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Abstract—One of the main challenges of off-line signature
verification is the absence of large databases. A possible
alternative to overcome this problem is the generation of fully
synthetic signature databases, not subject to legal or privacy
concerns. In this paper we propose several approaches to the
synthesis of off-line enhanced signatures from real dynamic
information. These synthetic samples show a performance very
similar to the one offered by real signatures, even increasing
their discriminative power under the skilled forgeries scenario,
one of the biggest challenges of handwriting recognition.
Furthermore, the feasibility of synthetically increasing the
enrolment sets is analysed, showing promising results.

Keywords-Signature synthesis; Signature verification; Tex-
ture Measurement; Biometric recognition

I. INTRODUCTION

In this rapidly evolving era, person authentication is
becoming a key task for many everyday applications, such
as access control or border crossing. Biometrics offer a fast,
automatic and reliable solution to this problem, based on
personal traits such as the face, the iris or the fingerprint.
Among these traits, handwritten signature is widely accepted
for identity verification due to being easily acquired in an
user-friendly and non-invasive manner [1], [2]. However,
off-line signatures present a large intra-user variability (sig-
natures are strongly influenced by human behaviour) and
a small inter-user variability (skilled forgeries are neither
difficult to obtain nor easy to tell apart from genuine
signatures), which leads to lower accuracy with respect to
other biometric modalities.

In order to improve the performance of signature veri-
fication systems, bigger databases are required. Since the
acquisition and distribution of real signatures arises legal
and privacy concerns, the use of realistic synthetic signatures
could be regarded as a good alternative. As a consequence,
over the last years, several works on both on-line [3],
[4], [5] and off-line [6], [7] signature synthesis have been
carried out. These synthetically generated signatures show
a similar behaviour to real ones, thus enabling to enlarge
existing databases and offering new possibilities for off-line
recognition.

Some efforts have been performed through off-line signa-
ture verification using simple methods to create static signa-
tures [8], [9]. In this paper, we propose different approaches

to generate synthetic enhanced static data that performs
similarly, or even outperforms, real off-line samples, taking
into account dynamic features during the synthesis process.
Experiments are carried out on a publicly available database
comprising both on-line and off-line signatures, so that a
comparison between the performance of real and synthetic
off-line samples can be fairly established. Among others,
the current study presents the following possible practical
applications: i) generation of synthetic static samples to
be fused with the original on-line signatures in order to
improve the performance in an on-line verification scenario;
ii) enlarge existing off-line signature databases.

The main contribution of the paper with respect to other
related previous works [6], [7], is the integration of different
typical on-line features in the generation of synthetic and
“dynamically enhanced” off-line signatures, in order to
improve their discriminative power (i.e., recognition rates).

The rest of the paper is organized as follows. The pro-
posed approaches to generate enhanced synthetic off-line
signatures from dynamic data are described in Sect. II. The
experimental protocol for the evaluation of the signatures,
including the databases and recognition system used, are
summarized in Sect. III. Finally, results are presented in
Sect. IV and conclusions drawn in Sect. V.

II. ENHANCED OFF-LINE SIGNATURE GENERATION

FROM DYNAMIC SIGNATURE SEQUENCES

Dynamic features based on the trajectory
({xt[m], yt[m]}Mm=1) and pressure ({p[n]}Mm=1) signals, as
well as their derivatives (i.e., speed, acceleration), contain
information not available in static samples. Nevertheless,
discriminative information, such as geometric relationships,
can also be extracted from off-line signatures. In order to
take advantage of both types of features and overcome the
on-line vs. off-line dichotomy, several novel approaches
for generating “dynamically enhanced” synthetic static
signatures from on-line dynamic information are proposed
in this paper.

Although a simple static signature can be gen-
erated linking the points of the dynamic trajectory
({xt[m], yt[m]}Mm=1), additional dynamic information could
be used to enrich the static signature. This addition is



Figure 1: Diagram and examples of the proposed approaches to enhanced synthetic signature generation.

expected to lead to less realistic but more discriminative
images. In this section, several approaches to the gener-
ation of these dynamically enhanced static signatures are
proposed. First, the generation of a simple stroke signa-
ture image is described. Afterwards, several procedures to
include dynamic information, such as pressure, speed and
pen-ups, are presented.

A. Simple Stroke Signature Generation

While dynamic signatures are usually captured with dig-
ital devices such as tablets, smart-phones or PDAs, static
signatures are acquired with commercial scanners. There-
fore, some pre-processing must be carried out in order to
obtain compatible images:

• Since the resolutions are usually different (RTab ∼
2540 dpi and RScan ∼ 600 dpi), the on-line coordi-
nates should be scaled by a factor κ = RScan/RTab.

• Since static signatures are continuous, the scaled dis-
crete sequence of on-line coordinates and the pres-
sure signal are then linearly interpolated to obtain 8-
connected sequences of length L: {xc[n], yc[n]}Ln=1,
{pc[n]}Ln=1.

In order to obtain the final signature image, I(x, y),
the scaled and interpolated coordinate sequences,
{xc[n], yc[n]}Ln=1, are plotted on a white background
for pc[n] > 0, resulting in a binary black and white image.
This signature image is then dilated with a 4 × 4 square
structural element to obtain a stroke width similar to those
obtained with real pens (see Fig. 1, left).

B. Enhanced Static Signatures: Pressure Information

The gray level amplitude of the stroke can be modulated
with the pressure level. Therefore, the enhanced static sig-
nature with pressure information, denoted by Ip(x, y), is

defined as a convolution of I(x, y) with a Gaussian function
of the pressure signal:

Ip(x, y) =

L∑
n=1

I ∗Gp(x, y) (1)

where I(x, y), xc[n] and yc[n] are defined in Sect. II-A, and
Gp is a 2D Gaussian function that models the pen dot with
an amplitude modulated by the stroke pressure.

The standard deviation of Gp, φ, represents the blob
spread. It is defined as φ = φpen · RScan/δ, where δ is
the conversion factor from mm to inches and φpen the real
stroke width (empirically fixed to 3 mm). On the other hand,
the Gaussian amplitude A[n] is defined as a normalization
of pc[n] to the range [0.2, 2.2] (this interval allows a wide
range of gray-scale values related to the pressure signal):
A[n] = pc[n] · Δp + pmin. Finally, Ip(x, y) is smoothed
with a Gaussian convolution and the image gray values are
normalised to [0, 1].

An example is shown in Fig. 1 (center), where it can be
observed that the pressure influence is proportional to the
stroke gray level.

C. Enhanced Static Signatures: Speed Information

One of the most discriminant on-line features is the time
used by the signer, which depends on the speed and the sig-
nature length. The speed can be obtained as the first deriva-
tive of the original coordinate signals, with v[1] = [0, 0].
As described in Sect. II-A, the speed signal is then linearly
interpolated to obtain {vc[n]}Ln=1 = {vxc[n], vyc[n]}Ln=1.

The enhanced static signature image with speed informa-
tion, Is(x, y), is defined as:

Is(x, y) =

L∑
n=1

I ∗Gs(x, y) (2)



where I(x, y), xc[n] and yc[n] are defined in Sect. II-A, and
Gs is a 2D Gaussian that introduces the speed changing the
blob width.

In this case, the Gaussian amplitude is constant. However,
the standard deviation (spread of the elliptical blob) is
defined as

[φx[n], φy [n]] =
φpen · RScan

δ
· cos ([vnx[n], vny[n]])

where

[vnx[n], vny[n]] =
π/2

max
n

({vxc[n], vyc[n]}) · [vxc[n], vyc[n]]

δ and RScan are defined as in Sect. II-A and Sect. II-B, and
φpen is empirically fixed to 7 mm in order to highlight the
speed effect in the stroke.

Fig. 1 (center) shows an example of the speed deforming
the real stroke appearance.

D. Enhanced Static Signatures: Pen-up Information

On-line devices are usually able to recognize the move-
ment of the pen tip when it is close to the device, even if it
is not in contact with the writing surface. This contactless
movement is known as pen-up trajectory, and corresponds
to the coordinates {xt[m], yt[m]}Mm=1 when pt[m] = 0.

Since the pen does not deposit ink during the pen-ups,
they are not depicted in the static signature image. These
trajectories, however, could be highly discriminative for
skilled forgeries: impostors try to imitate the inked image
neglecting the unseen pen-up trajectory. Their addition to
the basic static signature described in Sect. II-A could
therefore improve the discriminative power of the static
signatures, at a low computational cost: the enhanced static
signature Icomplete(x, y) is obtained by depicting the entire
{xc[n], yc[n]}Ln=1 sequence, regardless of the pressure val-
ues, and dilating the image with a 4 × 4 square structural
element, as in Sect. II-A. The results can be seen in Fig. 1
(center).

It should be noted that, in order to obtain an image
including only the pen-up information, Ipen−up(x, y) , and
not the inked strokes, only the values {xc[n], yc[n]}Ln=1

when pc[n] = 0 should be plotted. Then, Icomplete(x, y) =
I(x, y) + Ipen−up(x, y).

E. Enhanced Static Signatures: Combination of Dynamic
Effects

All the improvements proposed in the previous subsec-
tions can be combined into a single enhanced image as
follows: the pressure is added as gray level values, the speed
as stroke width and the pen-ups as additional strokes. The
image is defined as:

Ifusion(x, y) =

L∑
n=1

Icomplete ∗Gps(x, y) (3)

where

Gps = A[n] · exp
(
−
(
(x− xc[n])

2

2φx
+

(y − yc[n])
2

2φy

))

A[n] is defined in Sect. II-B, φx and φy in Sect. II-C.
In Fig. 1 (right) the appearance of an enhanced static

signature image comprising pressure, speed and pen-up
information can be observed.

F. Virtual Ink Deposition Model

Finally, an ink deposition model is considered. A method
to generate realistic static signature images with a virtual
ink model is proposed in [7], which is here applied to the
enhanced signature Ifusion. It should be noted that this
method is aimed at obtaining realistic images in terms of
the stroke texture.

III. EXPERIMENTAL PROTOCOL

In order to evaluate the quality of the synthetic signa-
tures, a state-of-the-art off-line verification system was used
in the experiments. Two fully compatible real databases,
comprising on-line and off-line signatures, were used for
the verification system training and the evaluation of the
synthetic signatures. Finally, the experimental protocol was
designed so that the quality of the signatures was measured
in terms of the system performance (is it similar to the
real off-line signatures performance?), for several enrolment
scenarios (is the performance even if the enrolment protocol
changes?). Another experiment was carried out to assess the
feasibility of synthetically increasing the number of samples
used at the enrolment stage.

A. Off-line Verification System

The system used for the evaluation of the real and syn-
thetic signatures is a fusion of two LS-SVM classifiers [10],
based on Local Binary Patterns (LBP) and Local Directional
Patterns (LDP), respectively. Signature images are divided
into twelve overlapping blocks and the corresponding fea-
tures are extracted. Dimensionality is then reduced using the
Discrete Cosine Transform, and the final score is computed
as the sum of the two partial scores.

In the present work, this LS-SVM system is adapted to
work with signatures containing pen-up information. In this
case, two different feature vectors are obtained for the I
and Ipen−up images. Then, both vectors are concatenated
and used as input to each classifier.

It should be noted that, since the pen-up vectors are
considerably shorter than the inked strokes, their addition
has a negligible effect on the dimensionality of the templates.
Moreover, the noise that could be introduced with the pen-
ups (their randomness is higher compared to the inked
strokes) is compensated by the higher energy of the original
features.



B. Databases

The experiments were carried out on the BiosecurID
database [11]. This multimodal database comprises on-
line and off-line signatures of 400 users. Signatures were
captured using a special digital inking pen on a paper placed
over a digitizing tablet. This way, both versions, on-line and
off-line, of the exact same real signature were acquired at
the same time. The database was captured in 4 sessions
distributed over 4 months. Each subject signed 4 times and
forged 3 signatures, thus leading to 4 × 4 = 16 genuine
samples and 3× 4 = 12 skilled forgeries. The performance
of the real and synthetic signatures is evaluated on a subset
of 132 subjects.

The LS-SVM classifier used in the experiments needs
to be trained with positive and negative samples. Positive
samples were taken from BiosecurID as described below
(see Sect. III-C) while negative samples were taken from
the MCYT database [12] in order to ensure totally unbiased
results in the recognition experiments. The size of the
negative set was empirically fixed to the 25 samples of the
first 100 signers in MCYT.

Following the methodology described in Sect. II, six
synthetic databases have been generated, replicating the
structure of the selected subset of BiosecurID: 132 sub-
jects with 16 genuine samples and 12 skilled forgeries.
Each synthetic database consists of one type of synthetic
signatures, namely: i) simple strokes, ii) enhanced with
pressure information, iii) enhanced with speed information,
iv) enhanced with pen-ups, v) enhanced with pressure, speed
and pen-ups, and vi) enhanced with pressure, speed, pen-ups
and the ink deposition model.

C. Experimental Protocol

In order to answer the questions stated at the beginning
of this section, two different experiments are carried out:

• Experiment 1: Real vs synthetic signatures perfor-
mance. The performance of the selected verification
system for the real and each of the synthetic databases
is evaluated in the first experiment. The BiosecurID
database is divided into a an enrolment set of 90 users,
from which genuine and skilled impostor scores are
computed, and a test set, comprising the remaining
42 subjects used to compute the random impostor
scores. Two different protocols have been considered to
compute the 90 user enrolled models: i) a mono-session
approach, using the four samples of the first session,
and ii) a multi-session approach, using one sample of
each session. In both cases, genuine scores are com-
puted matching the non-enrolled genuine samples of
the subject (12) to the enrolled model (90×12 = 1, 080
genuine scores). Random impostor scores are calculated
comparing the first sample of the test subjects to the
enrolled model, leading to 90×42 = 3, 780 random im-
postor scores, and skilled impostor scores are calculated

with the skilled forgeries samples of the enrolled users
(12 per subject) to the enrolled model (90×12 = 1, 080
skilled impostor scores).

• Experiment 2: Mixed enrolment set. Finally, one
possible application of the proposed synthetic off-line
signatures generation method is to increase the number
of samples available in a database. In order to assess
whether such increase leads to a better recognition per-
formance, three different enrolment sets are considered
in experiment 2: i) 4 real samples belonging to the
first acquisition session (as in experiment 1 - mono
session), ii) 8 real samples belonging to the first and
the second sessions, and iii) 4 real samples belonging
to the first session plus 4 synthetic samples belonging
to the second session.

IV. RESULTS

As described in Sect. III, two different experiments are
carried out in order to analyse the quality of the synthetic
signatures and the feasibility of synthetically increasing the
enrolment samples. Therefore, the goal of the experiments
is threefold, namely: i) measure the similarity between real
and synthetic images, ii) assess whether using synthetic
signatures affects the recognition performance, and iii)
analyse the impact of using real and synthetic signatures
for enrolment.

A. Experiment 1: Real vs Synthetic Signatures Performance

In order to evaluate the performance of the different syn-
thetic signature generation techniques described in Sect. II,
two different protocols are followed (see Sect. III): the
signatures used for enrolling the user models belong to i)
the first acquisition session (Experiment 2 - mono-session),
or ii) all sessions, one signature per session (Experiment 2
- multi-session).

Table I shows the Equal Error Rate (EER) achieved by the
real and each of the six synthetic signatures databases. As it
may be observed, under the random forgeries scenario, the
EERs achieved by the different types of synthetic signatures
are very close. On the other hand, under the skilled forgeries
scenario, adding pen-up information significantly increases
the discriminative power of the signatures: EERs decrease
from about 20% to 17% for the mono-session training,
and from 17% to 15% for the multi-session training. Since
the average EER for the last three columns under the
skilled forgeries scenario is 16.50%, 16.93% and 16.36%,
respectively, the enhanced synthetic signatures with the ink
deposition model could be considered as the best performing
ones.

We may also observe in Table I a difference between
real off-line signatures and the synthetic signatures generated
as a simple stroke. It could be explained by: i) non-linear
deformations introduced during the signing process over a
sheet (such deformations are visible with a visual inspection



Table I: Experiment 1: EER for real and enhanced synthetic off-line signatures, for all the approaches considered under the two possible
scenarios (i.e., random and skilled forgeries), where fusion denotes the combination of pressure, speed and pen-up information. Ink model
denotes signatures enhanced with pressure, speed, pen-ups and the ink deposition model.

Training
Random Forgeries

Real Simple Stroke Pressure Speed Pen-ups Fusion Ink Model
mono-session 4.81 % 4.03 % 3.61 % 4.45 % 4.64 % 4.57 % 4.89 %
multi-session 3.15 % 2.37 % 2.57 % 2.24 % 3.18 % 4.01 % 3.78 %

Skilled Forgeries
mono-session 20.28 % 21.86 % 20.83 % 20.25 % 17.93 % 17.04 % 17.41 %
multi-session 17.13 % 16.85 % 16.86 % 17.24 % 15.06 % 16.81 % 15.28 %
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Figure 2: DET curves for real off-line signatures and the best performing synthetic signatures (fusion + ink model, with and without pen-
ups), for the three experiments carried out (mono-session and multi-session enrolment, synthetic + real enrolment), for the two scenarios
considered (random and skilled impostors).

of both real and synthetic signatures); and ii) human errors
introduced during the acquisition and labelling of both on-
line and off-line data (misalignment, duplicated strokes,...).

In Fig. 2 (left - mono-session, center - multi-session) we
may observe that the behaviour of the system with real (con-
tinuous black line) and the best synthetic signatures without
pen-ups (dotted black line) is quite similar, regardless of
the training protocol or the scenario considered. On the
other hand, adding the pen-up information to the synthetic
signatures (dotted gray line) leads to some changes in the
system behaviour, as it could be expected: this information
is not available in the real samples. However, it should be
noticed that under the skilled forgeries scenario, the recog-
nition performance significantly improves with this addition:
EER decreases over 10%, from 20.28% to 17.41% for the
mono-session training, and from 17.13% to 15.28% for the
multi-session training. Therefore, these synthetic signatures

containing pen-up information show a bigger discriminative
power for one of the most challenging problems in signature
verification: skilled forgeries.

B. Experiment 2: Mixed Enrolment Set

In the last experiment, the feasibility of synthetically
increasing the enrolment set is analysed. As described in
Sect. III, three different enrolment sets are considered. As it
may be observed in Fig. 2 (right), the DET curves for the
mixed enrolment (real + synthetic, grey dotted line), show a
better performance compared to the case with only four real
enrolled samples (thin black line), regardless of the operating
point or the scenario considered. More specifically, the EER
decreases in 14% (from 4.81% to 4.15%) and 8% (from
20.28% to 18.70%), respectively. The addition of synthetic
samples for training thus leads to better recognition results.

It should also be noted that the behaviour of the mixed



enrolment is very similar to the scenario with eight real
enrolled samples (i.e., using eight real samples instead of
four real and four synthetic, thick black line). We may thus
conclude that, when there are not enough off-line signatures
available, a good alternative is using both real off-line
signatures and enhanced synthetic signatures generated from
real on-line samples in order to increase the accuracy of the
system.

V. CONCLUSION

A novel method to synthesize enhanced off-line signatures
from dynamic real information has been proposed. Several
generation approaches that take advantage of the data present
in on-line signatures in order to produce more reliable static
samples are described, and their performance studied.

The results suggest that the combination of all features
at image level (i.e., modulating the gray level with the
pressure information, the stroke width with the speed and
considering a second image with the pen-ups) plus the
ink deposition model is the most promising strategy. These
enhanced synthetic images show a very similar behaviour
to the real samples, for all the enrolment protocols con-
sidered. Therefore, such synthetically generated databases
could potentially be used to estimate the performance of
off-line verifiers when not sufficient real static data is
available. Furthermore, it is also shown that, in case of
having only a limited number of off-line enrolment samples,
completing the set with synthetic signatures leads to a better
performance. As such, the proposed method could also be
used for synthetically improving the enrolment process in
off-line signature verification.

The efficiency of signature verification based on the com-
bination of both on-line and off-line features has been shown
in [13]. However, these approaches require an unsuitable
acquisition scenario, which reduces its applicability to real-
world environments. Being able to generate the off-line
signatures from their on-line versions could be a good
alternative to this acquisition issue.

Finally, we may observe that synthetic images offer
a higher discriminative power under the skilled forgeries
scenario, one of the biggest challenges in handwriting
recognition. Therefore, the combination of real on-line and
synthetically generated off-line signatures, when only the on-
line information is available, is foreseen to yield improved
recognition results and will be addressed as part of future
work.
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