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Changes in the composition of the human gut microbiota have  
been associated with the development of chronic diseases includ-
ing type 2 diabetes, obesity, and colorectal cancer1. Gut bacterial  
functions, such as synthesis of amino acids and vitamins2, breakdown 
of indigestible plant polysaccharides3, and production of metabo-
lites involved in energy metabolism4, have been linked to human 
health. The use of ‘omics approaches to study human microbiome 
communities has led to the generation of enormous data sets whose 
interpretations require systems biology tools to shed light on the func-
tional capacity of gut microbiomes and their interactions with the  
human host5.

In order to infer the metabolic repertoire of a gut metagenome 
data set, researchers usually map sequenced genes or organisms onto 
metabolic networks derived from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG)6, and functional annotations from KEGG 
ontologies7. However, this approach cannot identify the contribu-
tion of each bacterial species to the metabolic repertoire of the whole 
gut microbiome, nor can it infer the effects of different gut microbial 
communities on host metabolism.

A technique that can bridge this gap is constraint-based recon-
struction and analysis (COBRA)8 using genome-scale metabolic 
reconstructions (GENREs) of individual human gut microbes. 
GENREs are assembled using the genome sequence and experi-
mental information9. These reconstructions form the basis for the 
development of condition-specific metabolic models whose func-
tions are simulated and validated by comparison with experimental 
results. The models can be used to investigate genotype–phenotype 
relationships10, microbe–microbe interactions11, and host–microbe 
interactions11. Numerous tools can be used to automatically generate 
draft GENREs but such models contain errors12 and are incomplete. 

Manual curation of draft reconstructions is time consuming because 
it involves an extensive literature review and experimental validation 
of metabolic functions9.

To provide an extensive resource of GENREs for human gut 
microbes, we developed a comparative metabolic reconstruction 
method that enables any refinement to one metabolic reconstruc-
tion to be propagated to others. This accelerates reconstruction and 
improves model quality. We generated AGORA, which includes 773 
gut microbes, comprising 205 genera and 605 species. All recon-
structions were based on literature-derived experimental data and 
comparative genomics. The metabolic predictions of two AGORA 
reconstructions and their derived metabolic models were validated 
against experimental data.

RESULTS

Metabolic reconstruction pipeline

We devised a comparative metabolic reconstruction method (Fig. 1a,c),  
which is analogous to the comparative microbial genome annotation 
approach13 that has enabled accelerated annotation by propagation 
of refinements to one genome to others. First, we downloaded draft 
GENREs using Model SEED14 and KBase (US Department of Energy 
Systems Biology Knowledgebase, http://kbase.us). In both platforms, 
the genome sequence of an organism is automatically annotated and a 
metabolic reconstruction is assembled based on the identified meta-
bolic functions. Gaps in the draft reconstruction are automatically 
filled, building a metabolic reconstruction whose condition-specific 
models can carry flux through a defined biomass objective function. 
We refined the draft reconstructions using rBioNet15 and performed 
quality control and quality assurance (QC/QA) tests, including the 
verification of reaction directionality and mass and charge balance 
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(Online Methods and Supplementary Note 1) to ensure that the 
reconstructions meet the quality standards set by Thiele and Palsson 
(2010)9. We expanded the reconstructions by refining gut-micro-
biota-specific and central metabolic subsystems, and curated all of 
the reconstructions by reference to 236 publications, two reference 
books (Supplementary Table 1), and comparative genomics analyses 
(Online Methods and Supplementary Table 2). Anaerobic growth 
was enabled for all genome-scale models (Fig. 1e) because the human 
gut is usually anaerobic or microaerobic16. We tested the metabolic 
capabilities of each model, as defined by published data, at the genus, 
species, and strain level. During the generation and validation of each 
model, solutions to QC/QA problems or failure of the metabolic capa-
bility tests of a model were used to improve the quality of others. The 
propagation of such refinements among all the models was facilitated 
because all microbes share the same human gut environment.

Our pipeline increased both the proportion and total number of sto-
ichiometrically and flux-consistent reactions17, that is, mass balanced 
and admitting a nonzero steady state flux (Fig. 1f,g, Supplementary 

Table 3 and Supplementary Figs. 1 and 2). The refinement process 
increased the predictive potential of AGORA models compared with 
the draft metabolic models; the AGORA models predicted gene essen-
tiality more accurately than the draft models (Fig. 1d), and sensitivity 
to carbon source, fermentation product, and nutrient requirement 
data was greatly increased in the AGORA models with an average 
sensitivity of 1.00 ± 0.02 compared to 0.06 ± 0.09 for the draft models 
(Fig. 1h and Supplementary Table 4).

Features of reconstructions

The 773 AGORA reconstructions contained an average of 771 ± 262 
genes, 1,198 ± 241 reactions, and 933 ± 139 metabolites (Fig. 1b and 
Supplementary Table 5). We found that taxonomic classes containing 
well-studied organisms, such as Gammaproteobacteria, had larger 
sets of genes and reactions than reconstructions of other classes.  
An AGORA reconstruction uses a generalized microbial biomass 
reaction, which summarizes the fractional contribution of a biomass 
precursor (e.g., amino acids and lipids) to the synthesis of a new cell, 
as provided in the draft reconstructions from Model SEED and KBase. 
The biomass reactions were not curated, because species-specific 
information is required for such refinements (Supplementary Note 2).  
Qualitative growth predictions are not affected by generalized bio-
mass equations, whereas information on species- and condition-
specific cellular composition is required for accurate quantitative 
prediction18. Nonetheless, the predicted average microbial doubling 
time of 2.3 h on a Western diet under anaerobic conditions (Fig. 1b 

and Supplementary Table 6) was close to reported doubling times of 
single microbes in the mouse gastrointestinal tract19. 

When comparing eight AGORA reconstructions with the published 
genome-scale metabolic reconstructions for the same species, we found 
that the main differences in reaction content were in lipopolysaccha-
ride biosynthesis and transport pathways (Supplementary Tables 7  
and 8). Cell wall and lipopolysaccharide structures are species- 
specific and cannot easily be derived from gene annotations alone20,21 
(Supplementary Note 2). The curation of such pathways requires 
experimental data that are currently not available for AGORA organ-
isms. AGORA models were equivalent to published GENREs in terms 
of capturing gene essentiality, as reported in the literature (Fig. 1d). 
The AGORA models have been curated for carbon source utilization 
and fermentation product secretion; they outperformed the published 
models for those functions, as measured by a sensitivity analysis of 
the carbon source uptake and fermentation product secretion of both 
seven published models and AGORA models (Supplementary Fig. 3).  
Until now, manually curated reconstructions have been refined to fit 
certain applications and, consequently, curated to different extents. As 
they are not comparable in scope, they may not be a good choice for 
investigating microbe interactions. In contrast, all AGORA reconstruc-
tions have been curated for the same metabolic pathways (Fig. 1a).

We determined the overlap of microbial metabolism with human 
metabolism. Two cellular compartments are common between human 
and microbes, the cytosol and extracellular space. To compare the 
metabolic functions, we decompartmentalized the human meta-
bolic reactions by placing all metabolites that occur in an organelle  
(e.g., mitochondria) compartment in the human metabolic recon-
struction Recon 2 (ref. 22), into the cytosol, and removed duplicate 
reactions, resulting in 6,256 unique metabolic reactions. Collectively, 
the AGORA reconstructions account for 3,192 unique metabolic reac-
tions, 695 of which are shared with Recon 2, including 162 (23%) 
exchange reactions. We found that 89% (5,561/6,256) of human 
metabolic reactions were unique to the human reconstruction,  
and 78% (2,495/3,192) of AGORA metabolic reactions were unique 
to the microbial reconstructions.

Metabolic diversity of AGORA reconstructions

The variety of AGORA reconstructions is shown in Figure 2a.  
To prove that our method produced metabolically distinct recon-
structions for each organism, we computed the metabolic distance 
of every reconstruction pair (298,378 pairs; Supplementary Table 9)  
using the Jaccard distance between the reaction lists from each recon-
struction. Metabolic distances range from zero to 1 with identical 

Figure 1 The reconstruction refinement pipeline and properties of the metabolic models, derived from the reconstructions. (a) The refinement 

pipeline starts with an automatic draft reconstruction generation from the online platforms Model SEED14 and KBase (Department of Energy Systems 

Biology Knowledgebase (KBase), http://kbase.us), followed by the translation of reaction and metabolite identifiers to match those of the human 

metabolic reconstruction, Recon 2.04 (ref. 22). The reconstructions are then tested for QC/QA measures and 162 metabolic functions are curated 

based on available knowledge and genomic evidence. A microbial reconstruction can be converted into a condition-specific model by the application 

of condition-specific constraints. All AGORA reconstructions are available at http://vmh.life. (b) Boxplots of the number of genes, reactions, and 

metabolites for reconstructions belonging to the 13 phyla captured in AGORA (Supplementary Table 5). Dashed lines represent the average over all 773 

reconstructions. The number of reconstructions per phylum is shown above the phylum name. Whiskers show the minimum and maximum values. Values 

below Q1 – 1.5 × IQR and above Q3 + 1.5 × IQR are plotted as outliers. Q1: first quartile, Q3: third quartile, IQR: interquartile range. (c) Differences in 

the gap-filling process of manually curated reconstructions and AGORA. In AGORA, gap filling of a certain pathway in one reconstruction is propagated 

to all N reconstructions that share the same gap and should perform the metabolic function in question. For manually curated reconstructions, every 

gap is filled with organism-specific reactions based on the available organism-specific data and experimental validations. (d) Gene essentiality accuracy 

predicted by the draft reconstructions, the AGORA reconstructions, and four published reconstructions (Supplementary Note 2) when compared 

against in vitro data sets48. (e) Table showing the number of AGORA and draft models that grow anaerobically on rich medium and the number of 

carbon sources, and fermentation products captured by draft reconstructions and AGORA reconstructions. (f) The number of stoichiometrically- and 

flux-consistent reactions in each draft versus the corresponding AGORA reconstruction. (g) Change in number of stoichiometrically and flux consistent 

reactions. (h) Comparison of the predictive potential of the draft reconstructions and the AGORA reconstructions. The sensitivity (true-positive rate) of 

known fermentation products, carbon sources, and growth requirements captured by the corresponding metabolic models.
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reconstructions having a metabolic distance of zero and completely dis-
similar reconstructions having a metabolic distance of 1. As expected, 
taxonomically related bacteria shared more reactions than taxonomi-
cally distant bacteria (Supplementary Fig. 4). Bacilli and Clostridia 
had high metabolic distances, reflecting the metabolic and pheno-
typic differences between these two classes (Supplementary Fig. 4). 
 Notably, low metabolic distances were only observed within a class, 
but not between members of a phylum or between taxonomic classes. 

Overall, the average metabolic distance was 0.48, which is consistent 
with other reports of metabolic and functional distances between 
microbes based on the presence of KEGG enzymes and KEGG orthol-
ogy annotations23,24. Metabolic pathway enrichment was detected 
at different taxonomic levels (Fig. 2b); for example, plant polysac-
charide degradation was mainly present in Bacteroidia, O-glycan  
degradation in the genera Akkermansia spp., Bifidobacterium spp., and 
Bacteroides spp., and methane metabolism was unique to four archaea.  
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As expected, lipopolysaccharide biosynthesis was found only in 
Gram-negative bacteria. Only 69 reactions were common to all  
773 reconstructions.

To assess whether the known functional diversity of the gut  
microbiota was captured in our models, we tested for the uptake  
of 74 different carbon sources and for the secretion of 18 fermenta-
tion products (Fig. 3) using flux variability analysis25. The known 
distribution of short-chain fatty acid production in the gut was well-
represented in our models (Fig. 3); most models fermented sugars 
into short-chain fatty acids and organic acids, with acetate, succinate, 
formate, lactate, propionate, and ethanol being the most commonly 
produced metabolites. As expected, butyrate was secreted by the 
Fusobacteria models26 and by many Firmicutes models27, and meth-
ane secretion was specific to the Euryarchaeota. Carbon source utili-
zation capabilities were found to be in agreement with the literature28. 
Notably, only certain genera (e.g., Bacteroides spp. and Akkermansia 
spp.) can utilize diet- and host-derived polysaccharides (Fig. 3).

Validation of AGORA model predictions

We demonstrated the predictive capability of AGORA models using 
two models, Bacteroides caccae ATCC 34185 (a fiber-degrading 
symbiont common in microbiomes of Western individuals29,30) and 
Lactobacillus rhamnosus GG (LGG), a common human probiotic 
strain31. No chemically defined medium has been reported for B. caccae.  
We predicted that B. caccae should be able to grow on DMEM 6429 
defined culture medium supplemented with vitamin K, hemin, and ara-
binogalactan under anaerobic conditions. In the laboratory, B. caccae  
was cultured on this medium in a flask under anaerobic conditions 
(Online Methods, Supplementary Note 3 and Supplementary Table 10).  
This medium would not support growth of LGG, according to our 
in silico predictions, and growth was unstable in flask cultures using 
this medium. The reported chemically defined growth medium for 

LGG contains all amino acids and most vitamins32 but our in silico 
predictions suggested that these could be supplemented by growing 
LCG with B. caccae (Fig. 4). When modeled in silico in co-culture in 
DMEM 6429 defined culture medium supplemented with vitamin  
K, hemin, and arabinogalactan, both bacteria grew (Fig. 4d and 
Supplementary Table 11). We predicted that B. caccae would sup-
ply LGG with alanine, asparagine, and nicotinic acid, while LGG 
would provide lactate to B. caccae (Fig. 4d). The addition of alanine  
and nicotinic acid to the defined medium was sufficient in silico  
to enable the single growth of the LGG model (Fig. 4c). Using gas 
chromatography–mass spectrometry (GC-MS)-based metabolomic 
analysis, we confirmed the secretion of numerous metabolites by 
the two strains grown individually, including alanine secretion by 
B. caccae (Fig. 4a and Supplementary Fig. 5), thus supporting the 
predicted cross-feeding.

Pairwise interactions of models

We computed the pairwise growth interactions (‘co-growth’) of 
every pair of microbes in the AGORA resource (298,378 pairs). Each 
model was grown in silico on its own and as part of a pair with every 
other model on two different diets with and without oxygen (Online 
Methods and Supplementary Tables 9 and 12). Under all conditions, 
the most commonly predicted pairwise co-growth relationships were 
parasitism or commensalism (Fig. 5a). Consistent with one previ-
ous in silico study33, the presence of oxygen resulted in a decrease in 
commensalism and mutualism, especially for Gammaproteobacteria 
(Supplementary Fig. 6). Competitive and amensal interactions 
increased in the presence of oxygen (Fig. 5a). The effects of a typical 
Western diet and a diet high in fibers, such as arabinogalactan and 
xylan, on pairwise interactions among models were also evaluated. 
The high fiber diet led to a higher proportion of commensal and 
mutualistic interactions (Fig. 5a), which, using flux balance analysis34,  
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was found to be due to cross-feeding of metabolites between species. 
Low-fiber diets are thought to modulate the microbiota composi-
tion by depleting commensal microbe-to-microbe interactions35. 
Based on hierarchical clustering of the ratio of pairwise interaction 

type per condition per taxonomical family (Fig. 5b), our simulations 
predict that the carbohydrate fermentation capacity defines the type 
of interaction between microbes when considering the family level. 
Cluster 1 contained saccharolytic microbes that do not produce 
butyrate and respiratory bacteria and was enriched in commensal 
interactions. Clusters 2a and 2b were enriched in butyrate and lactate 
fermenters and generalists related to Bacillaceae, respectively. Both 
subclusters were mostly negatively affected by parasitic interactions. 
Cluster 3 contained the majority of asaccharolytic and proteolytic 
families, which mainly benefitted from the pairwise interactions. The 
effect of carbohydrate fermentation capacity holds true for the genus 
level (Supplementary Fig. 6). Even though most interactions were 
observed over a wide range of metabolic distances, positive interac-
tions, in which the growth rates of one or both microbes are neutral or 
enhanced in the pairwise simulation, occurred only among metaboli-
cally distant organisms (Supplementary Fig. 7), in agreement with 
previous computational studies23,24.

Integrating metagenomics and 16S rRNA with AGORA

We tested whether AGORA can be used to analyze metagenomic data. 
We retrieved strain-resolved metagenomic data from 149 healthy 
individuals from the human microbiome project (HMP; Fig. 6a)36.  
AGORA microbes mapped to, on average, 91% of the strains in  
the HMP individuals with comparable reaction diversity for all  
individuals (Fig. 6b), highlighting that AGORA is representative  
of the human gut microbiota.

We then mapped published species-resolved 16S rRNA data of 164 
elderly and 13 young individuals (‘ELDERMET’)37 onto AGORA  
(Fig. 6c,d). The 210 ± 39 species present in each individual mapped 
to 108 ± 16 AGORA pan-species reconstructions, which are the union 
of reactions from all strain-specific reconstructions in AGORA of one 
species. Two clusters were observed (Fig. 6d). The cluster with more 
reactions was characterized by the presence of Gammaproteobacteria 
(Fig. 6d). The corresponding reconstructions contain on aver-
age more reactions compared to other taxonomic classes (Fig. 1b). 
Principal coordinate analysis, using each individual microbiota’s 
metabolic reaction set, revealed that the clusters separated owing to 
reactions associated with glycerophospholipid and cell wall metabo-
lism (Supplementary Table 13), consistent with the Gram-negative 
nature of Gammaproteobacteria. The second principal coordinate was 
mainly associated with the presence of methanogenesis reactions that 
are unique to the methanogenic archaea.

DISCUSSION

AGORA reconstructions were assembled using a comparative meta-
bolic reconstruction approach that speeded up curation and provided 
knowledge-driven refinement of gut-specific metabolic microbial 
functions that were not present in the draft reconstructions (Fig. 1a). 
Our pipeline included extensive QC/QA and curation against avail-
able knowledge, which is not done by pipelines that automatically 
generate GENREs. The resulting models significantly outperformed 
the draft models in correctly capturing gene essentiality in addition 
to known carbon sources, fermentation products, and essential nutri-
ents (Fig. 1d,h). Even though AGORA reconstructions do not cover 
all of the species-specific aspects of manually curated reconstruc-
tions (e.g., lipopolysaccharide biosynthesis), the performance of each 
of eight AGORA models was on par with that of their previously 
published, manually curated models of the same strain (Fig. 1d and 
Supplementary Fig. 3). This resource of reconstructions helps to 
address the need for literature-curated GENREs to help to analyze 
gut metagenomic data38.
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Figure 3 Carbon source uptake and fermentation product secretion 

capabilities in AGORA. Number of AGORA models in each phylum 

that can consume the different carbon sources and secrete the tested 

fermentation products. The total number of models in each phylum is 

reported in parentheses. The models’ capabilities to consume or secrete 

the different metabolites were determined using flux variability analysis.

©
 2

0
1
7
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
.,
 p

a
rt

 o
f 

S
p

ri
n

g
e
r 

N
a
tu

re
. A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.



86 VOLUME 35 NUMBER 1 JANUARY 2017 NATURE BIOTECHNOLOGY

R E S O U R C E

GlucoseAcetate Lactate Succinate Ala Asp Gln Glu Gly lle Leu Lys Mal Met Phe Pro Ser Thr Val

GlucoseAcetate Lactate Succinate Ala Asp Gln Glu Gly lle Leu Lys Mal Met Phe Pro Ser Thr Val

** **

** **

**

**

*** *

*

Bacteroides caccae ATCC 43185

Lactobacillus rhamnosus GG

In vitro

In silico

In vitro

In silico

Secretion Uptake No change
Exchange not in

reconstruction
Varies depending on alternate

solution

Bacteroides caccae ATCC 43185

Bacteroides caccae ATCC 43185

Biomass precursors

Biomass precursors Biomass precursors

Biomass precursors

Lactobacillus rhamnosus GG

Acetate

Acetate

Acetate

ATP

ATP

ATP ATP

ATP
ATP

Anaerobic

respiration

Anaerobic

respiration

Carbon

skeletons

Carbon

skeletons

Acetyl-CoA

Acetyl-CoA

2.89

5.66

0.00

3.62

–2.43 0.00 –0.14 –4.07

Biomass

Biomass

Biomass

Succinate pathway

Succinate pathway

Glycolysis

Glycolysis Glycolysis

Glycolysis

Hydrogen

Hydrogen

0.00 0.00 0.00 –4.50

–4.50

–4.50

2.87

3.64

4.54

5.87

0.00

2.01

Propionate

Propionate

D-lactate

Succinate

Arabinogalactan  Galactose  L-arabinose Glucuronate Glucose

Arabinogalactan Galactose L-arabinose Glucuronate Glucose

Glucose

L-alanine

Nicotinic acid

0.49

0.49

5.10

5.10

5.48

5.48

5.84

5.84

Acetate

Ethanol

D-lactate

Facultatively

heterofermentative

pathway

Facultatively

heterofermentative

pathway

Carbon skeletons

Carbon skeletons

L-alanine

L-asparagine

Nicotinic acid

L-alanine

L-asparagine

Nicotinic acid

4.96

7.12

5.26

0.00 0.00 0.00 –2.22

11.97

–5.51 –0.87 –0.14 0.00

5.06

6.24

0.83

0.68

5.95

10.04

13.00

5.28

–5.95

–10.04

Lactobacillus rhamnosus GG

CO2

CO2

CO2

CO2

0.15 h
–1

0.22 h
–1

0.12 h
–1

0.33 h
–1

0.09 h
–1

0.16 h
–1

0.17 h
–1

0.17 h
–1

D-lactate

0.97

0.94

–2.28

–4.50

Biomass

Glucose

a

b c

d

Figure 4 Comparison of in vitro experiments and in silico simulations for Bacteroides caccae ATCC 43185 and Lactobacillus rhamnosus GG ATCC 53103. 

(a) Both microbes were grown anaerobically on DMEM 6429 medium supplemented with hemin, vitamin K, and arabinogalactan. The composition of  

fresh medium and spent medium after cultivation was determined using GC-MS (Supplementary Fig. 5). Only statistically significant metabolite uptake  

and secretion is shown. A paired t-test was performed for statistical significance. **P < .005 and *P < 0.01. The same medium composition was used  

for in silico simulations, and uptake and secretion capabilities were predicted using flux variability analysis. (b) In silico single culture fluxes of B. caccae 

on DMEM medium without and with arabinogalactan. Growth rates (h−1) and predicted uptake and secretion fluxes (mmol/gDW/h) of major exchanged  

metabolites are shown in blue without arabinogalactan and in purple with arabinogalactan. (c) In silico single culture fluxes of LGG on DMEM medium  

without and with arabinogalactan. The in silico medium was supplemented with L-alanine and nicotinic acid, which were predicted to be essential for 

growth. Growth rates and uptake and secretion fluxes are depicted as described for b. (d) In silico co-culture fluxes of B. caccae and L. rhamnosus on  

DMEM medium without and with arabinogalactan. Growth rates, and uptake and secretion fluxes are depicted as described for panel b.
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GENREs have previously been used to design chemically defined 
growth media using an iterative in silico, in vitro, and metabolomics 
approach39. The predicted growth of B. caccae in extended DMEM 
medium supplemented with arabinogalactan under anaerobic condi-
tions was validated. However, the in vitro growth of LGG was unstable, 
but our in silico co-culture simulations suggest that its growth could 
be enhanced by the presence of B. caccae. This example highlights 
how metabolic models can serve as a starting point for generating 
experimentally testable hypotheses.

Bacteria in ecosystems engage in complex trophic webs based on 
interspecies interactions40, which cannot be inferred from microbial 
abundance41. We explored pairwise interactions between gut micro-
biome models under four conditions. We found that central metabolic 
traits were predicted to define co-growth interactions as a function of 
diet composition and oxygen availability (Fig. 5 and Supplementary 

Figs. 6 and 7). Inflammation of the digestive tract can disrupt the 
intestinal cell barrier, thereby increasing the oxygen level in the nor-
mally anaerobic intestine42 and reducing species variety in the gut 
microbiome43. A high-fiber diet might protect against the depletion 
of positive microbe–microbe interactions caused by the presence of 
oxygen. Negative interactions have been found to dominate stable 
microbial communities44. Based on our simulations, we propose that 
a small number of positive interactions may be sufficient to maintain 
a healthy microbial community.

Metabolic models have been used to map and analyze omics data 
for single organisms45. Here, we report that AGORA enables such 
analyses for a much larger set of human gut microbial communities, 
as most of metagenomic sequence reads and 16S rRNA data from a 
typical microbiome can be mapped onto our models (Fig. 6), result-
ing in metabolically diverse microbiota reconstructions that can be 
used to construct and simulate individual-specific metabolic models. 
The metabolic overlap between the human metabolic reconstruction 
and AGORA was enriched in exchange reactions, which supports the 
hypothesis that co-evolution driven by cross-feeding between the host 
and the microbes has occurred.

AGORA reconstructions are especially suited to studies in which 
multiple reconstructions are coupled together to simulate microbial 
interactions. However, the existence of consistent biases, owing to 
the semi-automated model generation means that additional strain- 
specific refinements may be necessary in order to use AGORA mod-
els in organism-specific applications, for example, bioengineering. 
AGORA reconstructions are missing non-dietary microbial functions, 
such as xenobiotic metabolism, which have not yet been extensively 
studied in human gut microbes. Because the focus of the curation 
has been on gut microbial functions, the resource is best suitable for 
studies on dietary effects on the human microbiota.

One open question in microbiome research is which functions 
microbes carry out and how those functions interface with host 
metabolism and affect host phenotypes. About a quarter of AGORA 
metabolic reactions were also present in Recon 2 (ref. 22), the human 
metabolism reconstruction, highlighting the complementarity of 
host and microbial metabolisms. So far, a handful of studies have 
attempted to predict the metabolic effect of different microbiomes on 
host metabolism based on topological network approaches46,47, which 
cannot address functional links in the human-gut microbiota axis. 
AGORA enables superior simulations to address mechanistic ques-
tions about host–microbe co-metabolism. We envisage the combina-
tion of AGORA models into strain-resolved microbial community 
models and predictions of how those community models interact with 
human metabolic models22 could be used to systematically investigate 
host–microbiome interactions11.
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Figure 5 Pairwise interactions of all AGORA metabolic models.  

(a) The number and percentage of pairs that exhibit each of six different 

interaction types during in silico simulations under four different 

conditions; Western and high-fiber diets in the presence and absence of 

oxygen. Competition: both microbes’ in silico growth rates (Supplementary 

Table 9) are slower in the paired simulation compared with each  

microbe’s in silico mono-culture growth rate on the same diet 

(Supplementary Table 12). Parasitism: one microbe grows faster  

(Taker) in the paired simulation while the other microbe grows slower 

(Giver). Amensalism: one microbe grows slower (Affected) in the 

paired simulation while the other microbe’s growth rate is unaffected 

(Unaffected). Neutralism: both microbes’ growth rates are unaffected  

in the paired simulation. Commensalism: one microbe grows faster  

(Taker) in the paired simulation while the other microbe’s growth is 

unaffected (Giver). Mutualism: both microbes grow faster in the paired 

simulation. (b) Hierarchical clustering (Euclidean distance) of the  

ratio of pairwise interaction types per condition (i.e., diet and oxygen 

presence) on the taxonomic family level. See a for a description  

of the interaction types. Three main clusters were identified, each 

enriched in microbes with different carbohydrate fermentation 

capabilities, belonging to the clustered families.
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METHODS

Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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reconstructions with many transport reactions9. Each draft model had an 
unfeasibly high export flux of protons from the cytosol, resulting in biologically 
implausibly high ATP production (average flux of 933 ± 229 mmol/gDW/h 
in the absence and of 933 ± 227 mmol/gDW/h in the presence of oxygen, on 
Western diet, Supplementary Table 12). We identified futile cycles by con-
straining each reaction flux to zero individually and computed the flux through 
the ATP demand reaction using flux balance analysis (FBA)34. No flux was 
forced through the BOF. Each deleted reaction lowering the ATP demand flux 
was inspected manually and replaced by an appropriate irreversible reaction 
in all reconstructions containing that futile cycle. If such change prevented the 
model from producing biomass, the change was reversed and another reaction 
eliminating the futile cycle was identified (Supplementary Fig. 8). After the 
curation, the average ATP production flux was 19 ± 13 mmol/gDW/h in the 
absence and 38 ± 23 mmol/gDW/h in the presence of oxygen.

Curation of fermentation pathways. An extensive literature search on the 
distribution and the structure of fermentation pathways in the considered  
gut microbes was performed on the genus level and, where possible, on the  
species level (Supplementary Note 4). Drawing on information from two 
books and 112 publications, we curated 28 fermentation pathways, of which 
20 were either absent from or nonfunctional in all draft reconstructions. 
Published information on fermentation products was available for 765 out of 
773 reconstructed microbes (Supplementary Table 1).

Curation of carbon source utilization pathways. A thorough literature search 
was performed to assess the carbon source utilization on a species and strain 
level (Supplementary Note 4). Pathways for 95 distinct carbon sources were 
added to the reconstructions based on evidence from two books56,57 and 199 
publications (Supplementary Table 1). The draft reconstructions captured 35 
of the 95 carbon sources but did not contain any of the 31 oligo- and polysac-
charides (Fig. 1e). Published information about carbon source utilization 
capabilities was available for 731 out of 773 reconstructed microbial strains 
(Supplementary Table 1). To verify the functionality of new fermentation 
and carbon source utilization pathways, flux variability analysis (FVA)25 was 
performed on each refined model with all exchange reactions open and no 
flux forced through the BOF.

Comparative genomics analysis. We used the results of two previous studies 
on respiratory reductases58 and B-vitamin synthesis pathways59. We extended 
the previous analyses to the 612 of our 773 organisms that were available in 
PubSEED60. In the case of missing annotations, a similarity search was per-
formed with a BLAST algorithm implemented in PubSEED (cutoff = e−20). 
In ambiguous situations, phylogenetic trees and genomic context for the cor-
responding proteins were analyzed as follows. The neighbor-joining approach 
implemented in PubSEED was used (default parameters) to construct the  
phylogenetic trees. Analysis of the genomic context was done using the tools 
available in PubSEED. Incorrect and inaccurate PubSEED annotations were 
edited and the corresponding genes were added to the relevant subsystems. 
Reactions were formulated for all pathways as needed and added to the recon-
structions. Additionally, gene-protein-reaction associations (GPRs) of the  
corresponding reactions were corrected based on the refined organisms’  
gene annotations (Supplementary Note 5). If a reaction was present in a draft 
reconstruction but the associated gene was not identified in the organism  
by comparative genomics, the reaction was removed if the deletion did not 
disable growth on rich medium.

Respiratory pathways and quinone biosynthesis. The presence of biosynthetic 
pathways for three main respiratory quinones (ubiquinone, menaquinone, and 
2-demethylmenaquinone) as well as for proton-driven ATP synthases were 
genomically analyzed (Supplementary Table 16 and Supplementary Note 6). 
Quinone-dependent reactions were added in agreement with the repertoire of 
quinones synthesized by the corresponding organism61. If no known quinone 
biosynthesis pathways were found in a genome, we assumed that the organism 
utilizes extracellular menaquinone and added the corresponding transport 
and exchange reactions62. All annotations are available in PubSEED60 (http://
pubseed.theseed.org/, under the subsystems “Respiration HGM”, “Respiration 
HGM New”, “Quinones biosynthesis HGM”, “Quinones biosynthesis HGM 
New”, “ATP Synthases HGM New”, and “ATP Synthases HGM”).

B-vitamin biosynthesis. Eight B-vitamins (i.e., biotin, cobalamin (B12), 
folate, niacin, pantothenate (B6), pyridoxine, riboflavin, and thiamin) were 
considered. Based on the genomic predictions and available experimental data, 

ONLINE METHODS
Access to AGORA reconstructions. AGORA is an ongoing resource of 
GENREs and that keeps abreast of human gut microbial knowledge and can 
be easily accessed via the Virtual Metabolic Human (VMH) database website  
(http://vmh.life), which allows querying each reconstruction’s content and 
data gathered from the literature search performed in this study. Any AGORA 
reconstruction can be downloaded in SBML format from the VMH website on 
the “Downloads” page. The website also hosts the human metabolic reconstruc-
tion, Recon 2 (ref. 22). New content can be added to an AGORA reconstruction  
manually or automatically, for example, using rBioNet15, which is compat-
ible with the COBRA toolbox8 and ensures all QC/QA measures defined by 
the community as described by Thiele and Palsson (2010)9. The “Feedback” 
tab provides contact information to the VMH developers regarding improve-
ments to any resources available on the VMH webpage, where additions to 
any resource will be upheld by the VMH developers.

Genome selection and draft reconstructions. In a previous study50, we 
retrieved 301 draft reconstructions from Model SEED14. Based on lists of 
human gut microbes reported by Qin et al. (2010)30 and by Rajilić-Stojanović 
and de Vos (2014)51, we obtained 472 additional draft reconstructions 
from Model SEED and KBase (Department of Energy Systems Biology 
Knowledgebase, http://kbase.us), both of which use the RAST annotation 
server52 to annotate the genomes and build the draft metabolic networks14. 
All reconstructions were downloaded in SBML format and imported into 
Matlab (Mathworks, Inc., Natick, MA, USA) using the COBRA Toolbox8.  
Each reconstruction was refined using the rBioNet extension15 to the COBRA 
Toolbox. We manually translated reaction and metabolite names into the VMH 
nomenclature (Supplementary Tables 14 and 15).

In silico simulations. All simulations were performed in Matlab using the 
COBRA Toolbox8 (https://opencobra.github.io/) and the linear programming 
solver CPLEX (IBM, Inc.) through the Tomlab interface (Tomlab, Inc.).

The curation process. Note that we refer to a model, which was derived from 
the corresponding reconstruction, whenever simulations under a specified 
condition were carried out.

Reaction directionalities. To ensure consistency with published reconstruc-
tions, the direction of each reaction in a draft reconstruction was set in agree-
ment with the VMH database. This curation prevented fluxes from occurring in 
thermodynamically unfavorable directions. In several cases, the change of direc-
tionality resulted in blocked reactions and/or resulted in a nonzero flux through 
the biomass objective function (BOF)18. For example, the reaction alpha,alpha-
trehalose-phosphate synthase (VMH ID: TRE6PS) has been reported to be irre-
versible53, but was reversible in each draft reconstruction and was required for 
the synthesis of UDP-glucose. We corrected this by adding the enzyme that syn-
thesizes UDP-glucose (UTP-glucose-1-phosphate uridylyltransferase, VMH ID: 
GALU) after setting the reaction TRE6PS to be irreversible. In a similar manner, 
we manually identified solutions to the other blockages and added appropriate 
corrections to the reconstructions. Note that when an AGORA model is used to 
represent a bacterium within a particular part of the intestine, context-specific 
parameters (temperature, pH, ionic strength, cytoplasmic electrical potential 
difference, and metabolite concentrations) should be used when checking for 
consistency between the direction of each reaction and those obtained by con-
text-specific thermodynamic estimates54 (Supplementary Note 1).

Anaerobic growth. The majority of intestinal microbes are strict or faculta-
tive anaerobes, while strict aerobes colonizing the gut are rare16. A total of 
192 draft-reconstruction-derived models could not carry flux through the 
BOF on anaerobic rich medium (all exchange reactions open, aside from the 
oxygen exchange reaction). Anaerobic growth was enabled by adding oxygen- 
independent reactions for gene products known to be functional under 
anaerobic conditions. For example, l-aspartate oxidase (EC 1.4.3.16) func-
tions under both aerobic and anaerobic conditions55; therefore the anaerobic, 
fumarate-using l-aspartate oxidase reaction (VMH ID: ASPO5) was added  
to those reconstructions containing the oxygen-using l-aspartate oxidase  
reaction (VMH ID: ASPO6).

Removal of infeasible flux loops. Futile cycles are sets of reactions that  
result in thermodynamically infeasible fluxes and are a common problem in 
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biosynthesis pathways for the B-vitamins were curated in the reconstructions 
(Supplementary Tables 16–18). For the cases where genomic predictions con-
tradicted published data, the experimental data on growth requirements was 
used for the curation of our reconstructions. If a vitamin biosynthesis pathway 
was present in a reconstruction that should not synthesize the vitamin based 
on genomic and experimental data, we added a transport and exchange reac-
tion for the vitamin and removed the reaction(s) that had been gap-filled by 
the Model SEED or KBase pipelines.

Central metabolic pathways. In order to close gaps and improve gene-protein- 
reaction associations in central metabolic pathways, a comparative genomic 
analysis was performed for (i) glycolysis and gluconeogenesis, (ii) the  
pentose phosphate pathway, (iii) the Entner-Doudoroff pathway, (iv) the  
citric acid cycle and the glyoxylate shunt, (v) the biosynthesis of purine  
and pyrimidine nucleotides, (vi) amino acid biosynthesis pathways, and 
(vii) the N-acetylglucosamine utilization for polysaccharide biosynthesis 
(Supplementary Table 2). In total, one to 96 (median 34) reactions partici-
pating in the 28 central metabolic pathways, represented by 20 PubSEED  
subsystems, were added to 627 reconstructions.

Nutrient requirements. To ensure that each model could grow on bio-
logically plausible in silico growth media, manual curation of in silico growth 
requirements was systematically performed by (i) removing unlikely growth 
requirements, (ii) gap-filling biomass precursor biosynthesis pathways based 
on comparative genomics (see above), and (iii) curating and validating the 
models against experimentally determined growth requirements reported 
in the literature. A preliminary defined medium was identified serving as 
a starting point for curation of the nutrient requirements (Supplementary 

Note 7). Microbial growth requirements for 64 nutrients, including amino 
acids, vitamins, and nucleobases, were identified for 244 bacteria from one 
book57 and 72 peer-reviewed papers (Supplementary Table 1). False-positive 
predictions (nutrients that were reported to be nonessential in literature, but 
required for in silico growth) and false-negative predictions (nutrients that 
were reported to be essential, but nonessential in silico) were inspected and 
eliminated where possible (Supplementary Note 7). The curation resolved 
413 false-positive and 245 false-negative predictions for 64 metabolites in 244 
microbial reconstructions, increasing the prediction sensitivity from 0.32 to 
0.68 and specificity from 0.92 to 0.98. All compounds identified as essential 
for at least one reconstruction after the curation were added to the in silico 
diets (Supplementary Table 12).

Leak test. We ensured that no metabolite in a model could be produced 
from nothing, which would indicate mass or charge imbalanced reactions. 
Therefore, the lower bounds for all exchange and sink reactions were set to 
zero to prevent any influx of metabolites. A demand reaction was then added 
for each metabolite in the reconstruction and maximized. A metabolite could 
be produced from nothing if the objective value was greater than zero and the 
responsible reaction(s) was corrected.

Mycoplasma and Ureaplasma sp. The reconstructions of Mycoplasma  

pneumoniae, Mycoplasma hominis, Ureaplasma parvum, and Ureaplasma  

urealyticum, which do not contain a cell wall57 required further refinement 
to the respective BOF. We removed cell wall components from the BOF of all 
four reconstructions. Since the Mycoplasma genus requires cholesterol for 
growth57, we added cholesterol to the BOF substrate lists of both Mycoplasma 
sp. reconstructions as well as transport and exchange reactions for choles-
terol. To the two Ureaplasma sp. reconstructions, urea transport and exchange  
reactions were added as this genus requires urea57.

Organization of the pipeline. The reconstruction curation, validation, and 
content expansion steps described above were integrated into one pipeline 
(Fig. 1a). As all draft reconstructions stemmed from Model SEED or KBase, 
issues in one draft reconstruction were thus systemic for a subset or all recon-
structions, and could be corrected in a consistent manner by propagating cura-
tion and QC/QA insights gained for one draft reconstruction to the remainder 
(Fig. 1c). This ‘comparative reconstruction’ approach allowed for the curation 
of hundreds of draft reconstructions at once.

Stoichiometric and flux consistency. The rank of a stoichiometric matrix is an 
objective measure of the comprehensiveness of a reconstruction as it represents 
the number of linearly independent constraints on a steady-state reaction flux. 
The matrix rank was computed with numerical linear algebra. A set of stoichio-
metrically consistent (mass balanced) reactions is mathematically defined by 

the existence of at least one, such that, where is a vector of the molecular mass 
of molecular species and is a stoichiometric matrix. We computed the largest 
stoichiometrically consistent subset of each draft and AGORA stoichiometric 
matrix using numerical linear optimization17. We say a matrix S is net flux 
consistent if there exist matrices and such that, where each row contains at least 
one nonzero entry. This condition ensures that a reaction admits a nonzero 
net flux in some flux distribution. Flux consistency was tested using numerical 
linear optimization63 as described in Fleming et al.17.

Gene sequence acquisition. We retrieved the nucleotide gene sequence 
of each microbe using the Perl API from the Model SEED and KBase web 
interface. We expanded these files with the appropriate gene sequences for 
respiration, quinone biosynthesis, B-vitamin synthesis, and central metabolic 
pathways were retrieved from the web interface of the PubSEED platform60. 
The final compiled gene sequences for each organism can be found in the 
VMH database.

Diet definitions. We defined two different diets, a Western diet and a high 
fiber diet (Supplementary Table 12). The diets varied in fat, simple sugar, 
starch, and fiber content. Additionally, both diets contained amino acids, vita-
mins, minerals, water, methanol64, and other metabolites, each of which was 
required for a nonzero biomass reaction flux in at least one of the 773 models 
(Supplementary Note 7).

Metabolic distance. The metabolic distance (MD) between two microbes  
was calculated using the Jaccard distance, such that MD = 1–|Ri∩Rj|/|RiRj|, 
where Ri is the list of reactions from reconstruction i and Rj is the list of reac-
tions present in reconstruction j. MD of 1 means that the two reconstructions 
share no reactions, and MD of zero means that the two reconstructions have 
identical reaction lists.

Carbon source and fermentation phenotypes. We set the lower bound of the 
BOF in a model to 0.001 h−1 to ensure its minimum growth, performed flux 
variability analysis (FVA)25, and inspected minimal and maximal possible flux 
values through the exchange reactions. A model was considered to be able to 
take up a carbon source if the minimal possible flux through a carbon source 
exchange reaction was negative (≤−10−6 mmol/gDW/h). Similarly, a model 
was considered to be able to secrete a fermentation product if the maximum 
possible flux through the fermentation product exchange reaction was posi-
tive (>10−6 mmol/gDW/h). Even though several amino acids can be used as 
carbon sources they were excluded from this analysis because amino acids are 
directly required in the BOFs.

Gene essentiality analysis. Gene essentiality data were available for six 
AGORA microbes (Fig. 1d)48. We retrieved the gene sequences for the six draft 
reconstructions from the Model SEED and KBase platforms. Published recon-
structions of the same strains were available for four of these microbes65–68.  
Their gene sequences were retrieved from the NCBI database69. We used the 
BLAST search option of the database (http://www.essentialgene.org/)48 to 
identify the in vitro–validated essential genes for each microbe. The in silico 
gene essentiality analysis was carried out under rich medium conditions for 
the draft, AGORA, and published models, by constraining the flux through all 
reactions associated with a deleted gene to 0 mmol/gDW/h and maximizing 
the BOF. A gene was considered essential in silico if its deletion resulted in a 
biomass reaction flux of zero.

Pairwise model simulations. Pairwise simulations were performed on every 
possible pair of the 773 AGORA metabolic reconstructions (298,378 pairs). 
Microbial models were paired by introducing a common lumen compartment, 
as described elsewhere33, in which each model could secrete or from which it 
could take up metabolites. Dietary compounds were added to the lumen and 
byproducts were removed. To prevent biologically implausible solutions, in 
which microbes benefit the paired microbe without producing any biomass, 
coupling constraints were added to the joined models65. Briefly, all reactions 
in a model were stoichiometrically coupled to its BOF, thereby enforcing a 
nonzero flux through the BOF if reaction fluxes were nonzero. Using FBA, 
growth of the microbial pair was maximized under both diets (Western  
and high-fiber diet), aerobically and anaerobically (Supplementary Table 9). 
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The maximal possible BOF of the individual microbe in the pair was deter-
mined by inactivating all reactions belonging to the other paired microbe.  
A minimal microbial BOF flux for each microbe of 0.001 h−1 was enforced. 
A model was considered to grow faster in the co-growth simulation when its 
paired growth rate was more than 10% higher than the individual growth rate 
of the same microbe under the same condition (Supplementary Table 12).  
A model was considered to grow slower in the co-growth simulation when  
its paired growth rate was more than 10% lower than the individual growth 
rate of the same microbe under the same condition.

Random order microbial assembly. We selected randomly a reconstruction 
to obtain its reaction list and appended it to the growing unique reaction list 
until all 773 strain-resolved reconstructions were considered once (Fig. 6b). 
We monitored the number of reactions added by each new reconstruction. 
We repeated this procedure 1,000 times. On the species level, we randomly 
selected a species and obtained the unique reaction list of all strain-resolved 
reconstructions belonging to that species. We appended the list of reactions 
until all 605 species captured by AGORA were considered once (Fig. 6d). We 
monitored the number of reactions added by each new species. We repeated 
this procedure 1,000 times.

Comparison with Recon 2. The human metabolic reconstruction, Recon 
2.04 (ref. 22), containing 5,063 metabolites and 7,440 reactions, was retrieved  
from http://vmh.life. A decompartmentalized Recon was created by placing  
all reactions occurring in one of the seven intracellular compartments  
into the cytosol. The extracellular compartment was retained. Duplicate  
reactions and reactions with identical sets of metabolites occurring on  
both sides of the chemical equation were removed, resulting in 6,256 unique 
metabolic reactions.

Metagenomic and 16S rRNA analysis. Information on metagenomic reads 
from gastrointestinal tract samples mapped onto a set of reference genomes 
was downloaded (http://hmpdacc.org/) for 149 healthy US individuals aged 
18–40 (ref. 5). We matched the strain names of the mapped reference genomes 
to 245 AGORA reconstructions (Supplementary Table 19) and identified the 
unique reaction set (i.e., metabolic diversity) for each individual. Using the 
read depth information, we calculated the read number covered by AGORA.

For the ELDERMET37 data, annotated species lists for 177 individuals  
from processed 16S rRNA data were retrieved from MG-RAST70 (http://
metagenomics.anl.gov/linkin.cgi?project=154). An individual’s unique reac-
tion set was obtained by mapping the reported species onto the pan-species 
reconstructions (Supplementary Table 19). Principal coordinate analysis was 
performed on the metabolic distance between each individual’s reaction set.

In vitro cell cultures. B. caccae ATCC 43185 and L. rhamnosus GG ATCC 
53103 (LGG) were precultured for 20 h in Brain Heart Infusion Broth (BHIS; 
Sigma), supplemented with 1% hemin under anaerobic conditions and shaking 
at 37 °C (Supplementary Note 3). After washing and resuspending in 10 ml of 
0.9% w/v NaCl solution, they were inoculated in DMEM 6429 supplemented 
with 1% hemin and 3.33% vitamin K, with or without arabinogalactan (Sigma; 
9.4 g/l), and maintained under anaerobic conditions. B. caccae and LGG were 
cultured for 33 and 44 h on average, respectively. Cells were harvested for cell 
counting by centrifugation (4,700g) and 750 µL aliquots of supernatant were 
removed for subsequent metabolite extraction. The aliquots were snap-frozen 
and placed at −80 °C until dedicated analysis. The cultures were confirmed 
using 16S rRNA sequencing.

Metabolomic analysis. The extraction and GC-MS measurement of short-
chain fatty acids was based on a protocol from Moreau et al.71 (Supplementary 

Note 8 and Supplementary Table 20). Extracellular polar metabolites from the 
supernatant samples and external concentration curves for each compound of 
interest were extracted applying a liquid–liquid extraction (Methanol/Water). 
GC-MS analysis was performed using an Agilent 7890A GC coupled to an 
Agilent 5975C inert XL Mass Selective Detector (Agilent Technologies). All 
GC-MS chromatograms were processed using MetaboliteDetector software, 

v3.020151231Ra72 (Supplementary Note 8). In addition, absolute quantitative  
values for lactic acid, glutamine, glutamic acid, and glucose were acquired 
using a 2950D Biochemistry Analyzer (YSI) (Supplementary Note 8).

In silico simulations of B. caccae and LGG. The single models as well as the 
pairwise model of B. caccae and LGG were subjected to an in silico medium 
mimicking the supplemented DMEM 6429 medium without and with ara-
binogalactan (Supplementary Table 11). Single and combined growth was 
predicted as described above. The potential of B. caccae and LGG to consume 
and produce metabolites in silico was computed using FVA25 and compared 
with GC-MS measurements. To identify the cross-feeding between the two 
species at optimal growth, FBA was performed with simultaneous growth as 
the objective function while minimizing the sum of internal fluxes.

Data availability. Data sharing is not applicable to this article as no data sets 
were generated or analyzed during the current study.
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