
Generation of fault trees from simulated

incipient fault case data

M.G. Madden & P.J. Nolan

College, Galway, Ireland

Abstract

Fault tree analysis is widely used in industry in fault diagnosis. The diagnosis of
incipient or 'soft' faults is considerably more difficult than of 'hard' faults, which
is the situation considered normally. A detailed fault tree model reflecting signal
variations over wide range is required for diagnosing such soft faults.

This paper describes the investigation of a machine learning method for the
automatic generation of fault trees for incipient faults. Features based on the FFT
(Fast Fourier Transform) of the time response simulations are used are used to pro-
vide a training set of examples comprising records of fault types, severity and fea-
ture list. The algorithm presented, called IFT, is derived from the ID3 algorithm for
the induction of decision trees. A significant aspect of this approach is that it does
not require any detailed knowledge or analysis of the application system. All that
is needed is a 'black-box' model of the system; i.e. knowledge of what faults arise
from measurable quantities taking on particular values.

The proposed procedure is illustrated using detailed simulation results for a
servomechanism typically found in machine tool applications and the results to
date indicate the feasibility of the approach.

1 Introduction

Fault tree analysis (FTA) and fault tree synthesis (FTS) evolved primarily within
the US aerospace and nuclear industries and have been extensively used in systems
safety analysis for over 30 years. Fault tree analysis can be valuable as a design
tool; using it to identify and eliminate potential sources of accident in a system can
help can help prevent costly design changes and retrofits (Barlow and Lambert
[2]). The technique can also be used as a diagnostic aid; in the event of system fail-
ure, it can predict what the most likely causes of the failure are by evaluating all

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

568 Artificial Intelligence in Engineering

combinations of basic events (e.g. component failures) which can lead to a top
event (a particular fault). This is the target application of the work presented here.

Fault tree synthesis involves the construction of fault trees, which can be a
very time-consuming task and requires considerable engineering expertise. Ini-
tially, FTS was performed manually and even today manual construction is not
uncommon in industry. The procedure has been formalised by Haasl [6] into a
'structuring process' based on a functional model of the plant using schematics,
piping diagrams, process flow sheets and so on. With the wider availability of
computers, a number of authors have attempted to automate the procedure. Sys-
tems exist for electric networks (Fussell [5]), chemical plants (Powers, Tompkins
& Lapp, [7]) and nuclear systems (Cummings [4]).

Rather than taking the above 'top-down' approach, the 'mini-fault tree'
approach of Taylor, [8] uses mini-fault tree models for components. The advantage
of this and other component based models (e.g. that of Lapp and Powers [9]) is that
models can be reused in different studies. Over the years, a number of refinements
in the technique have been proposed; a major review can be found in Bossche [3].

The approach presented here is an alternative to the usual approach of syn-
thesizing fault trees from mini-fault or component models, in that example cases
are used to deduce fault trees and thus detailed process knowledge is not required.

2 Induction of Fault Trees

Fault trees represent how basic observable system conditions (at the leaf nodes of
the tree) combine to result in an undesired event (the root event of the tree). Thus
the task of generating a fault tree becomes that of identifying which system condi-
tions combine in what ways to result in undesired events. The approach proposed
here is to provide examples of the system conditions which were observed for dif-
ferent undesired events, as well as examples of system conditions when the system
is behaving normally, and to generalise from these examples to find higher-level
rules about how system conditions relate to undesired events. Thus, the overall
problem can be seen as one of inductive learning from examples.

An algorithm called IFT has been developed to induce fault trees from
example data. It is based on Quinlan's IDS algorithm for induction of decision
trees [10]. A decision tree is basically a way of representing classification rules. If
we consider classifying systems on the basis of whether they do or do not exhibit
symptoms of a particular fault, then the decision tree has the same information
content as the fault tree. This observation is the genesis of the IFT algorithm.

When selecting an attribute (step 3 of the algorithm), any of the set of
attributes may be chosen. The choice of attribute will determine the complexity of
the resulting tree, since some attributes will partition the data more cleanly into
positive and negative examples than others. In the spirit of Occam's Razor princi-
ple, it is desirable to find the most compact fault tree possible — this fault tree
would be expected to encapsulate best the important discriminating features of a
fault and should have the greatest predictive power. In order to determine which is
the optimal attribute to select, the information gain heuristic proposed by Quinlan
[10] in the context of decision trees is used.

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 569

The EFT algorithm is:

Input: a set of classified examples. Each example consists of a vector
of numeric attributes and a true/false flag indicating whether or not
the vector of values is associated with a particular fault.

Begin with the undesired event as the top node of the tree.

1. If all examples are true, stop.
2. If all examples are false, remove the parent node and stop.
3. Otherwise, the parent node is not sufficient in itself to classify

the data and must be refined. This is done by replacing the par-
ent node by an AND node with the parent node on one branch.

4. To develop the other branch, select an attribute (Â).
Find a threshold point (T) which is the weighted mean of the
values taken on by the attribute in the example set. This defines
two basic events for the fault tree: A^ < T and AN > T. It also
partitions the data into two subsets.
Create an OR node linking the results of applying the algorithm
recursively to the two data subsets defined by the two events.

5. After generating the tree, remove degenerate (single-input)
AND and OR nodes.

3 Simulated System

The sample system chosen to investigate the proposed method, which is typical of
servomechanisms found in the machine tool industry, is shown in Figure 1. It com-
prises a constant-field armature-controlled d.c. motor driving an inertial load
through a gearbox and shaft having finite flexibility.

Figure 1: Schematic Diagram of the System Being Analysed
Speed is the measured output in the series of experiments described and a

disturbance noise in assumed. Other signals, for example armature current, might
be particularly useful, either as an alternative to or in addition to the speed signal,
in diagnosing faults. The simulation model is based on deriving a set of first order
nonlinear differential equations for the system. This in turn is simulated using a
standard general purpose simulation language e.g. ACSL [1]. Assumed incipient
failures (soft faults) are represented by appropriate parameter settings based on
random variation over selected ranges. Random variation within each fault sever-
ity level band was assumed. Furthermore, all system parameters were assumed to

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

570 Artificial Intelligence in Engineering

vary randomly within a selected band (typically 2 - 5%) of their nominal values.
The time response was determined for a step input in command reference. Typical
results are shown in Figure 2.

0.02
~r

0.08 0.1 0.12
time (sec)

0.18 0.2

Figure 2: Time Response for Different Armature Resistance Fault Levels
About one thousand simulation runs were carried out in total. Other incipient

failures included changing motor, load and shaft damping, changing amplifier per-
formance and malfunction of the tachometer feedback loop. This gave rise to a
total of 20 different system states: the desired state in which the system is operat-
ing normally and 19 undesired states consisting of the different severity levels of
the different faults. A noise component was added to make the experiments as real-
istic as possible.

4 Feature Extraction

In order to employ the simulation results as a training set in the induction algo-
rithm, it is necessary to extract some features or attributes which can be used.
There are various ways in which the time response can be characterised. One
approach would be to use standard control system metrics (based on time or fre-
quency response) such as natural frequency, damping ratio, peak value, time to
peak, percentage overshoot, rise time, settling time, bandwidth and so on. An alter-
native approach would be to consider some kind of data fit to the model (e.g. poly-
nomial, exponential and so on) and subsequently to use the derived coefficients as
the features. A third approach would be to use the FFT (Fast Fourier Transform)
which characterises the system in terms of the frequency response evaluated at dis-
crete frequency values.

The FFT approach was selected for this work. The procedure was first to
"detrend" the time response by subtracting the average value. Subsequently, a win-
dowing function (in our case a Banning or cosine bell window) is used to force the
time response to be zero at the beginning and end of the time sample.

5 Test Results

The performance of the algorithm has been analysed using the standard approach
of splitting the available data at random into two sets, one for training and one for

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 571

testing. Each item in the training data consists of a vector of raw FFT values and a
label identifying which system state is associated with the item. Then in testing,
the fault tree diagnosis procedure is supplied with the vector of FFT values and
attempted to determine the system state from it. In the four series of experiments
carried out, the simulation data used consisted of FFT vectors for six system states:
the normal operational state and the five severity levels for faults associated with
changing armature resistance.

The first series of experiments were 'yes/no' experiments; the challenge for
the diagnosis procedure was to determine for each FFT vector presented to it
whether that vector was or was not associated with a given fault. As an example,
the training data was used to construct a fault tree for the system state in which
there is a moderate increase in armature resistance. A sample fault tree which was
generated by the algorithm is shown in Figure 3. Notice that the algorithm con-
structs a binary fault tree; this can be simplified further by collapsing nodes of the
same type in series to produce multiple-input AND and OR nodes. After a fault
tree had been constructed, the diagnosis procedure used this tree to attempt to
identify whether data from the testing set was or was not associated with that fault
state. This procedure was carried out for different sizes of training sets. (For the
tree of Figure 3, the data used in generation comprised 30% of the available data.)

moderate increase
in armature resistance

Figure 3: Fault Tree for Moderate Increase in Armature Resistance
The results (not listed) showed promising diagnostic performance; after

training on just 10% of available data, the diagnosis procedure was able to cor-
rectly identify 83.5% of the data on which it had not been trained, and its perfor-
mance increased to being able to correctly identify 97% of the unseen data after
being trained on 90%. (The procedure was, of course, able to correctly identify
100% of the data it had actually been trained on.)

In order to investigate the performance of the diagnosis procedure in more
detail, a second series of experiments was carried out. These used the same data set
and methodology as the first experiments did, but were more comprehensive in
examining the performance of the fault trees in diagnosis. Results are presented in
Figure 4. Each of the dashed lines in Figure4 represents a learning curve for 'yes/

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

572 Artificial Intelligence in Engineering

no' identification of a single system state, averaged over two runs in which differ-
ent training sets were selected at random from the total data set. For reference, the
average of all of the dashed lines is plotted in the figure as a solid line.

nc
Percentage*
of unseen QQ_

data
classified &$ ~
correctly $Q

75
-

/! ' " 3L " ~ ' *£^ " " "*" ~ ~ ̂ J^

gf̂ 5</''

I 1 1 1
0 20 40 60 80 1C

....+.... moderate reductior

....)(.... small reduction
• » nominal

A, fma// increase
•••••*••• moderate increase
• •+ seven? increase

average

X)
Percentage of total data used for training

Figure 4: Averaged Results for 'Yes/No' Testing for Several Fault States
It may be seen from these results that there is an overall improvement in the

diagnostic ability of the fault trees when the set of examples used in generating the
tree is increased. It may also be noticed that the diagnosis is most accurate for the
most extreme levels of the fault type under consideration: for the 'moderate reduc-
tion' and 'severe increase' cases, a tree generated from 90% of the data can cor-
rectly classify all of the remaining data, whereas the success rate of a tree
generated from 90% of the data for the 'nominal' case is only 87%. This seems
intuitively obvious, as we would expect more extreme levels of the fault type to be
easier to diagnose. Some evidence of overtraining may also be noted in Figure 4,
in that some of the curves show performance on unseen data actually weakening
when a larger training set is used; in particular, for the 'nominal' case performance
on unseen data is better when trained on, 30% of the data than when trained on 90%
of the data.

Note however that the 30% tree classifies 93.8% of the total data set cor-
rectly, whereas the 90% tree classifies 98.7%, so in one sense its performance is
better — while it does not classify as high a proportion of unseen data correctly, it
has dealt with a much higher volume of data during its generation. Examining this
effect more closely, the performance of the fault trees in classifying the total data
set, rather than just the set of unseen data, is shown in Figure 5.

700-

Percentage 95 —
oftotal
data 90-

classified
correctly 85 —

80-
-0

I I I
40 60 80

Percentage oftotal data used for training

I
20 700

Figure 5: Results of < Yes/No' Testing on Training and Testing Data Sets
Having obtained quite good results for the 'yes/no' experiments, a third

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 573

series of experiments was carried out. These were categorisation experiments; the
challenge for the diagnostic system was to attempt to name the fault associated
with a given FFT vector. The group of trees trained for the different faults can be
applied in turn to a FFT vector to come up with a list of potential diagnoses for a
fault. A category test can give one of the following results:
. A single category, which is one of 'normal' or 'undesired state X'.
. A list of categories, if it fails to uniquely identify the system state category.
. 'Unknown', indicating it cannot find any category of system state for the FFT

vector.
The results (not plotted) of this series of experiments showed performance

rising from being able to categorise 45% of unseen data correctly when trained on
10% of the data set, increasing to 77% of unseen data when trained on 90% of the
data set. These results may not at first glance appear to be as good as those of the
'yes/no' experiments discussed above — for example, the trees in the 'yes/no'
experiments identified on average 83% of unseen data when trained on 10% of the
data. However, the challenge in this series of experiments is a more difficult one.
Since the 'yes/no' experiments gave binary results, a diagnostic procedure acting
totally at random might classify 50% of data presented to it correctly, whereas here
there are 6 possible results, so a diagnostic procedure acting at random would only
classify 16.67% of data correctly.

In order to examine where the errors arise in categorisation, vectors for each
of the six system states being considered were drawn from the data set and pre-
sented to the diagnostic procedure for classification. The classifications returned
by the diagnostic procedure (after training on 40% of the data) are shown in Figure
6, where the 'Unknown' category represents vectors that the procedure failed to
classify as belonging to any of the six-states known to it. The figure shows that,
apart from vectors the diagnostic procedure failed to classify, in general the mis-
takes it made tended to result from confusing data for adjacent system states. It
also highlights something that was mentioned previously with reference to Figure
4: as one would expect, the diagnostic procedure tends to be more successful in
identifying the states associated with extreme fault levels — those labelled '-2'
and 3' in Figure 6 — than other system states, particularly the state associated
with normal operation of the system.

3
2-

System 1 —
State 0-

Diagnosed-l _
-2-

Unknown —

. i
••MBMMHBH

1
-2

- —-"

1
-7

#
• •

*«
....

1
0

• m *
'""
•

* #*#mi
1

— — ""m* « *

* 4
n
2

«•«

3
Actual System State

Figure 6: Sample of System States Predicted in Category Testing

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

574 Artificial Intelligence in Engineering

6 Discussion and Conclusions

This paper has presented a practical approach to the problem of generating detailed
fault trees for incipient faults in dynamic systems based on time response measure-
ments, using an algorithm to induce fault trees from data. While there are other
machine learning techniques for induction and classification which could be used
— for example, neural network approaches — the advantage of the approach
adopted here is that the fault trees produced provide a clear engineering represen-
tation of the reasoning employed by the system in identifying fault states. These
fault trees are suitable for inclusion in a rule-based diagnosis system. The approach
uses a training set derived by extracting features derived from a FFT of the time
response. Detailed simulations were used to produce the time responses for the
fault cases.

The operation of the proposed methodology is independent of whether simu-
lation or actual test data is used. Even when real test is available, it is expected that
detailed simulation results will be necessary to compliment the training set with
examples of additional fault situations.

The results to date are very encouraging especially when one considers that
we are attempting to predict 'soft' or incipient faults where the response of the
faulted system and unfaulted system are close.

References

1. ACSL. Advanced Continuous Simulation Language, Mitchell & Gauthier
Associates, Concord, Massachusetts, 1987.

2. Barlow, R.E. and Lambert, H.E. Introduction to Fault Tree Analysis, Reliabil-
ity And Fault Tree Analysis, eds. R.E. Barlow and J.B. Fussell, 1975.

3. Bossche, A. Fault Tree Analysis and Synthesis, Ph.D. Thesis, Dept of Electri-
cal Engineering, Technical University of Delft, 1988.

4. Cummings, G.E. Application of the Fault Tree Technique to a Nuclear Reactor
Containment System, Reliability And Fault Tree Analysis, eds. R.E. Barlow
and J.B. Fussell, 1975.

5. Fussell, J.B. Computer Aided Fault Tree Construction for Electrical Systems,
Reliability And Fault Tree Analysis, eds. R.E. Barlow and J.B. Fussell, 1975.

6. Haasl, D. F. Advanced Concepts in Fault Tree Analysis, Proceedings of Sys-
tem Safety Symposium, Seattle, Washington, 1965.

7. Powers, G.J., Tompkins, F.C. & Lapp, S.A. A Safety Simulation Language for
Chemical Processes: A Procedure for Fault Tree Synthesis, Reliability And
Fault Tree Analysis, eds. R.E. Barlow and J.B. Fussell, 1975.

8. Taylor, J.M. An Algorithm for Fault Tree Construction, IEEE Trans. Reliabil-
ity, Vol. R-31, pp. 137-146, 1982.

9. Lapp, S.A. and Powers, G.J. "Computer-Aided Synthesis of Fault Trees",
IEEE Trans. Reliability, Vol. R-26, pp. 2-12, 1977.

10. Quinlan, J.R. Induction of Decision Trees, Machine Learning, Vol. 1, pp 81-
106, 1986.

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

