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Sensory-evoked signal flow, at cellular and network levels, is primarily determined by

the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic

innervation, connection probabilities and subcellular organization of synaptic inputs are

thus among the most active fields of research in contemporary neuroscience. Methods to

measure these quantities range from electrophysiological recordings over reconstructions

of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of

small volumes at electron-microscopic resolution. However, quantitative and complete

measurements at subcellular resolution and mesoscopic scales to obtain all local and

long-range synaptic in/outputs for any neuron within an entire brain region are beyond

present methodological limits. Here, we present a novel concept, implemented within an

interactive software environment called NeuroNet, which allows (i) integration of sparsely

sampled (sub)cellular morphological data into an accurate anatomical reference frame of

the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the

neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of

synaptic innervation between all neurons within the model. We illustrate our approach

by generating a dense average model of the entire rat vibrissal cortex, providing the

required anatomical data, and illustrate how to measure synaptic innervation statistically.

Comparing our results with data from paired recordings in vitro and in vivo, as well as with

reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find

that our in silico measurements are in line with previous results.
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INTRODUCTION

One of the major challenges in neuroscience is to relate results

from structural and functional measurements across multiple

spatial scales. Current anatomical approaches either provide

information of synaptic connectivity at macroscopic, i.e., between

brain regions (e.g., using bulk injections of retro/anterograde

agents, Oh et al., 2014), mesoscopic, i.e., between cell types (e.g.,

using transgenic animal models, Wickersham et al., 2007), micro-

scopic, i.e., between small numbers of individual neurons (e.g.,

using multi-electrode recordings in acute brain slices in vitro,

Feldmeyer et al., 1999; Perin et al., 2011) or nanoscopic scales, i.e.,

reconstructing synaptic contact sites within small volumes (e.g.,

using electron microscopy in dense, Briggman et al., 2011, or

sparsely labeled tissue, Schoonover et al., 2014). While all of these

approaches provided important structural information about the

neuronal circuitry, results obtained at different scales (and often

even at the same scale when obtained by different methods) are

largely incompatible. This prevents from generating wiring dia-

grams that provide quantitative and complete information of the

number and subcellular location of all synaptic in/outputs for any

neuron within and across brain areas (commonly referred to as

“dense connectome”).

At present, methods that allow for measurements of synap-

tic connectivity at sufficiently high resolution (i.e., (sub)cellular

levels) can be grouped into three main categories: First, electro-

physiological approaches determine connectivity between pairs

(or small numbers) of neurons using simultaneous patch-

clamp recordings (e.g., Feldmeyer et al., 1999; Lefort et al.,

2009), or combinations of single neuron recordings with opti-

cal stimulation, such as glutamate uncaging (Callaway and Katz,

1993; Schubert et al., 2007) or channelrhodopsin-assisted cir-

cuit mapping (Petreanu et al., 2009). Often, these approaches are

combined with labeling the recorded neurons, allowing for recon-

struction of the respective soma locations, dendrite morphologies

and putative contact sites at light-microscopic levels (Feldmeyer

et al., 1999, 2002; Sun et al., 2006; Frick et al., 2008; da Costa

and Martin, 2011). Paired recording/reconstruction approaches

are however limited to acute brain slices in vitro, where slice
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thicknesses of 300 µm result in substantial cutting of dendrites

(Oberlaender et al., 2012a) and axons (Oberlaender et al., 2011),

limiting these measurements to close-by neurons.

Second, electron-microscopic approaches, such as serial block

face scanning (SBFSEM, Denk and Horstmann, 2004) or ion-

beam techniques (Merchan-Perez et al., 2009), allow for auto-

mated imaging of small tissue volumes containing sparse (Lang

et al., 2011) or densely labeled (Briggman et al., 2011) neu-

ronal structures. Whereas technical issues of these microscope

systems, which currently prevent from imaging larger volumes

(e.g., an entire cortical column), may be overcome in the near

future (Mikula et al., 2012), annotation and reconstruction of

the rapidly increasing image data renders as the major bottle-

neck, limiting these approaches to tissue samples of at most 0.5 ×

0.5 × 0.5 mm3 (Helmstaedter, 2013). Despite great progress in

automated tracing (Kim et al., 2014), crowd sourcing of man-

ual annotation (Helmstaedter et al., 2011) and combinations of

manual and automated tools (Takemura et al., 2013), genera-

tion of complete dense connectomes (i.e., wiring diagrams that

specify all in/outputs to a neuron) will require reconstructions of

entire brain areas, spanning volumes of several cubic millimeters

to centimeters, spatial scales that are multiple orders of magnitude

beyond the present limits of these techniques.

Third, statistical approaches allow to determine cell type-

and/or location-specific connectivity patterns by measuring

structural overlap between reconstructed axons and dendrites of

individual (Lubke et al., 2003) or bulk-labeled neurons (Meyer

et al., 2010). Such approaches are commonly referred to as appli-

cation of Peters’ rule (White, 1979), but the validity of predicting

synaptic connectivity by axo-dendritic overlap remains contro-

versial (Mishchenko et al., 2010). The primary reason for this

controversy arises from the fact that to date a quantitative and

coherent framework to measure structural overlap is missing.

Specifically, Peters’ rule is often misinterpreted in a binary fash-

ion, namely if dendrites and axons of two neurons overlap within

a certain volume, it is assumed they are connected (Brown and

Hestrin, 2009). In contrast, if dendrites and axons do not over-

lap, there will be no contact, the strongest implication from this

approach. However, independent of the spatial scale at which the

overlap is measured, within the respective overlap volume, den-

drites and axons from other (unstained) neurons will be present

and are equally likely to be connected to the stained neurons.

Thus, overlap can never be assumed as evidence for a connection,

but has to be interpreted as a probability for a connection with

respect to all present neurons instead.

Here, we present a novel approach, implemented within an

interactive software environment called NeuroNet (NN), which

formulates a coherent framework to measure structural over-

lap between two neurons, yielding connection probabilities with

respect to all neurons present in the overlapping volume. This

quantitative version of Peters’ rule requires generation of an aver-

age dense model of the neuronal circuitry; dense referring to the

fact that every neuron within the model of the brain structure

of interest (i) has to be distributed according to measured 3D

soma distributions, (ii) is represented by a complete 3D recon-

struction of soma/dendrites/axon found at the respective location

and (iii) contains information of cell type, as well as subcellular

distributions of dendritic spines, diameters and axonal boutons

(Figure 1A). NN allows integrating such anatomical data into a

common reference frame that describes the average geometry, as

well as its variability across animals, of the brain region(s) of

interest (Figure 1B). Within the resolution of the reference frame,

NN further allows to calculate synaptic innervation between any

two neurons in the model, always taking all other neurons within

the respective overlap volumes into account (Figure 1C). The

resultant dense “statistical” connectome yields pairwise connec-

tion probabilities, numbers of putative synaptic contacts and

subcellular synapse distributions for all neurons within an entire

brain region, allowing for comparison of these in silico measure-

ments with electrophysiological, light- and electron-microscopic

data.

We illustrate our approach using the vibrissal part of rat

primary somatosensory cortex (i.e., barrel cortex, vS1), present

the required anatomical data and compare our in silico mea-

surements of cell type-specific local (i.e., within a layer 4 (L4)

barrel) and long-range (i.e., between thalamus and L4, L5, and

L6 in vS1) innervation with previous results. Because our in sil-

ico measurements match previous in vitro/vivo data, we conclude

that our concept of generating an average dense network model

and providing a coherent framework to calculate Peters’ rule in

terms of innervation probabilities is an accurate alternative to any

currently available connectivity mapping method. In addition,

our approach now opens the possibility to investigate location-

specific differences of connectivity within a population, as well as

presence of higher-order connectivity patterns within and across

cell types.

METHODS

DESIGN OF NeuroNet SOFTWARE

The interactive software environment NN is implemented as

an extension package for the Amira visualization software (FEI-

Visualization Sciences Group, 2014), allowing for 3D visualiza-

tion of anatomical input data, dense neuronal networks and

synaptic connectivity measurements (Dercksen et al., 2012).

NN comprises three major building blocks. First, the interface

between NN and the anatomical input data is implemented as

a NeuralNetworkSpecification data object. The user creates such

a data object as a first step (initialized as an empty network)

and loads all required input data (see specifications of data and

format below). The NeuralNetworkSpecification object encapsu-

lates all required anatomical data and can be saved to disk.

Second, a network assembly module called NeuronDistributor

takes the NeuralNetworkSpecification object as its input, integrates

all anatomical data and performs an up-scaling operation to gen-

erate an average dense model of the network. The output of the

NeuronDistributor module is a SpatialGraphSet data object, con-

taining a list of transformed morphologies with an associated cell

type. This SpatialGraphSet can be saved to disk. Third, a connec-

tivity computation module called NeuralNetworkAnalyzer takes

as input the NeuralNetworkSpecification and the SpatialGraphSet

to calculate axo-dendritic overlaps between individual neu-

rons. This compute module offers a query interface and

selection/visualization options. The output generated by the

NeuralNetworkAnalyzer includes a dense statistical connectome
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FIGURE 1 | Generating dense statistical connectomes. (A) Generating a

dense statistical connectome of a brain or brain region requires a

standardized 3D reference frame of this brain region. The reference frame is

used to register all anatomical data obtained from different experiments to a

common coordinate system. Anatomical data to be collected from the brain

region of interest: Number and 3D distribution of excitatory and inhibitory

neuron somata; 3D reconstructions of representative samples of dendrites

and axons of excitatory and inhibitory neuron cell types; determination of

postsynaptic target densities, e.g., spine densities and dendrite surfaces, and

presynaptic bouton densities for excitatory and inhibitory neuron cell types.

(B) Anatomical data are assembled into a complete 3D network model. First,

based on their 3D location, excitatory and inhibitory neuron somata are

assigned to different anatomical substructures of the brain regions and to cell

types. Next, somata of all cell types are replaced with dendrite and axon

morphologies of the respective cell types. (C) Innervation from neuron i to

neuron j is computed in 3D at a resolution determined by the anatomical

variability of the 3D reference frame. This computation takes all possible

postsynaptic targets of neuron i in addition to neuron j into account.
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as represented by an innervation matrix Iij (for all selected neu-

ron pairs i and j), as well as aggregate statistics about cell type-

and location-specific connectivity, such as the convergence, diver-

gence, connection probabilities, average number of synapses per

cell or per cell type, and information about the number of neu-

rons per cell type. These data can be saved as AmiraMesh tables or

text files.

All routines of NN are implemented in C++ and the soft-

ware is available for download online at http://www.zib.de/

software/neuronet, including a manual for installation/usage and

an exemplary dataset for testing the software. Downloads are

available for Windows and Linux operating systems. NN sup-

ports multi-threaded computation using the OpenMP libraries.

Computations presented in the Results section were performed

on a desktop computer with 8 CPUs and 48 GB RAM. Hardware

requirements depend on the size (number of neurons, den-

dritic/axonal lengths) of the neuronal network. For example,

calculating connectivity between thalamus and all excitatory neu-

rons within a single cortical column required memory of ∼12 GB

RAM. Instead, for networks containing several hundreds of thou-

sands of neurons (e.g., for entire vS1), we recommend a compute-

server with at least 64 CPUs and 500 GB RAM.

ANATOMICAL INPUT DATA

Mandatory anatomical input data to NN comprise: 1. a stan-

dardized 3D reference frame, 2. 3D distributions of excitatory

and inhibitory neuron somata, 3. representative samples of cell

type-specific complete 3D morphological reconstructions and 4.

measurements of cell type-specific subcellular distributions of

soma/dendrite surface areas, dendritic spines and axonal bou-

tons. In the following we introduce the formats for presenting the

respective data to NN, provide example datasets for rat vS1 and

review methodological approaches that allowed generating these

example datasets (all anatomical data used in the Results sec-

tion were acquired using experimental procedures carried out in

accordance with the animal welfare guidelines of the Max Planck

Society).

Standardized 3D reference frame

The most important prerequisite to assemble average dense mod-

els of the neuronal circuitry is the definition of a standardized

3D reference frame that allows integration of anatomical data

obtained from many animals. In general, the reference frame

describes the 3D geometry of the brain region(s) of interest in

terms of anatomical landmarks. Further, it specifies the variabil-

ity of these landmarks across animals, which serves as a resolution

limit of the average circuit model. More specifically, the 3D ref-

erence frame has to describe (i) the boundaries of the brain

region(s) of interest, (ii) anatomical substructures within these

regions, and (iii) a global and/or multiple local coordinate sys-

tems. The latter reflects the general scenario that brain areas have

irregular and/or curved boundaries and sub-structures.

In case of rat vS1, the 3D reference frame has been gener-

ated by reconstructing the pial surface of entire rat cortex, the

white matter tract (WM) and the circumferences of 24 corti-

cal barrel columns (i.e., each representing one of the large facial

whiskers on the animal’s snout, Woolsey and Van der Loos, 1970),

using high-resolution 3D images of the left hemisphere of Wistar

rats at an age of 28 days (Egger et al., 2012). Repeating these

reconstructions for 12 animals of the same strain and age, we

superimposed all geometries using rigid transformations, mini-

mized the distances between the respective center locations of the

24 barrel columns and calculated the average column center loca-

tions, column diameters and orientations, as well as the average

3D surfaces of the pia and WM above and below vS1, respectively

(Figure 2A). The column centers are given with respect to a global

coordinate system, where the z-axis is defined as the shortest

perpendicular axis between the center of the barrel column rep-

resenting the D2 whisker and the pial surface above the column.

The x-axis points from the D2 center toward the center of the first

adjacent rostral column (i.e., along the whisker row toward D3).

The y-axis points approximately toward the first adjacent caudal

column (i.e., along the whisker arc toward C2).

Because the pial and WM surfaces are curved, the orienta-

tion of each barrel column is tilted with respect to the (D2)

z-axis. Therefore, we determined 23 additional local coordinate

systems (i.e., for each barrel column), using the same approach

used to determine the global D2 coordinate system. The final

standardized reference frame of rat vS1 thus comprises the aver-

age pial and WM surfaces, 24 column center coordinates and

diameters with respect to the global D2 coordinate system and

24 z-axes, representing local coordinate systems that define the

orientation of each barrel column within the curved cortex. We

further determined the variability of these anatomical landmarks

across animals. The standard deviations (SDs) of the column

center locations were on average ∼90 µm, of the pia-WM dis-

tances ∼100 µm and of the column orientations ∼4.5 degrees

(Egger et al., 2012). Thus, the geometry was remarkably preserved

across animals and we defined the resolution limit of our average

network model accordingly as 50 µm. Consequently, the volume

comprising the standardized reference frame of rat vS1 was super-

imposed with a grid of 50 × 50 × 50 µm3 voxels and a local z-axis

was calculated for each voxel by interpolating from the respective

nearest barrel column axes.

The 3D reference frame of rat vS1 is presented to NN as

follows: (1) A spreadsheet (csv file) contains information about

the barrel column geometries with respect to the global coor-

dinate system, i.e., the 3D center locations, column radii and a

unit vector pointing along the respective orientation. Each col-

umn is further assigned a unique identifier (substructure) label.

(2) A 3D vector field (AmiraMesh vector field) containing unit

vectors at 50 µm resolution pointing toward the curved pial sur-

face. In general, such vector fields should be sampled at the

resolution of the 3D reference frame. (3) 3D boundary surfaces

(AmiraSurface format) describing the 3D volume of the brain

region (here: pial and WM surfaces). Additional boundary sur-

faces of anatomical substructures can be provided, e.g., borders of

cytoarchitectonic cortical layers. NN currently supports the refer-

ence frame of vS1, but can be easily extended to other brain areas

that can be described by 3D boundary surfaces and global and/or

local coordinate systems. The resolution (i.e., voxel grid used for

computations in NN, see below) can be adjusted to any value

as determined by the inter-animal variability of the respective

reference frame.
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FIGURE 2 | Anatomical data used for generating dense statistical

connectomes of rat vibrissal cortex (vS1). (A) Left: Rat vS1 contains

segregated anatomical structures, called barrels, which are arranged

somatotopically to the pattern of the large facial whiskers. Right top:

Tangential view of barrels in the standardized rat vS1 cortex (see inset on

left). These barrels provide natural landmarks for registration of anatomical

data into the standardized reference frame. Bottom: Semi-coronal view of

barrel columns in 3D. Pial and white matter (WM) surfaces delineate the

vertical cortical boundaries in 3D. (B) 3D distribution of excitatory (left) and

inhibitory (right) neuron somata with respect to cortical barrel columns in rat

vS1. Center: Close-up view of neuron somata in insets in left and right panels.

(C) Left: 3D dendrite reconstructions of 10 excitatory (black) and 5 inhibitory

(green) cell types. Right: 3D dendrite (black) and axon (blue) reconstruction of

an excitatory L5 slender-tufted pyramidal neuron. (D) Close-up views of the

soma and dendrite surface reconstructions of an excitatory (black, top) and an

inhibitory (green, bottom) neuron, corresponding to the dendrite

morphologies marked with an asterisk (*) in (C). (E) Determination of

dendritic spines, dendrite surface and axonal boutons of a L4 spiny stellate

neuron. Top: z-projection of a 50 µm thick section containing the soma,

dendrites and axon branches. Center: From left to right: Close-up view of

dendrite branch in left inset in top panel; close-up view of dendrite segment

in inset in panel to the left; digital reconstruction of dendrite surface and

spine locations of dendrite segment in panel to the left. Bottom left: Close-up

view of axon branch in right inset in top panel. Bottom right: Close-up view of

axon segment in inset in bottom left panel, with digital reconstruction of axon

and bouton locations along the axon (shifted for visualization).

3D soma distributions

The second anatomical prerequisite to generate an average dense

model of the neuronal circuitry are measurements of the num-

ber and 3D distribution of excitatory and inhibitory neuron

somata for the entire brain region(s) of interest. These distribu-

tions have to be obtained with respect to, and at the resolution

of, the anatomical reference frame. In case of rat vS1, we stained

50 µm thick histological sections, cut tangentially to the D2 bar-

rel column axis from the pia toward the WM, for NeuN (Mullen

et al., 1992) and GAD67 (Kaufman et al., 1986; Kobayashi et al.,

1987; Julien et al., 1990) to reveal all excitatory and inhibitory

neurons, respectively. Using automated soma detection software

(Oberlaender et al., 2009b), we determined the 3D center loca-

tions of all excitatory/inhibitory neuron somata for entire rat vS1

of four Wistar rats (age 28–29 days, Meyer et al., 2013, Figure 2B).

For each counting dataset, we superimposed a 50 µm voxel grid

and generated two 3D somata distributions for excitatory and

inhibitory neurons, respectively (i.e., number of somata in 103

per mm3). The two average soma density fields are provided to

NN as 3D images (AmiraMesh format). We further determined

the number of neurons per thalamic barreloid (Land et al., 1995;

Meyer et al., 2013), which provide whisker-specific input to the

respective barrel column (Brecht and Sakmann, 2002).

Cell type-specific 3D morphologies

The third prerequisite to generate an average dense model

of the neuronal circuitry are reconstructions of complete 3D

soma/dendrite/axon morphologies. The morphological dataset
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has to be representative for the brain region, fulfilling two cri-

teria: (1) objective classification approaches should reveal all

axo-dendritic cell types (i.e., dendrite as well as axon projection

patterns are similar within, but significantly different between cell

types) reported for the brain region(s) of interest (see, Narayanan

et al., under review, for excitatory cell types in rat vS1), and (2)

spatial sampling of neurons should be performed at the resolu-

tion of the anatomical reference frame (i.e., revealing location-

dependent differences in morphology, spatial distribution and

overlap of different cell types). For each cell type, a number of

properties is defined using a spreadsheet (csv file) with prede-

fined format: (1) whether the cell type is excitatory or inhibitory,

(2) whether the morphology should be rotated during network

assembly, i.e., if dendrites display asymmetric projections, such

as polar dendrites pointing toward the center of a substructure

(e.g., L4ss, Egger et al., 2008), (3) whether the reconstructions

contain only axon or dendrites/axon, (4) whether the cell type

has somata within and/or outside sub-structures (e.g., L4ss are

only located inside the column, but not in septa between columns,

Staiger et al., 2004; Bruno and Sakmann, 2006; Egger et al., 2008),

and (5) the density of presynaptic contact sites (i.e., boutons)

per µm axon, differentiated by sub-structures, in particular one

value for boutons in infragranular, granular and supragranular

layers of vS1, respectively. Finally, the spatial distribution of each

cell type is determined by 3D boundary surfaces that describe the

(sub)regions(s) where the cell type is found. If more than one cell

type is present within such a 3D region, the relative frequency

of morphologies from each cell type within the overlap region is

specified using spreadsheets (csv files) with predefined format.

In case of rat vS1, we labeled individual neurons with Biocytin

using cell-attached recordings in vivo (Pinault, 1996; Narayanan

et al., 2014). After cutting the brain into 100 µm thick vibratome

sections (i.e., tangential to the D2 barrel column axis, from the

pia toward the WM), manual tracing software (e.g., NeuroLucida)

or custom-designed semi-automated imaging and tracing sys-

tems (Oberlaender et al., 2007, 2009a; Dercksen et al., 2014)

allow reconstruction of complete 3D morphologies with respect

to the anatomical reference frame of rat vS1. Doing so, we

reconstructed 153 excitatory neurons across the entire corti-

cal depth (i.e., from L2 to L6) and used objective classification

approaches to subdivide our sample into 10 axo-dendritic exci-

tatory cell types (Figure 2C, Narayanan et al., under review).

Because we obtained morphologies for every 50 µm of cortical

depth, our spatial sampling is regarded as representative for rat

vS1. Further, the 10 excitatory cell types represent all morpho-

logical classes that have been reported to date for rat vS1: L2

pyramids (L2, n = 16) and L3 pyramids (L3, n = 30) (Brecht

et al., 2003; Staiger et al., 2014); L4 star pyramids (L4sp, n = 15),

L4 spiny-stellates (L4ss, n = 22) and L4 pyramids (L4py, n = 7)

(Staiger et al., 2004); L5 slender-tufted pyramids (L5st, n = 18)

and L5 thick-tufted pyramids (L5tt, n = 16) (Hallman et al.,

1988; Larkman and Mason, 1990); L6 corticocortical pyramids

(L6cc, n = 11), L6 corticothalamic pyramids (L6ct, n = 13) and

L6 inverted pyramids (L6inv, n = 5) (Kumar and Ohana, 2008).

Consequently, sampling ∼1% of all excitatory neurons located

within a barrel column of rat vS1 is regarded as representative for

all cell type-specific soma/dendrite/axon morphologies. Further,

we reconstructed the cortical parts of thalamocortical axons (with

respect to the reference structures of vS1, n = 14), labeled in vivo

in the ventral posterior medial nucleus (VPM) of rat vibrissal

thalamus (Oberlaender et al., 2012b). Similarly, axo-dendritic

cell types of inhibitory interneurons (INH) need to be defined.

Figure 2C illustrates five axo-dendritic INH types, as previously

reported (Helmstaedter et al., 2009; Koelbl et al., 2013) and kindly

provided by Moritz Helmstaedter, Dirk Feldmeyer and Hanno S.

Meyer. At this point, it remains to be investigated whether these

classes can be regarded as representative of rat vS1 in terms of

the above stated criteria. INH morphologies are thus used purely

for illustration of our approach throughout the present article.

Further, in contrast to the excitatory dataset, INH morphologies

were obtained by recording/labeling in acute brain slices in vitro.

The total number of morphologies used in the subsequent appli-

cation examples is 371 (153 excitatory and 204 inhibitory neurons

from vS1 and 14 thalamocortical neurons from VPM).

NN expects these morphologies to be organized into folders

according to [sub-structure label (e.g., barrel column ID)]/[cell

type folder name]. The morphologies are specified either as Amira

SpatialGraphs (Dercksen et al., 2014) or in the NEURON hoc lan-

guage (Hines and Carnevale, 1997). If presented as SpatialGraphs,

the branches comprising the morphologies have to be labeled

as Soma, ApicalDendrite, BasalDendrite, or Axon, respectively.

If specified in the hoc language, branches have to be labeled

soma, apical for apical dendrites, dendrite for basal dendrites,

or axon, respectively. Each cell type is represented twice, both

as an axon cell type and a dendrite cell type. This imple-

mentation allows including long-range connections from cell

types located in other brain regions (e.g., VPM axons, where

soma/dendrites are located in the thalamus). The number of

these long-range axon morphologies is specified in NN using a

spreadsheet (csv file) with predefined format. In case of VPM

axons, the number of morphologies innervating a respective bar-

rel column is determined from cell counts in thalamus (i.e., the

number of neurons per whisker-specific barreloid, Meyer et al.,

2013).

Subcellular morphological statistics

The final anatomical prerequisite to generate an average dense

model of the neuronal circuitry is measurements of the density

of postsynaptic target sites (PSTs), i.e., spines along dendrites

of excitatory neurons and surface areas of somata and den-

drites of excitatory/inhibitory neurons for all cell types present

within the brain region(s) of interest. 3D reconstruction of soma

and dendrite diameters of excitatory and inhibitory neurons was

performed manually using NeuroLucida software (Figure 2D).

Dendritic spine densities and axonal bouton densities were deter-

mined manually from high-resolution 3D image stacks (92 ×

92× 200 nm3 voxel size) along skeleton tracings of in vivo labeled

neurons of all cell types (Figure 2E). These data are grouped by

morphological cell type.

Connections between cell types are specified in NN using a

spreadsheet (csv file) with predefined format. For each possible

connection between two cell types, the presynaptic cell type, post-

synaptic cell type, as well as the normalized number of PSTs per

µm2 area, and/or per µm branch length is defined, based on
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measured values (using the methods stated above) for each cell

type and substructure (soma, apical dendrite, or basal dendrite).

This meta-connectivity list thus specifies general knowledge of

whether two cell types can in principle connect to each other

and at which substructures. For example, inhibitory interneurons

may specifically innervate somata and dendritic shafts of excita-

tory neurons. Thus, connections from interneuron to excitatory

cell types can be specified in the meta-connectivity list such that

PSTs are exclusively calculated by the surface areas of the exci-

tatory somata and dendrites (i.e., soma/dendrite surface-specific

PSTs). In contrast, connections from excitatory to excitatory cell

types may be specified in the meta-connectivity list such that

PSTs are calculated exclusively by the spine densities (i.e., dendrite

length-specific PSTs).

DATA INTEGRATION AND UP-SCALING TO GENERATE AVERAGE DENSE

CIRCUIT MODELS

Upon availability of the above described anatomical data in

appropriate formats, NN automatically generates an average

dense representation of the neuronal circuitry of the brain region

defined by the reference frame (Figure 3). First, the cell type-

specific boundary surfaces are integrated (Figure 3A shows a sub-

sample of the cell type-boundaries) into the 3D reference frame.

Next, the excitatory and inhibitory somata distributions are reg-

istered into the 3D reference frame. Excitatory and inhibitory

soma positions are generated for all voxels in the soma density

grid by multiplying the respective density values with the voxel

volume (e.g., 503 µm3) and rounding to the nearest integer. 3D

soma locations within a voxel are drawn from a uniform distribu-

tion. Based on the 3D location, each soma is further assigned to

a unique substructure (barrel column) and cell type (Figure 3B).

Each soma is assigned to the barrel column (modeled as a cylin-

der) that is closest to the 3D soma position. To determine the

cell type, first the region containing the soma is determined by

identifying its location with respect to the cell type boundary

surfaces. The cell type is then selected randomly based on the rel-

ative frequency of cell types within this region (as specified by the

respective csv file). Soma/dendrite morphologies are then placed

at all computed soma positions (Figure 3C). For each soma, a

dendrite morphology is chosen at random from all morphologies

fulfilling the following criteria: (1) the cell type of the morphol-

ogy is the same as the cell type assigned to the soma, (2) the

morphology is registered to the sub-structure (e.g., column) that

is closest to the new soma location, and (3) the soma location

of the morphology is not further away from the new soma loca-

tion than one voxel of the reference frame resolution (i.e., in case

FIGURE 3 | Network assembly process. (A) Standardized 3D reference

frame of rat vibrissal cortex, with 3D organization of horizontal (i.e., barrel

columns) and vertical (i.e., layers) structures. Every point in this brain region

can be assigned to a barrel column and a cortical layer with 50 µm precision.

(B) 3D distribution of 530,000 somata of 10 excitatory and 5 inhibitory cell

types. (C) Replacement of somata with cell type-specific 3D dendrite

morphologies. (D) Replacement of somata with cell type-specific 3D axon

morphologies. Shown here: Thalamocortical axons from VPM (black),

intracortical axons of inhibitory interneurons (green). (E) Top: Close-up view

of inset in (B). Center: Close-up view of inset in (C), showing the dendrites of

a single L4 spiny stellate (L4ss) neuron (red) next to all dendrites from all cell

types in the neighboring barrel column. Bottom: Close-up view of inset in (D),

showing a single thalamocortical VPM axon (blue) next to all axons from two

cell types in the neighboring barrel column.
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of rat vS1, the original soma location of the morphology and its

location within the model are within ± 50 µm along the z-axis of

the respective column). The latter step guarantees that potential

location-specific morphological properties are preserved within

the resolution limit of the reference frame. Lastly, the morpholo-

gies are transformed as follows: (i) translation of the morphology

to the new soma location; (ii) rotation around the soma, such

that the vertical orientation is preserved and optionally (iii) cells

with asymmetric projection patterns (e.g., polar dendrites) are

rotated such that their orientation is retained (e.g., L4ss are

rotated around the column axis to preserve projections toward

the barrel column center). Third, axon morphologies of each cell

type are inserted to match the number of somata/dendrites for

each cell type (Figure 3D). For each soma, an axon morphology

is chosen at random from all morphologies fulfilling the follow-

ing criteria: (1) the cell type of the morphology is the same as the

cell type assigned to the soma, and (2) the morphology is regis-

tered to the substructure (e.g., column) that is closest to the soma

location. In contrast to dendrite morphologies, axon morpholo-

gies are not transformed to new soma locations to prevent that

rotation/translation results in loss of location-specific projection

patterns (e.g., L4ss neuron in vS1 display axons confined to the

respective barrel column containing the soma (Egger et al., 2008)

and hence translations would result in inappropriate innervation

of septal areas). Long-range axons innervating the modeled brain

region (i.e., their somata are located elsewhere) are registered in

the same way as cell types with somata inside the brain region of

interest, preserving their vertical and horizontal projection pat-

terns with respect to the reference frame at 50 µm resolution.

Then, long-range axons are up-scaled (i.e., duplicated) until the

number of morphologies specified for this cell type (i.e., in the

input csv file) is reached (e.g., VPM axons are up-scaled to meet

the average number of somata per thalamic barreloid, e.g., 311

for the D2 whisker, Meyer et al., 2013). The result of the network

assembly step is a dense representation of the neuronal circuitry

of an entire brain region, where each neuron of a measured 3D

soma distribution is represented by dendrite/axon morphologies

of the appropriate cell type and location/orientation within the

resolution of the geometrical reference frame (Figure 3E).

CALCULATION OF STATISTICAL SYNAPTIC INNERVATION AT

SUBCELLULAR LEVELS

The dense statistical connectome Iij is computed as follows: First,

for each presynaptic neuron i its axon is converted into a 3D bou-

ton density at the resolution of the reference frame by clipping

the axon of neuron i with all six faces of each voxel, summing up

the length of the respective axon branches within the voxel and

multiplying this value by the cell type- and substructure-specific

bouton length density. Second, each postsynaptic neuron j is con-

verted into a 3D PST density at the resolution of the reference

frame by clipping the soma and dendrites of neuron j with all

six faces of each voxel, summing up the length and the surface

area of the respective dendrite branches and the soma and multi-

plying these values by the connection-specific PST length or area

density. Dendrite and soma surface area are computed from the

diameter values along the branches using trapezoidal integration.

3D PST densities of each postsynaptic neuron j for connections

with neurons of cell type T(i) of the presynaptic neuron i in the

voxel centered on −→x are determined as the sum of two terms

PSTspines + PSTsurface) :

PST j

(−→x , T(i)
)

=
∑

labels L

lj,L(−→x ) · λT(i),T(j)(L)

+
∑

labels L

aj,L(−→x ) · αT(i),T(j)(L)

Here, label L refers to a subcellular structure of the postsynap-

tic neuron, i.e., soma, basal dendrite or apical dendrite. lj,L(−→x )

is the total length of all compartments of label L of neuron j

inside the voxel centered on −→x (in µm). λT(i),T(j)(L) is the length

PST density (e.g., 1 spine per µm basal dendrite) for connections

from neurons of type T(i) to neurons of type T(j) onto target

structures with label L (in µm−1), as provided by spine density

measurements and specified in the meta-connectivity spread-

sheet. aj,L(−→x ) is the total surface area of all compartments of

label L of neuron j inside the voxel centered on −→x (in µm2).

αT(i),T(j)(L) is the surface PST density (e.g., 0.4 PSTs per µm2

soma surface) for connections from neurons of type T(i) to neu-

rons of type T(j) onto target structures with label L (in µm−2).

Whereas spine and bouton distributions can be measured (e.g.,

using the methods stated above), we derived surface PST densi-

ties by assuming that the total number of boutons Ball(
−→x ) from

all presynaptic cell types T(i) should match the number of total

PSTs from all cell types T(j):

∑

i,j

PSTsurface,j(
−→x , T(i)) = Ball(

−→x ) − PSTspines(
−→x )

Reducing this equation to 1 dimension (i.e., collapsing the 3D

densities to the z-axis), we fit the respective surface PST den-

sity values αT(i),T(j) using standard least squares algorithms (see

fitting result in the online meta-connectivity list).

Third, the precision (across animal variability) of the geomet-

rical reference frame determines the voxel resolution, i.e., the

smallest scale at which axo-dendritic overlap can be calculated

between morphologies obtained in different animals. Thus, loca-

tions of somata/dendrites/axons within a voxel cannot be further

resolved and proximity of boutons and PSTs within a voxel cannot

be used to estimate synaptic innervation. Instead, we assume that

all PSTs within a voxel are equally likely to receive any bouton in

the same voxel (i.e., independent synapse formation at resolutions

smaller than the accuracy of the reference frame). The probability

that neuron j is targeted by a bouton within the voxel centered on
−→x is then given by:

pj(
−→x , T(i)) =

PST j(
−→x , T(i))

PSTall(
−→x , T(i))

Here, PSTall(
−→x , T(i)) refers to the total number of potential

postsynaptic contact sites for connections with presynaptic cell

of type T(i) in the voxel centered on −→x , i.e.,

PSTall(
−→x , T(i)) =

∑

j

PST j(
−→x , T(i))
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If Bi boutons from neuron i are present in the voxel at −→x , the

probability that neuron j is targeted by n of these boutons is given

by the binomial distribution:

P(n; pj, Bi) =

(

Bi

n

)

pn
j (1 − pj)

Bi−n

Average values for Bi and pj in our networks are O(101)-O(102)

and O(10−3), respectively. Given the ∼5 orders of magnitude dif-

ferences between Bi and pj, we can approximate the binomial

distribution by a Poisson distribution (i.e., Bi → ∞ and pj→ 0):

P
(

n; Ĩij(
−→x )

)

=
Ĩn
ij (

−→x )

n!
exp( − Ĩij(

−→x ))

Here, we defined the average innervation Ĩij(
−→x ) from neuron i to

neuron j in the voxel at −→x :

Ĩij(
−→x ) := Bi(

−→x ) · pj(
−→x )

The connectivity statistics between any two neurons (i,j) can thus

be described by the 3D scalar field Ĩij(
−→x ). The probability of find-

ing a connection between any two neurons i and j within a specific

voxel located at −→x is further given by:

pij(
−→x ) = 1 − P(n = 0; Ĩij(

−→x )) = 1 − exp( − Ĩij(
−→x ))

Because we assume that synapses in different voxels are formed

independently of another, the total probability of finding a con-

nection between two neurons i and j is:

pij = 1 −
∏

−→x

P(n = 0; Ĩij(
−→x )) = 1 − exp( −

∑

−→x

Ĩij(
−→x ))

= 1 − exp( − Iij)

Here, Iij : = �−→x Ĩij(
−→x ) is the total (i.e., summed over all voxels)

average innervation from neuron i to neuron j. Intuitively, Iij is

the expected number of synapses connecting neuron i to neuron j.

CALCULATION OF STATISTICAL SYNAPTIC INNERVATION AT CELL TYPE

LEVELS

Using the innervation matrix Iij for all pairs of neurons in

the network, analyses can be extended to the population level,

allowing comparison with pairwise connectivity measurements

performed in vitro/vivo. In silico, pairwise connectivity between

two populations (pre: A and post: B) can be described by three

experimentally accessible parameters: the convergence Cb, i.e., the

fraction of the presynaptic population connected to a single post-

synaptic neuron b ∈ B, the divergence Da, i.e., the fraction of the

postsynaptic population targeted by a single presynaptic neuron

a ∈ A, and the connection probability PAB, i.e., the probability

that any two neurons a ∈ A, b ∈ B are connected. We can now

define these three quantities in terms of the neuron-to-neuron

connection probability pij = 1 − exp( − Iij) introduced above:

Cb =
〈

pab

〉

a ∈ A

Da =
〈

pab

〉

b ∈ B

PAB =
〈

pab

〉

a ∈ A,b ∈ B

Here, 〈· · · 〉a ∈ A is the ensemble average across all neurons a in

population A etc. Additionally, we can compute the distribution

of the number of synapses per connection nAB between these two

populations by averaging across the individual synapse number

distributions nij := P(n; Iij):

nAB = 〈nab〉a ∈ A,b ∈ B = 〈Poisson(Iab)〉a ∈ A,b ∈ B

RESULTS

APPLICATION EXAMPLE 1: DENSE 3D MODEL OF RAT vS1

Based on the anatomical input data (Figure 2) specified in the

Methods section, we used NN to generate an average dense model

of entire rat vS1 (Figure 3). The model consists of 10 excitatory

and 5 inhibitory axo-dendritic cell types, in 24 barrel columns.

The total volume of the vS1 model was 6.4 mm3 (Egger et al.,

2012).

First, the average 3D distributions of excitatory and inhibitory

somata were registered to the reference frame and somata were

placed and assigned to cell types (Figure 3B) and anatomical sub-

structures as described above (i.e., each soma contains four labels:

the nearest barrel column, whether the soma is inside the col-

umn or within the septum, the cell type, excitatory or inhibitory).

The total number of neurons within the model was 529926,

with 462436 being excitatory and 67490 being inhibitory. Neuron

numbers and their 3D distributions are within the mean ± SD

(529715 ± 39104) of the measured soma distributions at 50 µm

resolution (Meyer et al., 2013). Next, NN replaced each soma by

appropriate 3D soma/dendrite/axon morphologies, using the up-

scaling routines specified in the Method section (Figures 3C–E).

The somata and dendrites of each neuron were converted into

3D PST surface densities, reflecting the respective surface areas

multiplied with connection-specific PST distributions. Likewise,

dendrites of excitatory neurons and axons of all neurons were

converted into 3D PST spine and bouton distributions, respec-

tively (see meta-connectivity list online for all values). The resul-

tant total soma/dendrite surface area (i.e., of all neurons in rat

vS1) was 1.9 × 1010 µm2. The total number of spines was 5.2 ×

109, and the total number of boutons was 6.4 × 109.

The average bouton (synapse) density across entire rat vS1

was 1 bouton per µm3, which matches previous measurements

(0.94 ± 0.12 synapses per µm3) of synapse densities using

electron-microscopic tomography on small tissue (∼200 µm3)

volumes of rat vS1 (Merchan-Perez et al., 2014). Hence, the

up-scaled model of entire rat vS1 resembles the average struc-

tural organization of this brain region at mesoscopic (geometry

within 50 µm inter-animal variability), microscopic (cellular dis-

tributions within 7% inter-animal variability) and nanoscopic

(bouton densities) scales. Consequently, within the margins spec-

ified by the respective inter-animal variability (SDs of geometry,

soma distribution, cell type-specific dendrite/axon projections,

and spine/bouton densities), we consider the dense 3D model of

rat vS1 as a precise average representation of this particular piece

of neuronal tissue.
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APPLICATION EXAMPLE 2: STATISTICAL CONNECTOME OF RAT vS1

Within the dense model of rat vS1, we used NN to determine

structural overlap of PSTs and presynaptic boutons between all

pairs of neurons, always taking all neurons present in the respec-

tive overlap volumes into account. Figure 4 illustrates this process

on the example of one L4ss neuron (j) being innervated by one

thalamocortical axon (i) originating in VPM (Figures 3C–E).

First, NN determines the bounding box (BB) around the den-

drites of the postsynaptic neuron (Figure 4A left) and calculates

the number of PSTs for each 50 µm voxel within the BB. In case

of VPM neurons innervating L4ss (i.e., excitatory cell types), PSTs

are limited to spines (Schoonover et al., 2014) as specified in the

meta-connectivity input file (see Methods). The exemplary L4ss

neuron comprises a total of 4640 spines, with a maximum of

523 spines per voxel (Figure 4A right). Second, NN determines

the number of presynaptic boutons present in any voxel where

dendrites and axons of the two neurons overlap. For the present

example, the particular VPM axon has a total of 2964 boutons in

the overlap volume, with up to 94 boutons per voxel.

However, within the overlap volume, dendritic spines origi-

nating from other excitatory neurons are present, rendering as

equally likely contact sites for the VPM boutons as the spines of

the exemplary L4ss neuron. The total number of spines within

the BB of the overlap volume was 2.1 × 107, with a maximum

FIGURE 4 | Computation of statistical innervation between neurons in

dense networks. (A) Left: VPM axon (blue) and L4ss dendrite (red) from

Figures 3C–E. The grid used for computing bouton, spine and dendrite

surface densities is shown for scale. Right: Calculation of the 3D

innervation density Ĩij (
−→
x ) from the VPM axon to the L4ss dendrite. The

gray-colored squares in the grid represent the maximum projection of the

respective pre/postsynaptic quantity. Scale bar shows maximum value of

the respective pre/postsynaptic quantity in the grid. Above each scale bar,

the total number of pre/postsynaptic elements in the grid is shown. (B)

Resulting subcellular 3D innervation density Ĩij (
−→
x ). (C) Left top: Connection

probability from neuron i to neuron j as a function of the total innervation

Iij . Bottom: Possible range of the number of synapses from neuron i to

neuron j, nij (95th percentile for n > 0) as a function of the total

innervation Iij . Right: Four possible synapse distributions and their

probability of occurrence for the innervation from the VPM axon to the

L4ss dendrite, computed from the 3D innervation density in (B).
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of 130,000 spines per voxel. Furthermore, VPM axons could also

target somata and/or dendritic shafts of inhibitory interneurons

(Staiger et al., 1996, as specified in the meta-connectivity input

file), where a total of 1.8 × 106 PSTs on inhibitory surfaces are

present within the BB of the overlap volume, with a maximum

of 13,500 surface PSTs per voxel. Consequently, the 3D innerva-

tion field Ĩij(
−→x ) between the dendrites of the L4ss neuron (j) and

the axon of the VPM neuron (i), was determined with respect to

all other potential PSTs (i.e., excitatory and inhibitory) present in

the overlap volume. In addition, the number of all available tar-

get sites (2.3 × 107) was four orders of magnitude larger than the

number of spines/boutons from the individual neurons, justify-

ing the approximation of the binomial connection probability by

a Poisson distribution.

The resultant 3D innervation field Ĩij(
−→x ) between the two

exemplary neurons is shown in Figure 4B. Summing across all

voxels results in the total innervation Iij = 0.66, with a max-

imal innervation of 0.11 per voxel. This innervation number

corresponds to a pairwise connection probability of pij = 0.48,

and to a range of putative synapses between i and j of nij =

0–3 (Figure 4C left). Thus, even though the axonal arbor of

the example VPM neuron displays substantial overlap with

the dendritic arbor of the example L4ss neuron, the proba-

bility of these two neurons being connected according to our

quantitative implementation of Peters’ rule is less than 50%.

Because there are on the order of 1000 other potential post-

synaptic target neurons projecting dendrites into the overlap

region, approaches that calculate connectivity from structural

overlap without normalization by the total number of PSTs (e.g.,

Brown and Hestrin, 2009) will result in gross overestimation of

connection probabilities.

In consequence, we argue that structural axo-dendritic over-

lap should never be calculated from sparse morphological data

alone and that connectivity measurements by Peters’ rule should

not be presented in a binary fashion (i.e., overlap equals con-

nectivity, no overlap equals no connectivity). Instead, structural

overlap in the present form results in innervation measurements

at subcellular (reference frame) resolution, which can be con-

verted into pairwise connection probabilities and a range of

putative synapse numbers. In case of the present example, the

overlap between 2964 VPM boutons with 4640 L4ss spines did

thus not result in a connection probability of 1, but instead, the

probability that the two neurons were unconnected was 52%,

that they were connected by a single synapse was 34%, and by

two or three synapses was 12% and 2%, respectively (Figure 4C

right).

APPLICATION EXAMPLE 3: COMPARISON OF IN SILICO WITH IN

VITRO/VIVO CONNECTIVITY

In the following, we compare our in silico measurements of

pairwise connection probabilities and putative synaptic contact

sites with previously reported measurements in rat vS1 using

(i) paired recording/reconstruction between L4ss neurons in

vitro (Feldmeyer et al., 1999; Petersen and Sakmann, 2000), (ii)

dual recordings and correlation analysis between VPM and L4,

L5A, L5B, and L6 neurons in vivo (Bruno and Sakmann, 2006;

Constantinople and Bruno, 2013), and (iii) electron-microscopic

reconstructions of synaptic contact sites between VPM and indi-

vidual L4ss neurons (Schoonover et al., 2014). For compari-

son, we restricted in silico connectivity measurements between

the respective cell types to neurons located within a sin-

gle barrel column (D2, Figures 5A–C) and averaged connec-

tivity measurements across all neurons of the respective D2

populations.

The D2 column comprised 17810 excitatory neurons includ-

ing 4657 neurons of L4 cell types (2480 L4ss; 1707 L4sp; 470

L4py), 1386 L5st, 1103 L5tt, 1391 L6cc, 767 L6inv, and 4048

L6ct neurons. Further, the D2 column model contained 2545

inhibitory neurons and 311 thalamocortical axons originating in

the D2 barreloid (Meyer et al., 2013) of the VPM. Computing

the innervation Iij for all pairs of VPM and L4, L5st, L5tt, and

L6 neurons, respectively, as well as for all pairs of L4ss neurons,

allowed calculating the respective neuron-to-neuron connection

probabilities pij and the average distribution of the number of

synapses per connection nAB (Figure 5D). Further, we computed

the cell type averages of (i) convergence between L4ss neurons,

as well as between VPM and L4, L5st, L5tt, and L6 neurons in

our D2 column model, and (ii) the 99th percentile of the number

of putative synapses, and compared these numbers to experi-

mental results (Figure 5E). The in silico L4ss-to-L4ss convergence

measurements yielded a value of 0.31 ± 0.10, compared to 0.31–

0.36 as measured in vitro (Feldmeyer et al., 1999; Petersen and

Sakmann, 2000). VPM-to-L4 convergence was 0.40 ± 0.13 (in sil-

ico), compared to 0.43 ± 0.08 (in vivo). VPM-to-L5st convergence

was 0.29 ± 0.10 (in silico), compared to 0.17 ± 0.12 (in vivo).

VPM-to-L5tt convergence was 0.38 ± 0.10 (in silico), compared

to 0.44 ± 0.17 (in vivo) and VPM-to-L6 convergence was 0.19 ±

0.09 (in silico), compared to 0.09 ± 0.14 (in vivo) (Bruno and

Sakmann, 2006; Constantinople and Bruno, 2013). The in sil-

ico measurements of pair-wise connection probabilities matched

the previously reported cell type-specific values within one SD.

Interestingly, even though somata of the different cell types inter-

mingled within and across cortical layers, our model predicted

cell type-specific differences in synaptic connectivity within lay-

ers (e.g., VPM to L5st vs. L5tt). These findings are in line with

previous reports that revealed that synaptic connectivity is in

general cell type- and not layer-specific (Shepherd et al., 2005;

Brown and Hestrin, 2009). To further evaluate how the sam-

ple size of morphological reconstructions affects our connectivity

estimates, we repeated these measurements and progressively

increased the number of VPM axons used for up-scaling from 1

to 14. We found that increasing the sample size beyond ∼5 VPM

axons did not change our results (Figure 5F), indicating that at

least 5 axon reconstructions are required to capture the vari-

ability of projection patterns (at 50 µm resolution) within a

cell type.

Finally, the range of putative synapses per connection for

L4ss-to-L4ss connections was 1–5 (in silico), compared to 2–5

(in vitro, Feldmeyer et al., 1999). For VPM-to-L4 connections, the

range was 1–6 (in silico), compared to 1–6 (in vivo, Schoonover

et al., 2014). Whereas the in silico ranges of putative synapses

per connection matched the previous in vitro/vivo results, our

predictions showed that the most likely scenario for intercon-

nected L4ss should be that they share only a single synaptic
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FIGURE 5 | Validation of the rat vibrissal cortex statistical connectome.

(A) Cell type-specific distribution of neuron somata in the model D2 column.

(B) Cell type-specific distribution of dendrites in the model D2 column from

(A). Note that large basal dendrites of L3 pyramidal neurons located in the

septum around the L4 barrel obscure dendrites of L4ss located inside the

barrel. (C) Distribution of L4ss axons (blue) and VPM axons (black) in the

model D2 column from (A). (D) Distribution of neuron-to-neuron innervation

Iij , the neuron-to-neuron connection probability pij and the average

distribution of the number of synapses per connection nij for the four

postsynaptic cell types in (B) and the two presynaptic cell types in (C). (E)

Comparison of pair-wise connectivity statistics in the model D2 column (in

silico) and experimental results from physiological and anatomical

measurements in vitro and in vivo. Top: convergence of intra-barrel

connectivity and thalamocortical connectivity from VPM. Bottom: Observed

and calculated range of number of synapses per connection (in silico: 99%

cumulative range of the average distribution of nij ). (F) Effect of the size of

the sparse morphological sample on connectivity measurements. Top: Mean

convergence of thalamocortical input from VPM to four cell types in the

model D2 column (see E for color-code) as a function of the VPM axon

sample size. Bottom: Standard deviation of the convergence of

thalamocortical input to these four cell types as a function of the VPM axon

sample size.

connection. However, reconstructions from paired-recordings

revealed a more bimodal distribution, i.e., pairs of L4ss share

either no contacts, or if they are connected, they share more than

one contact (Feldmeyer et al., 1999). This potential discrepancy

could arise from limitations to identify weakly connected L4ss

(i.e., just one synaptic contact) using paired-recordings, or could

indicate that our assumption of independent synapse formation

is not justified for L4ss.
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APPLICATION EXAMPLE 4: ANALYSIS OF HIGHER-ORDER

CONNECTIVITY PATTERNS

Because the average dense model of rat vS1 resembles the struc-

tural organization of this neuronal tissue at meso-, micro- and

nanoscopic scales (see Application example 1) and structural

overlap measurements within the model reproduced cell type-

specific pairwise connectivity measurements (see Application

example 3), we investigated whether the resultant dense statistical

connectome can be used to investigate higher-order connectivity

patterns beyond pairwise measurements.

The simplest higher-order pattern to be investigated is con-

nectivity between three neurons (Sporns and Kotter, 2004; Song

et al., 2005), in the following referred to as triplet motifs. To do

so, we calculated the innervation matrix Iij (i.e., dense statistical

connectome) for the population of L4ss neurons within the D2

barrel column and randomly selected three neurons from the

matrix (Figures 6A–B). The six entries specifying innervation

between the three neurons in the Iij matrix yield connectivity

statistics about each possible connection in terms of triplet motifs.

Triplet motifs are illustrated as triangles of nodes (i.e., each node

representing one of the three respective neurons, Figure 6C),

connected by uni- and/or bidirectional edges (i.e., each edge rep-

resenting synaptic connections between two neurons, and the

direction specifies pre- and postsynaptic partners, respectively).

For example, the innervation from neuron 1 to neuron 2 is deter-

mined by the matrix entry I12 = 0.68, which corresponds to a

pairwise connection probability of p12 = 0.49. This can be inter-

preted as the probability that the triplet motif contains an edge

FIGURE 6 | Higher-order connectivity in dense statistical connectomes.

(A) The connection matrix between L4ss neurons of the D2 barrel in rat

vibrissal cortex. Each entry represents the innervation Iij between pre- and

postsynaptic neurons i and j. Connections between three neurons are

highlighted. (B) Zoom into the connection matrix (see box in A) around the

matrix entry representing the connection from neuron 1 to neuron 2. (C) Left:

Innervation between three example L4ss neurons (highlighted in A), and the

respective connection probabilities and strengths (see also Figure 4C). Right:

One possible configuration of a three-neuron motif between these three

neurons. Bottom: Summation over all configurations resulting in this motif

(motif ID 7) gives the total probability of occurrence of this motif for these

three neurons and the L4ss network, respectively. (D) Probability of finding

each non-redundant three-neuron motif, calculated from the pairwise

innervation. All 16 non-redundant motifs are listed at the bottom. Top: Motif

distribution for the three neurons from (C). Bottom: Motif distribution for the

L4ss network from (A). (E) Deviation of motif occurrence probability from

expected value based on the average connection probability of L4ss neurons.

Top: Three neurons from (C). Bottom: L4ss network from (A).
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from node 1 to node 2. Conversely, the probability that this

particular edge is missing is 1-p12 = 0.51.

In general, three nodes can be connected by 64 different motifs

of bidirectional edges. However, multiple motifs are redundant

(e.g., 1 connected to 2 and no other edge present is the same

motif as 2 connected to 3 and no other edge is present). Thus, the

64 triplet motifs can be reduced to 16, of which 7 contain three

edges (three-connected), 6 contain two edges (two-connected, 2

contain one edge (one-connected) and 1 motif (no edges) repre-

sents the absence of any connections between the three neurons

(Figures 6D–E). Using the pairwise connection probabilities for

the three example neurons (i.e., p12, p21, p13, p31, p23, p32) allows

computing the probability of finding each triplet motif by multi-

plying the probability of finding/not finding all six possible edges.

For example, the probability that the three neurons are connected

according to motif 7 (i.e., three-connected by unidirectional

edges) is computed as follows:

p = (1 − p12) · p21 · (1 − p13) · p31 · (1 − p23) · p32 = 0.092

There are five other possibilities of arranging connections

between these three neurons that result in the same triplet motif.

Thus, the total probability of finding this triplet motif among

these three neurons is the sum over these six individual connec-

tion arrangements, resulting in a total probability of p123 = 0.146

(Figure 6C).

In the same way, we calculated the probability of occur-

rence for each of the 16 possible non-redundant triplet motifs,

illustrated as a motif spectrum (Sporns and Kotter, 2004,

Figure 6D top). Further, we extended the motif analysis to the

entire population of L4ss neurons in the D2 model, by repeat-

ing the motif probability calculations 10 times for 2000 randomly

selected neuron triplets. Each triplet was allowed to share at most

one neuron with any other triplet. For each triplet, we com-

puted the motif spectrum as described for the example neurons,

and averaged these spectra to obtain the distribution of triplet

motifs within the L4ss network (Figure 6D bottom). Finally, we

compared the triplet motif spectrum of the L4ss network in a

D2 barrel column with the distribution expected when assum-

ing uniform connectivity. This scenario represents the case where

average pairwise connection probabilities are known (e.g., p =

0.31 between L4ss neurons, as determined statistically or by

paired recordings) and connectivity within the population is

assumed to be homogenous (i.e., lack of variability within a pop-

ulation caused by cell- and/or location-specific morphological

variations).

The deviations between the “uniform” spectra of triplet motifs

from those predicted by the dense statistical connectome were

substantial (Figure 6E). For example, motif 2 (unidirectional

loop) is much less likely (∼30%) compared to assuming uniform

connectivity, whereas the remaining three-connected motifs are

in general more likely. In contrast, two-connected motifs are in

general less likely. Thus, the average dense model of the L4ss net-

work yields high-order connectivity patterns that are significantly

(p < 0.0001, z-score > 5 for all motifs except for motifs 8 and

15) different from a uniformly connected random network with

equal pairwise connection probability.

DISCUSSION

In the present study, we introduced a novel quantitative approach

for measuring synaptic connectivity at subcellular resolution and

mesoscopic scales. The measurements are based on sparse mor-

phological datasets, integrated into a common anatomical ref-

erence frame that allows up-scaling to an average dense model

of the neuronal circuitry and determining axo-dendritic overlap

between any two neurons in the model. Illustrating our approach

for excitatory thalamo- and intracortical circuits in rat vS1, we (i)

defined the mandatory anatomical information required to gen-

erate average dense circuit models, (ii) introduced the interactive

software environment NN to calculate Peters’ rule with respect

to all neurons present in axo-dendritic overlap volumes, and (iii)

found that our cell type-specific in silico measurements are in line

with previously reported in vitro/vivo data.

PREVIOUS APPROACHES TO GENERATE AVERAGE NEURONAL

NETWORK MODELS

In recent years, multiple approaches began integrating morpho-

logical data to generate anatomically well-constrained neuronal

network models. However, compared to NN, where synaptic con-

nectivity is measured within the circuit model itself, previous

approaches require synaptic connectivity data as input. For exam-

ple, neuroConstruct (Gleeson et al., 2007) connects randomly dis-

tributed neurons to networks using average pairwise connection

probabilities, thereby neglecting for example location-specific dif-

ferences in connectivity. BlueBuilder (Kozloski et al., 2008), devel-

oped within the BlueBrainProject (Markram, 2006), generates

neuronal networks, where in vitro labeled dendrite and axon mor-

phologies are integrated into an idealized cortical column (i.e.,

neglecting column-specific geometry and soma distributions)

and putative dendrite-axon contacts (at a predefined distance)

are pruned until they match predefined connectivity statistics

(originating from paired-recordings in vitro, Ramaswamy et al.,

2012).

Therefore, we argue that our approach can be regarded as

more general for investigating structural organization principles

of the neuronal circuitry. First, the present concept relies on def-

inition of a standardized 3D reference frame that describes the

average geometry of the brain structure (and substructures) of

interest. Consequently, no assumptions about the mesoscopic

organization of neuronal circuits are required. For example, in

case of rat vS1, we previously reported that each cortical bar-

rel column has a specific diameter, height and orientation, and

barrel columns representing whiskers located within different

rows along the animals’ snout have substantially deviating vol-

umes (Egger et al., 2012). Such whisker row-specific organization

patterns may substantially influence connectivity, e.g., increased

connectivity between columns in the same row compared to

across whisker rows, an effect that would be missed by assum-

ing that cortical columns are elementary and uniform structural

building blocks (Markram, 2006).

Second, the up-scaling to a dense average circuit model is

based on measured 3D distributions of excitatory and inhibitory

neurons. Consequently, no assumptions about the microscopic

(i.e., cellular) organization of the neuronal circuits are required.

For example, in case of rat vS1, we previously reported that
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separation between individual barrel columns is only present

within the distribution of excitatory neurons in L4, where neu-

ron densities are significantly lower in the septum, compared

to densities in barrel columns (Meyer et al., 2013). In contrast,

neither excitatory distributions in superficial and infragranular

layers, nor densities of inhibitory somata throughout the cortical

sheet displayed differences between columns and septa. Such exci-

tatory/inhibitory location-specific cellular organization patterns

may substantially influence connectivity, e.g., the relative fraction

of excitatory to inhibitory connections may be higher within the

L4 barrel compared to septa and/or other layers (van Vreeswijk

and Sompolinsky, 1996), effects that would be missed by assum-

ing uniform and/or randomly distributed neuron somata (Rockel

et al., 1980; Carlo and Stevens, 2013).

Finally, connectivity measurements are based upon complete

3D reconstructions of in vivo labeled neurons. Consequently,

no assumptions about (sub)cellular organization of the neu-

ronal circuits are required. For example, in case of rat vS1,

we previously reported that axons of excitatory neurons are

in general not confined to the dimensions of a single cortical

column (Oberlaender et al., 2011). Thus, extrapolation of den-

drite/axon morphologies from in vitro labeling/reconstruction

(Hill et al., 2012; Ramaswamy et al., 2012) will miss cell type

and/or location-specific horizontal axonal projection patterns,

resulting in assessments of connectivity by structural overlap

that are biased toward close-by neurons (e.g., within columns

compared to across columns). Further, substantial cutting of

dendrites/axons during multi-electrode recordings in vitro will

result in unsystematically hampered measurements of pairwise

connection probabilities (i.e., depending on cell type, location

and distance of the recorded neurons), questioning whether con-

straining connectivity within neuronal network models by such

data (Lefort et al., 2009; Perin et al., 2011) will result in anatomi-

cally realistic representations of the neuronal circuitry.

In summary, because organizational principles of the neuronal

circuitry are generally influenced by brain region- and species-

specific mesoscopic, cellular and subcellular quantities, genera-

tion of well-constrained network models should not be based on

assumptions, but on measurements of these quantities instead.

Assessments of these quantities provide information about the

respective variability across animals, allowing to determine (i)

the appropriate resolution for connectivity measurements within

an average representation of the neuronal circuitry and (ii) how

representative the average model is (i.e., in terms of SDs of

(sub)cellular properties).

VALIDITY OF PETER’S RULE

The validity of measuring synaptic innervation by structural

overlap between dendrites and axons has been discussed con-

troversially (Stepanyants and Chklovskii, 2005; Shepherd et al.,

2005; Mishchenko et al., 2010; Briggman et al., 2011). Specifically,

reconstructions at electron-microscopic resolution provided evi-

dence that proximity of axons and dendrites at submicron res-

olution in general does not imply that the two neurons form

synaptic contacts (Mishchenko et al., 2010). Further, pairwise

connection probabilities obtained by paired-recordings in vitro

were considered to contradict measurements of structural overlap

after reconstructing morphologies of the respective neuron pairs

(Shepherd et al., 2005; Brown and Hestrin, 2009).

However, to date, neither the appropriate spatial resolution

to apply Peters’ rule, nor a coherent framework to obtain struc-

tural overlap in terms of connection probabilities with respect

to all neurons projecting dendrites into the overlapping volume

existed. We provide both. First, the resolution for determining

structural overlap within an average network model (i.e., inte-

gration of morphological data from different animals) is defined

by the inter-animal variability of the geometrical reference frame

used to integrate the data. Increasing the voxel size will provide

less accurate connectivity estimates (i.e., cells or cell types that do

not overlap at 50 µm resolution may overlap at 100 µm scales). In

contrast, decreasing the voxel size below the precision of the reg-

istration framework would imply inappropriate accuracy. Hence,

implications of synaptic innervation below the resolution limit, or

even at submicron resolution, are beyond the limits of Peters’ rule.

Instead, measurements of subcellular synapse locations remain

exclusive to reconstructions at electron-microscopic levels (but

see, Druckmann et al., 2014; Schoonover et al., 2014).

Second, we illustrate that in general, millions of potential post-

synaptic target sites (PSTs) from unstained neurons are present

within the overlap volume of two stained neurons. Hence, when

normalizing innervation by the total number of PSTs, the resul-

tant innervation and pairwise connection probabilities are small.

In case of the exemplary calculation between the dendrites of

one L4ss and one thalamocortical VPM axon in rat vS1, overlap

between ∼4500 spines and ∼3000 boutons did not result in a con-

nection probability of one, but instead there is a 52% chance that

the two neurons are unconnected. Hence, connectivity measure-

ments by structural overlap have to be performed with respect

to all neurons, for example using the present approach of gen-

erating an average dense model of the brain region of interest.

Consequently, the absence of synaptic contacts at touching den-

drites and axons in sparsely labeled tissue should not be regarded

as a violation of Peters’ rule.

HIGHER-ORDER CONNECTIVITY IN DENSE STATISTICAL AND

ELECTRON-MICROSCOPIC CONNECTOMES

In addition to illustrating that pairwise connection probabilities

determined by structural overlap are in line with measurements

using conventional recording/reconstruction techniques, we pro-

vide a strategy that allows investigation of higher-order connec-

tivity patterns within dense statistical connectomes. On the exam-

ple of the population of L4ss neurons located within a barrel of

rat vS1, we determined the probabilities of obtaining all possible

three-neuron (triplet) motifs and compared the resultant motif

spectra with those to be expected from randomly connected net-

works that have the same average pairwise connection probability.

Interestingly, we found that the two spectra displayed significant

deviations. For example, unidirectional triplets (i.e., recurrent

loops) are much less likely to occur within the L4ss population

compared to randomly connected networks. In contrast, other

triplet configurations were significantly more likely. Arguably

such deviations can be considered as evidence for specificity in

the organization of the neuronal circuitry, for example caused

by inhomogeneous distributions of somata (e.g., excitatory soma
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density decreases from the barrel center toward the borders),

dendrites and axons (e.g., polar dendrite morphologies pointing

toward the barrel center).

Hence, we suggest using statistical spectra of higher-order

motifs as a definition of cell type-specific “structural fingerprints”

for the respective neuronal circuits. Comparing these finger-

prints with dense connectomes obtained at electron-microscopic

resolution, will indicate whether such cell type-specific higher-

order patterns can be explained by the meso- and microscopic

organization of the network, or whether additional specificity

originates at nanoscopic scales. In consequence, not the absence

of synapses between touching dendrites/axons, but deviations

of higher-order connectivity patterns observed in statistical and

electron-microscopic dense connectomes should be considered as

evidence for violations of statistical network organization.

CONCLUSION

We present a novel concept for measuring pairwise and high-

order connectivity patterns at subcellular resolution and meso-

scopic scales. We provide the required software to generate aver-

age dense circuit models, to calculate structural overlap, and to

convert these measurements into dense statistical connectomes.

Further, we describe the anatomical data necessary to assess struc-

tural organizational principles of the neuronal circuitry with-

out assumptions about homogeneity at meso/microscopic and

subcellular scales. Given that the required anatomical data is

available, we consider our approach as generalizable to other

brain structures and species. This sets the stage to generate

well-constrained network models that allow simulating sensory-

evoked signal flow to provide unprecedented insight into the

interplay between the structural organization and function of the

respective local and long-range neuronal circuits.
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