FB ) such thatp +q e N-1(CO (A, B), eN)' P E FD can be computed by solving/= 0 and

VII IIVf] I =eNandqe F-,I, canbecomputedbysolvingg=OandVglll'Vgll = eN'

4.2. Generating Convolution (F-,1,. ED) and Convolwion (E-,I" FD)

In this section, we consider how to generate the algebraic surface equations, edges and vertices of

convolution surface patches ConvolUlion (F -,1" Eo) and ConvolUlion (E ....... , FD). We can use Theorem 4.3
for the case of ED being defined by the intersection of twO implicit algebraic surfa.:es and F -,I, being an

implicit algebraic surface. Tne other combinations of implicit and paramelric surfaces defining ED and F-A

have similar resull.S as easy Corollaries of Theorem 4.3. Similar results hold for generating

Convolution (E-,I,. FB). . .
Theorem 4.3 : Let ED c Bdr (8) be the common edge of two faces FD and FB' where FD and FB C

Bdr (8) are patches of algebraic surfaces 1=0 with gradients VIandj= 0 with gradients vi. Funher
let F -,I, C Bdr(-A) be a patch of an algebraic surface g =0 with gradients 'lg. Suppose that ED and
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F -A are sub-compatible. Then Convolution (F -A. En) = Convolution (G (En. F -A), K (En. F -An is
lhe set ofpoinlS p= (X, y, i) .. p +q = (x + CI, y + P, z +Y) such that

!(x,y,z}=!(x,y,z)=O and p=(x,y,z)eK(En,F_A ) (1)

g(a,P.Y)=O ""d q=(a,p.y)eG(E,.F-A) (2)

• Vg
'flg-('flfx'flf)=O""d 110 eNE (3)

v gil •

Proof: (3) is equivalent lO an outward normal direction of B at p to be the same as·one of the out.
ward normal directions of -A at q. D

One can obtain the implicit algebraic equation of the COl1volwion (F _I.. En) in a similar way as in Theorem
4.1. When the f~e F-A is a parametric surface patch G (u, V)=(II(U,v), P{u, v), j'(u, v» with gradients
Gil xCv. one can obtain the corresponding Corollary by changing every V'g into G" xG. and the statement

~g(Cl,P,'Y)=O and q=(a.,p,y)eG(EB.F_A)" into hq=(a(u,v),p(u,v).)'(u,v))eG(EB'P-A)" in the

~bove Theorem. One can JJ12.ke similar changes to get corresponding Corollaries for the case of FE and/or
Fs being paramelIic surface patches.

'When two faces Fs and Fs are tangent to each other along Es , Convolurion (F -.4" Es ) is a degenerate

curve on the C-space obstacle boundary. Actually, it is a common edge of two convolution faces gen·
erated in § 4.1.

Boundary Edges of ConvolUlion(F...... Es )

For a sub-compatible edge-face pair EB and F _.... where F..... is relatively open with respect to

~dr(-A) andEB is relatively ~pen with respect to the intersection curve of two algebraic surfaces f = 0 and

1=0 defining faces Fs andFB , each boundary edge EN of N(EB,F-A,) (=N(B,Es) n N(-A,F-.4.)) is

either a segment of a boundary edge of N(B, Es ) or a segment of'a boundary edge of N(-A, F -.4,). Fwther

EN is either (a) a segment of the common edge ofN(B, Es) andN(B, Fs )for some face Fs adja::ent to Es•
(b) a segment of the common edge ofN(-A, F _....) andN (-A, E_.... ) for some edge E-A, of F -.4., or (c) a seg·

rnent of the cornman edge of N(B. EB) and N(B, Ps) for a verrex Ps of EE. Similarly, ea:h boundary edge
Ecoc..... s) of the surface patch Convolution (F -.4" Es) is either (a) a segment of the common edge of

Convolution (F_..... Es ) and sub-Conyoluliollc1(N(B,F.)}(Cl (F-.4,), Cl(Fs )), (b) a segment of the cornman

edge of Conyolurion(F-A"Es ) and Conyo/ution(E-A. Cl(Es), (c) a segment of the common edge of

Conyolurian (F -11., Es) and COnYOIUlion(CI(F-.4,), Ps) where CI(F_....) is the closure of F -.It. with respect to

Bdr(-A) ~d CI(Es) is the closure ofAEB with respect to the intersection curve of twO algebraic surfaces

1= 0 andf= 0 defining faces Fs and Fs . Edges of type (a) have been ~scribed in Theorem 4.2, edges of

type (b) are described in Theorem 4.4, and edges of type (c) are described in Theorem 4.5. The proofs of
Theorems 4.4--4.5 are similar to that of Theorem 4.2.

Theorem 4.4 : Let Es and F -.4, be a sub-compatible edge-face pair, E_.... be an edge of F-.4, and EN
be an edge of N(Es,F_.... ) such that EN is a segment of the common edge !'fe-A, E-.4,) n
Cl (N(-A, F -.4,)). Suppose E-A, is the common edge of two surf~ce pat=hes F _.... and F _.... ' where F_....

is a patch of an algebraic surface g =0 with gradients Vg, and F-A is a patch of an algebraic surface

g= 0 with gradients 'Yg. Then

(A) the convolution edge ECO{....,B} = sub-ConvolurionE.-(CI (F_.... ), Cl(Es)) due to the normal direc

tions EN is the set ofpointsp= (X, Y. i) = p +q = (x + a., y+~• .z +)') such that

g(a,~.y)=O ""d q=(a,p.y)eCl(G(E,.F-A)) (1)

g(a,P.Y)=O ""d q=(a,p.y)eCl(l'_A) (2)

f(x. y. ,)=i(", Y. ,)=0 ""d p=(x. y. ,) e Cl(K(E,.F-A)) (3)

A Vg
Vg . ('Yfx'Yf) = 0 and " ...... eN(E1I ,F-.4,) (4)
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(B) The surface patch defined by (1) and (3}-(4) and the surface patch defined by (2}-{4) intersect

along the convolution edge ECO(A,BJo

-When the surface patches of (B) intersect tangentially, one may use different auxiliary surface patch F -il.

One may also select an auxiliary surface patch inlersecting ttansversally to the surface patches of (8) from

the ideal afthe curve C defining the edge Ecoc)" B)o

Theorem 4.5 : Let ED and F -d. be a sub-compatible edge-face pair, PH = (x, y, z) be a vertex of ED

and EN be a boundary edge of N (EB• F-.-.) such that EN is a segment of the common edge

Cl (N (B, Ee» (J N (B, Ps). Suppose ElJ is the common edge of two transver:;;ally interse:::ting sur

face patches Fs and FD, where FB is a patch of an algebraic surface. j= 0 with gradients 'VI. and Fs
is a patch of an algebraic surface J= 0 with gradients 'Vj. Further let n = Vj(PB) and it =Vj(PB).
Then
(A) the convolution edge Eeo(A.,B) = sub-ConvolwionE"CF_.4., Cl(Es )) due to the normal dire::tions

EN is the set of alllhe points p = (X, y, Z) '" Ps +q = (x + Ct, y +~, z+"'() such that

g(a,~.y)=O and q=(a,~,Y)E CI (G (P,.F-A)) (1)

Vg-(nxn)=O (2)

Vg'(n-(n-n)n)2=O (3)

Vg-(n-(n-li)n)2=O (4)

(B) The surfa::e patch defined by (1) and [he surface patch defined by (2H4) intersect along [he con~

volution edge Eeo (",_ B)

'When the surface patches of (B) intersect langemially. one may select an auxiliary surface patch interse::t

ing transversally to the surface patches of (B) from the ideal of the curve C defining the edge Eeo(A,s).

Boundary Vertices of Convolution (F -AI Es )

Each vertex of Convolution (F-AI Es ) is a vertex of Convolution (F-A. Fs ) for some adjacent face Fe

ofEB• Hence, one can use the same melhods as in §4.1.

4.3. Generating Canvalutian(E-A. Es )

In this section, we consider how to generate the algebraic surface equation, edges and vertices of a

convolution surfa::e pateh CanvolUlwn (E-A. Es ). We can use Theorem 4.6 for the case of both E-A and

Es being defined by two implicit algebraic surfaces. The other combinations of implicit and parametric

surfaces defining E-A and Es have similar results as easy Corollaries of Theorem 4.6.

Theorem 4.6 : Let Es c Bdr (B) be a segment of the common edge of tw~ faces Fs and Fs. where

FB cBdr(B) is a par:h of an algebraic surf~ef=0 with gradients VfandFs cBdr(B) is a patch of

an algebraic surracej=O with gradients Vj. Further let E""", c Bdr(-A) be a segment of the com

mon edge of two faces F-A and F-"'. where F -A cBd.r(-A) is a patch of an algebraic surface g=O

with gradients Vg and F-'" c Bd.r(-A) is a patch of an algebraic surface i =0 wilh gradients Vg.

Suppose that Es and E.....t are sub-compatible. Then Canvo/urian (E-A. Es ) =

ConyalUlian (G (Es • E-A), K(Es.E.....t)) is the set of points p= (X, J. Z) = p + q = (r+ Ct, y +~, z+'Yl
such that

-I(x, y. ,)=I(x, y, ,)=0 and p= (x, y, ,) E K(E" E-.<) (1)

g(a,~,Y)=g(a,~.Y)=O and q=(a,~,Y)E G (E,. LA) (2)

).·V[+(1-).)·V[ EN(E"E-.<) and
111•. 17/+(1-),). 17/11

Il·Vg+(l-IJ.)·Vg EN(EB.E_A) forsomeO:S;)..,J.l.~l (3)
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Proof: (3) is equivalent to an outward normal direction ofB at p to be the same as an Qutwan::l nor·

mal direction of-A arq. 0

One can obtain the implicit algebraic equation of the Cortllolwion (£-A. En) in a similar way as in Theorem

4.1. When the face Fs is a parametric surface pal£:h F(s,t)=(.r(s,t),y(s,t), Z(S,l)) with gradients FzxF,.

one can obtain the corresponding Corollary by changing every VI UllO Fz xF, and the statement

"/ (x, y, z)=O and p = (x, y. z)e KeEn. E-A.r into "p=(.r(s,t), y(s,t), z (s,t» E K (Es •E-A,)" in the above

Theore~ One can make similar changes to get corresponding Corollaries for the case of FB• Fs• F_A.
and/or F-A being parametric surface patches.

When Fs and Gs are tangent [0 each other along EJj, or H-A and K_A. are tangent to each other along

E-A.. Convolution (E-j,. EIJ) is a degenerate curve on lhe C-space obstacle boundary and is a common
edge of two convolution faces generated in § 4.2. In the special case of FB and Gs being tangent along EB ,

and also H -A and K ...... being tangent along E_AI Convolurion (E-A' Es ) is either a degenerale curve or a
degenerate point.

Let N£,(P) .. N£, n N(S,p), then N£,(P) is a geodesic arc on S2. When two line segmentS in a

plane intersects, either there is a unique intersection point or they overlap entirely on the same line. One
can show a similar fact for minimal geodesic arcs on S2 as follows.

Fact 4.1: If N£.(p) n Ne...(q):;= empty. either (1) Ne.fp) n Ne_(q) is a point or (2) Ne,(P) =

NE.(q).

By subdividing EB and E if necessary, we may assume only one of the conditions (1) or (2) holds
for the whole edges EB and E We call ED andE_A to be parallel if the condition (2) holds on the whole
edges EB and E_A• IfEB and E_A is a parallel edge pair, the Convolution (E_AI EB) generated in Theorem
4.5 is a degenerate CUIVe on the C-space obstacle. Otherwise it is a surface pau:h.

Boundary Edges of Convolution (E...... ,Es )

For a suh-corr.patible edge pair EB and E_A where E} (resp. E ...... ) is relatively o~i:m with resp"'....ct to

the intersection curve of twO algebraic surfaces f = 0 and f =0 defining faces Fs and FB (resp. g =0 and
g= 0 defining faces F -A andF-A). each edge EN ofN (Es•£_0'4.) is either a segment of an edge ofN(B, Es)
or a segment of an edge of N (-A, E ...... ). Further EN is either (a) a segment of the common edge of
N (B, Es) andN(B, F B) for some.face Fa adj<C'ent IOEs , (b) a S'egrrent of the common edge ofN (-A, E--Ir,)

and N(-A, F-A) for some fa:e F --Ir, adjacent to £_0'4., (c) a segment of the common edge of N (B. Es ) and
N(B, PB) for some vertex Ps of Es• or (d) a segment of the common edge of N(-A, E--Ir,) and N(-A, P--lr,)

for some vertex P...... of E-A. Similarly, ea::h boundary edge Eco(A.,s) of the surface patch
Convolurion (E-Jr.,Es ) is either (a) a segment of the common edge of Convolurion (E--Ir" Es ) and
ConvolUlion(Cl(E ....... ),Fa), (b) a segment of the common edge of Convolution (E ....... ,Es) and
Convolu.tion (F-.4., Cl(EB», (c) a segment of the common edge of Convolwion (E--Ir" EB) and
Convolu.lion(Cl(E...... ),ps), or (d) a segment of the common edge of Convolurion(E...... ,Es) and
Convolution (P-A' Cl (EB». Edges of type (a}-(b) have been described in Theorem 4.4. In the case of (c),
Convolution (Cl(E-A.), Ps) is a degenerate curve segment which is non-smooth on Bdr(CO (A, B» and
also equals to the edge Eco(A.B)' Hence, ECOCA.B) is the common edge of the face COll.volurion(E........ Es )

with the face Convolurion(E_A, Es ) for some edge EB adjacent to Ps (or with the fa:;e
Convolution(F........ PB) for some face F--Ir, adjacent to E--Ir,). Since Bdr(CO(A,B)) is non-smooth on
ECO(A. B), ECO(A. S) can be represented as a common edge of two transversally intersecting convolution sur
face patches. The case of (d) is similar to the case of (c).
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noundary Vertices of Convolution (£_..4., Es )

For sub·compatible edge pairs ED and E_A• each vertex eN of N(Eg,E-A) (= NCB, ED) n
Ne-A, E-J,)) is either (a) a venex of NCB, E8), (b) a vertex of Ne-A. E_A ), or ee) lhe intersection of one
edge ofN (E, ED) with another edge of N (-A, E-Ir,). In the case of (a), suppose p is a venex ofEs and q is

a point of E_A such iliat P E NCB, eN) and q E N(-A, eN)' then the point p+q is the vertex of

ConvOlution (E-A"Es ) such lhalp +q EN-I (CO (A, E), eN). Further suppose that E_A is the common edge

of two faces F-A and F-..4. defined by 9 =0 and i: = 0 respectively, then the point q = (a, ~, y) E E-A, can be
computed by solving 9 =g =0 and (Vg xV'g) "eN =O. The case of (b) is similar to the case of (a). In !.he
case (e), this inLerSection is also the intersection of one edge ofNCB, Fs ) with another edge ofN(-A, F -A)

where F B is a face adjacent to ED and F -A. is a face adjacent to F-..\.. This case has been considered in §4.1.

5. Obtaining Gaussian Model of C-space Obstacles

We now show how [Q construct the Gaussian (Spherical) Model of CO (A, B), see Figures 2 (a)-(c).
Let SZB and SZ_A be the Gaussian Models of B and -A. These define graphs on SZ with degeneracies

tagged appropriately. Let a new graph SZCO(A.B) on SZ be defined as the overlay of SZB and SZ-.4,. Then
SZCO(A.B) is the Gaussian Model of CO (A, B) and determines all sub-compatible fa:e, edge and verex
pam between Bdr(B) and Bdr(-A). Funher the topology of the faces, edges and vertices of
Bdr(CO (A, B)) is given by the topology of the faces, edges and vertices of SZCO(A.,B)' Construction of
SZCO(A..B) requires computing the intersections of edges of SZB with edges of SZ-.4.. These intersections can
be computed by using Theorems 5.1-5.3. Edges of SZB or SZ_A are either minimal geodesic arcs on the

unit sphere or curve segments of the fonn VI (P)! II VI '(p) II for pEE where 1=0 is a face equation and
E is an edge of this face. Note this curve segment is well defined since we are assuming the nonsingulariry
of each face on its boundaries. By the regulariry and convexiry of the object we may assume that the end
points of each minimal geodesic arc are not antipodal points of each other. Hence, for two end points nl

and nz of a minimal geodesic arc one has A'nl+(I-)~)'nz:;:!:O and
().. III +(1-)')' nz) ! J I).' n 1 + (I-A) .n zi I is well defined. The intersection of two minimal geodesic
arcs can be computed by Theorem 5.1. Tne intersection of one general curve segment and one minimal
geodesic arc can be computed by Theorem 5.2. The intersection of two general curve segments can be
computed by Theorem 5.3.

Next by using a spherical sweep algorithm where one can move a great circle around the sphere and
amongst the edge segments. it is possible to compute all the overlay curve intersections. The details are

somewhat intricate but a generalization of moving a line in a plane-sweep algorithm.

Theorem 5.1: Let "(be a minimal geodesic arc connecting nl [0 nz on SZB and i be a minimal geo
desic arc connecting n'l to n'z on SZ_A.' Then "( and y intersect at
O~· nl +(1- A)' nz) ! II A' nl +(1-)~)'nzll if and only if

{

(A'nl +(1-).)' n2)X (j.l" n'l +(l-IJ.) ·n'z) = 0

C),.·n\ +(I-A)·nz)·(j.l"n'l+(l-IJ.)·n'z) > 0

for sorre 0.:5 ' .. 1J..:5 1.

Proor : (1)-(2) are equivalent to that A'n\+(l-A)'nz is in the same direction as

IJ.'n'l +(l-IJ.)·n'z forsomeO.:5)., 1J.51. 0

Since the vector equation (1) gives twO independent scalar equations in twO variableS ).., J..L, one can solve
this system of polynomial equations eilher numerically or symbolically, Buchberger, Collins, and Laos

(1982).
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Theorem 5.2 : Let r be a curve segment on S2D given by lhe set of points 'Vf (P) I II Vf (P) I I for p

E Es• where Es c Bdr (B) is the common edge of twO faces FB and FB. FB is a patch of an algebraic

surface f= 0 with gradients VI and j:B is a patch of an algebraic surface j= 0 with gradiems vi.
And, let i be a minimal geodesic arc connecting 111 to 112 on SZ-A' Then y and i inten;ect at

"I (P) I II"I (P) II if and only if

f(x, y, z)=I(x, y, z)=O and p = (x, y, z) E Es el)

V/"(n,xlIz)=O (2)

\7f'(nl-(nl'n2)n2)~O (3)

Vj'(lIZ-(Tll"lIZ)l1j)2:0 (4)

Proof': (2)-{4) are equivalent to that Viis in lhe same direction as A'1I1 + (1-)..)' 112 for some 0 ::;; A

s: 1. (1) restricts the solution for p to the edge Es . 0

Since (1)-(2) give tl1ree equations in three variables X, y, z, one can solve this system of polynomial equa
tions. The case of'Y being a minimal geodesic arc on 52B and i being a general curve segment on S2-A is
similar to Tneorem 5.2.

Theorem 5.3 : Let l' be a curve segment on S2B given by the set of J:0ints VI (P) I II VI (P>II for p

E EB • where EB c Bdr (B) is the common edge of twO faces FB and FE' FB is a parch of an algebraic
surface 1=0 with gradients VI and FlJ is a patch of an algebraic surface j = 0 with gradients vj.
And, let i be a curve segment on S2 -A. given by the set of points Vg (q) I II Vg (q) II for q E E-A'

where E_A. cBdr(-A) is the common edge of two faces G-A and G_A> G-A is a patch of an algebraic
surfa:e g = 0 with gradients Vg and G-.4. is a parch of an algebraic surface g= 0 with gradients yg.
Then randy im",ect at "I (P) I I I"I(P) I I if and only if

l(x,y,')=/(x,y,z)=O andp=(x,y,')EEB (I)

g(a.~,r)=g(a,~,1'l=Oand q=(a.~,j')EE-A (2)

~x~=O m
"I'''g > 0 (4)

Proof: (3}-(4) are equivalent w that Vjis in the same cfue:tion as Vg. (1) restricts the soletion for p
to the edge ElJ and (2) restricts the solution for q to the edge E-A' 0

Since the vector equation (3) gives twO independent scalar equations, one has six scalar equations in six
variables from (1}-(3) and can solve this system of polynomial equations.

Each face of the overlay graph S2CO{A,B) corresponds La a compatible pair «Ka•N K.). (G-.4.' N G.. ))

of faces. edges and vertices of Bdr(B) and Bdr(-A). Note thal we consider the degenerate curves and
degenerate points as generic faces of S2COCA, B)' Using the formula defining K s and G-A one can compute
the equation for Convolution (G-A. Ka). The edges and vertices of each face Convolution(G -A. KB ) can be
computed by using the boundary informations of KB and G-.4..

6. Conclusion

We have described. algebraic algorithms for computing C-spau obstacles using boundary represen
tations and Gaussian Image geomeoic models. The numerical information defining the faces. edges and
vertices of the C -space obstacle boundary were obtained by solving systems of multivariate polynomial
equations. The symbolic solution by means of resultants. though computationally extensive, yields the
implicit algebraic equations of the curves and surfaces on the C-space obslacle boundary. The topological
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information defining the adjacency relaLionalships of faces. edges and vertices of the C-spacc obstacle

boundary were obtained by conslI1lcting and merging (or overlaying) the Gaussian Image models of the
individual moving objects and obstacles.

In comparison with the algorithms for oblaining the C -space obstacle boundary for planar case,

Bajaj and Kim (198701.), one nOtes for the C -space obsr..acle generations in space an extensively large

increase in complexily both in obl.3.ining the numerical and topological information. A significant problem
that arises in the C-space generation for curved objects is the analysis of singularities. While all types of
point singularities that arise in planar curves can be complelely analyzed by the quadratic transformations
of Abhyankar (1983), the singularities in algebraic surfaces are considerably harder to deal with. The com

plete analysis of singularities in plane curves also allows one to deal with the topological constructions of
C-space obstacles for non-convex algebraic curved moving objects and obstacles as well, see Bajaj and
Kim (1987a). Analysis of the possible point and curve singularities that may arise in C -space obstacle
surfaces may be achieved by a canonical (algorithmic) procedure of mapping the singular surface to a
non-singular algebraic variety (a precess also tenned as "blowing upft the singularity) and recently given
by Abhyankar (1982, 86). Tnis is an area for important future research, for its solution would also lead to
obtaining C -space obstacles for non-convex curved solid moving objects and obstacles - the currently
immediate open problem.
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