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to Dr Beáta Faller, Mr Michał Dębski, Dr David Penneys, Dr Vikram Kamat, Professor
Stanisław Radziszowski, Dr Erika Skrabulakova, Dr Joanna Polcyn-Lewandowska and
Professor Vladimir Modrák, for their insightful discussion.

I thank my parents, Ali and Nahid, my grandmother, Ashraf, and my two broth-
ers, HamidReza and MahmoudReza, for supporting me throughout my life and en-
couraging me to take the path of knowledge. I also thank my friends Sanam, Fiona,
Ian, Bishan, Anila, Rani, Sahar, David, Pierre, Sara, Richa, Quifen, Edward, Samuel,
Khoi-Nguyen, Ehsan, Azadeh, Jessie, Soheila, Soraya and other friends at CSIT and
University House for their priceless support.

I appreciate the services ANU offers to students especially through University
House, PARSA, CHELT, Counselling Centre and ANU Security. I am thankful for
the support and services provided by the great staff members at CSIT, especially Mrs
Janette Rawlinson. I also acknowledge the places where I wrote a big portion of
my thesis: Telstra tower, Max Brenner, Grill’d, YHA, and ANU Canberra and Kioloa
Coastal Campus in Australia, Cafe Artist, Cafe Lemon and Hotel Shabestan in Rasht,
and the trains around Poland.

vii





Abstract

In this thesis, efficient isomorph-free generation of graph classes with the method of
generation by canonical construction path(GCCP) is discussed. The method GCCP
has been invented by McKay in the 1980s. It is a general method to recursively gener-
ate combinatorial objects avoiding isomorphic copies. In the introduction chapter, the
method of GCCP is discussed and is compared to other well-known methods of gen-
eration. The generation of the class of quartic graphs is used as an example to explain
this method. Quartic graphs are simple regular graphs of degree four. The programs,
we developed based on GCCP, generate quartic graphs with 18 vertices more than two
times as efficiently as the well-known software GENREG does.

This thesis also demonstrates how the class of principal graph pairs can be gener-
ated exhaustively in an efficient way using the method of GCCP. The definition and
importance of principal graph pairs come from the theory of subfactors where each
subfactor can be modelled as a principal graph pair. The theory of subfactors has
applications in the theory of von Neumann algebras, operator algebras, quantum al-
gebras and Knot theory as well as in design of quantum computers. While it was
initially expected that the classification at index 3 +

√
5 would be very complicated,

using GCCP to exhaustively generate principal graph pairs was critical in completing
the classification of small index subfactors to index 5 1

4 .

The other set of classes of graphs considered in this thesis contains graphs without
a given set of cycles. For a given set of graphs, H, the Turán Number of H, ex(n,H),
is defined to be the maximum number of edges in a graph on n vertices without a
subgraph isomorphic to any graph in H. Denote by EX(n,H), the set of all extremal
graphs with respect to n and H, i.e., graphs with n vertices, ex(n,H) edges and no
subgraph isomorphic to any graph in H. We consider this problem when H is a set of
cycles. New results for ex(n, C) and EX(n, C) are introduced using a set of algorithms
based on the method of GCCP. Let K be an arbitrary subset of {C3, C4, C5, . . . , C32}.
For given n and a set of cycles, C, these algorithms can be used to calculate ex(n, C)
and extremal graphs in Ex(n, C) by recursively extending smaller graphs without any
cycle in C where C = K or C = {C3, C5, C7, . . .} ∪ K and n ≤ 64. These results are
considerably in excess of the previous results of the many researchers who worked on
similar problems.
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x

In the last chapter, a new class of canonical relabellings for graphs, hierarchical
canonical labelling, is introduced in which if the vertices of a graph, G, is canonically
labelled by {1, . . . , n}, then G \ {n} is also canonically labelled. An efficient hierarchi-
cal canonical labelling is presented and the application of this labelling in generation
of combinatorial objects is discussed.
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Chapter 1

Introduction

Graph theory is a branch of combinatorics that has drawn wide attention from math-
ematicians and computer scientists over the last two centuries. Since a graph is just
an abstraction of a network and it can be interpreted in different ways, applications of
graph theory appear in different areas such as transportation, chemistry, nanotechnol-
ogy, bioinformatics, computing theory, parallel computing and social networks. Many
new applications arise constantly that show the importance of research in this field.

Given some structural properties of some combinatorial objects (objects with dis-
crete structures), exhaustive generation is listing all combinatorial objects with those
properties. This process is also called structure enumeration. Exhaustive generation
is interesting for both theoretical and practical purposes. The history of humans mak-
ing lists of structures with given properties starts hundreds of years before Christ.
Theaetetus determined the complete list of regular polyhedra in 400 B.C. Exhaustive
generation has been far more advanced with the invention of computers. Many algo-
rithms are invented to enumerate or generate different combinatorial structures. Some
of these structures such as subsets, permutations, partitions and trees have nice recur-
sive decompositions that translate into efficient generation algorithms without pro-
ducing equivalent copies. A survey on generating these combinatorial objects can be
found in [124, 185]. For combinatorial objects with equivalence classes, we may wish
to list members of equivalence classes of combinatorial objects. In that sense, gen-
erating a class of combinatorial objects is constructing an exhaustive non-isomorphic
(non-equivalent) list of the objects in the class. An important example is generating
unlabelled graphs under the equivalence relation of isomorphism. For many classes of
unlabelled graphs, the isomorphism problem and avoiding equivalent copies during
the generation process tends to be difficult. Although Polya theory [185] can be used
to count unlabelled graphs, it does not help much in generating the graphs.

The generation of graphs and providing exhaustive catalogs of different graph
classes is also an indispensable tool for computerized investigations in graph-theoretical
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2 Introduction

research. It can be used in a search for counterexamples, verifying conjectures, refin-
ing proofs or discovering new conjectures. On the other hand, the flexibility with
which most combinatorial objects can be modeled by graphs has meant that efficient
programs for generating graphs can also be used to study and enumerate a variety
of other combinatorial structures, including the Latin rectangles and block designs.
Therefore, the problem of generating graphs has been considered by many authors.

Apart from mathematics, the generation of graphs can be also useful in indus-
try and in different scientific disciplines such as chemistry [181, 62], physics [199],
quantum physics [148] and crystallography [61] where the problem can be modelled
by graphs. Modeling problems in terms of graphs and generating the relevant class
of graph in search for the best solutions is a fast and inexpensive method to further
the results and push the boundaries of knowledge to the point where the real ex-
periments can’t reach. For example, in computer science, by generating the relevant
class of graphs, all the digital circuits of a given structure and size can be studied.
As another example, in chemistry, all the compounds with a given molecular for-
mula, or all the stereoisomers of a given molecule can be found using graph gener-
ation and these lists can be used to determine or predict the structure of molecules.
Many graph generators were designed specifically for their application in chemistry
[98, 99, 127, 137, 100]. In fact, generation of some classes of graphs has been initiated
by chemists. For example, the class of cubic (3-regular) graphs is a class in which
chemists have a great interest in. This class has been enumerated for the first time in
1889, up to 10 vertices, by Jan de Vries [59, 60]. This enumeration has been expanded
over the time by other chemists and mathematicians using hand and later on comput-
ers [19, 49, 109, 177, 47, 48, 160, 35, 186, 42].

In addition to specific classes of graphs, researchers have worked on developing
fast generators that can produce all graphs [97, 145]. These software packages have
the options to restrict some specifications of the generated graphs, such as number of
vertices, number of edges or the girth of the graphs. Different classes of graphs can be
produced by filtering the graphs generated that are not in the considered class. How-
ever, for many classes, this is not an efficient way of generation especially when most
of the generated graphs must be ruled out. Therefore, it is commonplace to develop
specific generators for interesting classes of graphs.

There are several general techniques for developing algorithms that list equiva-
lence classes, particularly equivalence classes that arise from symmetry conditions.
Two most commonly used techniques are called orderly generation and generation by
canonical construction path(GCCP). These approaches are not based on comparison for
discarding the isomorphic copies. Therefore, they are time and storage efficient. In
the first method, objects are only accepted in their canonical form while in the latter,
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objects are only accepted if they are generated in a canonical way. We explain and
compare these two methods of generation in the next section. GCCP is the method
we used in this thesis to generate different classes of graphs. We also introduce a new
version of the orderly generation at the end of the thesis.

In general, because of the isomorphism problem, the time for all generation algo-
rithms can grow dramatically fast in terms of the number of vertices. The method by
which isomorphic copies are avoided is one of the main criteria that determines the
efficiency of a generation algorithm. Goldberg [95] introduces an iterative orderly
generation algorithm by adding a vertex of maximum degree at a time and provided
a polynomial time upper bound per generation of one graph. Some other methods
avoid isomorphic copies by defining a canonical labelling. A canonical labelling of
graphs is a way to define a unique labelled representative graph for each isomor-
phism class. Deciding whether two given graphs are isomorphic is a fundamental
problem in graph theory. There seems to be a strong bond between graph genera-
tion and isomorphism algorithms. At the end of this thesis, we introduce a new class
of canonical labellings and demonstrate how it can be used in generation of graphs.
Solutions to the graph isomorphism problem are also used to study and enumerate
a variety of other combinatorial structures, including distance-regular graphs [43],
strongly regular graphs [81], block designs [57], Latin squares [159], partial geome-
tries [190], and integer programs [174]. McKay has introduced isomorphism algo-
rithms that are practically very fast. These algorithms are implemented in a software
package, nauty [147]. Besides different applications in mathematical research, these
algorithms have been used by several authors in a wide range of scientific disciplines
such as particle physics [172], digital circuits [106], condensed matter physics [46], op-
erations research [142, 180], semiconductors [200], error-correcting codes [173], neural
networks [108], computer architecture design [14, 56], materials engineering [45, 201],
artificial intelligence [11], event simulation [136], bioinformatics [107], computer secu-
rity [125], and cryptology [52].

1.1 Definitions and Preliminaries

A graph is a pair G = (V, E) where V is the set of vertices of G and E is the set of
edges of G. In an undirected graph, E is a subset of the set of all 2-element subsets of
V. The order and the size of a graph are defined respectively to be the number of its
vertices and edges. The degree of a vertex of a graph is the number of edges incident
to that vertex. A regular graph is a graph where the degree of all vertices is the same.
If every vertex of a graph has degree r, then we say the graph is regular of degree r,
or simply r-regular. 3-regular and 4-regular graphs are called cubic and quartic graphs
respectively.
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Let G = (V, E) and G′ = (V ′, E′) be two graphs. G′ is a subgraph of G if we have
V ′ ⊆ V and E′ ⊆ E. If G′ is a subgraph of G, then G a supergraph of G′. This is denoted
by G′ ⊆ G. Also, we say G′ is a subgraph of G induced by V ′, if G′ is a subgraph of G
and for all u, v ∈ V ′, we have {u, v} ∈ E′ iff {u, v} ∈ E.

A non-empty graph P = (V, E) is called a path and is denoted by P = x0x1...xk if
V = {x0, x1, ..., xk} and E = {x0x1, x1x2, ..., xk−1xk} where xis are all distinct vertices. If
P = x0...xk−1 is a path and k ≥ 3, then the graph C = P + xk−1x0 = x0...xk−1x0 is called
a cycle, The length of a cycle is its number of edges (or vertices). A cycle of length k
is called a k-cycle and is denoted by Ck. The cycles C3, C4 and C5 are called triangle,
quadrilateral and pentagon, respectively. A cycle is odd (even) if its length is odd (even).
A graph is called cyclic if it has at least one cycle as a subgraph. The minimum length
of a cycle contained in a graph, G, is called the girth of G and is indicated by g(G).

A graph G = (V, E) is called r-partite if V admits a partition into r classes such that
every edge has its ends in different classes, i.e, vertices in the same partition class must
not be adjacent. 2-partite graphs are called bipartite. It is well-known that a graph is
bipartite iff it does not contain any odd cycle.

In a labelled graph with n vertices, the vertices can be labelled by {1, 2, . . . , n}.
An adjacency matrix of a labelled graph, G, is an n × n-binary-matrix, AG, where
AG[i, j] = 1 if and only if vertices i and j are adjacent in G. We say two labelled graphs
are identical if their adjacency matrices are the same.

Let G = (V, E) and G′ = (V ′, E′) be two graphs. We say G and G′ are isomorphic
and write G ' G′, if there exists a bijection ϕ : V → V ′ where for all u, v ∈ V, we have
{u, v} ∈ E if and only if {ϕ(u), ϕ(y)} ∈ E′. In this case, ϕ is called an isomorphism from
G to G′. A bijection, σ : V → V, from the vertex set of G to itself is called an automor-
phism of G if it takes G to itself, that is if for all u, v ∈ V, we have {u, v} ∈ E if and only
if {σ(u), σ(y)} ∈ E. The set of all automorphisms of G is called the automorphism
groupautomorphism group of G. The automorphism group of G deduces a partition, π,
of the vertex set of G, called the orbit partition of G where each part (or cell) of π is
called an orbit of the automorphism group of G or simply an orbit of G. Two vertices of
G, say u, v ∈ V are in the same orbit iff there is an automorphism of G that takes u to v.

A canonical labelling is a function that fixes one representative for each isomor-
phism class of labelled graphs. More precisely, a canonical labelling is a function, C,
that takes a labelled graph, G, to a labelled graph, C(G), called canonical isomorph of
G, where:

• C(G) is isomorphic to G, and

• For any graph, H, isomorphic to G we have C(H) = C(G)
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We say a graph is a canonical isomorph, canonical, or canonically labelled, by a given
canonical labelling if the graph is identical to its image under that canonical labelling.

1.2 Methods of Generation

There are several methods to generate combinatorial objects [124, 185]. When it comes
to unlabelled graphs, generation is exhaustively listing pair-wise non-isomorphic la-
belled graphs in a given class, that is generating one labelled representative for each
unlabelled graph in the class. Since the graph isomorphism problem tends to be
difficult, the time for all isomorph-free graph generation algorithms can grow dramat-
ically fast in terms of the number of vertices. Therefore, the efficiency of a generation
method can strongly depend on the efficiency of the method applied to avoid isomor-
phic copies.

Methods of generation differ based on the algorithms they use to generate each
object and the method they apply to avoid isomorphic copies. Recursive generation
algorithms are more advanced methods to generate graphs. In these methods larger
objects (children) in a graph class are generated from smaller objects (parents) in that
class via some well-defined operations(extensions). These parent-child relations define
a collection of search trees where each node is a graph. The root of these generation
trees are the graphs with no parent; the graphs that can not be extended from any
other graph in the class. These graphs are called irreducible graphs of the class. It
is important to rule out the isomorphic copies from these trees. The methods we
discuss in this section are all based on generation trees. The main difference between
these methods comes from their different approaches to avoid isomorphic copies of
the graphs in the class. In the following sections, we explain the most commonly used
methods. There are, of course, other generation methods that do not fall exactly in a
method mentioned here, for example, the methods used in [15, 36].

1.2.1 The Method of Naive Generation

In the method of naive generation, we use a comparison-based approach to discard
isomorphic copies. The basic idea is to store a list of non-isomorphic generated graphs.
Hence, this method is also called the recorded objects method. When a graph is generated
it is compared to all graphs in this list. If it is isomorphic to one of these graphs, then it
is discarded. Otherwise, we add the newly generated graph to the list. The advantages
of this method is its simplicity. But this method is not efficient for producing a large
class of graphs because a considerable amount of memory is required to store the list of
non-isomorphic generated graphs. Also, checking if there is an isomorphism between
two given graphs can be very complicated. Therefore, this method becomes very
inefficient for larger classes of graphs, performing a pair-wise isomorphism checking
between any two generated graphs. Moreover, since this method does not use an
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effective pruning technique, lots of isomorphic intermediate nodes (possibly all nodes
on the search tree) can be produced.

In variations of this method, the running time and the storage required can be
reduced using heuristic algorithms and efficient data structures. Nonetheless, to have
much more efficient generation methods, we need to avoid pairwise isomorphism
checking. In the following sections, we discuss methods with non-comparison-based
approaches to discard isomorphic copies. These methods have more complicated algo-
rithms but they perform more efficiently in terms of the running time. Also with these
methods, it is not required to store the generated graphs. Hence, they are extremely
storage-efficient.

1.2.2 Generation by Canonical Representatives (Orderly Generation)

The method of generation by canonical representatives is the first general method of
isomorph-free generation of graphs and combinatorial objects. It was introduced in
the late 1970s by Read [182] and Faradzev [79, 78], independently. The main idea is
to generate only the canonically labelled graph in each isomorphism class. Hence,
for each class of isomorphism, any generated isomorph is discarded unless it is the
canonically labelled one.

Orderly generation is a variation of this method where canonical graphs are de-
fined recursively. The main idea in the orderly algorithms is to carefully pick the
representative of each equivalence class and the order in which larger objects are con-
structed out of smaller objects to guarantee the canonical objects can be found easily
via backtracks on the search trees. This method can be modified to increase the ef-
ficiency. Different classes of graphs are generated by variations of this method [55,
54, 64, 163, 35]. For example, Goldberg [95] considers the use of structure informa-
tion in the orderly generation approach and introduces an iterative orderly generation
algorithm by adding a vertex of maximum degree at a time and provided a polyno-
mial time upper bound per generation of one graph. Examples of software packages
using variations of this method of generation are Minibaum developed by Brinkmann
to produce cubic graphs, and GENREG developed by Meringer to produce regular
graphs.

1.2.3 Generation by Canonical Construction Path

The method of generation by canonical construction path (GCCP) was invented by
McKay in the late 1980s. This method is also known as the method of canonical augmen-
tation [125] because, in this method, many objects can be made by augmenting smaller
objects that can be made from even smaller objects recursively. Thus, one can start
from some subset of primitive objects such that any other object can be constructed
from at least one of the primitive objects by repeatedly augmenting the objects. This
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way a parent-child relation between the objects is defined as well as a search tree
based on these parent-child relations where each node is an object in the class. Note
each graph can be made in different ways and hence, isomorphic copies can appear
along the way on the search tree. That is two different nodes on the search tree may
present isomorphic copies and hence, there can be multiple paths on the search tree
from each object (on different nodes) to primitive objects. The basic idea to avoid
producing isomorphic copies is to define a single canonical construction path for each
object and then explore only the canonical paths. This way, from each isomorphism
class only one member is accepted; the one that is generated in a canonical way (by
canonical construction path). As opposed to the orderly generation, here an accepted
object is possibly not canonically labelled. We define a reduction to be the inverse
operation of an augmentation (extension), that is the operation that takes a graph to
its parent. Primitive graphs with no parent are called irreducible. Any graph that is
not irreducible, can be reduced in one or more ways via different reductions. In the
GCCP method, we need to consider a function that takes a graph and returns a spe-
cific set of reductions for that graph, called the canonical or the genuine reductions, that
are equivalent to each other under the action of the automorphism group. With these
definitions, a generated graph is accepted only if it is generated with an augmentation
(extension) whose inverse operation is a canonical (genuine) reduction.

Cubic graphs with up to 20 vertices [160] is the first class of graphs generated
by GCCP. The generation method of GCCP is extremely versatile and has been suc-
cessfully applied to many classes of graphs and other combinatorial objects including
graphs with some hereditary property [146], cubic graphs [39, 160, 186, 42], Ram-
sey graphs [80, 154, 157, 149, 155, 158], hypergraphs [153], digraphs [105], chromatic-
index-critical graphs [41] Latin rectangles and balanced incomplete block designs [156,
157, 152], structures of finite geometry [184], relational models [115] and unlabelled or-
ders [104]. Examples of graph generation software based on this method are Geng [145]
developed by McKay to produce graphs with given specifications, and Snarkhunter [42]
developed by Brinkmann, Goedgebeur and McKay to generate cubic graphs and spe-
cific subclasses of cubic graphs.

The efficiency and applicability of this method can be improved via group theoretic
approaches and permutation group computations. While some steps have been taken
toward this end, this problem is yet to be fully studied.

In the following sections, we explain this method more precisely, compare it with
the orderly method, and demonstrate how we applied this method to efficiently gen-
erate quartic graphs. More on this method and its mathematical basis can be found
in [146].
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1.3 GCCP and Generation of Quartic Graphs

In this section, we explain the method of generation by canonical construction path
(GCCP) in more detail. This is the method we used to generate different classes of
graphs including quartic graphs. We use the class of quartic graphs here as a sample to
explain GCCP. A quartic graph, or a 4-regular graph, is a graph where the degree of
each vertex is exactly four.

GCCP is a general method to recursively generate combinatorial objects in which
larger objects, (children), are constructed out of smaller ones, (parents), by some well-
defined operation, (extension). The inverse operation of extensions is called reductions.
For each generated graph, a set of reductions, that are equivalent to each other under
the action of the automorphism group, is defined to be genuine. To avoid isomorphic
copies, each graph is extended only by non-equivalent extensions. Also after a graph,
G, is generated, it is discarded unless it is generated by an extension whose inverse
operation is a genuine reduction in G.

1.3.1 How Isomorphic Copies are Avoided

The formal proof of GCCP being exhaustive and isomorph-free can be found in [146].
Here, we give a little insight to an inductive proof. The induction is an invariant, O(G)
of a graph, G, that increases during an extension. We call this invariant the order of the
graph. In the literature, the term order is usually used for the number of vertices of the
graphs that is different from the definition we used in this section. However, for some
extensions, this invariant can also be the number of vertices. As such is the extension
we present later on for generation of quartic graphs. Suppose for some fixed integer,
k, the GCCP process produces no more than one isomorph in each isomorphism class
of order at most k. We claim that the generation process produces no more than one
isomorph in each isomorphism class of order k + 1.

Suppose for the sake of contradiction that G and G′ are two isomorphic generated
graphs of order k + 1 that are extended from their parents, P1 and P2, by extensions
x1 and x2 respectively. Let r1 and r2 be the reductions that are inverse operations of
x1 and x2, respectively. The reductions r1 and r2 can not be equivalent to each other
under the action of automorphism group, otherwise x1 and x2 would be equivalent
and P1 and P2 would be isomorphic. But this is impossible because by the induction
hypothesis, P1 and P2 can not be two separately generated isomorphic graphs and if
they are exactly one generated graph, then x1 and x2 can not be equivalent by the
definition of GCCP. Therefore, r1 and r2 are non-equivalent reductions. And since G
and G′ are isomorphic, by definition of GCCP, only one of r1 and r2 can be genuine.
Thus, G and G′ can not be both generated and accepted.
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1.3.2 Generation of Quartic Graphs

The generation of regular graphs and their subclasses up to isomorphism is one of the
oldest problems in constructive combinatorics. Various algorithms for the generation
of regular graphs with different degrees of regularity have been invented. Beezer and
Riegsecker [25] described an algorithm to generate regular graphs based on which they
produced all regular graphs up to 13 vertices. Meringer [164] introduced an efficient
algorithm to generate regular graphs with given number of vertices and vertex degree.
The method is based on a variation of the orderly generation. The program [162] de-
veloped based on this method, allowed the generation of all regular graphs of degree
5 on 16 vertices for the first time. This program can be restricted to generate graphs
with a given girth.

The generation of cubic (3-regular) graphs and its subclasses has been studied by
several researchers [59, 60, 19, 49, 109, 177, 47, 48, 160, 35, 186, 40, 38, 42]. A fast gen-
erator for cubic graphs designed in recent years can be found in [37]. This program
can also be restricted to generate cubic graphs with girth at least 4 or 5.

Quartic, 4-regular or 4-valent graphs are simple graphs of degree four. This class
of graphs contains the smallest regular graphs of an even degree apart from the trivial
case of two-regular graphs that only contains cycles. Toida studied [194] the genera-
tion of the quartic graphs in the 1970s and later, de Vries [59] enumerated small quartic
graphs. Generating quartic graphs has also been considered while studying the gener-
ation of larger classes of graphs [51, 63, 163]. In 1992, a complete list of regular graphs
on 13 vertices including quartic ones was provided by Beezer and Riegsecker [25].
Meringer in [164] also generated quartic graphs on 18 vertices.

In 2001, Menon and her supervisor, McKay [161] developed some algorithms,
based on GCCP method, to produce quartic and bipartite quartic graphs up to 14
and 20 vertices respectively. Nevertheless, these algorithms were never published. We
have developed programs with a parallelisation option based on the same algorithms
to produce a complete list of non-isomorphic connected, bi-connected, and not neces-
sary connected quartic graphs with a given number of vertices. These programs are
time and storage efficient. They can produce quartic graphs up to 18 vertices more
than two times as efficiently as the well-known software GENREG [162] does. The
definition of the extension and the reduction we used are as follows:

The Extension

In [146], an upper object is defined to be a sub-object containing the information
needed to get from an object to one of its children, that is basically the information
that determines an extension. To generate quartic graphs we define an extension to be
removing two disjoint edges, adding a new vertex and joining it to the four endpoints
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of the two removed edges. Therefore, each pair of disjoint edges in a graph is an upper
object of the graph.

Extension

Figure 1.1: An extension: Removing two disjoint edges, adding a new vertex and
joining it to the four endpoints of the two removed edges.

The Reduction

In [146], a lower object is defined to be a sub-object that contains the information
needed to get from a graph to one of its parents, that is the information that deter-
mines a reduction. To generate quartic graphs we define a reduction to be deleting a
vertex and adding two extra disjoint edges between its neighbours without producing
multiple edges. Therefore, not every vertex can be removed by a reduction. To define
our reduction more precisely, we first define the lower objects, dovis. A dovi is a sub-
graph of a child that is reduced to two disjoint edges during the reduction. It consists
of 5 vertices; one vertex as the base, b, and its four neighbors. It can be considered as
(b, {{v1, v2}, {u1, u2}}) where:

• v1, v2, u1 and u2 are the 4 neighbours of the base, b,

• There is no edge between v1 and v2 and

• There is no edge between u1 and u2

A dovi, (b, {{v1, v2}, {u1, u2}}), can be reduced by deleting b and its four incident
edges, and adding the two edges {v1, v2} and {u1, u2}.

Reduction

Figure 1.2: A reduction: Deleting a vertex and adding two extra disjoint edges between
its neighbours without producing multiple edges.
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Note that, each vertex can be the base of at most three different dovis and there-
fore, can serve as the base to at most three different reductions.

Reduction 1

Reduction 3

Reduction 2

Figure 1.3: A dovi can be reduced in at most three different ways.

The Genuine Reduction

A genuine reduction is the one that reduces a winning dovi. A winning dovi, d =
(b, {{v1, v2}, {u1, u2}}) , is the one with the lexicographically largest 3-tuple (x0(d), x1(d), x2(d))
where:

• x0(d) = f (b) and f is a function of some combinatorial invariants of b.

• x1(d) is calculated based on a certain combination of f (v1), f (v2), f (u1) and
f (u2).

• x2(d) is the highest rank of a dovi in the same orbit as d, in the list of dovis sorted
lexicographically based on the canonical labelling of their vertices calculated by
nauty.

The Irreducible Graphs

Clearly, the set of quartic graphs is closed under the extension we defined. But there
are quartic graphs that can not be generated by extending any other quartic graph.
These are the ones that have no dovi as an induced subgraph and hence can not
be reduced to a parent. Therefore, these quartic graphs are called irreducible graphs.
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Theorem 1.3.1 determines the structure of the irreducible graphs. We used the idea
in this theorem as the building block to construct all irreducible quartic graphs of a
given order. Before stating this theorem, we first present some relevant definitions and
lemmas.

Definition 1. We say a vertex, b, in a quartic graph, G, is removable if there exist vertices v1,
v2, u1 and u2 such that:

• v1, v2, u1 and u2 are adjacent to b in G, and

• {v1, v2}, {u1, u2} /∈ E(G).

Otherwise b is irremovable.

In other words, a vertex is irremovable iff it is not the base to any dovi.

Definition 2. A quartic graph, G, is irreducible if all its vertices are irremovable. Otherwise,
it is reducible.

Definition 3. We define K5 − {e} to be the graph obtained by deleting an edge from K5.

Definition 4. A vertex is trapped if it is a vertex of degree four in one of the three graphs
shown in Figure 1.4.

Figure 1.4: A vertex is trapped if it is a vertex of degree four in a graph in this picture.

We use the following lemmas to prove Theorem 1.3.1.

Lemma 1.3.1. If G1 = K4 is an induced subgraph of a quartic graph, G, then any vertex of
G1 is irremovable.

Proof. Let b be a vertex of a G1. Since its three neighbours in G1 are adjacent together,
b is irremovable.

Lemma 1.3.2. Let G1 = K4 be an induced subgraph of a quartic graph, G. If a vertex, b, is
adjacent to exactly two vertices of G1, then b is removable.
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Proof. Let v1, v2, v3 and v4 be the four vertices of G1 where b is adjacent to v1, v2 and
two other vertices, u1 and u2, not in G1. Since each of the vertices v1 and v2 is adjacent
to b and has three other neighbours in G1, they can not be adjacent to any other vertex.
Therefore, there is no edge between v1 and u1 and no edge between v2 and u2. Hence
{v1, u1} and {v2, u2} are not in E(G) and b is removable.

Theorem 1.3.1. A quartic graph, G = (V, E) is irreducible iff its vertex set can be partitioned
into disjoint subsets such that each subset induces a subgraph isomorphic to a K5, a K4 or a
K5 − {e}.

Graphs G1 = K5, G2 = K4 and G3 = K5 − {e} are depicted in Figure 1.5.

G3G1 G2

Figure 1.5: A quartic graph is irreducible iff its vertex set can be partitioned into
disjoint subsets such that each subset induces a subgraph isomorphic to one of the

graphs G1, G2 or G3.

Proof. If V, the vertex set of graph G, can be partitioned into disjoint subsets where
each subset induces a subgraph isomorphic to a K5, a K4 or a K5 − {e}, then it is easy
to verify every vertex of G is contained in a K4. So by lemma 1.3.1, all the vertices are
irremovable and hence G is irreducible.

To prove the other direction of the theorem, we only need to show if G is irre-
ducible, then every vertex of G is trapped. Let u be an arbitrary vertex of G and v1, v3,
v3 and v4 be the four neighbours of u. We define Gu to be the subgraph induced by u
and its neighbours. Since u is irremovable, all of the three following statements holds:

• G contains at least one of the edges {v1, v2} and {v3, v4},

• G contains at least one of the edges {v1, v3} and {v4, v2}, and

• G contains at least one of the edges {v1, v4} and {v3, v2}.

Therefore, Gu must have a subgraph isomorphic to either H1 or H2 in Figure 1.6.
We consider each of these two cases separately. Without loss of generality, we assume
that the vertices of these subgraphs are labeled as shown in Figure 1.6.
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H2H1

v4

v2

v3

v4

v2

u

u

v3

v1

v1

Figure 1.6: For each vertex, u, in an irreducible graph, G, the induced subgraph, Gu,
must have a subgraph isomorphic to the graphs H1 or H2

We follow the proof by considering two cases:

Case 1: If H1 is a subgraph of Gu: Let X be a subgraph of G induced by S =
{v1, v2, v3, u} and let N be the set of vertices not in S that are adjacent to vertices in S.
Note that X = K4, v4 ∈ N and 1 ≤ |N| ≤ 4.

• |N| = 1: then N = {v4} and v4 is adjacent to all vertices of X. Hence Gu is
isomorphic to K5 and u is trapped.

• |N| = 2: then N = {v4, w} where w is not in Gu. To have the vertices v4 and
w irremovable, by Lemma 1.3.2, each of them must be adjacent to either exactly
one or exactly three vertices of X. Without the loss of generality, we consider
the case where v4 is adjacent to exactly one vertex of X. The vertices v4 and w
can not be adjacent otherwise v4 is removable. Therefore, w has a neighbour, x,
which is not in H1 and hence u is trapped.

• |N| = 3: then one vertex in N must be adjacent to exactly two vertices of X and
by lemma 1.3.2, such a vertex is removable. Therefore, this case can not happen.

• |N| = 4: then it is easy to see u is trapped.

Case 2: If H2 is a subgraph of Gu: Let S = {v2, v3, v4} and X be the subgraph in G
induced by S. We have 0 ≤ |E(X)| ≤ 3

• |E(X)| = 0: then v2 is adjacent to vertices w1 and w2 in V(G) \V(Gu) and since
there is no edge between v1 and w1 and no edge between u and w2, the vertex v2

is removable. Therefore, this case cannot happen.

• |E(X)| = 1: without loss of generality, we assume E(X) = {{v3v4}}.Hence, v2

is adjacent to vertices w1 and w2 in V(G) \ V(Gu) and similar to the case of
|E(X)| = 0 the vertex v2 is removable. Therefore, this case cannot happen either.
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• |E(X)| = 2: suppose E(X) = {{v2v3}, {v3v4}}. Note that, in this case, v2 and v4

cannot share a neighbour, w ∈ V(G) \ V(Gu), otherwise w is removable. There-
fore, there must be two different vertices w1, w2 ∈ V(G) \ V(Gu) where v2 is
adjacent to w1 and v4 is adjacent to w2. Now, it is easy to see u is trapped.

• |E(X)| = 3: then Gu = K5 and u is trapped.

An example of an irreducible quartic graph is shown in Figure 1.7. It is easy to
verify this graph satisfies the conditions inZ Theorem 1.3.1.

Figure 1.7: An example of an irreducible quartic graph.

1.3.2.1 Results

The programs developed during this research are time and storage efficient for gener-
ating all, connected and biconnected quartic graphs. Biconnectivity testing costs less
than extra 50 % of the total time. These programs produce connected quartic graphs
up to 18 vertices about 2 times more efficiently as the well-known software GENREG
does.The program GENREG is developed by Meringer and generates the connected
regular graphs [162, 164]. Table 1.1 demonstrates these results.
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Number
of
Vertices

Number of
QGs

Number of
Connected
QGs

Time/
Biconnected
QGs

(s)

Time/
connected
QGs

(s)

Time/ all
QGs (s)

GENREG
(s)

GENREG
vs
GCCP

12 1547 1544 0.020 0.021 0.021 0.028 1.33
13 10786 10778 0.080 0.071 0.070 0.120 1.69
14 88193 88168 0.590 0.432 0.430 0.930 2.15
15 805579 805491 5.290 3.700 3.691 8.500 2.29
16 8037796 8037418 54.370 36.792 36.717 84.610 2.29
17 86223660 86221634 611.840 404.880 404.410 924.760 2.28
18 985883873 985870522 8405.280 4823.910 4814.590 10803.88 2.23

Table 1.1: Running time of the programs developed based on the GCCP for producing quartic graphs
(QG). The column before last contains the running time of GENREG for producing connected quartic
graphs and the last column demonstrates the ratio of running time of GENREG to running time of GCCP

for connected quartic graphs
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1.3.3 Variations of GCCP

As we mentioned, GCCP has been used for generation of different combinatorial ob-
jects and graph class. Different extensions can be used in a GCCP method, such as
adding at each step, a vertex, an edge or a specific sub-object such as dovis in our
generation of quartic graphs. The choice of an extension to generate a given class of
objects can be made based on the properties of that class in a way to have the gen-
erated objects remained in the class or to minimize the number of generated objects
that must be ruled out. Also, a proper choice of an extension tries to maximise the
efficiency of the generation process.

The method of GCCP we described in the earlier sections is sometimes called the
generation by strong canonical construction path (strong canonical augmentation) as
opposed to the other variation of the GCCP, weak canonical augmentation where cal-
culating the automorphism group is avoided. In this variation, an object is extended
in every possible way. Hence, equivalent extensions can be applied to each object and
the isomorphic children can be generated. However, similar to the strong variation,
after an object is generated, it is rejected if it is not generated by an extension whose
inverse operation is not canonical. This means any two generated isomorphic copies
are essentially siblings. Therefore, applying isomorph rejection only amongst siblings
is sufficient to have an isomorph-free generation. In some situations, this version of
GCCP can have more advantages.

Although GCCP traverses the search tree in a DFS fashion but in order to make
our algorithm more efficient or useful under some circumstances, we can change the
way the search tree is being traversed. For example, the search tree can be traversed
in a combination of DFS and BFS fashion.

1.3.4 Parallelisation in GCCP

Since in GCCP no past memory is required, the computation can be distributed across
a processor farm as follows:

All processors build the generation tree up to a certain level, L, and then each of
them chooses a certain subset of nodes at level L and continues the generation process
building only the subtrees rooted from those nodes. Examples of this parallelisation to
generate cubic graphs can be found in [186]. The program we developed to generate
quartic graphs can also apply this parallelisation technique.

1.4 Orderly Generation Versus GCCP

In both methods, the orderly generation and GCCP, larger graphs (children) are gener-
ated from smaller ones (parents) by applying some well-defined operations(extensions).
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For a class of graphs, consider the search tree based on the parent-child relation de-
duced by extensions where each node of the tree is a labelled graph. The tree may
contain isomorphic or even identically labelled graphs. It is necessary to prune this
tree, so that from each class of isomorphism exactly one representative is output. The
GCCP and the orderly methods have different approaches to prune this tree though
they accept the very same number of nodes, that is the number of non-isomorphic
graphs in the class. In the orderly method, these accepted representatives are the
canonically labelled ones while in GCCP, the accepted representatives are those gen-
erated in a canonical way. We compare the two methods, GCCP and the orderly
generation, in terms of their applications and efficiency as follows:

Applications of the Orderly Generation and GCCP

In the orderly generation, the set of canonical isomorphs of the graphs in the class
to be generated must be closed under the considered extension. This means the ex-
tensions must be defined in a way that any canonically labelled graph in the class,
apart from the irreducible ones that can be easily generated, is an extension of another
canonically labelled graph in the class. Hence, the type of extensions and the canoni-
cal labellings must be compatible in this sense. Also, in this method, parents must be
induced subgraphs of their children. Thus, in the orderly method, the limitations on
the eligible extensions restrict the classes of graphs that can be generated in practice
with the orderly method. In contrast, the GCCP can be applied to a wider range of
extensions and no strict correlation is required between the types of extensions and the
genuine reductions. Therefore, this method can be applied to a wide range of classes
of graphs. In fact, almost any class of combinatorial objects for which an inductive
construction process exists can be generated with this method.

Efficiency of the Orderly Generation and GCCP

While in the rest of the thesis, the generation tree and the search tree are used inter-
changeably, in this section, we consider them to be different. We define the search
tree, to be the tree consists of all generated graphs, accepted and rejected ones while
the generation tree only contains the accepted generated graphs. With these defini-
tions, the generation tree is a subtree of the search tree consisting of only the accepted
nodes. Note that, for a given class of graphs, the generation trees obtained by GCCP
and the orderly generation have the same number of nodes that is the number of
unlabelled graphs in that class. In GCCP, due to avoiding the equivalent extensions,
the search trees, for many cases, are smaller than the corresponding ones in the or-
derly method. In those cases, the efficiency is increased in GCCP by generating fewer
nodes. Although having smaller search trees in GCCP is at the cost of time spent on
calculating the automorphism group to determine equivalent extension, one should
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note that such calculations are not needed for the terminal nodes on the generation
tree. Therefore, when the terminal nodes are a large portion of the generation tree, the
GCCP can perform very efficiently. However, sometimes when the generated graphs
are less symmetric, the search tree in GCCP is not much smaller than the one in the
orderly method and hence the time spent on calculating the automorphism group
may not pay for itself, specially when the terminal nodes are not a large portion of
the generation tree. In this case, the orderly method may perform more efficiently
than the GCCP. However, the weak variation of GCCP mentioned in Section 1.3.3 can
serve more efficiently than the strong variation in such cases by avoiding calculating
the automorphism group at cost of some isomorphism checking.

On the other hand, in the orderly generation, when a graph is generated, the pro-
cess of deciding whether to accept or reject the graph is usually much less efficient and
requires the computationally expensive calculation of the canonical labelling while by
exploiting the flexibility of the GCCP in accommodating different definitions for gen-
uine reductions and providing lookaheads, the computational cost of determining
whether a generated graph must be rejected or accepted, can be dramatically reduced.

In the last chapter, a new method of generation, the natural orderly generation, is
introduced that combines the benefits of the two methods we compared in this section.

1.5 Nauty; The Automorphism Group and a Canonical Labelling

To calculate the automorphism group, orbits of the automorphism group and the
canonical labelling of graphs, we use the practically efficient software package nauty
(No AUTomorphisms, Yes?). Nauty developed by McKay, is a set of procedures that
in addition to efficiently determining the automorphism group of a vertex-coloured
graph, implements one of the most powerful and the best known algorithms for graph
isomorphism problem by providing canonically labelled isomorph of labelled graphs.
Graph isomorphism problem is a fundamental problem in graph theory and is of a
special interest in complexity theory. It is among the few problems that are known
to be in the complexity class NP but not known whether it is solvable in polynomial
time or it is NP-complete. The time complexity of this problem is known to be at most
exp
(
(log n)O(1)) for graphs with n vertices [17, 16] while it can be solved in polynomial

time for certain classes of graphs [18, 31, 82, 140, 165]. The complexity of this problem
is discussed more extensively in [122, 143, 198].

In nauty, the orbits are obtained from the automorphisms of the graph and the
automorphisms are calculated by a backtracking algorithm over the search tree of la-
bellings of the graph. The basic idea of the algorithm is to build a search tree where
each node is an ordered partition of the vertex set of the input graph and each leaf is
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a discrete ordered partition that presents a relabelling of the input graph deduced by
the order of the vertices in the discrete partition. Automorphisms of the input graph
are found by noticing that two such relabelling give identical graphs. Let π1 and π2

be two relabellings that take the input graph to two identical graphs, then π1(π2)−1

is an automorphism of the input graph. Thus, a complete set of generators for the
automorphism group of the input graph can be deduced from the leaves of the search
tree. The building block of the algorithm is that at each node, we take a partition of
the vertices and try to divide a non-trivial cell at each step based on the number of
neighbours of vertices in each cell. This process continues until the partition can not
be furthered divided in such a way. At this stage, a cell, C, of the partition is chosen
and for each vertex, v ∈ C, we branch the search tree and divide C into C \ {v} and
{v}. The canonical labelling of the input graph is then defined to be the relabelling,
only among the relabellings deduced by the leaves of this search tree, that gives the
greatest isomorph in the total ordering defined by Read and Faradzev [79, 182]. Note
that, nauty also uses graph theoretical information to reduce the set of potential iso-
morphs from which the canonical isomorph is chosen.

The high efficiency of nauty is due to the clever pruning algorithm traversing the
search tree. It uses some group calculations and the graph automorphisms that are
found along the way to prune the search tree. Although nauty has exponential running
time on some input graphs, it performs exceptionally well under most circumstances.
The algorithms used in nauty are discussed in more detail in [103, 144, 147]. The
complexity analysis of these algorithms is discussed in [167]. Examples of classes
of graphs where the time complexity behaviour of this algorithm is polynomial or
exponential can be found in [167, 90]. Over the years, substantial advances have been
made to nauty, especially in the area of data structures. It can now process nontrivial
graphs with more than a million vertices.

Traces developed by Piperno [178] is another program for determining the automor-
phism group of a vertex-coloured graph, and isomorphisms between graphs. Combin-
ing this program with nauty [151], a higher range of graphs can be covered for efficient
calculation of the automorphism group and the canonical labelling. The package nauty
and Traces is available at McKay’s website [150]. It contains a set of tools suitable for
processing files of graphs such as the dreadnaut program that provides sufficient func-
tionality for simple purposes. Nauty can be also called within other programs for more
complicated applications.

1.6 Overview of the Thesis

In this thesis, efficient isomorph-free generation of graph classes with the method of
GCCP is discussed. In the current chapter, we explain this method and demonstrate
how this method can be used to generate quartic graphs. The results are summarised



§1.6 Overview of the Thesis 21

in Table 1.1 that shows the program based on GCCP generates quartic graphs with 18
vertices more than two times as efficiently as the well-known software GENREG.

The second chapter of this thesis—exhaustive generation of principal graph pairs—
uses the art of generation of graphs to extend the classification of some mathematical
objects known as subfactors in von Neumann algebra. The application of this work
arises in design of quantum computers, quantum geometry and similar fields.

The third chapter—the Turán numbers for cycles—catalogues all small Turán graphs
for collections of short cycles using advanced generation algorithms. The results are
considerably in excess of the previous results of the many researchers who worked on
similar problems.

And the last chapter—a hierarchical canonical labelling for graphs and its appli-
cation in the generation of graphs—defines a new class of canonical labellings and
introduces a canonical labelling in this class. There is a close relation between genera-
tion of graphs, graph isomorphism problem and the canonical labelling of graphs. The
last chapter demonstrates how we can use the new canonical labelling to introduce a
new method of generation that combines the advantages of the orderly generation and
the method of GCCP.
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Chapter 2

Exhaustive Generation of Principal
Graph Pairs

2.1 Abstract

This chapter presents the exhaustive generation of principal graph pairs using the
method of canonical construction path. The definition and importance of principal
graph pairs come from the theory of subfactors where each subfactor can be modelled
as a principal graph pair. The theory of subfactors has applications in the theory of
von Neumann algebras, operator algebras, quantum algebras and knot theory as well
as in design of quantum computers. It was by exhaustive classifications of subfactors
at small index that the least understood quantum symmetries were discovered. While
it was initially expected that the classification at index 3 +

√
5 would be very com-

plicated, using canonical construction path to exhaustively generate principal graph
pairs was critical in completing the classification of small index subfactors to index
5 1

4 [9], which is beyond the first interesting composite index, 3 +
√

5.

This is joint work with Scott Morrison and David Penneys but in this chapter, only
the contribution of the author is mentioned. Morrison and Penneys have indepen-
dently developed another generator for PGPs. The results of the two generators are
compared and observed to be consistent.

2.2 Introduction

The generation of all principal graph pairs (PGPs) with a limit on the maximum eigen-
value of the graphs can help with the classification of subfactors that has applications
in the theory of von Neumann algebras, the theory of subfactors and fusion categories.
A subfactor is an inclusion N ⊂ M of von Neumann algebras with trivial centres.

Subfactor standard invariants encode quantum symmetries. The classification of

23



24 Exhaustive Generation of Principal Graph Pairs

small index subfactors is an essential part of the search for exotic quantum symme-
tries. A quantum symmetry is a non-commutative analogue of the representation
category of a finite group. Since our knowledge of quantum symmetries is still primi-
tive, understanding the range of examples is essential. But there are several instances
of quantum symmetries that do not come from the basic examples. Indeed, the least
understood of all known quantum symmetries were discovered in exhaustive classifi-
cations of subfactors at small index [102].

Jones [116] and Ocneanu [171] provided the full classification of subfactor standard
invariants with index of at most 4 while many of the details are presented by others
[96, 29, 110, 111, 120, 117]. Popa [96, 179, 113] developed the classification of subfactor
at index exactly 4. Next, Haagerup classified principal graphs up to index 3+

√
3 [102]

with detail provided in [30, 13, 28]. Using some number theory-based techniques [50]
and by applying the obstructions introduced by [118, 189, 175], the classification of
subfactors was extended to index 5 = 3 +

√
4 [170, 168, 112, 176, 114, 119]. Unfortu-

nately, with these techniques, the classification can not be extended efficiently to index
larger than 5. In spite of the expectation that the classification at index 3 +

√
5 would

be very complicated, this classification is recently provided in [138] and some progress
is given towards the classification up to index 3 +

√
5 in [169], and up to index 6 1

5 in
[139].

The generation of PGPs helped to complete the classification of small index sub-
factors beyond 3+

√
5, which is the first interesting composite index, that is, a product

of smaller allowed indices. A PGP is a combinatorial object consisting of two bipar-
tite graphs with a duality function on the vertices satisfying some conditions. For
each subfactor there is an associated PGP and each PGP can be associated to at most
finitely many distinct subfactors. However, there are some combinatorial obstructions
for a PGP to be associated to a subfactor.

We have developed a program to exhaustively generate PGPs. The algorithm used
in this program is based on the generation method of canonical construction path,
which is time and storage efficient for discarding the isomorphic copies. The high
efficiency of the program enables producing PGPs with higher index limits compared
to the previous attempts and hence helps with extending the classification of subfac-
tors of small index [9] completing the classification of subfactor standard invariants to
index 5 1

4 .

2.2.1 Subfactors and Principal Graph Pairs

Given a PGP, an algebraic problem can be formulated with a one-to-one correspon-
dence between the solutions of this problem and the (hyperfinite) subfactors associated
with that PGP. This process is called finding a flat connection on a graph pair. Unfortu-
nately, these algebraic problems are, in general, intractable. But on the other hand, for
each subfactor, there is an associated PGP. While no combinatorial condition is known
defining a bijection between subfactors and PGPs, there are several obstructions or
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combinatorial conditions for a PGP to be associated to a subfactor. Although not sat-
isfying these obstructing conditions is not sufficient for a PGP to be associated with
a subfactor, it can nonetheless increase the probability to a good extent. Therefore,
it is commonplace to enumerate all possible PGPs, satisfying certain combinatorial
constraints and decide which generated PGPs can not be associated with a subfactor
using some other techniques including the standard number theoretic approach based
on [50]. The classification can then be completed considering only the remaining cases.

Unfortunately enumerating PGPs above index 4 gets difficult quickly. The gen-
eration methods used thus far to generate PGPs produce isomorphic copies of PGPs
and removing the corresponding redundancies in the generation tree via pairwise iso-
morphism checking was unrealistically computationally expensive. In this chapter,
we explain how we applied the method of Generation by Canonical Construction Path
[146] and incorporated a number of obstructions into the algorithm to enumerate PGPs
potentially associated to subfactors. The result played an important role in furthering
the classification of subfactors [9]. More information on subfactors and PGPs can be
found in [9].

2.3 Preliminaries

2.3.1 Definitions

In this section, we present the definitions we consider throughout this chapter. In
order to define the class of PGPs we aimed to generate, we first define the following:

A principal graph pair (PGP), P = (G1, G2, D) consists of two bipartite graphs, G1

and G2, and a duality function, D, where:

1. Each graph G1 and G2 has a number of distinct special vertices where there is a
path between any other vertex in the graph to one of these special vertices. Each
of these vertices is called a starred vertex or root. Each graph of a PGP is bipartite
with its roots in the same part of bipartition. Also, each graph of a PGP has at
least one root. In fact, in most cases, each graph of a PGP has exactly one root
and that is the assumption in a number of the theorems and definitions stated
in this chapter, however, they can be easily modified to accommodate multiple
roots.

2. For each vertex, v, in a graph of a PGP, we define, level[v] to be the distance of
v from the root (or the smallest distance of v from one root in case of multiple
roots). The vertices of each graph are in fact, partitioned based on their level. We
say v is at level l if it is at distance l from the root (or l is the smallest distance
between v and one of the roots). Level 0 only consists of the roots of the graph,
all the neighbours of a root are at level 1, and the level of other vertices can be
defined inductively. There are no edges between the vertices at the same level.
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3. The duality, D, is an involution of the vertices of the two graphs defining a
correspondence between the vertices where:

• If u = v then u is a self-dual vertex. Otherwise {u, v} is a pair of dual
vertices.

• The duality function preserves distance from the roots. That is if the vertices
of u and v are dual of each other then they are at the same level.

• If u is at an even level, then the dual of u is in the same graph as u.

• If u is at an odd level, then the dual of u is not in the same graph as u.
Hence there is no self-dual vertex at an odd level.

As we explained in Section 2.2, there are a number of obstructions for a PGP to be
associated to a subfactor. One of these obstructions can be stated as a condition called
associativity. A PGP satisfying the condition of associativity is called associative.

According to this condition for any vertex v, the multiset of the duals of the neigh-
bours of the duals of the neighbours of v is equal to the multiset of the neighbours
of the duals of the neighbours of the dual of v. That is, if S is a multiset containing
a subset of vertices in one graph, and D[S] and N[S] are the multisets consist of du-
als and neighbours of vertices in S, respectively, then the associativity condition says
D[N[D[N[{v}]]] = N[D[N[D[{v}]]]] for all vertices v in either of the two graphs. The
associativity condition can be restated as follows:

For any two vertices, v and u, the number of ways to get from v to u
by following an edge, taking the dual, following an edge from there and
taking the dual again, is the same as the number of ways to get from v to
u by taking the dual, following an edge, taking the dual, and following an
edge from there.

We define a dual object to be a self-dual vertex or a pair of dual vertices in a PGP.
The norm of a PGP is the maximum of the largest eigenvalue of the adjacency matrix
of either of the two graphs and the index of a PGP is the square of the norm of that
PGP.

The adjacency matrices of the two graphs of an associative PGP have the same
largest eigenvalues. The depth of a graph of a PGP is the largest level of a vertex in the
graph and the depth of a PGP, P is the largest depth of its two graphs and is denoted
by depthP. The associativity condition compels the difference between the depth of the
two graphs of a PGP to be at most one.

As a matter of fact, in PGPs, edges are weighted by positive integers. In this gen-
erality, the associativity condition is modified to respect edge multiplicities. However,
the indices of PGPs rapidly increase with weights larger than one. Thus, the PGPs
with weights larger than one that are within the index limit are rare and can be man-
aged by hand. Therefore, for the sake of simplicity, in our construction, we assumed
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the edges are not weighted.

2.3.2 Data Structures and Notations

In figures throughout this chapter, PGPs are demonstrated by two graphs drawn hori-
zontally one beneath the other where the vertices are placed left to right in increasing
order of their levels. Hence the roots are the left-most vertices and vertices of the two
graphs at the same level are aligned vertically.

At each odd level, the vertices of the second graph are arranged from top to bottom
in the same order of their corresponding dual vertices. That is, for each odd level, the
top most vertex in the first graph is the dual of the top most vertex in the other graph,
the second top most vertex in the first graph is the dual of the second top most vertex
in the other graph, and so on. At even levels, on the other hand, each self-dual vertex
is indicated by a short red spike while a pair of dual vertices are joined by a red line.
Figure 2.1 demonstrates the PGP of the Haagerup subfactor [12] where vertices 0 and
1 are roots of the two graphs. The pairs {2, 3}, {6, 7}, {12, 13}, {14, 15} and {16, 17}
are pair of dual vertices and all other vertices are self-dual.
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Figure 2.1: The PGP of the Haagerup subfactor [12]

2.3.2.1 Using Sparse Graph Data Structure to Store PGPs

Each PGP can be modeled as one single graph. Representing PGPs as single graphs
facilitates the application of nauty in the generation process. The main data structure
we used to produce and store PGPs is the sparsegraph format introduced by McKay. In
this format, an adjacency list is stored for each vertex. A detailed description of this
data structure can be found in [147]. We have designed efficient algorithms to convert
graph pairs stored with this data structure to the common notation for PGPs as we
explained above, and vice-versa. We show how to represent PGPs with single graphs
using sparse graph data structure.
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Consider a PGP consists of two bipartite graphs G1 and G2 with duality function D.
We define a labelled graph G where V(G) = V(G1) ∪V(G2), G1 has n1 roots labelled
by 0, . . . , n1 − 1, the graph G2 has n2 roots labelled by n1, . . . , n1 + n2 − 1, and E(G) =
E(G1)∪E(G2)∪ED where ED = {{u, v}| u 6= v and vertices u and v are dual of each other}.
The following theorem shows G1, G2 and D are reconstructable from (G, n1, n2).

Theorem 2.3.1. Consider a PGP, P and the duality function D where P consists of graphs
G1 and G2 with n1 and n2 roots, respectively. Let G be the graph constructed from G1, G2

and D as is explained above. The graphs G1, G2 and D and hence P, are reconstructable from
(G, n1, n2).

Proof. The roots of G1 and G2 can be determined just by their labels of 0, . . . , n1 −
1, n1, . . . , n1 + n2 − 1. Since roots are self-dual vertices of degree one, each of them has
only one neighbour in G that is their neighbour in G1 and G2, respectively. Hence the
vertices at level one in G1 and G2 can be determined. These vertices are dual of each
other and the edge between them in G shows the duality. We now inductively show
how vertices at other levels G1 and G2 and the edges in G representing the duality
can be determined by showing that for each i if the vertices at the level i and i− 1 are
known, then the vertices at the level i + 1 and their duals can be determined.

For a vertex, u, at level i in G1, consider the set of its neighbours in G. At most one
of them can be at level i since there are no edges in G1 or G2, between the vertices at
the same level. Therefore, if there is an edge in G, between u and a vertex, v where u
and v are at level i in G1 or G2, then the edge {u, v} does not exist in G1 or G2. This
edge in G is, hence, representing the duality between u and v. The neighbours of u in
G can be at level i− 1, i, or i + 1. And since by induction hypothesis the neighbours
of u that are at level i and i − 1 are known, all the neighbours of u at level i + 1 can
be determined. Since any vertex at level i + 1 in G1 is adjacent in G to a vertex that
is at level i in G1, one can determine all vertices at level i + 1 by investigating the
neighbours of all vertices at level i.

This way, while determining the set of vertices at each level and the neighbours of
each vertex, all edges in G representing the duality are also determined. It is easy to see
the graph obtained from G by removing these edges has two connected components,
one is G1 with roots labelled by 0, . . . , n1− 1 and the other one is G2 with roots labelled
by n1, . . . , n1 + n2 − 1.

2.4 The Generation Algorithm

To produce all PGPs with indices below a given limit that correspond to subfactors,
we produce a wider range of PGPs with indices below the given limit. We apply some
pruning techniques to avoid generating a big portion of the PGPs which are not as-
sociative or their index is not within the given limit. Any PGP with at least two dual
objects can be obtained from another PGP by deleting a dual object. Based on this
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recursive definition, we define our extension to be adding a new dual object and the
reduction to be removing a dual object, and we applied the method GCCP where each
node of the generation tree is a PGP.

When generating a class of combinatorial objects by recursively extending smaller
objects to construct larger ones, isomorphic copies appear in three ways :

• From the same parent and by extensions equivalent under the action of the au-
tomorphism group as depicted in Figure 2.2,

• From the same parent and by different extensions as depicted in Figure 2.3, and

• From different parents and by different extensions as depicted in Figure 2.4.

Figure 2.2: Isomorphic PGPs constructed from the same parent and by extensions
equivalent under the action of the automorphism group .
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Figure 2.3: Isomorphic PGPs constructed from the same parent and by different ex-
tensions

Figure 2.4: Isomorphic PGPs constructed from different parents and by different ex-
tensions.

The construction method of GCCP avoids isomorphic copies that can be generated
by any of these three cases. To avoid the first case, in GCCP, for each PGP, we only ap-
ply extensions that are none-equivalent under the action of the automorphism group,
and for this we need to calculate the automorphism group of each PGP. To avoid the
last two cases, in GCCP method, we define genuine reductions and any generated PGP
is rejected unless it is generated by an extension whose inverse operation is a genuine
reduction. These are discussed in more detail in the following sections.
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2.4.1 Extension

We define our extension to be adding one dual object to a PGP P = (G, G′, D) as
follows:

• If an extension is adding a dual object at an odd level l, we insert a pair of dual
vertices, one vertex to G and the other one to G′, connecting each new vertex to
some vertices at the previous level, l− 1. This way we guarantee in the new PGP,
as of the definition of a PGP, the dual of a vertex at an odd level is at the same
level of that vertex but in a different graph.

• If an extension is adding a dual object at an even level, l, then the extension may
add one self dual vertex or a pair of dual vertices and connects the self dual
vertex or the pair of dual vertices to some vertices at level l − 1 that are all in G
or all in G′. This way we guarantee in the generated graph pair, the dual of a
vertex at an even level is in the same graph and at the same level of that vertex
and this matches to the definition of a PGP.

As it is explained in Section 2.3.2.1, we store a whole PGP as one graph. Therefore,
when adding a pair of dual vertices, it is important to insert an edge between the
new vertices to store the duality between them. Note that by having all neighbours
of a new vertex at the same level, we guarantee each graph of the new PGP remains
bipartite.

Given a PGP, each potential extension can be represented by the sets of neighbours
of the one or the two vertices in the new dual object to be added to the PGP. To store a
potential extension we used a data type called setar. As it is explained in Section 2.5.2
two subsets S1 and S2 of vertices of a PGP are stored in a setar S = {S1, S2}. Of course,
S1 and S2 need to satisfy some conditions to define a valid prospective dual object and
therefore, a valid potential extension. For example, the vertices in S1 and S2 must be
all at the same level. When one of the subsets stored in S is empty, then S represents
an extension where a self-dual vertex is added and is joined to the vertices in the non-
empty subset in S. Otherwise S represents an extension where a pair of dual vertices
is added and one vertex is joined to the vertices in S1 and the other vertex is joined to
the vertices in S2.

Note that two extensions are equivalent when the neighbours of the prospective
duals are equivalent, that is when their corresponding setars are equivalent. In the
GCCP method, to avoid the isomorphic copies generated by the first case stated in
Section 2.4, before extending a PGP, P, we first determine its automorphism group,
Aut(P), from which we calculate the orbits of the valid setars of P. And then for
exactly one setar in each orbit, we extend P to a bigger PGP by adding a dual object
and inserting regarding edges between the vertices in the dual object and the vertices
in the representative setar.
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2.4.2 Reduction

Based on the extensions we defined above, a reduction is the operation of deleting a
dual object and the corresponding edges.

2.4.3 Genuine Reduction

According to the GCCP method, when we extend a PGP, X, to another PGP, Y, we
only accept Y if it is constructed from X by an extension whose inverse operation is a
genuine reduction. Here we define a reduction to be genuine if it reduces a winning
dual object. Therefore, if X is extended to Y, we accept Y only if it is constructed
from X by adding a winning dual object. This avoids the last two cases of generating
isomorphic copies.

We define a dual object, d, to be winning if:

1. The vertices in d are at the last level of Y.

2. d is a pair of dual vertices unless there is no pair of dual vertices at the last level,
i.e., d is a self-dual vertex only if there is no pair of dual vertices at the last level.

3. If d is a pair of dual vertices consisting of vertices u and v, then it has the largest
total degree, deg(u) + deg(v), among all other dual pairs at the last level. If d
is a self-dual vertex u, then it has the largest degree, deg(u), among all other
self-dual vertices at the last level.

4. Let w be a vertex in a dual object, H, where w is labelled lexicographically last by
the software nauty among all vertices that are part of a dual object that satisfies
all of the conditions given above. Then one vertex of d is in the same orbit as w.
That is:

• When there is no dual pair of vertices at the last level, and H is a self-dual
vertex with the largest canonical label among all self-dual vertices at the last
level with the largest degree, then d = {u} is in the same orbit as H.

• When d = {u, v} and H = {x, y} are both pairs of dual vertices where x has
the largest canonical label among all other vertices w1 where {w1, w2} is a
pair of dual vertices at the last level with the largest total degree, then u or
v is in the same orbit as x.

More precisely we define the canonical reduction by assign a 4-tuple x(d) =
(x0(d), x1(d), x2(d), x3(d)) to each dual object, d, and the winning dual objects are
those whose corresponding 4-tuples are lexicographically largest.

We aimed to define an efficient genuine reduction. Therefore, the values of x0, x1, x2, x3

are combinatorial invariants of increasing discriminating power and computational
cost where:
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• x0(d) is the level of the vertices of d,

• x1(d) = 0 if d is a self-dual vertex otherwise x1(d) = 1, and

• x2(d) is the degree of u when d = {u} is a self-dual vertex, otherwise it equals
to the total degree of u and v when d = {u, v} is a pair of dual vertices.

• x3(d) is the largest label among the canonical labels of vertices in the same orbit
as a vertex in d.

Each xi is computed only if (x0(d′), . . . , xi−1(d′)) is not the unique lexicographically
largest with d′ being the newly added dual object, that is, when the values of earlier
elements of x fail to determine our newly added dual object is not winning while they
also fail to distinguish it to be the unique winning dual object. Hence, if there are more
than one dual objects with the largest value of (x0, x1, x2) and our newly added dual
object is one of them, then using nauty, we canonically label the vertices and calculate
the orbits of the PGP, defining x3(d) to be the largest label among the canonical labels
of vertices in the same orbit as a vertex in d.

Since the x0, x1 and x2 are invariant under isomorphisms, the dual objects with
vertices in same orbits of the automorphism group have the same values of (x0, x1, x2).
The value of x3 has an even stronger property: the vertices of two dual objects are in
same orbits if and only if they have the same value of x3. This follows from the fact
that for any two dual pairs of vertices d1 = {u1, v1} and d2 = {u2, v2}, if the vertices
u1 and u2 are in the same orbit then so are v1 and v2. Therefore, together with the
definition of canonical labelling, we have the following lemma:

Lemma 2.4.1. Let P1 and P2 be two isomorphic PGPs having at least two dual objects each
and let γ be an isomorphism from P1 to P2. If d1 and d2 are, respectively, the dual objects in P1

and P2 having the largest 4-tuples x, then dγ
1 is a dual object in the same orbit as d2 under the

action of the automorphism group of P2, Aut(P2). Furthermore, reducing d1 in P1 produces a
graph isomorphic to the result of reducing d2 in P2.

Although the generation algorithm would remain exhaustive and isomorph-free
when only x3 is computed, embedding x0, x1 and x2 in the definition of winning dual
objects is important for the efficiency purposes. While to compute the value of x3, the
orbits of the automorphism group and a canonical form must be computed, the earlier
elements of the 4-tuples are only based on local properties of vertices that are much
cheaper to compute. Furthermore, these properties provide lookaheads in the gener-
ation process that improve its efficiency. For example, when extending a PGP, P, by
adding a new dual object to a level other than the last level, we already know that there
will be other dual objects with larger x0 and hence this new dual object is not going
to be a winning in the new PGP. Therefore, our definition of the genuine reduction al-
lows us to avoid the construction of a lot of children that would be rejected afterwards.
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According to Lemma 2.4.1, any two isomorphic accepted PGPs are from the same
parent and are generated by equivalent extensions. Since in the GCCP method, only
extensions, that are not non-equivalent under the action of automorphism group, are
applied to each PGP, no two isomorphic accepted PGPs can appear throughout the
generation process. We use this fact to prove the following lemma where given a PGP
r, the set Lr is the set of all labelled PGPs on the generation tree descendant from r in
which the extension is adding a dual object. For each k, Lk

r is the set of all PGPs in Lr

with k dual objects.

Lemma 2.4.2. Let Hn−1 be a set of PGPs consisting of exactly one representative for each
isomorphism class of PGPs in Ln−1

r . If for each PGP in Hn−1, the extensions of adding a dual
object is applied to exactly one setar in each orbit of all valid setars, and a generated PGP in
Ln

r is accepted if and only if the last added dual object has the lexicographically largest value
of (x0, x1, x2, x3), then exactly one representative of each isomorphism class of PGPs in Ln

r is
accepted.

Proof. Let P1 and P2 be two isomorphic accepted graphs in Ln
r . From Lemma 2.4.1,

we know that P1 and P2 are generated from the same parent, P, in Ln−1
r . Assume P1

is extended from P by adding a dual object, d1, and joining it accordingly to vertices
stored in a setar, S1, of P, and P2 is also extended from P by adding a dual object, d2,
joining it accordingly to setar S2 of P. According to Lemma 2.4.1, the newly added dual
objects d1 and d2 must both have the lexicographically largest value of (x0, x1, x2, x3)
in P1 and P2 respectively, otherwise P1 or P2 would not be accepted. Therefore there is
an isomorphism, γ, from P1 to P2 that maps d1 to d2. This means the automorphism
in P, deduced by γ, maps S1 to S2, showing that S1 and S2 are equivalent under the
Automorphism group of P, Aut(P) and that is in contrary to our procedure. Therefore
no two isomorphic copies are accepted. Now, we prove the exhaustiveness, that is, for
each isomorphism class of PGPs in Ln

r , at least one representative is generated and
accepted.

Let P1 be an arbitrary PGP in Ln
r . Consider a PGP, P2 ∈ Ln

r , that is isomorphic to
P1 in which the dual object, d containing the vertex labelled n is a winner. Let S be
a setar in P2 corresponding to d and P be the PGP obtained from P2 by removing d.
We have P ∈ Ln−1

r . Therefore there should be P′ ∈ Hn−1 isomorphic to P. Let γ be
an isomorphism from P to P′ and consider S′ = Sγ. If P3 is the PGP obtained from
P′ by adding a dual object, d′ to S′, then P3 is isomorphic in P2 and d′ is a winning
dual object in P3. Hence P3 is accepted if it is generated. On the other hand, if C is the
set of all setars in P′ that are equivalent to S′ (C is the orbit of setars in P′ containing
S′), then P3 is obtained from P′ by any extension according to a setar in C and by
assumption, P′ is extended according to exactly one setar in C. Thus, P3 is generated
and accepted. This means P3 ∈ Hn−1. Hence, we showed for any arbitrary P1 ∈ Ln

r ,
there is an isomorphic PGP, P3 that is generated and accepted.

Together, Lemma 2.4.1 and Lemma 2.4.2 give the following theorem:
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Theorem 2.4.1. When recursively applied, starting with a PGP, r, the algorithm described
above constructs exactly one representative of every isomorphism class of PGPs in Lr.

An alternative proof that shows our generation algorithm is exhaustive and isomorph-
free is presented in Section 2.6.
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2.4.4 Pseudo-Code

Algorithm 1 takes a PGP, root, the number of vertices in the PGP, nr, and some data
embedded in a structure, termin, that stores the information regarding the terminat-
ing conditions including the maximum index and probably other conditions such as
the maximum number of vertices or the maximum running time. It first checks if
root is an eligible PGP by calling the function Is_Good() and then calls the function
P_Rec_Extend() to generates all eligible PGPs within the limit specified in the termina-
tion conditions termin, that are rooted from root in the generation tree in the method
of generation by canonical construction path. The functions Is_Good() and P_Rec_Extend()
are presented in Algorithms 2 and 3.

Algorithm 1 GCCP_PGPs_Generation algorithm
1: procedure The GCCP_PGPs_Generation (PGP: root, int nr, Struct: termin )
2: if Is_Good(root, termin ) == false then return
3: end if
4: P_Rec_Extend(root, n, termin, 1 )
5: end procedure

The function Is_Good as presented in Algorithm 2 takes a PGP, w, and a struc-
ture, termin, that stores the information regarding the terminating conditions includ-
ing the maximum index and probably other conditions such as the maximum number
of vertices or the maximum running time. It returns false when w satisfies one of the
terminating conditions or when we can prove the subtree rooted from w on the gen-
eration tree does not contain any associative PGP. Otherwise this function returns true.

Algorithm 2 Is_Good algorithm
1: procedure Is_Good(PGP: w, Struct: termin )
2: if w satisfies one terminating condition determined in termin then
3: return false
4: end if
5: if it can be shown there is no associative PGP on the subtree rooted from w

then
6: return false
7: end if
8: return true
9: end procedure

Calling the procedure P_Rec_Extend(), recursively extends PGPs starting from a
given PGP. This procedure is presented in Algorithm 3. It takes one PGP, w, the num-
ber of vertices, n, in that PGP, a structure, termin, that stores similar information as
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given in Algorithm 1, and a boolean argument that presents whether w is considered
the root of a search tree. If it is not, then the procedure first checks if w has been gener-
ated in a genuine way by calling the procedure Is_Genuine() depicted in Algorithm 4. It
calls the function Is_Good() to check if w passes the filter of the termination conditions
and satisfies some associativity tests. If w is associative, the function Is_associative()
returns true and w is output. The procedure, then, considers all valid non-equivalent
extensions of w and recursively extend each resulted PGP. The function Change() pre-
sented in Algorithm 5 modifies w to a new PGP according to a given extension.

Algorithm 3 P_Rec_Extend
1: procedure P_Rec_Extend(PGP: w, int: n, Struct: termin , Boolean Is_root )
2: if Is_root == false then
3: if Is_Genuine(w, n) == false then return
4: end if
5: end if
6: if Is_Good(w, termin ) == false then return
7: end if
8: if Is_associative(w) == true then
9: add w to the output file

10: end if
11: make a list l of valid setars (upper objects)
12: call nauty and calculate the orbits of setars in l
13: for each orbit do
14: choose one setar s as the representative
15: w′ = Change(w, n, s)
16: let n′ be the label of the last vertex in w′ . n′ = n + 1 or n + 2
17: P_Rec_Extend(w′, n′, termin , 0)
18: end for
19: return
20: end procedure

The function Is_Genuine() as presented in Algorithm 4 takes a PGP, w, and an
integer, n, that indicates the number of vertices in w which is the same as the label of
the vertex last inserted to w during the generation process. This function checks if w
has been generated in a genuine way from its parent by checking if the dual object,
d, inserted last during the generation process (which is the dual object containing the
vertex labelled n) is a winning dual object. That is, this function checks if d has the
lexicographically largest 4-tuple, x(d) = (x0(d), x1(d), x2(d), x3(d)), among all dual
objects in w. The definition of the 4-tuples x() = (x0(), x1(), x2(), x3()) is given in
Section 2.4.3.
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Algorithm 4 The Is_Genuine algorithm
1: procedure Is_Genuine(PGP: w, int: n)
2: if dual[n] = n then . The last inserted vertex is self-dual.
3: if w contains a dual pair at the last level then
4: return false
5: end if
6: if n is the unique vertex of the minimum degree at the last level then
7: return true
8: else
9: if n is not a vertex of the minimum degree at the last level then

10: return false
11: else
12: Let winningset be the set of all the vertices of the minimum degree at

the last level
13: if n is in the same orbit as the vertex in winningset with the largest

canonical labelling calculated by nauty then
14: return true
15: else
16: return false
17: end if
18: end if
19: end if
20: else . dual[n] = n− 1 and the last inserted vertex is not self-dual .
21: if {n, n− 1} is the unique dual pair with the minimum total degree at the

last level then
22: return true
23: else
24: if {n, n− 1} is not of the minimum total degree among dual pairs at the

last level then
25: return false
26: else
27: Let winningset be the set of all the vertices in a dual pair with mini-

mum total degree at the last level
28: if n or n− 1 is in the same orbit as the vertex in winningset with the

largest canonical labelling calculated by nauty then
29: return true
30: else
31: return false
32: end if
33: end if
34: end if
35: end if
36: end procedure
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The function Change() as presented in Algorithm 5 takes a PGP, w, an integer, n,
that indicates the number of vertices in w and a setar, s, that is a structure to store a
potential extension and contains a subset or two subsets of vertices that can be valid
neighbours of the vertices in a new dual object. Sections 2.4.1 and 2.5.2 contain more
explanation about setars. The function Change() inserts one self-dual vertex of a pair
of dual vertices to w and joins each new vertex to the vertices determined by s.

Algorithm 5 The Change algorithm
1: procedure Change(PGP: w, int: n, setar: s )
2: w′ = w
3: Add vertex n + 1 to w′, join it to the vertices in the first field of the setar.
4: if the second field of the setar is empty then
5: dual[n + 1] = n + 1 in w′

6: else
7: Add vertex n + 2 to w′, join it to the vertices in the second field of the setar.
8: dual[n + 1] = n + 2 in w′

9: dual[n + 2] = n + 1 in w′

10: end if
11: return w′

12: end procedure

Note that although these algorithms give the basic idea of our generation process,
our C code is implemented slightly differently.
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2.5 Efficiency

The key point of our program being more efficient in producing PGPs, compared
to the previous efforts, is the choice of the generation algorithm. In the previous
efforts isomorphic copies were avoided by running the isomorphism check between
the generated PGPs which is unrealistically computationally expensive as the size and
number of PGPs grow. In contrast, as it is extensively discussed in other chapters, the
method of Generation by Canonical Construction Path produces isomorph-free classes
of graphs without checking the isomorphism between the generated graphs.

In this section, we discuss the different techniques and predictions we applied to
increase the efficiency of the generation process as well as the mathematical theorems
we used to better prune our generation tree and discard the nodes with no descendant
matching the requirements for a PGP within the given index.

2.5.1 Using Common Computation

In general, since the GCCP method is a recursive algorithm and the child and the par-
ent nodes only slightly differ, we can benefit from these similarities to avoid common
computations between a node and its ancestors by storing the result for a node and
then updating it for children. As we explain in the following sections, to decrease the
running time, we benefit from this idea vastly, especially in computation regarding the
associativity conditions.

2.5.2 Efficient Data Structure

The maximum degree of each vertex in a graph of a PGP is bounded from above by
the index of the PGP. Therefore, the graphs representing PGPs are sparse and we can
have nauty run more efficiently using sparse format to store PGP. More explanation
about this format can be found in Section 2.3.2.1.

For intermediate computations, we store graphs using a modification of graph
format introduced in [147]. In this format, the adjacency matrix of the graph is stored.
To store the neighbours of each vertex, say v, we use a setword (consisting of 64 bits)
when the number of vertices is at most 64 and we use an array of setwords otherwise.
In the setword considered for v, each bit of represents the adjacency status between v
and the vertex corresponding to that bit position. This is not only a storage efficient
way to store graphs but also enables several operations, such as checking the adjacency,
to be performed in a constant time instead of linear time using bit-wise operations.

We also use setwords to store and manipulate sets and subsets where for a given
set or subset, each bit represents the inclusion/exclusion status of the member corre-
sponding to that bit position. In other words, considering the primitive data type int
be of size 8 bytes, then the binary representation of each integer represents a subset of
a set of size at most 64 [124].
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In Section 2.4.1, for each PGP, we defined our extension to be adding a dual object.
Each potential extension can be represented by the prospective neighbours of the one
or two vertices to be added as a new dual object. We know two extensions are equiva-
lent when the neighbours of the prospective dual objects are equivalent. By definition,
each new vertex should have all its neighbours in one graph and by our definitions of
genuine reduction, we can limit the possible neighbours to be chosen only from the
last level of the PGP.

To store a potential extension we use a data type called setar consisting of the neigh-
bours of the prospective dual object to be added during the extension. Each setar has
three fields: two setwords and a flag. Each of the first two fields is a setword storing
an integer whose binary representation as we explained above shows the neighbours
of one vertex in the prospective dual object. Note that for self dual vertices, the second
field is simply empty. All the vertices stored in these two fields are at the same level,
that is the last level or the level before last and the vertices stored in one field are all
in the same graph. The value of the third field, flag, can have three values as follows:

• 0: This means the vertices in both fields are from the first graph of the PGP,

• 1: This means the vertices in both fields are from the second(dual) graph of the
PGP and

• 2: This means the vertices in the first field are from the first graph and the
vertices in the second field are from the second graph of the PGP.

When the value of the third field is 0 or 1, all the vertices of the setar are at the same
odd level, indicating the new dual object being added to an even level. On the other
hand, when the value of the third field is 2, all the vertices of the setar are at an even
level, indicating the new dual object being added to an odd level. For example, the
extension in Figure 2.5 is adding a pair of dual vertices where one vertex of the dual
object is added to the higher graph and is joined to the vertices in positions {0, 3, 4}, for
which the decimal value of the binary representation is 20 + 23 + 24 = 25. The second
new vertex is added to the other graph and is joined to vertices in positions {4, 5} for
which the decimal value of the binary representation is 24 + 25 = 48. Therefore, this
extension can be stored as a setar with fields (25, 48, 2). As other examples, consider
extensions depicted by figures in Section 2.4. The setars corresponding to extensions in
Figure 2.2 are (1, 1, 2) and (2, 2, 2), the setars corresponding to extensions in Figure 2.4
are (1, 1, 0) and (1, 0, 0) and the setars corresponding to extensions in Figure 2.3 are
(1, 1, 2) and (32, 32, 2).

Storing extensions as setars that consist of two integers enables us to easily have a
sorted list of all possible extensions and thus enables the application of binary search
to increase the efficiency of some group calculations as we explain in Section 2.5.3.

Since the vertices stored in the two setwords of a setar are all at the same level,
instead of defining a correspondence between bit positions and the label of the vertices
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Figure 2.5: The value of the fields of setars that represent this extension is (25, 48, 2).

to interpret each setword as a subset of all vertices, we consider a correspondence
between bit positions and the position of the vertices at each level in a fixed arbitrary
order and interpret each setword as a subset of all the vertices at a regarding level.
This increases time and storage efficiency.

2.5.3 Group Calculations

Calculating the canonical labelling, orbits of a graph and in general, group calculations
can be computationally expensive and inefficient in terms of storage. We used the
software nauty to determine the canonical labelling and the automorphism group of
the sparse graphs representing PGPs. In this section, we discuss the techniques we
used to decrease the number of calls to nauty and increase the efficiency of the group
calculations.

2.5.3.1 Calculating the Canonical Labelling

When determined by the user, we calculate the canonical labellings to detect isomor-
phism between the generated PGPs and some given PGPs such as those in the list of
forbidden PGPs.

On the other hand, we compute the genuine reductions and determine winning
dual objects to decide whether to accept or reject a generated PGP. Although these
computations can be as expensive as calculating a canonical labelling, by defining
a proper genuine reduction, in many cases we can decide, without calculating the
canonical labelling, whether to reject or accept a PGP by calculating a number of
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computationally easy invariants such as the total degree of vertices in dual objects.
Also, with these invariants embedded in the definition of a genuine reduction, for
many PGPs, we can predict and avoid extensions whose inverse operation is not a
genuine reduction. With the definition of the genuine reduction in Section 2.4.3, we
can avoid extensions where the new dual object is not at the last level because the
obtained PGP would be rejected. In addition, when there is a pair of dual vertices at
the last level, we avoid considering extensions where a self-dual vertex is added.

2.5.3.2 Avoiding Equivalent Extensions of a PGP

To avoid equivalent extensions and isomorphic children of a PGP, we extend the PGP
for no more than one setar in each orbit of setars. The method we choose for this
purpose affects the time and storage efficiency. We applied two main methods as
follows:

1. Storing the list of setars and calculate the orbit of setars:
In this method, we calculate the orbits of setars, that is, the action of the au-
tomorphism group of the vertices of the PGP, on the list of setars. In fact, an
automorphism which acts on the vertices of the PGP deduces a permutation act-
ing on the list of setars. Therefore, the list of setars must be constructed and
stored. The program nauty can perform a given function whenever it finds an
automorphism. Thus, we can calculate the orbits of setars using nauty.

By the definition of setars, to enumerate all possible setars, we only need to enu-
merate all possible combinations of having two non-negative numbers that are
bounded by the largest integer representing a valid subset of vertices at the last
level or the level before last. In fact, we use a simple un-ranking function, and we
consider all possible ranks for relevant subsets [124], excluding those we know
in advance that do not give a valid and genuinely produced child. Here, consid-
ering a correspondence between bit positions and the position of the vertices at
each level instead of the labels of the vertices as explained in Section 2.5.2 helps
with time and storage efficiency.

2. Storing a generating set of the automorphism group of the vertices:

In this method, instead of storing the setars, we store the automorphism group.
When the number of setars is large, this method is storage efficient.

In this method, before enumerating the list of valid setars, we call nauty to cal-
culate the generators of automorphism group acting the vertices of the graph
representing a PGP. The number of generators is at most n − 1 where n is the
number of vertices. Using these generators, a procedure we call constructs a
base and strong generating set for the group that allows rapid computation of
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the whole group. Therefore we can store this generating set, instead of the whole
group. The size of this set is at most n2

2 .

After calculating and storing the generating set, we enumerate all the valid setars
without storing them. For each setar, we decide whether to reject and discard it
or to accept it and extend the PGP based on it. The main point is we must guar-
antee the PGP is extended exactly for one representative of each orbit of setars.
This representative can be any arbitrary member of the orbit. We considered
these representatives to be the smallest member of each orbit, given an order-
ing using the integers stored at each setar. When a setar is enumerated, all the
permutations acting on setars that are deduced by the automorphism group we
stored are applied on the enumerated setar. If there was a permutation that takes
the setar to a smaller one, we reject the setar otherwise, the setar is accepted and
the PGP is extended based on this setar.

Note that if there is a permutation from one setar to another that is deduced from
an automorphism, then these two setars are in the same orbit and are equivalent.
Therefore, either both or none of these setars are in the valid list. For example, if
one of the setars is rejected to be corresponded to a winning dual object or satisfies
pruning criteria such index or associativity, so must be the other setar. Hence, it would
produce an error in the program, if we fail to guarantee when a setar is rejected to be
inserted to the valid list, all of the setars in the same orbit of this setar, are also rejected.
Pruning techniques regarding index that are involved with floating point arithmetic
and approximation can potentially create such errors.

The first method is more time efficient because it only considers the permutations
corresponding to the generators while in the second method, the permutations corre-
sponding to any automorphism in the group must be considered. On the other hand,
the space complexity of the first method is linear in the number of setars while the
space complexity of the second method can be as small as linear in the number of a
generating set of the automorphism group.

The number of setars grows exponentially in terms of the number of vertices at
one level. For example, if there are k vertices at the last level of each graph and the
last level is even. Then the number of setars with vertices at the last level is O(22k).
Therefore, it is not storage efficient nor even feasible to store all setars as the number of
vertices at the two last levels increases. In the first method, using the binary search we
can increase the time-efficiency and with the partitioning technique, we can increase
the storage-efficiency. Below, these techniques are discussed in more detail.

• Using the binary search to find a setar

To compute the orbits of setars, we need to calculate permutations acting on setars
that are deduced by automorphisms of the vertices. For this sake, we need to find each



§2.5 Efficiency 45

setar, S, in the list of valid setars where S is the result of applying an automorphism
on another setar. This can be done in O(1) time with inverted indexing techniques.
However, this technique is too storage inefficient for setars.

Let m1 be the size of the list of valid setars, and m2 be the number of the generators
of the automorphism group acting on the vertices. To compute the orbits of setars, we
need to run a search algorithm a total of m1m2 times on the list of setars. Therefore,
it is important to use an efficient search algorithm. With the definition of setars, using
bit-vectors and integer representation of sets, it is easy to produce a sorted list of them
to avoid the cost of a sorting algorithm and increase the efficiency using the binary
search algorithm instead of a sequential search method.

• Partitioning the set of all valid setars

With this technique can decrease the time and especially space. We partition the
set of all valid upper objects into parts where no two setars in two different parts are
in one orbit. We call such partitioning valid.

The idea is if we know in advance that two setars are not in the same orbit then
there is no automorphism of the vertices that deduces a permutation which takes one
of these setars to the other. Therefore, we can partition the list of setars to a number
of sublists where the setars in different sublists are in different orbits. We store only
one sublist at a time and calculate the orbits of setars within each sublist. This way,
we deal with smaller lists and hence, the space needed to store a list is decreased as
well as the time needed to search the list.

Unless the automorphism group is stored, the number of calls to nauty in this
algorithm increases from one to the number of sublists. In practice, we observed
even with several calls to nauty, the total efficiency increases slightly when the list is
partitioned to sublists according to the size of the subsets stored in a setar. This could
be because of a decrease in the running of the search procedure. As we discuss in
Section 2.5.5, for indices smaller than 6, we can assume the number of neighbours of a
vertex is smaller than 6 and so is the size of subsets we stored in setars. That leaves us
with no greater than 20 sublists to be considered according to the size of the subsets.

Note that one may consider other possible partitions as long as it can be proven
that in these partitions, no two setars in two different parts are in one orbit. One
general method to have a valid partitioning is the partitioning based on the orbit of
the vertices. The list of setars is divided to some sublists where all setars in one sublist
have the same number of vertices from each orbit of the vertices. This partitioning can
be also considered for generation of other classes of objects.

Lemma 2.5.1. The partitioning based on the number of vertices from each orbit, as described
above, is a valid partitioning.

Proof. If two setars are in two different sublists (parts), then there is at least one orbit
of vertices where these setars share a different number of vertices with that orbit. This
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means that these two setars are not equivalent and they can not be in the same orbit
of setars.

We used all of these ideas in our C implementation. In fact, we change our strategy
based on the number of vertices at the two last levels, to have a better trade-off between
time and space.

2.5.4 Associativity

Associativity is one of the conditions a PGP must satisfy in order to be correspon-
dent to a subfactor. Therefore, we are only interested in associative PGPs. We can
increase the efficiency by pruning the generation tree at nodes without any associative
descendants.

As a reminder, according to the associativity condition, for any vertex v, the mul-
tiset of the duals of the neighbours of the duals of the neighbours of v is equal to the
multiset of the neighbours of the duals of the neighbours of the dual of v. That is,
if S is a multiset containing a subset of vertices in one graph, and D[S] and N[S] are
the multisets consist of duals and neighbours of vertices in S, respectively, then the
associativity condition says D[N[D[N[{v}]]] = N[D[N[D[{v}]]]] for all vertices v in
either of the two graphs. The associativity condition can be also restated as follows:

Let DNDN(u, v) be the number of ways to get from u to v by following an edge, tak-
ing the dual, following an edge from there and taking the dual again, and NDND(u, v)
be the number of ways to get from u to v by taking the dual, following an edge, taking
the dual, and following an edge from there. A PGP, P, is associative if for all pairs of
vertices {u, v} in P we have NDND(u, v) = DNDN(u, v).

It is trivial to see in any PGP, regardless of being associative or not, NDND(u, v) is
essentially the same as DNDN(v, u) for any two vertices u and v.

In this section, we first present a lemma that says the structure of lower levels of a
PGP remains unchanged in its descendants. We then present a number of lemmas that
discuss the changes in the value of DNDN(u, v) and NDND(u, v) during the genera-
tion process. Based on these lemmas, we prune some nodes with no associative PGPs
in their descendants.

Lemma 2.5.2. Let P1 and P2 be two PGPs where P1 is an ancestor of P2 in the generation tree
defined by our generation algorithm. For any l < depthP1 , if P′1 and P′2 are the PGPs obtained
from P1 and P2, respectively, by removing all the vertices at levels larger than l, then we have
P′1 = P′2.

Proof. Based on our definition of the genuine reduction presented in Section 2.4.3, in
an accepted PGP, the new dual object can only be at the last level. That is, if P is a PGP
with depth depthP, then any extension where a new dual object is added at a level
other than depthP and depthP + 1 is disregarded. That is the only difference between
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a node P and a child of P is an extra dual object at the last level of the child. Thus
during the generation process, dual objects are added level by level.

In the following lemmas, u and v are two vertices of a given PGP, P and for each
vertex, v of P, we define level[v] to be the level of v in P, that is the smallest distance
of v from a root as it is defined in Section 2.3.1.

Lemma 2.5.3. We have NDND(u, v) = DNDN(u, v) if at least one of the following holds:

• |level[u]− level[v]| 6= 0, 2 or

• u and v are in the same graph of the PGP.

Proof. The value of DNDN(u, v) is the number of ways to get from u to v by following
an edge, taking the dual, following an edge from there and taking the dual again and
the value of NDND(u, v) is the number of ways to get from u to v by taking the dual,
following an edge, taking the dual, and following an edge from there. That is we are
taking two edges and two duals. Starting from vertex u, taking two edges, we can
only get to vertices in level[u] + 2, level[u]− 2 or level[u]. Therefore, DNDN(u, v) =
NDND(u, v) = 0 if |level[u]− level[v]| 6= 0, 2. Also, we take duals two times. Between
these two times, we take an edge by which the level is changed by one. Therefore, we
are taking a dual at an odd level and a dual at an even level. That is starting from
vertex u, we can only get to vertices that are in the graph different from the graph
containing the vertex u. Hence DNDN(u, v) = NDND(u, v) = 0 if u and v are in the
same graph.

Lemma 2.5.3, says we only need to take care of pairs of vertices, u and v where they
are in different graphs of a PGP, both are at the same level or |level[u]− level[v]| = 2.

Lemma 2.5.4. If level[u] = level[v] = l, then adding new dual objects at levels other than
l− 1 and l + 1 does not change the values of DNDN(u, v) and NDND(u, v) in the new PGPs.

Proof. If level[u] = level[v] = l, then apart from u, v and their duals, all the vertices
on a route from u to v or v to u by following an edge, taking the dual, following an
edge and taking the dual again are at levels l − 1 and l + 1. Therefore, the values
of DNDN(u, v) and DNDN(v, u) = NDND(u, v) can not be affected by adding or
removing vertices and dual objects at other levels.

Lemma 2.5.5. If level[v] = level[u] ≤ depthP − 2 in P, then the values of DNDN(u, v) and
NDND(u, v) remain unchanged in all descendants of P.

Proof. According to our definition of extension and genuine reduction, in an accepted
child of P, the level of the new dual object can be only depthP or depthP + 1. On the
other hand, level[v] = level[u] ≤ depthP − 2, therefore, l − 1, l + 1 ≤ depthP − 1 and
l− 1, l + 1 6= depthP, depthP + 1. This means the new dual object is not inserted at level
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l − 1 or l + 1 and hence by Lemma 2.5.4, the value of DNDN(u, v) and NDND(u, v)
remain unchanged during an extension. Thus by induction in all descendants of P,
the values of DNDN(u, v) and NDND(u, v) remain unchanged.

Corollary 2.5.1. If there are u and v in P such that level[u] = level[v] ≤ depthP − 2
and DNDN(u, v) 6= NDND(u, v) in P, then no PGP in the subtree rooted from P in the
generation tree is associative.

One should note that Corollary 2.5.1 can not be generalised when level[u] =
level[v] = depthP − 1, depthP. However, we have the following:

Corollary 2.5.2. If there are u and v in P such that level[u] = level[v] ≤ depthP − 1 and
DNDN(u, v) 6= NDND(u, v) in P, then no PGP in a subtree rooted from P′ in the generation
tree is associative where P′ is a PGP obtained from P by an extension that inserts a dual object
at level depthP + 1

Proof. This can be inferred from Corollary 2.5.1, Noting that depth is now increased
by one and we now have level[u] = level[v] = depthP′ − 2 in P′.

Therefore, when level[u] = level[v] = depthP − 1, the values of DNDN(u, v) and
NDND(u, v) may only change by extensions that insert a dual object at level depthP.
Therefore, if DNDN(u, v) 6= NDND(u, v) and level[u] = level[v] = depthP − 1, then we
can avoid the extensions in which a dual object is added at a new level of depthP + 1
(joining to a number of vertices at level depthP) because such an extension gives a
PGP, P′ where according to the definition of our genuine reduction, no further dual
object can be added at level equals or less than depthP and hence we would have
DNDN(u, v) 6= NDND(u, v) in all accepted descendants of P′.

Note that when level[u] = level[v] = depthP, then the values of DNDN(u, v) and
NDND(u, v) can be changed only when the extension is adding a dual object at a new
level of depthP + 1 but in this case we cannot disregard the extensions where the dual
object is added at depthP because although the resulted PGPs are not associative, they
still can have associative descendants when new dual objects are added to at level of
depthP + 1 later along the generation tree.

Lemma 2.5.6. If level[v] = level[u] + 2, then adding new dual objects at levels other than
level[u] + 1 does not change the values of DNDN(u, v) and NDND(u, v) in the new PGPs.

Proof. If level[u] = l an level[v] = l + 2, then apart from u, v and their duals, all the
vertices that lie on a route from u to v or v to u that follows a graph edge, taking the
dual, following a graph edge and taking the dual again are at level l + 1. Therefore, the
values of DNDN(u, v) and DNDN(v, u) = NDND(u, v) can not be affected by adding
or removing vertices and dual objects at other levels.

Lemma 2.5.7. If level[v] = level[u]+ 2 in P, then the values of DNDN(u, v) and NDND(u, v)
remain unchanged in all descendants of P.
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Proof. According to our definition of extension and genuine reduction, in an accepted
child of P, the level of the newly dual object can be only depthP or depthP + 1. On
the other hand, level[v] = level[u] + 2 ≤ depthP, therefore, level[u] + 1 ≤ depthP − 1
and level[u] + 1 6= depthP, depthP + 1. This means the new dual object is not in-
serted at level level[u] + 1 and hence by Lemma 2.5.6, the values of DNDN(u, v) and
NDND(u, v) remain unchanged during an extension. Thus by induction in all descen-
dants of P, the values of DNDN(u, v) and NDND(u, v) remain unchanged during an
extension.

Therefore, if level[v] = level[u] + 2 and DNDN(u, v) 6= NDND(u, v) in P, then
we have DNDN(u, v) 6= NDND(u, v) in all PGPs descendants of P. This is stated in
Corollary 2.5.3 as follows:

Corollary 2.5.3. If there are u and v in P where level[v] = level[u] + 2 and DNDN(u, v) 6=
NDND(u, v), then no PGP in the subtree rooted from P in the generation tree is associative.

Lemma 2.5.8. If DNDN(u, v) 6= NDND(u, v) and at least one of the vertices of u and v are
at a level other than the two last levels of P, then there is no associative PGP in the subtree
rooted from P, in the generation tree of the generation algorithm we presented in Section 2.4.

Proof. Since DNDN(u, v) 6= NDND(u, v) in P, by Lemma 2.5.3 we have |level[u] −
level[v]| ∈ {0, 2} and since at least one of the vertices of u and v are at a level other than
the two last levels of P, one can easily verify that u, v and P satisfy either conditions
in Corollary 2.5.1 or conditions in Corollary 2.5.3.

Based on these lemmas, to avoid subtrees without any associative PGP, we prune
our generation tree as follows:

When a node P of depth depthP is generated, the newly added dual object, d, if
a vertex u ∈ d did not satisfy DNDN(u, v) = NDND(u, v) for v at level depthP, then
according to Corollary 2.5.3, we can prune the generation tree at this node. If depthP
is larger than the depth of the parent of P and DNDN(u, v) = NDND(u, v) for u and
v at level depthP − 2, then according to Corollary 2.5.1, we can prune the generation
tree at this node. Note depth of P and its parent is equal. This means P has already
passed this filter for its vertices at level depthP − 2 first time a dual object was added
to level depthP and according to Lemma 2.5.4, P would pass this filter as well. Also
adding d can change the value of DNDN(u, v) or NDND(u, v) for u and v both at level
depthP − 1. Hence we can update the value of them.

As given in Section 2.5.1, throughout our implementations in C, we try to predict
and avoid common computation using the results stored and calculated in previous
computations. For example, for each vertex, w, let DN(w) be the set of duals of
the neighbours of w and ND(w) be the set of neighbours of the dual w. We have
NDND(u, v) = |ND(u) ∩ DN(v)| and DNDN(u, v) = |DN(u) ∩ ND(v)|. Therefore,
instead of explicitly calculating NDND(u, v) and DNDN(u, v) for all u and v each time
from scratch, we only compute, store and where necessary update the sets ND(w)
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and DN(w) for all vertices. Then we only compute the size of intersections ND(u) ∩
DN(v) and DN(u) ∩ ND(v) which can be calculated efficiently using the bit-vector
representation of sets to store DN(w) and ND(w) for each vertex w.
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2.5.5 Index of PGPs: Calculation and Pruning Techniques

The contribution of this chapter is in exhaustive classifications of subfactors at small
indices and completing the classification of small index subfactors to index 5 1

4 . For this
sake, given an upper bound on the index of subfactors, we exhaustively generate all
PGPs with indices within the given limit that are associated to subfactors. The index
of a PGP is the maximum of the largest eigenvalue of the adjacency matrix of either
of the two graphs of the PGP. Although the two graphs in an associative PGP have
the same eigenvalue, it is not necessarily true for all PGPs in general. Therefore, the
largest eigenvalue of both graphs of a PGP must be calculated for each generated PGP
to determine the index. The definition of eigenvalues and some properties of indices
and the largest eigenvalues are as follows:

• For a square matrix A with real entries, we say λ is an eigenvalue of A if there
is a non-zero vector X such that AX = λX

• Let ∆ be the maximum degree of a graph with adjacency matrix A and λmax be
the largest eigenvalue of A. We have λmax ≤ ∆.
This clearly gives an upper bound on the degree of vertices of each graph of a
generated PGP. However, later in this chapter, we present tighter upper bounds
on degrees based on indices.

• For the adjacency matrix, A, of an undirected graph, G, if λA and λA2 are the
largest eigenvalues of A and A2, respectively, then we have (λA)

2 = λA2 .
We use this property to reduce the cost of computations needed to calculate the
index of each generated PGP.

• Let G and H be two graphs where G is a subgraph of H. Suppose λG and λH are
the largest eigenvalue of G and H, respectively. We have λG ≤ λH.

With this property, only a finite number of PGPs are required to be enumerated.
In addition, this property is also a great pruning tool because the two graphs of
a PGP in a node of the generation tree are subgraphs of the two graphs of any
PGP in a descendant node. Therefore, when the index of a generated PGP, P, is
larger than the given index, the index of any node in the subtree rooted from P,
is also larger than the given index and hence we can prune the generation tree
at P.

In this section, we explain how we increase the efficiency of calculating the indices
of generated PGPs. Given a matrix X, we denote the set of all eigenvalues of X by
σ(X) and the maximum eigenvalue of X by λmax(X) or simply by λmax when there is
no confusion.
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2.5.5.1 Calculating Lower Bounds for Index of a PGP Using Power Iteration Method

The Power Iteration method, also known as the Von Mises iteration, is an iterative
method to calculate the maximum eigenvalue and the corresponding dominant eigen-
vector [166]. It starts with a test vector b0, which can be an approximation to the
dominant eigenvector or a random vector and then iteratively calculates

bk+1 =
Abk

||Abk||
.

That is, at every iteration, the vector bk is multiplied by the matrix A and normalized.
The convergence is geometric, with ratio |λmax−1

λmax
| where λmax−1 is the second dominant

eigenvalue.

Lemma 2.5.9. Let Mn×n be a (0, 1)-square matrix and X be a vector of size n where all entries
of M and X are non-negative and there is at least one non-zero entry at each column and each
row of M. Then we have

||MX|| ≥ ||X||.

The proof of this lemma is trivial. Based on this lemma we used the Power iteration
method to calculate a lower bound on the maximum eigenvalue.

Lemma 2.5.10. Let Mn×n be a (0, 1)-square matrix where there is at least one non-zero entry
at each column and each row of M,

b0 =
1√
n

1
...
1

 , and bk+1 =
Mbk

||Mbk||
.

For all k ≥ 0, we have ||Mbk|| ≤ λmax(M).

Proof. The vectors bks are the test vectors in the method of Power Iteration and ||Mbk||
converges to λmax(M). On the other hand by Lemma 2.5.9 we know ||Mbk|| is non-
decreasing. Therefore, for all k > 0 we have ||Mbk|| ≤ λmax(M).

The lemma above shows that ||Mbk|| is a lower bound for λmax(M).

In our implementation, to calculate the largest eigenvalues of the graphs in PGPs
by the power method, we start from a test vector b0 that is the normalisation of the
vector [1, 1, . . . , 1]. We stop the calculations whenever ||Mbk|| exceeds the index limit
by a given relative error, we decide the corresponding PGP and hence its descendants
are not within the given index limit and we disregard the generated PGP and prune the
generation tree at that node. However, if this does not happen within a specific number
of iterations (ten in our implementation), we can’t decide whether the corresponding
PGP is within the given index limit or not. Therefore, we accept the generated PGP.
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In the following sections, we describe how we prune our generation tree based on
the index-criterion in a more efficient way:

2.5.5.2 Efficient Calculations of the Maximum Eigenvalue of a Bipartite Graph

By definition, the two graphs in a PGP are bipartite. Here, we show how we reduce
the time needed to calculate the maximum eigenvalue of these graphs using the fact
that they are bipartite.

Lemma 2.5.11. For any matrix Mn×n we have σ(MMT) = σ(MT M).

Proof. Let λ ∈ σ(MMT) then there is vector V such that (MMT)V = λV. Then we
have:

(MMT)V = λV ⇒ MT(MMT)V = λMTV ⇒ (MT M)(MTV) = λ(MTV).

This means λ ∈ σ(MT M). Therefore, σ(MMT) ⊆ σ(MT M). Similarly, we can show
σ(MT M) ⊆ σ(MMT) and therefore, σ(MMT) = σ(MT M).

Lemma 2.5.12. For any three square matrices M, M1 and M2 where

M =

[
M1 0
0 M2

]
,

we have σ(M) = σ(M1) ∪ σ(M2).

Proof. Let λ ∈ σ(M) then there is a non-zero vector V such that MV = λV. On the
other hand:

MV =

[
M1V1

M2V2

]
,

where [
V1

V2

]
= V.

Thus we have M1V1 = λV1 and M2V2 = λV2. Since V is non-zero, either V1 or V1 must
be non-zero. Therefore, λ ∈ σ(M1) or λ ∈ σ(M2), that is, λ ∈ σ(M1) ∪ (M2). This
shows σ(M) ⊆ σ(M1)∪ σ(M2). It can be shown a similar fashion that σ(M1)∪ (M2) ⊆
σ(M) and hence the theorem is proved.

Lemma 2.5.13. If A and B be two matrices where A is a square matrix and we have:

A =

[
0 B

BT 0

]
,

then we have
(
λmax(A)

)2
= λmax(BBT).



54 Exhaustive Generation of Principal Graph Pairs

Proof. First of all, BBT and BTB are square matrices. We also have:

A2 =

[
BBT 0

0 BTB

]
.

Therefore, by Lemma 2.5.12, we have σ(A2) = σ(BBT)∪σ(BTB). We know by Lemma 2.5.11
that σ(BBT) = σ(BTB), hence σ(A2) = σ(BBT) = σ(BTB). This means λmax(A2) =
λmax(BBT) = λmax(BTB).

It is well-known that
(
λmax(X)

)2
= λmax(X2) for any square matrix X. Therefore,

we have
(
λmax(A)

)2
= λmax(BBT).

Theorem 2.5.4. The index of a PGP with two graphs G1 and G2, is obtained by calculating
the maximum eigenvalues of the two matrices H1 and H2 and taking the larger one between
these two, where H1 is the matrix with each row and column representing a vertex at an even
level of G1 and the value of H1[i][j] is the number of paths of length two form the ith vertex to
the jth vertex in even level of G1, and H2 is defined in a similar way to represent the number
of paths of length two between the vertices at even levels in G2.

Proof. First note that since G1 is a bipartite graph with two parts of say k1 and k2

vertices, then G1 can be represented with an adjacency matrix A of the form

A =

[
0 B

BT 0

]
,

where the first k1 rows and columns represent the vertices in one part of G1, for
example, vertices at even levels, and the last k2 rows and columns represent the vertices
in the other part of G1, say vertices at odd levels and B is a k1× k2 matrix representing
the edges from one part to another.

Therefore, by Lemma 2.5.13, we have
(
λmax(A)

)2
= λmax(BBT) while with our

definition of matrix B here, one can easily see that BBT, as submatrix of A2, is the
matrix of number of paths of length two between the vertices at even levels in G1.
Similar argument can be considered for G2.

Based on this theorem, to calculate the index of PGPs, instead of calculating the
largest eigenvalues of the adjacency matrices, we calculate the largest eigenvalues of
much smaller matrices. These smaller matrices representing the number of paths of
length two between only the vertices at even levels (or at odd levels). This can dramat-
ically increase the time efficiency considering the iterative algorithm of calculating the
largest eigenvalues.

2.5.5.3 Upper Bound on the Degree of Vertices

We present upper bounds on the degree of vertices in a PGP based on the index of
the PGP. This helps us to predict for some children if their index is going to be larger
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than the given limit and hence we can prune the generation tree while avoiding the
computation needed in the power method.

For each vertex, v, at level, l, of a graph of a PGP, we define the set of children of
v to be the neighbours of v that are at level l − 1 and the set of parents of v to be the
neighbours of v at level l + 1. We use the following lemma to calculate some bounds
on the number of children of each vertex. This lemma is posed and proved by Brendan
McKay.

Lemma 2.5.14. Let G be a bipartite graph with a vertex that is adjacent to at least k vertices
of degree at least two, and at least l other vertices. Then the maximum eigenvalue λmax(G)
satisfies: (

λmax(G)
)2
≥ k + l + 1 +

√
(k + l + 1)2 − 4l
2

,

which is the largest root of y2 − (k + l + 1)y + l.

Proof. Consider a graph H that has a vertex v with neighbour set W. Write W as a
disjoint union W = W1 ∪W2. Form a new graph J from H by splitting v into two
vertices v1 and v2, with v1 adjacent only to W1 and v2 adjacent only to W2. We know
that

λmax(J) = max
x

xT Jx
xTx

;

choose an x that achieves the maximum. Form a vector y from x by combining ele-

ments xv1 , xv2 into a single element
√

x2
v1
+ x2

v2
. Then yTy = xTx and yT Hy ≥ xT Jx.

Therefore, λmax(H) ≥ λmax(J).
Now consider our bipartite graph G. Let a be a vertex given in the theorem and

let B be the set of k neighbours of degree at least two. Split the neighbours of B
(other than a) as we have described, until they have degree one. This operation cannot
increase the maximum eigenvalue, as we have shown. Now G contains the tree Tk,l
which consists of k paths of length two and l paths of length of one, all joined together
at one end ( so there are 2k + l + 1 vertices altogether). By an induction, we find that
the characteristic polynomial of Tk,l is

xl−1(x2 − 1)k−1(x4 − kx2 − lx2 − x2 + l),

and we can see that the largest eigenvalue is given by the last factor.

This lemma restricts the possible values of k and l, as are defined in the theorem,
based on the upper bound for the square of the maximum eigenvalue. For example,
Table 2.1 shows the value of the function

f (k, l) =
k + l + 1 +

√
(k + l + 1)2 − 4l
2
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where the first row and column show different values of l and k respectively and 6+

indicates f (k, l) > 6.

k/l 0 1 2 3 4 5+

1 2 2.5 - 3 3 - 3.5 4 - 4.5 5 - 5.5 6+

2 3 3.5 - 4 4.5 - 5 5 - 5.5 6+ 6+

3 4 4.5 - 5 5.5 - 6 6+ 6+ 6+

4 5 5.5 - 6 6+ 6+ 6+ 6+

5 6 6+ 6+ 6+ 6+ 6+

6+ 6+ 6+ 6+ 6+ 6+ 6+

Table 2.1: f (k, l) = k+l+1+
√

(k+l+1)2−4l
2 where 6+ indicates x > 6.

Note that when we want to add a new vertex at a level h > 2, we first choose a set
S of its neighbours at level h− 1 in the graph. For any vertex, v ∈ N, the number of
parents of v is equal to the number of neighbours of v at level h− 2 and we know all
parents of v are of degree at least two because they have a parent and at least one child,
v. Therefore, if k is the number of parents of v, then v is adjacent to at least k vertices of
degree at least two and Lemma 2.5.14 gives an upper bound on the maximum number
of children of v so that the square of the maximum eigenvalue stays below the given
limit. This way, Lemma 2.5.14 gives an upper bound the maximum number of children
of the vertices of a graph and restrict our possible extensions to those satisfying this
upper bound.

For example, when the given index-limit is six, i.e.,
(

λmax(G)
)2
≤ 6, Table 2.1

shows that a vertex with one parent, k = 1, can have at most 4 children, a vertex with
two parents, k = 2, can have at most 3 children, and so on.

In Table 2.2, the first row is the number, k, of the parents of a vertex and the second
row shows the maximum number of children each vertex with k parents can have

while staying below the index-limit of
(

λmax(G)
)2
≤ 6.

k 1 2 3 4 5
l ≤ 4 3 2 1 0

Table 2.2: The maximum number of children of a vertex with k parents to have
(

λmax(G)
)2
≤ 6.

Since the index of graphs and the degree of vertices is not decreasing in descen-
dants of a PGP, Lemma 2.5.14 gives a powerful tool for pruning the generation tree
without even calculating the maximum eigenvalue of a graph. For example, when the
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upper bound on the index is 6, Table 2.2 says each vertex can have at most five parents
and at most four children and we have k + l ≤ 5. So we benefit from this to disregard
ineligible setars before to avoid extensions that result in PGPs with too large indices.

The following ideas can help to increase the efficiency. These ideas are not imple-
mented in our C program. However, exploiting the last two ideas in implementations
by other authors has considerably improved the efficiency [9].

• Use and update A2 from the parent node instead of calculating it for each gen-
erated PGP out of scratch.

• Developing some theorems to predict when the largest eigenvalues of the two
graphs of a PGP are the same to avoid the extra calculations in such cases. For
example, when a PGP is associative, the eigenvalues of the two graphs are the
same and we can calculate it only for one of the graphs.

• Using another initial test vector b0 that is a better estimate of the Perron vector,
the dominant eigenvector, can increase the efficiency. For example, one might
use the last vector bk calculated for the parent of a PGP to construct an estimate
for the graphs in the child PGP.

• Using the special structure of the graphs of PGP to make calculations of multi-
plications of matrices more efficient. For example, considering only the vertices
in order of their level, then all entries in the sub-matrix or its powers (same for
the sub-matrices of vertices at even levels) are all zero except those at super and
sub-diagonal bands.



58 Exhaustive Generation of Principal Graph Pairs

2.5.6 Giving Priority to One Graph of a PGP

In this section, we discuss an idea that can affect the efficiency at the cost of generating
duplicated PGPs. This idea is not implemented in our C-code program but the im-
plementation developed in Scala by Scott Morrison and David Penneys [9] benefited
from this idea. We discuss how this idea could help with the efficiency and how it can
destroy the exhaustiveness or uniqueness.

Let P be a PGP consisting of two bipartite graphs g1 and g2. We could avoid re-
peating the calculation of some functions on g1 by calculating them once when we
start adding dual objects to g2 and storing and using them in the upcoming extensions
as long as the level is not changed, if we prioritize g1 to g2 in our definition of genuine
reduction so that a graph pair would be rejected if it is generated by adding a dual
object to the last level of g1 while g2 is not empty in that level, then in the process of
generation of each graph pair, as it is extended level by level, at each even level, all
the dual objects in g1 are added before any dual object in g2 is added to that level.
This means when we are adding a dual object to g2 at the same level, g1 remains un-
changed. Since being in graph g1 or g2 is not an invariant under isomorphism, with
this idea duplicated PGPs can be produced and hence the exhaustiveness or unique-
ness in our generation algorithm can be destroyed. We discuss this in more detail as
follows:

If we prioritise g1 to g2 and consider {g1, g2} and {g2, g1} isomorphic assigning
same colour to the starred vertices, then:

• We may generate duplicated graph pairs if we consider the winning dual objects
locally, i.e. for i = 0, 1, if the newly added dual object is in gi, to decided whether
it is winning or the generated graph pair must be rejected, the new dual object is
only compared to other dual objects at the last level of gi. For example, consider
the graph pairs (g, h) and (h, g) that are generated from the two non-isomorphic
graph pairs (g, h \ x) and (h, g \ y), by adding dual objects x and y respectively
where x and y are the local winning dual objects in h and g, respectively. This
can happen only if the PGP in the root of the generation tree consists of two
isomorphic graphs.

• Our generation process may not be exhausted if the winning dual objects are
selected globally, i.e. among all dual objects at the last level of g1 and g2. For
example, let the PGP in the root of the generation tree consists of two non-
isomorphic graphs and consider the PGP (g, h) where the global winning dual
object, x, at the last level is in g. If we have the PGP (g \ x, h) generated in
our process, we know that (h, g \ x) is isomorphic to (g \ x, h) and hence is
not generated. So the only way (g, h) can be generated is through extending
(g \ x, h) by adding x, but this extension is not accepted if there are other dual
objects at the last level in h. Therefore, because of prioritising g to h, the pair
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(g, h) generated this way is also rejected. Thus (g, h) is never accepted and our
generation is not exhaustive.

Also we can have our generation process exhaustive while prioritising g1 to g2,
having the winning dual objects being globally selected and not considering {g1, g2}
and {g2, g1} isomorphic for non-isomorphic graphs g1 and g2 and assigning different
colours to starred vertices in different graphs. Obviously both {g1, g2} and {g2, g1}
can be produced in this approach if in the root of the generation tree, the PGP consists
of two isomorphic graphs.

As given above, in our C implementation, we considered {g1, g2} and {g2, g1} as
isomorphic graph pairs. We did not prioritise one graph to another in the definition
of our genuine reduction and we calculated the winning dual objects globally. This
implementation generates PGP exhaustively and uniquely.
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2.6 Formal Proof

In this section, we prove that given a PGP r, our algorithm generates all PGPs rooted
from r without producing isomorphic copies. The proofs are based on the theorems
stated in [146] for the general method of GCCP to produce isomorph-free families
of combinatorial objects. This method has been discussed more extensively in other
chapters.

Given a PGP r, let Lr be the set of all labelled PGPs descendant from r where labels
{1, 2, .., n} are used to label a PGP with total of n vertices. For each X ∈ Lr, we define
o(X) to be the number of dual objects in X. Let G be the group of all relabellings of la-
belled PGPs so that the PGPs in one orbit are all isomorphic. Hence G = S1 ×S2 × ...,
where the action on Lr is such that the factor Sn is the symmetric group of degree n
permuting the labels of vertices of PGPs in Lr with n vertices. Let S be a setar in X,
we denote by XS, the PGP obtained from extending X by adding a dual object and
joining it accordingly to the vertices in S. Let X ∈ Lr be an arbitrary PGP. We define
the following:

• L(X) is the set of lower objects of X where:

L(X) =

{
{〈X, d〉|d is a dual object in X}, where o(X) > o(r)
∅, Otherwise

therefore, L(r) = ∅.

• U(X) is the set of upper objects of X where:

U(X) = {〈X, S〉|S is a setar in X and XS ∈ Lr}.

• Ľ = ∪X∈Lr L(X) and L̂ = ∪X∈Lr U(X).

• For each Y̌ = 〈Y, d〉 ∈ Ľ:

f (Y̌) = {X̂g = 〈X, S〉g| g ∈ G, X is obtained from Y by removing d and

S is the setar storing the neighbours of the vertices of d in Y}.
Clearly X̂ = 〈X, S〉 ∈ L̂ and Y = XS .

• For each X̂ = 〈X, S〉 ∈ L̂:

f ′(X̂) = {Y̌g = 〈Y, d〉g| g ∈ G, Y = XS and d is

the dual object in Y corresponding to setar S}
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It is obvious that Y̌ = 〈Y, d〉 ∈ Ľ.

• According to our definition of the genuine reduction, the function m : Lr → 2Ľ

given in [146] is defined as follows :

m(X) =

{
{(X, d)| d is a winning dual object in X} if o(X) > o(r)
∅ Otherwise

As a reminder from Section 2.4.3, the dual object d in X is winning if there is
no dual object d′, in X, whose 4-tuple, x(d′), is lexicographically larger than the
4-tuple x(d) where x(k) = (x0(k), x1(k), x2(k), x3(k)) for each dual object k.

Theorem 2.6.1. Our definitions satisfy the constraints of axioms C1− C7 stated in [146].

Proof. The group G is the group of all relabellings of labelled PGPs in Lr, so that the
PGPs in one orbit are all isomorphic. This group acts on lower and upper objects as
follows: For each g ∈ G, 〈X, d〉 ∈ Ľ and 〈X, S〉 ∈ L̂, we have 〈X, d〉g = 〈Xg, dg〉 and
〈X, S〉g = 〈Xg, Sg〉. Also, it is easy to see that an image, Sg of a setar S under g is also
a setar in Xg and the property of being a valid setar is invariant under isomorphisms.
This means XS ∈ Lr if and only if Xg

Sg ∈ Lr.

C1. We show G fixes each of Lr, Ľ and L̂ setwise.

1. For any X ∈ Lr and g ∈ G, the graph Xg is isomorphic to X and hence it is also
in Lr.

2. For any 〈X, d〉 ∈ Ľ and g ∈ G we have 〈X, d〉g = 〈Xg, dg〉 where Xg is isomorphic
to X and in Lr. It is not hard to see dg is a dual object of Xg and hence by our
definitions 〈Xg, dg〉 ∈ L(Xg). Therefore, 〈X, d〉g = 〈Xg, dg〉 ∈ Ľ.

3. For any 〈X, S〉 ∈ L̂ and g ∈ G we have 〈X, S〉g = 〈Xg, Sg〉 where Xg is isomorphic
to X and hence is in Lr and as we given above Sg is a setar in Xg and Xg

Sg ∈ Lr.
Therefore, 〈Xg, Sg〉 ∈ U(Xg) and consequently 〈X, S〉g = 〈Xg, Sg〉 ∈ L̂.

C2. We show for each X ∈ Lr, we have: L(Xg) = L(X)g and U(Xg) = U(X)g:

1. L(Xg) = L(X)g:
L(X) = {〈X, d〉|d is a dual object of X}

=⇒ L(X)g = {〈X, d〉g|d is a dual object of X}
= {〈Xg, dg, 〉|dg is a dual object of Xg} = L(Xg).

2. U(Xg) = U(X)g:

U(X) = {〈X, S〉|S is a setar in X and XS ∈ Lr}
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=⇒ U(X)g = {〈X, S〉g|S is a setar in X and XS ∈ Lr}
= {〈Xg, Sg〉|Sg is a setar in Xg and Xg

Sg ∈ Lr} = U(Xg).

C3. ∀Y̌ ∈ Ľ, f (Y̌) 6= ∅:
For each Y̌ ∈ Ľ, we have Y̌ = 〈Y, d〉 where Y ∈ Lr, o(Y) > o(r) and d is a dual

object in Y. Let S be the setar representing the neighbours of d in Y and X be the PGP
obtained from Y by removing d. It is easy to see 〈X, S〉 ∈ f (Y̌). Hence f (Y̌) 6= ∅.

C4. We show for any Y̌ ∈ Ľ, g ∈ G, X̂1 ∈ f (Y̌) and X̂2 ∈ f (Y̌g), there exists h ∈ G
such that X̂h

1 = X̂2.
Suppose X̂1 = 〈X1, S1〉, X̂2 = 〈X2, S2〉 and Y̌ = 〈Y, d〉. Hence Y̌g = 〈Yg, dg〉. Since

X̂1 ∈ f (Y̌), there is h1 ∈ G satisfying X1 = Ah1
1 and S1 = Bh1

1 where A1 is obtained
from Y by removing the vertices in d and B1 is the setar representing of neighbours of
the vertices of d in Y. Also, we have X̂2 ∈ f (Y̌g), so there is h2 ∈ G satisfying X2 = Ah2

2
and S2 = Bh2

2 where A2 is obtained from Yg by removing the vertices in dg and B2 is
the setar representing the of neighbours of the vertices of dg in Yg.
Consider h = h2(g(h−1

1 )), Since h1, h2, g ∈ G, we have h ∈ G. We prove X̂h
1 = X̂2:

1. Xh
1 = X2: We have Xh−1

1
1 = A1 and Ah2

2 = X2. It is easy to verify Ag
1 = A2. Hence

Xh
1 = Xh2(g(h−1

1 ))
1 = (Xh−1

1
1 )h2g = (Ag

1)
h2 = Ah2

2 = X2.

2. Sh
1 = S2: We have Sh−1

1
1 = B1 and Bh2

2 = S2. It is easy to verify Bg
1 = B2. So similar

to above, one can verify Sh
1 = S2.

C5. We show for any X̂ ∈ L̂, g ∈ G, Y̌1 ∈ f ′(X̂) and Y̌2 ∈ f ′(X̂g), there exists h ∈ G
such that Y̌h

1 = Y̌2.
Suppose Y̌1 = 〈Y1, d1〉, Y̌2 = 〈Y2, d2〉 and X̂ = 〈X, S〉. Hence X̂g = 〈Xg, Sg〉. We

have Y̌1 ∈ f ′(X̂), so there is h1 ∈ G satisfying Y1 = Ah1
1 , d1 = xh1

1 where A1 = XS and
x1 is the dual object corresponded to S in A1. Also, we have Y̌2 ∈ f ′(X̂g), so there
is h2 ∈ G satisfying Y2 = Ah2

2 , d2 = xh2
2 where A2 = Xg

Sg and x2 is the dual object
corresponded to Sg in A2.
Consider h = h2(g(h−1

1 )), Since h1, h2, g ∈ G, we have h ∈ G. We prove Y̌h
1 = Y̌2:

1. Yh
1 = Y2: We have Yh−1

1
1 = A1 and Ah2

2 = Y2. It is easy to verify Ag
1 = A2. So

similar to C4, one can easily show Yh
1 = Y2.

2. dh
1 = d2: We have dh−1

1
1 = x1 and xh2

2 = d2. It is obvious that xg
1 = x2 and hence

dh
1 = d2.

C6. We show o(Xg) = o(X):
For each X ∈ Lr, we defined o(X) to be the number of dual objects in X that is an

invariant under isomorphisms. This means o(Xg) = o(X).
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C7. We show for each Y̌ ∈ Ľ and X̂ ∈ f (Y̌) we have o(X̂) < o(Y̌):
According to our definitions for each Y̌ ∈ Ľ and X̂ ∈ f (Y̌) we have o(X̂) =

o(Y̌)− 1 < o(Y̌) .

Lemma 2.6.1. The function m(X) defined above is well-defined and satisfies the requirements
M1−M3 stated in [146].

Proof. It is obvious that m(X) is well defined. We prove each requirement M1, M2 and
M3 holds:

M1. If L(X) = ∅, then m(X) = ∅:
According to the definitions we presented for m(X) and L(X), we have m(X) ⊆ L(X)
and hence if L(X) = ∅, then m(X) = ∅.

M2. If L(X) 6= ∅, then m(X) is an orbit of the action of Aut(X) on L(X):
Consider a PGP X with L(X) 6= ∅. Since the values of x0, x1 and x2 are vertex invari-
ants, all vertices in the same orbit of the action of Aut(X) on L(X) have same values
for them. It is also clear that the value of x3 for all vertices in one orbit is the same. So
if for a dual object d we have 〈X, d〉 ∈ m(X) then for every dual object, d′, that is in
the same orbit as d we have 〈X, d′〉 ∈ m(X).
Furthermore, the value of x3 is different for dual objects in different orbits, therefore,
m(X) is an orbit of action of Aut(X) on L(X).

M3. For each X ∈ Lr and g ∈ G we have m(Xg) = m(X)g:
Let W(X) = {d|〈X, d〉 ∈ m(X)}. We only need to show W(Xg) = W(X)g. We proceed
the proof in two steps:

1. For each k ∈W(X)g, we have k ∈W(Xg):

If k ∈ W(X)g then d = kg−1 ∈ W(X) and hence d is a dual object with lexico-
graphically largest 4-tuple for x = (x0, x1, x2, x3) in X. Since the values of x0,
x1, x2 and x3 are vertex invariants, then the 4-tuple x(dg) must also be lexico-
graphically largest among all the 4-tuples of all dual objects in Xg. Therefore,
k = dg ∈W(Xg).

2. For each k ∈W(Xg), we have k ∈W(X)g:

If k ∈ W(Xg), then k is a dual object with lexicographically largest 4-tuple for
x = (x0, x1, x2, x3) in Xg. Since the values of x0, x1, x2 and x3 are vertex invariants,
then the 4-tuple x of d = kg−1

must also be lexicographically largest among all the
4-tuples of all dual objects in X. Therefore, d ∈W(X) and hence k = dg ∈W(X)g.
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2.7 The C Code Program

A Mathematica wrapper has been prepared by Morrison for the C code program de-
veloped to exhaustively generate PGPs. Hence, this program can be run by load-
ing "/development/afzaly-enumerator/Enumeration-setup.m" from the FusionAtlas
repository in a Mathematica session (after first loading the FusionAtlas itself), and
then using the command ExtendToDepth. Alternatively, it can be run directly as:

“enumerate-pgps graphpair –maxindex #index [–maxrank #maxrank] [–maxdepth
#depth] [–ignore ignorefilename] [–check weedsfilename [–printNEW newfilename]]
[–printPGP pgpfilename] [–printALL allfilename] [–maxtime#t stopfilename] ",

or “enumerate-pgps –resume resumefilename",

Where the parameters in brackets are optional and the terms start with # indicates
a number. For example, one may run the program as follows:

“enumerate-PGPs –maxindex 5.0000090449 bwd1v1duals1v1,bwd1v1duals1v1 –ignore
badweeds –check allweeds –maxrank 30".

Therefore, the C code program takes a graph pair, graphpair as the root of the gen-
eration tree and a real number,index, as the maximum index, and it generates all PGPs
up to that maximum index. The program can consider a list of forbidden PGPs to
avoid. It accepts other optional command line arguments that change the behaviour
of the program as follows:

• –ignore ignorefilename:
The internal nodes that appear in the input file ignorefilename are disregarded as
well as all of their descendants.

• –check weedsfilename:
The program checks if the set of the internal nodes are the same as the ones in
the input file weedsfilename

• –printNEW newfilename :
(only comes with –check) The program prints to the file newfilename, all the in-
ternal nodes not appearing in file weedsfilename.

• –maxrank #maxrank :
The total number of vertices of each produced PGP is at most #maxrank.

• –maxdepth #depth :
The depth of each generated graph pair is at most #depth.
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• –printPGP pgpfilename:
The program prints all generated PGPs to the file pgpfilename.

• –printALL allfilename:
The program prints all generated PGPs to the file allfilename.

• –maxtime #t stopfilename :
The program stops after t seconds and stores some information about the current
node to the file stopfilename.

• –resume resumefilename :
The program reads the root node along with certain data from the file resumefile-
name.

The C code program can be easily adapted to accommodate parallelism. In fact,
this feature had been implemented in the earlier versions of the program but not being
of the interest of the users, it was later removed.

2.7.1 The Features maxtime and resume

The two options maxtime and resume allow the user to stop and resume the program
any number of times without producing repeated results. When the program is called
with option –maxtime, it keeps track of the path from the root to the current node.
For each node, node, on this path, it stores the information of the position of the setar
in the valid setar list of the parent node based on which the parent is extended to node.
When the list of all valid setars is divided to a number of sublists, then program keeps
track of the information about the sublist the regarding setar is accommodated at as
well as its position in that sublist.
This information, for the last generated node (that is the first node generated after
t seconds) and for all its ancestors is stored at the file stopfilename as well and all
command arguments of the user. When the program is called with option –resume
stopfilename, all the information is restored. The program starts from the root. All
nodes of the generation tree are now partitioned into three parts: nodes that had not
been generated, nodes that are on the path from the root to the last node generated in
the previous call to the program, and the nodes that were generated in the previous
run but are not on the path from the root to the last node generated in the previous
run. These are demonstrated in Figure 2.6 with white vertices, vertices within a circle,
and black vertices respectively. The last generated node is depicted with a shaded
circle around it. When extending a node, we skip generating all children in the third
part while generating all other children. We avoid considering the nodes in the second
part for calculating any statistics. As these nodes are previously generated and the
only reason we are generating them is to access those children of them that had not
been generated.
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Figure 2.6: The partitioning of all the nodes of the generation tree into three parts:
Nodes not been generated yet (white), nodes that are on the path from the root to the

last node generated in the previous run (inside a circle), and the rest (black).

2.8 Conclusion

Exhaustive classifications of subfactors at small index help with the exploration into
quantum symmetries and improvement of knowledge. Quantum symmetries have
different applications including applications in designing quantum computers. These
classifications had been reached up to index 5 through multiple steps taken by several
researchers applying different techniques. Unfortunately enumerating possible graph
pairs above index 4 gets difficult quickly and these techniques struggle beyond index
5. Most of the classification processes have consisted of two steps:

• Generation of all possible PGPs, satisfying certain combinatorial constraints,
with graph index up to the square root of the index.

• Filtering the PGPs for which we have the knowledge that they cannot be asso-
ciated to any subfactor and then proceed the classification with the remaining
cases.

Over the years, a number of important obstructions to a graph pair being realized
as the principal graph of a subfactor have been developed. Incorporating many of
these obstructions into the algorithm for enumerating potential principal graphs of
subfactors has helped with both steps given above.

Our contribution is a significant improvement to the first step, by applying, for the
first time, a more sophisticated generation method to produce a wider range of PGPs
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as opposed to the previous methods that were time-consuming and were based on
pairwise checking to removing isomorphic copies. Applying the method of Genera-
tion by Canonical Construction Path increased the efficiency of the step of exhaustively
generating PGPs by orders of magnitude and played a critical role in furthering the
complete classification of subfactors up to index 5 1

4 which includes 3 +
√

5 , the first
interesting composite index. These results along with examples and information about
running time of the program can be found in [9].
The program developed during this research can produce PGPs of higher indices and
hence can be applied to extend even further the classification of subfactors, in par-
ticular, if new pruning and filtering techniques are introduced. Nevertheless, as the
index gets higher, larger and denser PGPs appear. In this case, the program may need
a number of modifications to accommodate denser PGPs, especially if the number of
vertices at each level grows beyond certain limits. Also, the trade-off between the time
and space as in Section 2.5.3 needs to be adjusted accordingly. Note that the ideas
given in this section can be adapted to used in the generation of other objects, as such
is the idea of valid partitioning introduced in Lemma 2.5.1.

To increase the efficiency even further, one may develop new pruning techniques
and apply ideas such as those given at the end of Section 2.5.5 to reduce the cost of
calculations needed.
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Chapter 3

The Turán Numbers for Cycles

3.1 Abstract

For a given set of graphs, H, the Turán Number of H, ex(n,H), is defined to be the
maximum number of edges in a graph on n vertices without a subgraph isomorphic
to any graph in H. Denote by EX(n,H), the set of all extremal graphs with respect to
n and H, i.e., graphs with n vertices, ex(n,H) edges and no subgraph isomorphic to
any graph in H. We consider this problem when H is a set of cycles.

We introduce new results for ex(n, C) and EX(n, C) using a set of algorithms we
have developed which are based on the method of Generation by Canonical Construction
Path. Let K be an arbitrary subset of {C3, C4, C5, . . . , C32}. For given n and a set of
cycles, C, these algorithms can be used to calculate ex(n, C) and extremal graphs in
Ex(n, C) by recursively extending smaller graphs without any cycle in C where C = K
or C = {C3, C5, C7, . . .} ∪ K and n ≤ 64.

This chapter contains joint work with Brendan McKay.

3.2 Introduction

The history of extremal graph theory starts in 1907, with the theorem of Mantel [141]
that determines for a given n, the minimum number, e, such that any graph with
n vertices and e edges contains a triangle (C3 or K3). Equivalently, this answers the
question of determining the maximum number, e, for a given n, such that there ex-
ists a graph with n vertices and e edges without any triangle.Turán answered a more
general version of this question. He proved that the maximum number of edges in a
Kr-free graph with n vertices is r−2

r−1 . n2

2 [195, 196].

This problem can be further generalised to the problem of determining the max-
imum number, ex(n,H), for a given n and a prescribed set of subgraphs H, such

69



70 The Turán Numbers for Cycles

that there exists a graph with n vertices and ex(n,H) edges without any subgraph
in H. Such problems that maximise the number of edges while avoiding some given
subgraphs are called Turán type extremal problems and ex(n,H) is called the Turán
number of H.

On the other hand, extremal graph theory includes a wider range of problems
where for a graph property P, an invariant u, and a set of graphs A, we wish to find
the minimum value of m such that every graph in A which has u larger than m has
property P. The graphs in A with property P and the invariant u equal to m are called
extremal graphs. Determining the structure and the uniqueness of extremal graphs are
other important questions in extremal graph theory.

In a Turán type problem, P is the property of containing a subgraph in a given set
of forbidden subgraphs, u is the number of edges and A is the set of all graphs with
a given number of vertices. The problems in extremal graph theory fall into different
categories based on the type of properties and the invariants they consider. Füredi
and Simonovits [89] provided a complete survey on extremal graphs, especially, the
Turán type problems for cycles. They described the importance of the Turán numbers
as follows:

Turán type extremal results (and Ramsey results as well) can often be ap-
plied in Mathematics, even outside of Combinatorics. Turán himself ex-
plained this applicability by the fact that – in his opinion – the extremal
graph results were generalizations of the Pigeon Hole Principle.

In this chapter, we consider a set of Turán type problems where the set of forbidden
subgraphs only contains cycles. Let C be a given set of cycles and ex(n, C) be the
maximum number of edges in a graph without any cycle in C. Despite many efforts
of different researchers, the exact value for ex(n, C) and the number or structure of
extremal graphs, for almost any set of cycles is rarely known. We introduce a method
to practically attack this problem via graph generation. With this method, we furthered
almost all known results on the exact value of Turán numbers of cycles and the set of
all extremal graphs.

3.2.1 Definitions and Preliminaries

We define Z = {C3, C4, C5, . . .} to be the set of all cycles, B = {C3, C5, C7, . . .} to be
the set of all odd cycles, and G to be the set of all unlabelled graphs. For each set of
cycles, C ⊆ Z , we define LC and GC to be the set of all labelled and unlabelled graphs
not containing any cycle in C, respectively. Therefore, GB is the set of all unlabelled
bipartite graphs and GC∪B is the set of all unlabelled bipartite graphs not containing
any cycle in C. For simplicity, when C is of size one, say C = {Ci}, we may alternatively
use GCi to denote GC .

For each graph, X, if the set of vertices of minimum degree is independent, we say
X is of type A and we denote this by type(X) = A. But if there is an edge between
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two vertices of minimum degree, then we say X is of type B and we denote this by
type(X) = B.

Let X be a graph. The set of vertices, the set of edges, the minimum degree and
the set of all vertices of minimum degree in X are denoted by V(X), E(X), δ(X) and
mins(X), respectively. For any vertex, u ∈ V(X), we denote the degree of u in X by
degX(u) or deg(u) when it is clear, and the set of neighbours of u in X by NX(u) or
N(u) when it is clear. The graph obtained from X by removing a vertex, u, and its
incident edges is denoted by X− u.

Given a positive integer, n, and a set of cycles, C, we denote by ex(n, C), the Turán
number of n and C, that is the maximum number of edges in graphs with n vertices
without any cycle in C. The set of all graphs with n vertices, ex(n, C) edges and
without any cycle in C is shown by EX(n, C).

3.3 Literature Review

The Turán type extremal problems for several sets of cycles have been attacked by
many different researchers with several approaches. Some used more theoretical ap-
proaches to determine the asymptotic behavior of ex(n, C). Some others applied com-
puter search techniques and other algorithms such as hill-climbing and simulated
annealing techniques. In some approaches, known extremal graphs for other sets of
cycles are considered and forbidden cycles are destroyed. Although there are still few
known results for the exact value of Turán numbers for cycles, several bounds are ob-
tained with such practical techniques. Nonetheless, there is still a large gap between
upper and lower bounds for many sets of cycles. In general, it is more difficult to
determine ex(n,F ) when F contains bipartite graphs [10]. This means determining
ex(n, C) when C contains an even cycle tends to be hard. In this section, we discuss the
known results for different sets of cycles. Readers are referred to [89] for a complete
survey by Füredi and Simonovits.

3.3.1 Turán Numbers for C4

Since we have C3 = K3, the cycle C4 is the smallest cycle for which the exact value
of Turán number is not known for all n. Therefore, the problem of determining
ex(n, {C4}) and EX(n, {C4}) is of special interest amongst other Turán type extremal
problems. This problem was first posed by Erdős in 1938 and has been studied by
many authors since then. But unfortunately, it did not appear to be simple.

In 1984, Bialostocki and Schonheim [27] presented the exact value of ex(n, {C4}) for
n = 10, 11. McCuaig calculated ex(n, {C4}) for n ≤ 21 (unpublished letter, 1985 [89]).
In 1989, Clapham, Flockhart and Sheehan [53] determined all extremal graphs for
n ≤ 21. They also introduced recursive upper and lower bounds for ex(n, {C4}) for
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all n. Later, in 1992, Yuansheng and Rowlinson [210] determined ex(n, {C4}) and all
members of EX(n, {C4}) for n ≤ 31 using computer searches. In 2009, Shao and Xu
and Xu [187] proved ex(32, {C4}) = 92. Recently, Wu, Sun and Radziszowski [206]
used these results to calculate some Ramsey numbers.

We extend the results on the exact value of ex(n, {C4}) to n ≤ 39 and obtain tight
bounds for n ≤ 49.

A Related Open Problem

Erdős and Simonovits [77] conjectured if G is any n-vertex graph with ex(n, {C4}) + 1
edges then G must contain at least n1/2 + o(n1/2) copies of C4.

3.3.1.1 Some Bounds and Asymptotic Behavior

Asymptotically we have ex(n, {C4}) ∼ n3/2

2 . More precisely, it is known that ex(n, {C4}) ≤
1
2 n3/2 + o(n3/2) for every n ≥ 1 (see [32]). We have ex(n, Ka,b) ≤ 1

2
a
√

b− 1 n2−(1/a) +
O(n) and ex(n, Ka,b) ≤ 1

2
a
√

b− 1 n2−(1/a) + a−1
2 n [89]. Since C4 is K2,2 these in-

equalities give ex(n, {C4}) ≤ 1
2 n3/2 + O(n) and ex(n, {C4}) ≤ 1

2 n3/4 + 1
2 n. Also,

ex(n, {C4}) = ( 1
2 + o(1))n3/2 and ex(n, {C4}) = 1

2 n3/2 + O(n3/2−c) [74, 44, 123].

Reiman [183] provided the upper bound of ex(n, {C4}) ≤ n
4 (1 +

√
4n− 3) that is

not very sharp. Nonetheless, with a construction known as the Erdős-Rényi graph
[74, 73], Erdős, Rényi, and Sós proved this bound is asymptotically correct.

Known Results for ex(q2 + q + 1, {C4})
In 1996, Erdős, Rényi and Sós [74] and Brown [44], independently proved that for

each prime power, q, we have ex(q2 + q + 1, {C4}) ≥ 1
2 q(q + 1)2. They used polarity

graphs of projective planes that were previously used in [73]. In [74], it is also shown
that ex(q2 + q + 1, {C4}) < 1

2 (q
2 + q + 1)(q + 1). Erdős [70, 72] conjectured there are

no better constructions and the inequality ex(q2 + q + 1, {C4}) ≥ 1
2 q(q + 1)2 is sharp

for each prime power q. Füredi in [84, 85, 86] proved this conjecture and showed the
equality holds for infinitely many q. He first proved if q = 2k, then Erdős’ conjecture
holds [84]. Next, he showed [85, 86] if q 6= 1, 7, 9, 11, 13 then ex(q2 + q + 1, {C4}) ≤
1
2 q(q + 1)2 and if q is also a power of a prime, then ex(q2 + q + 1, {C4}) = 1

2 q(q + 1)2

and the only graphs with q2 + q + 1 vertices and 1
2 q(q + 1)2 edges that do not contain

4-cycles are orthogonal polarity graphs of finite projective planes.
Thus, Füredi determined the first exact result of ex(n, {C4}) for infinitely many n. His
results along with the constructions in [44, 74] are the most important contributions to
the 4-cycle Turán problem.
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Other General Results

Abreu, Balbuena and Labbate [8] introduced some general lower bounds by delet-
ing carefully some chosen vertices from the Erdős-Rényi graph. It is not known if
any of these bounds are sharp. They proved that for any odd prime power, q, we
have ex(q2 − q− 2, C4) ≥ 1

2 q3 − q2 − q
2 + 1 and for any even prime power, q, we have

ex(q2 − q− 2, C4) ≥ 1
2 q3 − q2. They conjectured these bounds are the best possible but

in 2014 Tait and Timmons [191] improved this result for odd cases. They proved for
any odd prime power, q, ex(q2 − q− 2, C4) ≥ 1

2 q3 − q2 −O(q3/4). Firke, Kosek, Nash
and Williford [83] proved for even q (q > q0), ex(q2 + q, C4) ≤ 1

2 q(q + 1)2 − q where
equality holds for all q that are powers of 2. Recently, Yali, Yongqi, Rui and Radzis-
zowski [207] proved that ex(q2 + q + 2, C4) <

1
2 (q + 1)(q2 + q + 2).

Summary of the Previously Known Results About ex(n, {C4})

The most important previously known results about the exact values of ex(n, {C4})
are summarised in Tables 3.1 and 3.2. In all the tables in this chapter, except for
Tables 3.2 and 3.9, the entry at a row lablled as i and a column labelled as j (0 ≤ i ≤ 60
and 0 ≤ j ≤ 9) presents the relevant Turán where the number of vertices is n = i + j.

0 1 2 3 4 5 6 7 8 9

0 0 0 1 3 4 6 7 9 11 13
10 16 18 21 24 27 30 33 36 39 42
20 46 50 52 56 59 63 67 71 76 80
30 85 90 92

Table 3.1: The previously known results [27, 53, 210, 187] for the exact values of
ex(n, {C4})

n Known Results
q2 + q− 2 Lower bounds of 1

2 q3 − q2 −O(q3/4) for odd prime power q [191] and
1
2 q3 − q2 for even prime power q[8]

q2 + q 1
2 q(q+ 1)2− q is an upper bound for q > q0 even and is the exact value
for q power of 2 [83]

q2 + q + 1 The exact values of 1
2 q(q + 1)2 for all prime powers q 6= 7, 9, 11, 13

[84, 85, 86], The upper bound of 1
2 q(q + 1)2 for q 6= 7, 9, 11, 13 [85, 86],

The lower bound of 1
2 q(q + 1)2 for prime power q [44, 74], The upper

bound of 1
2 (q

2 + q + 1)(q + 1) [74].
q2 + q + 2 The upper bound of 1

2 (q + 1)(q2 + q + 2) [207]

Table 3.2: Some general results about ex(n, {C4})
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3.3.2 Turán Numbers for {C3, C4}
In the 1970s, Erdős conjectured ex(n, {C3, C4}) = 1

2
√

2
n3/2 + o(n3/2) [71]. In the early

1990s, Garnik, Kwong, Lazebnik and Nieuwejaar [91, 92, 93] provided the exact value
of ex(n, {C3, C4}) for n ≤ 30 and n = 50. They also provided constructive lower
bounds for n ≤ 200 using computer search techniques such as hill-climbing. Moreover,
they enumerated all members of EX(n, {C3, C4}) for n ≤ 10. Dutton and Brigham [66]
determined the sharp upper bound of ex(n, {C3, C4}) ≤ n

√
n− 1/2. In 2001, Wang,

Dueck and MacMillan [202] improved the lower bounds of Garnik and others, and
provided new lower bounds for n ≥ 6 using a simulated annealing technique. Later
in 2010, Abajo, Balbuena and Diánez [1] improved the lower bounds for some 100 <
n < 180. Two years later, further improvement for some 100 < n < 260 was presented
in [6] by Abajo and Diánez. Recently Balbuena and others [23] calculated the exact
value for n = 31, 32 and improved lower bounds for some 69 ≤ n < 230. Table 3.3
contains the previously known exact values of ex(n, {C3, C4}). We extend these results
to n ≤ 52.

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 5 6 8 10 12
10 15 16 18 21 23 26 28 31 34 38
20 41 44 47 50 54 57 61 65 68 72
30 76 80 85
40
50 175

Table 3.3: The previously known results [91, 92, 93, 23] for the exact values of
ex(n, {C3, C4})

3.3.3 Turán Numbers for {C4, C5}
In 2009, Yongqi, Xiaohui, Yuansheng and Lei [209] calculated the exact values of
ex(n, {C4, C5}) for n ≤ 21 as presented in Table 3.4. We extend this to n ≤ 43.

0 1 2 3 4 5 6 7 8 9

0 0 0 1 3 4 6 7 9 10 12
10 14 16 18 20 23 25 28 30 33 35
20 38 42

Table 3.4: The previously known results [209] for the exact values of ex(n, {C4, C5})

3.3.4 Turán Numbers for {C3, C4, C5}
In 1996, Dong and Koh [65] gave a sharp upper bound for ex(n, {C3, C4, C5}). In 2004,
Yang, Lin, Dong and Zhao [208] calculated the exact values of ex(n, {C3, C4, C5}) for
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n ≤ 42 and all the related extremal graphs. Abajo and Diánez [4], in 2010, provided
sharp bounds for 43 ≤ n ≤ 61 and calculated the exact value for n = 62. Table 3.5
contains these exact values of ex(n, {C3, C4, C5}). We extend these results to n ≤ 63.

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 6 7 9 10
10 12 14 16 18 21 22 24 26 29 31
20 34 36 39 42 45 48 52 53 56 58
30 61 64 67 70 74 77 81 84 88 92
40 96 100 105
50
60 186

Table 3.5: The previously known results [208, 4] for the exact values of
ex(n, {C3, C4, C5})

3.3.5 Turán Numbers for {C3, C4, C5, C6}
In 1996, Dong and Koh [65] gave a sharp upper bound for ex(n, {C3, C4, C5, C6}). The
exact value of ex(n, {C3, C4, C5, C6}) for n ≤ 16 is deduced from the more general
formulas presented by Abajo and Diánez in 2007 [3]. Tang, Lin, Balbuena and Miller
in 2009[192] provided lower bounds for n ≤ 39. In 2010, Abajo and Diánez[4] extended
these lower bounds and provided upper bounds for 29 ≤ n ≤ 49. They also calculated
the exact values for n ≤ 28. Also, in collaboration with Balbuena [1], they furthered
the lower bounds for 50 ≤ n ≤ 300. These results are presented in Table 3.6. We
extend the known results for the exact values of ex(n, {C3, C4, C5, C6}) to n ≤ 53.

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 7 8 9
10 11 12 14 15 17 18 20 22 23 25
20 27 29 31 33 36 37 39 41 43

Table 3.6: The previously known results [3, 4] for the exact values of
ex(n, {C3, C4, C5, C6})

3.3.6 Turán Numbers for {C3, C4, C5, C6, C7}
The exact value of ex(n, {C3, C4, C5, C6, C7}) for n ≤ 19 can be deduced from the more
general formulas presented by Abajo and Diánez in 2007 [3]. Tang, Lin, Balbuena
and Miller in 2009 [192] provided lower bounds for n ≤ 39. In 2010, Abajo and
Diánez[4] improved and extended these lower bounds and provided upper bounds
for n ≤ 79. They also calculated the exact values for n ≤ 36 and n = 80. Also, in
2012 and in collaboration with Balbuena [2], they further improved the lower bounds
for 96 ≤ n ≤ 193 and determined ex(170, {C3, ..., C7}) = 425. These results for exact
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values of ex(n, {C3, C4, C5, C6, C7}) are presented in Table 3.7. We extend these results
to n ≤ 60.

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 8 9
10 10 12 13 14 16 18 19 20 22 24
20 25 27 29 30 32 34 36 38 40 42
30 45 46 47 49 51 53 55
.
.
.
80 160
.
.
.
170 425

Table 3.7: The previously known results [3, 4, 2] for the exact values of
ex(n, {C3, C4, C5, C6, C7})

3.3.7 Extremal Graphs for Single Cycles, ex(n, {Ci})
Bondy in [33] proved a conjecture of Erdős that every graph of order n and size
at least 1

2 (n
2 − 5n + 14) has a cycle of length n − 1. This means ex(n, {Cn−1}) <

1
2 (n

2 − 5n + 14).

3.3.7.1 Even Cycles; ex(n, {C2k})

In 1965, Erdős [69] stated that for every k there is a c such that any graph on n vertices
with cn1+1/k edges has a C2k. This was proved by Bondy and Simonovits [34] as a
more general theorem that states any graph on n vertices with 100kn1+1/k edges has a
C2h for every integer h where k ≤ h ≤ kn1/k.

Reiman [183, 188] and Brown [44] constructed graphs on n vertices with Ω(n3/2)
edges without C4. Benson [26] constructed graphs on n vertices with Ω(n4/3) edges
without C6, and with Ω(n5/4) edges without C10. Reiman, Brown, and Benson used
finite projective geometry in their construction. For infinitely many n, Wenger in [203]
presents a new construction for graphs with n vertices, (n/2)3/2 edges without any C4,
(n/2)4/3 edges without C6, and (n/2)6/5 edges without C10. This gives lower bounds
for ex(n, {C4}), ex(n, {C6}) and ex(n, {C10}) for infinitely many n.

In 1982, Erdős and Simonovits [76] conjectured ex(n, {C2k}) is asymptotically 1
2 n1+1/k

as n tends to infinity. Lazebnik, Ustimenko and Woldar [134] showed ex(n, {C6}) ≥
1
2 n3/4 + O(n) for infinitely many n by constructing dense C6-free graphs. In 2005,
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Füredi, Naor and Verstraëte [88] constructs a counterexample to this conjecture of
Erdős for hexagon( C6).

In 2005, Kühn and Osthus [126] proved ex(n, {C2k}) ≤ 2(k− 1)ex(n, {C4, C2k}).

Hexagon

As stated above, it was shown that ex(n, {C6}) ≥ 1
2 n3/4 + O(n) for infinitely many

n [134]. Yuansheng and others [211] determined the graphs in EX(n, {C6}) for n ≤ 26.

3.3.7.2 Odd Cycles; ex(n, {C2k+1})
The value of ex(n, {C2k+1}) can be determined from the works of Bondy [33], Woodall [205],
Bollobás [32] and Dzido [68]. Füredi and Gunderson [87] completed the list of ex-
tremal graphs in EX(n, {C2k+1}) and provided new proof for determining the value
of ex(n, {C2k+1}).

Balister, Bollobás, Riordan and Schelp in [24] considered the extremal graphs
without a given odd cycle among graphs with a given maximum degree. They de-
fine f (n, ∆; C2k+1) to be the maximal number of edges in a graph of order n and
maximum degree ∆ that contains no cycles of length C2k+1. They showed that for
n
2 ≤ ∆ ≤ n − k − 1 and sufficiently large n we have f (n, ∆; C2k+1) = ∆(n − ∆) and
a complete bipartite is the unique extremal graph. This gives a lower bound for
ex(n, {C2k+1}) since ex(n, {C2k+1}) ≥ f (n, ∆; C2k+1).

3.3.8 Extremal Graphs with Bounded Girth

The set EX(n, {C3, C4, . . . , Ck}) contains the extremal graphs with girth at least k + 1.
This type of extremal graphs can be used in studying cages and related problems.
Cages are widely studied [7]. They are the smallest regular graphs with given degree
and girth. In [5], Abajo and Diánez constructed infinitely many extremal graphs for
sets of forbidden cycles of form {C3, C4, . . . , Ck}. They have also determined the exact
value of ex(n, {C3, C4, . . . , Ck}) for n ≤ b(16k− 15)/5c [3].

On natural question about this type of extremal graphs is whether the girth of
graphs in EX(n, {C3, C4, . . . , Ck}) is k+ 1? The answer for some cases is affirmative and
for some others is negative. This question is studied by different authors [21, 135, 2].
In these papers, as well as the girth, some other properties of the extremal graphs
avoiding all cycles of length at most k have been established.

A number of upper bounds are determined for the maximum number of edges, e,
in a graph with given number of vertices ,n, and girth, g. As such is the one deduced
from g ≤ 2 + 2 logk(n/4) when k = be/nc ≥ 2 [66]. In 1991, Dutton and Brigham [66]
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determined an upper bound for ex(n, {C3, C4, . . . , Ck}) for all n ≥ k ≥ 6.

Also, several lower bounds such as ex(n, {C3, C4, . . . , Ck}) = Ω(n1+ 1
k−1 ) and

ex(n, {C3, C4, . . . , C2k+1}) = Ω(n1+ 2
2k+3 ) have been determined by different authors [26,

130, 131, 132, 188, 197, 203, 204]. Many of them are constructive lower bounds such as
the lower bound of ex(n, {C3, C4, . . . , C2k+1}) = Ω(n1+ 2

3k−3+ε ) determined by Lazebnik,
Ustimenko and Woldar [133].

3.3.9 Extremal Bipartite Graphs

Erdős and Simonovits have made several conjectures on Turán numbers for bipartite
graphs[76]. As such they conjectured that for every finite family F of graphs, there
exists k such that ex(n,F ∪ {Ck}) ∼ ex(n,F ∪ B) as n → ∞. That is extremal F -free
graphs should be near-bipartite if F contains a long enough odd cycle.

This conjecture is proved when F consists only of non-bipartite graphs [75] and
for F = {C4, C6, . . . , C2l} when l ∈ {2, 3, 5} [121]. Moreover for large enough n, it is
shown in both cases the extremal F ∪ {Ck})-free graphs are exactly bipartite. In the
latter the extremal graphs are the bipartite incidence graphs of rank two geometries
called generalized polygons [193]. The case F = {C4} with k = 5 was also established
by Erdős and Simonovits in [76], i.e., they showed ex(n, {C4, C5}) ∼ ex(n, {C4} ∪ B).

Allen and others [10] proved this conjecture for some other families of bipartite
graphs using a sparse version of Szemeredi’s Regularity Lemma. They have also
proved ex(n,F ∪ {Ck}) ∼ ex(n,F ∪ B) for any k ≥ 5 and the extremal graphs are
nearly bipartite.

3.3.9.1 ex(n, {C4} ∪ B)

Since C4 can also be considered as K2,2, Turán numbers for bipartite graphs avoid-
ing C4 are closely related to Zarankiewicz numbers—the maximum number of edges
a Ks,t-free bipartite graph of size (m, n) can have—denoted by Zs,t(m, n). In fact,
ex(n, {C4} ∪ B) = maxa+b=n Z2,2(a, b). Zarankiewicz numbers can be used to bound
bipartite Ramsey numbers, b(m, n), that is the least positive integer b such that if the
edges of K(b, b) are coloured with red and blue, then there always exists a blue K(m, m)
or a red K(n, n) [94].

Erdős proved the upper bound of 3n
√

n for the size of a bipartite graphs without
C4 where the two parts have an equal number of vertices, n.
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The numbers in Table 3.8 are the exact values of ex(n, {C4} ∪ B) calculated in [94]
or are deduced from Zarankiewicz numbers [58, 67]. We extend these results to n ≤ 63.
In Section 3.9, we introduce new results on the exact values of Zarankiewicz numbers
that are obtained by investigating the extremal graphs in EX(n, {C4} ∪ B) we gener-
ated.

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 6 7 9 10
10 12 14 16 18 21 22 24 26 29 31
20 34 36 39 42 45 48 52 53 56 58
30 61 64 67 70 74 77 81 84 88 92
40 96 100 105 106

Table 3.8: The previously known results [94, 58, 67] for the exact values of ex(n, {C4} ∪
B)

3.3.10 Extremal Bipartite Graphs with a Bounded Girth

The results on extremal bipartite graphs with bounded girth can be used in study-
ing bi-regular cages that is a well-studied problem [20]. In [22], Balbuena, García-
Vázquez, Marcote and Valenzuela considered extremal bipartite graphs with fixed
parts and a bounded girth where EX(m, n; {C4, . . . , C2k}) is the family of bipartite
graphs of maximum size with m and n vertices in each part, that contain no cycle
of length less than or equal to 2k, and ex(m, n; {C4, . . . , C2k}) is the number of edges
of a graph in EX(m, n; {C4, . . . , C2k}). They presented some results about the girth
and connectivity of graphs in EX(m, n; {C4, . . . , C2k}) and determined some exact val-
ues of ex(m, n; {C4, . . . , C2k}). This problem has been studied by Lam [128, 129]. He
determined some upper bounds for ex(m, n; {C4, . . . , C2(2k+1)}).
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3.4 The Generation Algorithm

Given a positive integer, n, and a set of cycles, C, we aim to calculate ex(n, C) and
EX(n, C). By definition, ex(n, C) is the maximum number of edges in a graph in GC
with n vertices, and EX(n, C) is a subset of GC where the number of vertices is n and
the number of edges is ex(n, C). Therefore, we can generate all graphs in GC with n
vertices and then consider those with the maximum number of edges.

The graphs in GC with n vertices can be generated from graphs in GC with n− 1
vertices, as we explain later in this section. Thus, we can generate all graphs in GC
up to n vertices recursively using the method of Generation by Canonical Construction
Path, (GCCP), starting from the trivial graph of K1 where any generated node on the
generation tree is in GC . The method GCCP is described in details in other chapters.

Unfortunately, this naive generation process is not practically efficient without
proper pruning since too many graphs in GC are produced that are far from being
extremal or having an extremal descendant. We have developed some tools to exten-
sively prune the search tree where through a reverse engineering technique, we avoid
construction of many nodes with no extremal graphs in the subtree rooted from them.
This technique is explained in Section 3.4.3.

In this section, we discuss the definition of the extension, reduction and the genuine
reduction that we used to generate graphs in GC using the GCCP method.

3.4.1 Extensions and Reductions

Our extension is adding a vertex and joining it to a subset of vertices without creating
a forbidden cycle. A reduction, therefore, is the operation of removing a vertex and
incident edges.

In order to extend a graph, G ∈ GC , to larger graphs in GC , we first determine
all subsets of vertices that can share a new neighbour without creating a forbidden
cycle in C. We then calculate the orbits of these subsets of vertices. For each orbit, we
choose one subset as the representative and the extensions are applied only for these
representatives. The following lemmas state that all graphs generated this way are in
GC .

Lemma 3.4.1. Let G = (V, E) be a bipartite graph and G′ be a graph obtained from G by
adding a vertex and joining it to vertices in S ⊆ V. The graph G′ is bipartite iff there is no
path in G of an odd length between any two vertices in S.

Lemma 3.4.2. Let G = (V, E) be a graph with no cycle of length k and G′ be a graph obtained
from G by adding a vertex and joining it to vertices in S ⊆ V. The graph G′ has a cycle of
length k iff there is a path in G of length k− 2 between two vertices in S.

Therefore:
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Theorem 3.4.1. Let C ⊆ Z = {C3, C4, C5, . . .} be a set of cycles, G = (V, E) ∈ GC , S ⊆ V
and G′ be a graph obtained from extending G by adding a new vertex and joining it to vertices
in S. We have G′ ∈ GC iff for each k, where Ck ∈ C, there is no path in G of length k − 2
between any two vertices in S.

According to the theorem above, if B = {C3, C5, C7, . . .} ⊆ C, then there must not
be any path in G of an odd length between any two vertices in S to have G′ ∈ GC ,.

3.4.2 Genuine Reductions

According to the GCCP method, when we extend a graph, X in GC , to another graph, Y,
we only accept Y if it is constructed from X by an extension whose inverse operation is
a genuine reduction. Here we define a reduction to be genuine if it reduces a winning
vertex. Therefore, if X is extended to Y, we accept Y only if it is constructed from X
by adding a vertex that is winning in Y. We define a vertex, v, to be winning if:

1. v is in D where D consists of all vertices of minimum degree, d, in Y,

2. v is in H ⊆ D where H is the set of vertices of maximum degree in the subgraph
induced by D,

3. v is in K where K ⊆ H consists of all vertices in H that share a neighbour of
degree d + 1 with the greatest number of vertices (counting itself) in H, and

4. v is in the same orbit as the vertex w where w ∈ K is the vertex labelled lexico-
graphically last by the software nauty among all vertices in K.

More precisely, we define the canonical reduction by assigning a 4-tuple x(v) =
(x0(v), x1(v), x2(v), x3(v)) to each vertex, v, and the winning vertices are those whose
corresponding 4-tuples are lexicographically largest.We aimed to define an efficient
genuine reduction. Therefore, the values of x0, x1, x2 and x3 are combinatorial in-
variants of increasing discriminating power and computational cost. The definition of
these vertex invariants are as follows:

Let G ∈ LC be a graph with n vertices, minimum degree d and S be the set of all
vertices in mins(G) having most number of neighbours of degree d among the vertices
in mins(G). For every vertex v in V(G), we define:

• x0(v) = n− deg(v),

• x1(v) is the number of vertices of degree d that are adjacent to v,

• x2(v) is the number of vertices in S sharing a neighbour of degree d + 1 with v,
and
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• x3(d) is the largest canonical label of a vertex in the orbit containing the vertex
v.

Each xi is computed only if (x0(v′), . . . , xi−1(v′)) is not the unique lexicographically
largest with v′ being the last vertex added to G during the generation process of G.
This means each xi is computed only if the values of earlier elements of x fail to
determine v′ is not winning while they also fail to distinguish it as the unique vertex
with the largest value of x. Hence, if there are more than one vertex with the largest
value of (x0, x1, x2) and our newly added vertex is one of them, then using nauty, we
compute orbits and a canonical labelling of the vertices of G and define x3(v′) to be
the largest label among the canonical labels of vertices in the same orbit as v′.

Since x0, x1 and x2 are invariant under isomorphisms, all vertices in one orbit of
the automorphism group have the same values of (x0, x1, x2). The value of x3 has an
even stronger property: two vertices are in a same orbit if and only if they have the
same value of x3. Together with the definition of canonical labelling, this implies the
following Lemma:

Lemma 3.4.3. Let X1, X2 ∈ LC be two isomorphic graphs having at least two vertices each
and let γ be an isomorphism from X1 to X2. If v1 and v2 are, respectively, the vertices in X1

and X2 having largest 4-tuples x, then v1γ is in the same orbit as v2 under the action of the
automorphism group of X2, Aut(X2). Furthermore, removing v1 from X1 produces a graph
isomorphic to the graph obtained from X2 by removing v2 .

Although the generation algorithm would remain exhaustive and isomorph-free
when only x3 is computed, embedding x0, x1 and x2 in the definition of winning
vertices is important for efficiency purposes. While the orbits of the automorphism
group and a canonical form must be computed to calculate the value of x3, the ear-
lier elements of the 4-tuples are only based on local properties of vertices that are
much cheaper to compute. Furthermore, these properties provide lookaheads in the
generation process that improve its efficiency. For example, when extending a graph,
X ∈ LC , by adding a new vertex and joining it to a subset of vertices, the value of
x0 for this vertex in the extended graph can be easily determined on the level of X.
Also, we can decide, on the level of X, whether a new vertex would be the only vertex
with the largest value of x0 in the extended graph. Therefore, with our definition of
the genuine reduction, we avoid the construction of a lot of children that would be
rejected afterwards.

To extend a graph, X, we first construct the list of all valid subsets, that is, the
subsets of vertices that can share a new neighbour without creating a forbidden cycle.
This list is constructed based on Theorem 3.4.1. We then determine the automorphism
group of X, Aut(X) and the orbits of valid subsets which is the result of the action of
the automorphism group on the list of valid subsets. In fact, an automorphism, which
acts on the vertices of X, deduces a permutation acting on the list of valid subsets. We
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extend X to bigger graphs, for exactly one subset in each orbit where we add a vertex
to X and join the new vertex to the vertices in that subset.

According to Lemma 3.4.3, any two isomorphic accepted graphs are from the same
parent and are generated by equivalent extensions. Since in the method of GCCP, only
non-equivalent extensions are applied to each graph (as we explained above), no two
isomorphic accepted graphs can appear throughout the generation process. We use
this fact to prove the following lemma where L = LC for an arbitrary set of cycles.
Given a graph X ∈ L, we define L(X) to be the set of all labelled graphs on the
generation tree descendant from X in which the extension is adding a vertex and for
each k, we define Lk(X) to be the set of all graphs in L(X) with k vertices.

Lemma 3.4.4. Let Hn−1 be a set of graphs consisting of exactly one representative for each
isomorphism class of graphs in Ln−1(X). If for each graph in Hn−1, the extensions of adding
a vertex is applied to exactly one subset of vertices in each orbit of the list of valid subsets of
vertices, and a generated graph in Ln(X) is accepted if and only if the vertex added last has
the lexicographically largest value of (x0, x1, x2, x3), then exactly one representative of each
isomorphism class of graphs in Ln(X) is accepted.

Proof. Let G1 and G2 be two isomorphic accepted graphs in Ln(X). From Lemma 3.4.3,
we know G1 and G2 are generated from the same parent, G, in Ln−1(X). Assume G1

is extended from G by adding a vertex, v1, and joining it to the vertices in S1 ⊆ V(G),
and G2 is also extended from G by adding a vertex, v2, and joining it to the vertices in
S2 ⊆ V(G). According to Lemma 3.4.3, the newly added vertices v1 and v2 must both
have the lexicographically largest value of (x0, x1, x2, x3) in G1 and G2 respectively,
otherwise G1 or G2 would not be accepted. Therefore, there is an isomorphism, γ,
from G1 to G2 that maps v1 to v2. This means the automorphism in G, deduced by γ,
maps S1 to S2, showing that S1 and S2 are equivalent under the Automorphism group
of G, Aut(G) and that is in contrary to our procedure. Therefore, no two isomorphic
copies are accepted. In the following, we prove the exhaustiveness, that is, for each
isomorphism class of graphs in Ln(X), at least one representative is generated and
accepted.

Let G1 be an arbitrary graph in Ln(X). Consider a graph, G2 ∈ Ln(X), that is iso-
morphic to G1 in which the largest labelled vertex, vn, is winning. Let S = NG2(n) and
G be the graph obtained from G2 by removing vn. We have G ∈ Ln−1(X). Therefore,
there should be G′ ∈ Hn−1 isomorphic to G. Let γ be an isomorphism from G to G′

and S′ = Sγ. If G3 is the graph obtained from G′ by adding a vertex, v′ to S′, then G3

is isomorphic in G2 and v′ is winning in G3. Hence, G3 is accepted if it is generated.
On the other hand, if K is the set of all subsets of vertices in G′ that are equivalent to
S′ (K is the orbit of subsets in G′ containing S′), then G3 is obtained from G′ by any
extension that joins the new vertex to vertices of a subset in K and by assumption, G′ is
extended for exactly one subset in K. Thus, G3 is generated and accepted. This means
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G3 ∈ Hn−1. Hence, we showed for any arbitrary G1 ∈ Ln(X), there is an isomorphic
graph, G3 that is generated and accepted.

Together, Lemma 3.4.3 and Lemma 3.4.4 give the following theorem:

Theorem 3.4.2. When recursively applied, starting with the trivial graph, K1, the algorithm
described constructs exactly one representative of every isomorphism class of graphs in LC .

An alternative proof that shows our generation algorithm is exhaustive and isomorph-
free is presented in Section 3.5.
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3.4.3 Pseudo-Code

As we explained in Section 3.4, starting from the root, K1 , and recursively generating
all graphs in GC is not very efficient because this way many nodes are generated that
are far from being extremal or having an extremal descendant. We used a technique
called reverse engineering to avoid producing such nodes. In this method, we first
recursively create a set of templates of graphs that are needed, starting from those
with n vertices down to graphs with fewer vertices. We then recursively generate
these graphs starting from smaller graphs up to graphs with n vertices.

Hence, the idea is, before applying any extension, we partition the graphs in GC
into a set of classes based on the number of vertices, the number edges, the minimum
degree, the number of vertices of minimum degree and the independence of the ver-
tices of minimum degree. And then using a number of theorems and lemmas, we
consider only a subset of these classes so that all extremal graphs with n vertices and
all their ancestors are within these classes. We then proceed to generate all graphs
in these classes. Although with this method, there are still some graphs generated
that are not extremal and have no extremal descendant, the generation tree becomes
dramatically smaller using the lemmas and theorems in Section 3.7 to rule out unnec-
essary classes.

In this section the set FAM presents a set of forbidden cycles. If B ∈ FAM, then all
odd cycles are forbidden. We define the set of 5-tuples U to be:

U = {(n, e, d, m, t)| n > 0, e ≥ 0, 0 ≤ d < n, 0 < m ≤ n and t ∈ {A, B} }.

A 5-tuple, c ∈ U, is called a class. For any class c = (nc, ec, dc, mc, tc) ∈ U, we say
a graph is in class c if it is of type tc and has nc vertices, ec edges and mc vertices of
minimum degree dc. The set of graphs in c is denoted by Sc and is defined as follows:

Sc = {g ∈ G| |V(g)| = nc, |E(g)| = ec, δ(g) = dc, |mins(g)| = mc, and type(g) = tc }.

For a given number of vertices, n0, and a number of edges, e0, we define:

K[n0, e0] = {(n0, e0, d, m, t)| (n0, e0, d, m, t) ∈ U }.

MFAM[n0, e0] = {(n0, e0, d, m, t)| ∃g ∈ GFAM ∩ S(n0,ex0,d,m,t) }.

We say a class, p ∈ U, is a parent of another class, c ∈ U, if there is a graph in Sc

that can be generated in a genuine way from a graph in Sp. It is not always possible
to determined the exact set of the parents of a class. However, in Section 3.7.2, we
present a number of necessary conditions for a class to be a parent of a given class.
For each class c, these conditions help to find a smaller superset of the parents of c.
Each class in this superset is called a feasible parent of c.

Let c, p ∈ U be two classes where p is a feasible parent of c. We define cp to be a
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subclass of c. The set of graphs in subclass cp is denoted by Sc,p. It consists of graphs
in Sc that can be generated from a graph in Sp.

In Section 3.7.3, we explain how introducing the concept of subclasses helped to
increase the efficiency.

Given a number of vertices, n, and a set of cycles, FAM, we construct the set of
classes, A, needed to be generated to have all graphs in EX(n, FAM). To construct A,
we start by inserting to A, the classes for extremal graphs with n vertices. We then
recursively add to A, any class that can be a feasible parent to a class already in A.

Algorithm 6 takes an integer n and FAM that presents a set of forbidden cycles. It
produces all graphs in EX(n, FAM) and hence, the Turán number, ex(n, FAM), can be
obtained. In Section 3.7.1, we present a number of lemmas based on which given n, e
and FAM, we can rule out a good portion of implausible classes from K[n, e] and find
a set S where MFAM[n, e] ⊆ S ⊆ K[n, e].

Algorithm 6 Generate_Extremal
1: procedure Generate_Extremal (int: n, Set: FAM)
2: Let e = emax where emax is an upper bound for ex(n, FAM)
3: while true do
4: Find a set S where MFAM[n, e] ⊆ S ⊆ K[n, e]
5: Generate(S, FAM) . or Parallel_Generate( S, FAM)
6: if a graph with n vertices and e edges in GFAM is generated then
7: return e
8: else e = e− 1
9: end if

10: end while
11: end procedure
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The procedure Generate() as depicted in Algorithm 7, takes a set of classes, S ⊂ U
and FAM that presents a set of forbidden cycles. For all h ∈ S, the algorithm generates
all graphs in Sh ∩ SFAM by first generating their ancestors in the generation tree. The
procedure Make_Classes as explained it the following, constructs a set of classes, A,
where any ancestor of a graph in a class in S is either in a class in A or it is already
available from previous runs. After calling Make_Classes, Algorithm 7 constructs a
set of classes, HOT, that is a subset of the set A calculated by Make_Classes. The set
HOT contains a number of classes in A where all the graphs belong to these classes
are already available. The classes in HOT are, therefore, ready to have their graphs
extended by procedure Extend_Cycle_Free. The set HOT is updated as the algorithm
proceeds.

Algorithm 7 Generate
1: procedure Generate(Set: S, Set: FAM)
2:

3: A = Make_Classes(S)
4: HOT = {a ∈ A | Missing_parents[a] == ∅}
5: while HOT 6= ∅ do
6: h = extract(HOT)
7: Out_Classes = {a ∈ A| h is a feasible parent of a}
8: for each graph g ∈ Sh do
9: Output = Extend_Cycle_Free(g, FAM, Out_Classes)

10: for each g′ ∈ Output do
11: h′ = (|V(g′)|, |E(g′)|, δ(g′), |mins(g′)|, type(g′))
12: Sh′ = Sh′ ∪ {g′}
13: end for
14: end for
15: for each class a ∈ A do
16: if s ∈ Missing_parents[a] then
17: Missing_parents(a)/{s}
18: if Missing_parents[a] == ∅ then HOT = HOT ∪ {a}
19: end if
20: end if
21: end for
22: end while
23: end procedure

It is easy to see when the set HOT is empty, the graphs in classes constructed by
Make_Classes are available. Therefore, all graphs in classes in the input set S are gen-
erated and the procedure terminates.
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The procedure Make_Classes(), as presented in the Algorithm 8, takes a set of
classes, S, and a set of forbidden cycles presented by FAM. It returns a set of classes,
S′, where for each graph g in a class in S, all the graphs on the path from g to the
root, K1, on the generation tree, are in a class in S′ or are already available. In other
words, this procedure gives all the classes whose corresponding graphs are needed to
be generated. The set existed consists of subclasses whose corresponding graphs are all
available. We can simply have existed = {x} where x is the only subclass of the class
(1, 0, 0, 1, A) where K1, is the only graph in x. Nonetheless, the efficiency increases,
using the subclasses whose corresponding graphs are calculated and stored during
the previous runs of the program. At the end of the algorithm, for each class, c ∈ S′,
the set, Missing_parents[c], contains those parents of c that are not available and are
yet to be generated. The function Remove_Useless() uses some lookahead techniques to
rule out a portion of classes that can be disregarded from S′. It predicts some of the
subclasses whose corresponding set of graphs will be empty. Also, based on a number
of lemmas mentioned in Section 3.7.3, this function determines a number of subclasses
including no graph that, on the generation tree, is a parent of a parent of a graph, say
gc, in a class in S′.

Algorithm 8 Make_Classes
1: procedure Make_Classes(Set: S, Set FAM)
2: T = S
3: Let g be the trivial graph of one vertex and c = (1, 0, 0, 1, A), k = (0, 0, 0, 0, A)
4: Sc,k = {g}
5: existed = {ck} . Or existed = {ck| c, k ∈ U, k is a parent of c and Sc,k is

available }
6: while T 6= ∅ do
7: c = extract(T) . c = (nc, ec, dc, mc, tc)
8: if c is not feasible according to FAM then S′ = S′/{c}
9: else

10: Missing_parents[c] = ∅
11: for each p ∈ U that is a feasible parent of c where cp /∈ existed do
12: Missing_parents[c] = Missing_parents[c] ∪ p
13: if p not in S′ then
14: S′ = S′ ∪ {p}
15: T = T ∪ {p}
16: end if
17: end for
18: end if
19: end while
20: Remove_Useless()
21: return S′

22: end procedure
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The procedure Extend_Cycle_Free() in Algorithm 9, takes a graph, g, a set of forbid-
den cycles presented by FAM, and a set of classes, Out_Classes, where output graphs
should be in a class in Out_Classes. The algorithm outputs all graphs in a class in
Out_Classes that are extended from g avoiding the given forbidden cycles. In this al-
gorithm we consider a subset of vertices X of a graph to be valid according to a given
set of cycles, FAM, if we can join all vertices in X to a new vertex without creating a
forbidden cycle in FAM. The function Weed_out ( A, Out_Classes) removes from A, a
number of subsets of vertices where the graphs obtained by the extensions based on
them are not in Out_Classes.

Algorithm 9 Extend_Cycle_Free
1: procedure Extend_Cycle_Free(Graph: g, Set: FAM, Set: Out_Classes)
2: Output = ∅
3: A = {X ⊆ V(g) | X is a valid subset according to FAM}
4: Weed_out( A, Out_Classes)
5: call nauty and calculate the orbits of subsets of vertices in A
6: for each orbit do
7: choose one subset X as the representative
8: Let g′ be the graph obtained from g by adding a vertex and joining it to

vertices in X
9: let n be the label of the vertex just added to g′ . n− 1 = |V(g)|

10: if Is_Genuine(g′, n, X) & g′ is in a class in Out_Classes then
11: Output = Output ∪ {g′}
12: end if
13: end for
14: Return Output
15: end procedure

The function Is_Genuine() as presented in Algorithm 10 takes a graph, g, an integer,
n, where |V(g)| = n and a subset, X, of vertices of g where N(n) = X. This means
during the last step of the generation of g, the vertex labelled n is added and joined
to the vertices in X. This function checks if g has generated in a genuine way from
its parent by checking if the vertex n is the vertex of g that is supposed to be inserted
last according to the rules we have defined for genuine reductions. These rules are
mentioned in Section 3.4.2 and are implemented in Algorithm10.
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Algorithm 10 The Is_Genuine algorithm
1: procedure Is_Genuine(Graph: g, int: n, Set: X)
2: d = deg(n)
3: set1 = ∅
4: for each v ∈ V(g) do
5: if deg(v) < d then return false
6: else if deg(v) == d then set1 = set1 ∪ {v}
7: end if
8: end for
9: if set1 == {n} then return true

10: end if
11: d2 = |{u| u ∈ set1 & {n, u} ∈ E(g)}|
12: set2 = ∅
13: for each v ∈ set1 do
14: k = |{u| u ∈ set1 & {v, u} ∈ E(g)}|
15: if k > d2 then return false
16: else if k == d2 then set2 = set2 ∪ {v}
17: end if
18: end for
19: if set2 == {n} then return true
20: end if
21: S+ = {u| deg(u) = d + 1}|
22: d3 = |{u| u ∈ set2 & ∃w ∈ S+ where {n, w}, {w, u} ∈ E(g)}|
23: set3 = ∅
24: for each v ∈ set2 do
25: k = |{u| u ∈ set2 & ∃w ∈ S+ where {v, w}, {w, u} ∈ E(g)}|
26: if k > d3 then return false
27: else if k == d3 then set3 = set3 ∪ {v}
28: end if
29: end for
30: if set3 == {n} then return true
31: end if
32: if n is in the same orbit as the vertex in set3 with the largest canonical labelling

calculated by nauty then
33: return true
34: else
35: return false
36: end if
37: end procedure
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3.5 Formal Proofs

Avoiding a given set of cycles, C, is a vertex-hereditary property of a graph, i.e, if
graph X does not contain any cycle in C, then neither is any induced subgraph of X
and obviously this property is invariant under isomorphism. Therefore, according to
section 4 of [146] our procedure works correctly Nonetheless, we present an explicit
proof here. We prove that given a set of cycles C, our algorithm generates all members
of GC without producing repeated isomorphic copies. Our proofs are based on the
theorems stated in [146] for a more general method of isomorph-free generation of
families of combinatorial objects presented in . This method is discussed more exten-
sively in other chapters.

Given a set of cycles C, the set LC is the set of all labelled graphs isomorphic
to a graph in GC , using labels {1, 2, .., n} to label a graph with n vertices. For each
X ∈ LC , we define o(X) = n if it has n vertices. Let G be the group of all relabellings
of labelled graphs in LC , so that the graphs in one orbit are all isomorphic. Hence,
G = S1 × S2 × ..., where the action on LC is such that the factor Sn is the symmetric
group of degree n permuting the labels on graphs of order n in LC . Let X be an
arbitrary graph in LC . We define the following:

• For S ⊆ V(X), we denote by XS, the graph constructed from X by inserting a
new vertex to and joining it to the vertices in S.

• L(X) is the set of lower objects of X where:

L(X) =

{
{〈X, v〉 | v ∈ V(X)}, where o(X) > 1,

∅, Otherwise.

Therefore, L(K1) = ∅. In fact the isomorphism class of the trivial graph K1 is the
only irreducible unlabelled graph in GC .

• U(X) is the set of upper objects of X where:

U(X) = {〈X, S〉 | S ⊆ V(X) where XS ∈ LC}.

• Ľ = ∪X∈Lr L(X) and L̂ = ∪X∈Lr U(X).

• For each Y̌ = 〈Y, v〉 ∈ Ľ:

f (Y̌) = {X̂g = 〈X, S〉g | g ∈ G, X = Y− v and S = N(v) in Y}

Clearly X̂ = 〈X, S〉 ∈ L̂ and Y = XS .



92 The Turán Numbers for Cycles

• For each X̂ = 〈X, S〉 ∈ L̂:

f ′(X̂) = {Y̌g = 〈Y, v〉g | g ∈ G, Y = XS and v ∈ V(Y) where N(v) = S}

It is obvious that Y̌ = 〈Y, v〉 ∈ Ľ.

• According to our definition of the genuine reduction, the function m : LC → 2Ľ

mentioned in [146] is defined as follows :

m(X) =

{
{(X, v)| v is a winning vertex of X} if o(X) > 1

∅ Otherwise

As a reminder from Section 3.4.2, a vertex v in V(X) is winning if there is no
vertex v′, in V(X), whose 4-tuple, x(v′), is lexicographically larger than the 4-
tuple x(v) where x(k) = (x0(k), x1(k), x2(k), x3(k)) for each vertex k in V(X).

Theorem 3.5.1. Our definitions satisfy the constraints of axioms C1− C7 stated in [146].

Proof. The group G is the group of all relabellings of labelled graphs in LC , so that the
graphs in one orbit are all isomorphic. This group acts on lower and upper objects
as follows: For each g ∈ G, 〈X, v〉 ∈ Ľ and 〈X, S〉 ∈ L̂, we have 〈X, v〉g = 〈Xg, vg〉
and 〈X, S〉g = 〈Xg, Sg〉. Also, it is easy to see that an image, Sg of a subset of vertices
S ⊆ V(X) under g is also a subset of vertices in Xg and the property of being a valid
subset (in terms of not creating a forbidden cycle when joined to a new vertex) is
invariant under isomorphisms. This means XS ∈ LC if and only if Xg

Sg ∈ LC .
C1. We show G fixes each of LC , Ľ and L̂ set-wise.

1. For any X ∈ LC and g ∈ G, the graph Xg is isomorphic to X and hence, it is also
in LC .

2. For any 〈X, v〉 ∈ Ľ and g ∈ G we have 〈X, v〉g = 〈Xg, vg〉 where Xg is isomorphic
to X and in LC . It is not hard to see vg is a vertex of Xg and hence, by our
definitions 〈Xg, vg〉 ∈ L(Xg). Therefore, 〈X, v〉g = 〈Xg, vg〉 ∈ Ľ.

3. For any 〈X, S〉 ∈ L̂ and g ∈ G, we have 〈X, S〉g = 〈Xg, Sg〉 where Xg is iso-
morphic to X and hence, is in LC and as we mentioned above Sg is a subset of
vertices of Xg, and Xg

Sg ∈ LC . Therefore, 〈Xg, Sg〉 ∈ U(Xg) and consequently
〈X, S〉g = 〈Xg, Sg〉 ∈ L̂.

C2. We show for each X ∈ LC , we have: L(Xg) = L(X)g and U(Xg) = U(X)g:

1. L(Xg) = L(X)g:
L(X) = {〈X, v〉| v ∈ V(X)}

=⇒ L(X)g = {〈X, v〉g| v ∈ V(X)}
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= {〈Xg, vg, 〉| vg ∈ V(Xg)} = L(Xg).

2. U(Xg) = U(X)g:

U(X) = {〈X, S〉| S ⊆ V(X) where XS ∈ LC}

It is obvious for each subset S ⊆ V(X), we have XS ∈ LC if and only if Xg
Wg ∈ LC .

Therefore:
=⇒ U(X)g = {〈X, S〉g|S ⊆ V(X) where XS ∈ LC}

= {〈Xg, Sg〉| Sg ⊆ V(Xg) where Xg
Sg ∈ LC} = U(Xg).

C3. ∀Y̌ ∈ Ľ, f (Y̌) 6= ∅:
For each Y̌ ∈ Ľ, we have Y̌ = 〈Y, v〉 where Y ∈ LC , o(Y) > 1 and v ∈ V(Y). Let
S = N(v) in Y, and X be the graph obtained from Y by removing v. It is easy to see
〈X, S〉 ∈ f (Y̌). Hence, f (Y̌) 6= ∅.

C4: We show for any Y̌ ∈ Ľ, g ∈ G, X̂1 ∈ f (Y̌) and X̂2 ∈ f (Y̌g), there exists h ∈ G
such that X̂h

1 = X̂2.
Suppose X̂1 = 〈X1, S1〉, X̂2 = 〈X2, S2〉 and Y̌ = 〈Y, v〉. Hence, Y̌g = 〈Yg, vg〉. Since

X̂1 ∈ f (Y̌), there is h1 ∈ G satisfying X1 = Ah1
1 and S1 = Bh1

1 where A1 is obtained
from Y by removing v and B1 = N(V) in Y. Also, we have X̂2 ∈ f (Y̌g), so there is
h2 ∈ G satisfying X2 = Ah2

2 and S2 = Bh2
2 where A2 is obtained from Yg by removing

the vertices in vg and B2 is the subset representing the of neighbours of the vertices of
vg in Yg.
Consider h = h2(g(h−1

1 )), Since h1, h2, g ∈ G, we have h ∈ G. We prove X̂h
1 = X̂2:

1. Xh
1 = X2: We have Xh−1

1
1 = A1 and Ah2

2 = X2. It is easy to verify Ag
1 = A2. Hence,

Xh
1 = Xh2(g(h−1

1 ))
1 = (Xh−1

1
1 )h2g = (Ag

1)
h2 = Ah2

2 = X2.

2. Sh
1 = S2: We have Sh−1

1
1 = B1 and Bh2

2 = S2. It is easy to verify Bg
1 = B2. So similar

to above, one can verify Sh
1 = S2.

C5: We show for any X̂ ∈ L̂, g ∈ G, Y̌1 ∈ f ′(X̂) and Y̌2 ∈ f ′(X̂g), there exists h ∈ G
such that Y̌h

1 = Y̌2.
Suppose Y̌1 = 〈Y1, v1〉, Y̌2 = 〈Y2, v2〉 and X̂ = 〈X, S〉. Hence, X̂g = 〈Xg, Sg〉. We

have Y̌1 ∈ f ′(X̂), so there is h1 ∈ G satisfying Y1 = Ah1
1 , v1 = xh1

1 where A1 = XS and
x1 is the vertex where N(x1) = S in A1. Also, we have Y̌2 ∈ f ′(X̂g), so there is h2 ∈ G
satisfying Y2 = Ah2

2 , v2 = xh2
2 where A2 = Xg

Sg and x2 is the vertices where N(x2) = Sg

in A2.
Consider h = h2(g(h−1

1 )), Since h1, h2, g ∈ G, we have h ∈ G. We prove Y̌h
1 = Y̌2:

1. Yh
1 = Y2: We have Yh−1

1
1 = A1 and Ah2

2 = Y2. It is easy to verify Ag
1 = A2. So

similar to C4, one can easily show Yh
1 = Y2.
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2. dh
1 = v2: We have vh−1

1
1 = x1 and xh2

2 = v2. It is obvious that xg
1 = x2 and hence,

vh
1 = v2.

C6: We show o(Xg) = o(X):
For each X ∈ LC , we defined o(X) to be the number of vertices of X, which is an

invariant under isomorphisms. This means o(Xg) = o(X).

C7: We show for each Y̌ ∈ Ľ and X̂ ∈ f (Y̌) we have o(X̂) < o(Y̌):
According to our definitions for each Y̌ ∈ Ľ and X̂ ∈ f (Y̌) we have o(X̂) =

o(Y̌)− 1 < o(Y̌) .

Lemma 3.5.1. The function m(X) defined above is well-defined and satisfies the requirements
M1−M3 stated in [146].

Proof. It is obvious that m(X) is well defined. We prove each requirement M1, M2 and
M3 holds:

M1. If L(X) = ∅, then m(X) = ∅:
According to the definitions we presented for m(X) and L(X), we have m(X) ⊆

L(X) and hence, if L(X) = ∅, then m(X) = ∅.

M2. If L(X) 6= ∅, then m(X) is an orbit of the action of Aut(X) on L(X):
Consider a graph X with L(X) 6= ∅. The orbits of the action of the automorphism

group of the vertices, Aut(X), on L(X), are the same as orbits of the action of Aut(X)
on the vertices of X and the values of x0, x1 and x2 are vertex invariants. Therefore,
all vertices in a same orbit of the action of Aut(X) on L(X) have same values for them.
It is also clear that the value of x3 for all vertices in one orbit is the same. So if for a
vertex v, we have 〈X, v〉 ∈ m(X) then for every vertex, u, in the same orbit as v, we
have 〈X, u〉 ∈ m(X).
Furthermore, the value of x3 is different for vertices in different orbits, therefore, m(X)
is an orbit of action of Aut(X) on L(X).
M3. For each X ∈ LC and g ∈ G we have m(Xg) = m(X)g:

Let W(X) = {v|〈X, v〉 ∈ m(X)}. We only need to show W(Xg) = W(X)g. We
proceed the proof in two steps:

1. For each u ∈W(X)g, we have u ∈W(Xg):

If u ∈ W(X)g then v = ug−1 ∈ W(X) and hence, v is a vertex with lexicographi-
cally largest 4-tuple for x = (x0, x1, x2, x3) in X. Since the values of x0, x1, x2 and
x3 are vertex invariants, then the 4-tuple x(vg) must also be lexicographically
largest among all the 4-tuples of all vertices in Xg. Therefore, u = vg ∈W(Xg).

2. For each u ∈W(Xg), we have u ∈W(X)g:
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If u ∈ W(Xg), then u is a vertex with lexicographically largest 4-tuple for x =
(x0, x1, x2, x3) in Xg. Since the values of x0, x1, x2 and x3 are vertex invariants,
then the 4-tuple x of v = ug−1

must also be lexicographically largest among all the
4-tuples of all vertices in X. Therefore, v ∈W(X) and hence, u = vg ∈W(X)g.
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3.6 Parallelisation

In the method of GCCP, each graph can be extended independently from the other
graphs in the search tree. This enables parallel implementation of the generation pro-
cess. Parallelisation dramatically accelerated our generation process in search for ex-
tremal graphs where we have partitioned the graphs into classes in U = {(n, e, d, m, t)| n >
0, e ≥ 0, 0 ≤ d < n, 0 < m ≤ n and t ∈ {A, B} }. The extensions of graphs in each
class are independent of other classes. However, we extend a graph in each class, only
when all graphs in that class are available. In our algorithms, such classes are stored
in a set called HOT. The graphs in this set can be just generated in the current run or
have been retrieved from the stored results of the previous runs.

As it is depicted in Algorithm 11, a set of processes are run simultaneously. The
graphs in each class may be extended by different processes. In fact, we partition the
set of possible extensions of the graphs in each class into several parts based on the
obtained graph, as explained in Algorithm 12. And each set of extensions is proceeded
by one process. Therefore, a process is responsible for conducting a set of extensions
on a set of graphs. Each process applies these extensions using several threads si-
multaneously where the set of graphs assigned to a process for extensions is further
divided into several sections and the graphs in each section are extended by a separate
thread.

The procedure Parallel_Generate() depicted in Algorithm 11 is a parallel version of
the procedure Generate() presented in Algorithm 7. Similar to that procedure, Paral-
lel_Generate() takes a set of classes, S ⊂ U and a set of forbidden cycles, FAM. For
all h ∈ S, the algorithm generates all graphs in Sh ∩ SFAM by first generating all of
their ancestors in the generation tree. The extensions during the generation process
are conducted simultaneously by a number of processes and threads. The set of ex-
tensions is partitioned into several parts by calling function Make_Parallel_Sections() so
that the graphs obtained from the extensions in one part share a number of invariants.
This function is implemented in Algorithm 12. Each part is conducted by one separate
process. After a process finishes applying the extensions in one part and adding the
newly generated graphs to their corresponding sets or files, Algorithm 11 updates the
information about available classes and subclasses.
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Algorithm 11 Parallel_Generate
1: procedure Parallel_Generate(Set: S, , Set: FAM)
2: A = Make_Classes(S)
3: HOT = {a ∈ A | Missing_parents(a) == ∅}
4: Process_Idle = Process_Set
5: while true do
6: while HOT 6= ∅ do
7: s = extract(HOT)
8: section = Make_Parallel_Sections(s, A, FAM)
9: for k = 1, 2, . . . , section.num do

10: if Process_Idle == ∅ then
11: Wait until a process in Process_Set/Process_idle is idle
12: Choose an idle process q ∈ Process_Set/Process_idle
13: Process_idle = Process_idle ∪ {q}
14: Let j be such that id[q] = j
15: for each class a ∈ proc[j].child do
16: Missing_parents[a] = Missing_parents[a]/{proc[j].class}
17: if Missing_parents[a] == ∅ then HOT = HOT ∪ {a}
18: end if
19: end for
20: end if
21: Let p be an idle process
22: Make p run Parallel_Extend(s, section.parent[i], section.child[i], FAM)
23: i = extract(Process_Idle)
24: poc[i].id = Id_Process(p)
25: proc[i].class = s
26: proc[i].child = section.child[k]
27: proc[i].parent = section.parent[k]
28: end for
29: end while
30: if Process_Idle == Process_Set then return
31: else
32: Wait until a process in Process_Set/Process_idle is idle
33: Choose an idle process q ∈ Process_Set/Process_idle
34: Process_idle = Process_idle ∪ {q}
35: Let j be such that id[q] = j
36: for each class a ∈ proc[j].child do
37: Missing_parents[a] = Missing_parents[a]/{proc[j].class}
38: if Missing_parents[a] == ∅ then HOT = HOT ∪ {a}
39: end if
40: end for
41: end if
42: end while
43: end procedure
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The procedure Make_Parallel_Sections() depicted in Algorithm 12 takes a specific set
of classes, s, the set of classes, A ⊂ U, whose graphs are going to be generated, and a
set of forbidden cycles, FAM. The algorithm partitions the extension of graphs in class
s. It first considers the set C of all classes in A where s is a feasible parent of them.
Then C is divided into several parts where the graphs in classes in one part are of
the same type and have the same number of vertices, number of edges and minimum
degree, and the values of the number of vertices of minimum degree of these graphs
are contiguous. For each part of C, say ch[i], we consider the set par[i] that contains
all subclasses of s that can be feasible parents to a class in chi[i]. The function Is_gpc()
checks this feasibility based on lemmas in Section 3.7.3. Now the set of extensions of
graphs in s is partitioned according to ch[i]s, so that, for each i, all the extensions that
extend a graph in par[i] to a graph chi[i] are in one part. Each part is then managed
by a separate process in Algorithm 11.

Algorithm 12 Make_Parallel_Sections
1: procedure Make_Parallel_Sections(Class: s, Set: A, Set: FAM)
2: C = ∅
3: for each a ∈ A where s ∈ Missing_parents[a] do C = C ∪ {a}
4: end for
5: Partition C into parts children = {ch[1], ch[2], . . . ch[k]} for some k, where

graphs in classes in one part, say ch[i], are of the same type and have the same
number of vertices, number of edges and minimum degree. Furthermore, there
are two integers m1 and m2 where {mx | x ∈ ch[i]} = {m1, m1 + 1, m1 + 2, . . . , m2}
where mx is the number vertices of minimum degree in graphs in class x.

6: for each i = {1, 2, . . . , k} do
7: par[i] = ∅
8: for each a ∈ A that is a feasible parent of s do
9: if There is x ∈ ch[i] where Is_gpc(a, s, x) then

10: par[i] = par[i] ∪ {a}
11: end if
12: end for
13: end for
14: for each i = {1, 2, . . . , k} do
15: section.child[i] = ch[i]
16: section.parent[i] = par[i]
17: end for
18: section.num = k
19: return section
20: end procedure

Note that a subclass of s can be a feasible parent to several subclasses that are in
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different parts of C. This means the graphs in one subclass of s can be considered
by several processors for extensions. Although this can waste some time to perform
repeated computations, the overall efficiency is increased since the graphs obtained
from extensions in one part share a number of invariants and are distributed fewer
subclasses. This way, each process need to manage reading and writing on fewer files.

The procedure Parallel_Extend() as shown in Algorithm 13 is run by a distinct pro-
cess to conduct a set of extensions that are in one part of the partitioned obtained in
Algorithm 12. These extensions are determined in the input by a specific set of classes,
a, a set of its subclasses, parents, and a set of classes for output graphs, children.
The algorithm also takes a set of forbidden cycles, FAM and it activated a number of
threads to distribute the burden of computations needed for extensions and reading
and writing to and from files on a secondary memory. To to avoid collisions in read-
ing the input graph and writing the output graphs from and to files, one single thread
manages writing and one single thread manages reading tasks. On the other hand,
extending the input graphs are independent. Therefore, we use multiple threads for
the extensions where input graphs are partitioned and each tread is responsible for
extending graphs in one part.

Algorithm 13 Parallel_Extend
1: procedure Parallel_Extend(Class: a, Set: parents, Set: children , Set: FAM)
2: Activate the thread writer that calls Parallel_Writer(a)
3: Activate maximum possible number of extender threads that call

Parallel_Extender(a, children, FAM)
4: Activate the thread reader that calls Parallel_Reader(a, parents, FAM)
5: end procedure

The procedure Parallel_Reader() as shown in Algorithm 14 is run by a distinct
thread. It takes a specific set of classes, s, a set of its subclasses, parents and a set
of forbidden cycles, FAM. It considers a set of files that are corresponding to subclass
of a that are in parents. It reads to its buffer, one by one, all graphs in such files
and whenever its buffer gets full, it sends the graphs on its buffer to an idle extender
thread waiting for input graphs.
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Algorithm 14 Parallel_Reader
1: procedure Parallel_Reader(Class: a, Set: parents, Set: FAM)
2: G = ∅, input = ∅
3: for each class p ∈ parents do
4: input = input ∪ ap

5: end for
6: while There is a graph, g, to be read that is in a file corresponding to a subclass

in input do
7: G = G ∪ g
8: if |G| == MaxG or g is the last input graph then
9: while No extender thread is idle do

10: . wait for an extender thread to become idle
11: end while
12: Choose one idle extender thread, t
13: Send G to t G = ∅
14: end if
15: end while
16: end procedure

The procedure Parallel_writer() as shown in Algorithm 15 is run by a distinct thread.
It takes a specific set of classes, a as input and waits to receive a set of output from
an extender thread. Whenever an extender thread sends a set of output, Algorithm 15
writes each output graph on a file corresponding to the proper subclass.

Algorithm 15 Parallel_Writer
1: procedure Parallel_Writer(Class: a)
2: while There is an active extender thread do
3: Wait until an extender thread offers input
4: Choose one extender thread, t, that offers input
5: Let S be the set of input given by t
6: while S 6= ∅ do
7: k = extract(S)
8: Write graph k.graph on the file corresponding to the subclass k.subclass
9: end while

10: end while
11: end procedure
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The procedure Parallel_Extender() depicted in Algorithm 16 are called in each ex-
tender thread. This procedure takes a specific set of classes, a a set of classes, children,
for output graphs, and as well as the set of forbidden cycles, FAM. It receives the input
graphs from the thread reader and extend them to graphs that are in classes in children
while storing the obtained graphs to its buffer. When this buffer is full, the procedure
waits for the thread writer to be idle to transfer the output graphs in the buffer.

Algorithm 16 Parallel_ Extender
1: procedure Parallel_Extender(Class: a, Set: children, Set: FAM)
2: S = ∅
3: while The thread reader is active do
4: Announce this thread is idle
5: Wait until this thread is chosen by the thread reader or the thread reader is

inactive
6: if This thread is chosen by the thread reader then
7: Announce this thread is busy
8: Let Gin be the set of graphs received from the thread reader
9: for each g ∈ Gin do

10: A = Extend_Cycle_Free(g, FAM, children)
11: for each h ∈ A do
12: Let c ∈ children be the class where h ∈ Sc
13: k.graph = h, k.subclass = ca
14: S = S ∪ {k}
15: if |S| == MAXS or this is the last graph to be generated by this

thread then
16: Wait until this thread is chosen by the thread writer
17: Give S to the thread writer
18: S = ∅
19: end if
20: end for
21: end for
22: end if
23: end while
24: end procedure
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3.7 Efficiency and Pruning the Generation Tree

In general, the method of GCCP is a time and storage efficient method to generate
combinatorial objects. It provides lookaheads that increase the efficiency of the gener-
ation process. Parents and children have a very similar structure and many common
computations can be avoided for children, using the results that are calculated and
stored for parents. Using nauty to calculate canonical labellings and automorphisms
of graphs, and considering a proper data structure to store graphs, are other factors
of the high efficiency of our programs. More on such data structures and nauty can be
found in [147].

In this chapter, introducing the concept of subclasses helps with further increas-
ing the efficiency. Extending one subclass p, may produce graphs in multiple classes,
a, b, . . . , h. Therefore, to produce graphs in subclasses, ap, bp, . . . , hp, we only need to
produce graphs in Sp once, store them on the main memory or on a secondary stor-
age, and retrieve them next time a subclass whose parent is p, is needed. Also, as we
explain in Section 3.7.3, with the concept of subclasses, we can prune the generation
tree by reducing the number of classes and subclasses whose graphs are required to
be generated. Also, the set of graphs of a subclass, ab, is empty when the set of graphs
of a or b is empty, or when b is not a parent of a. We provide a number of theorems
in Sections 3.7.1 and 3.7.2 that can help to determine, based on the specifications of
classes, whether the set of graphs of a class or subclass is empty. On the other hand,
for each subclass, cp, if the sets of graphs of all subclasses of p, i.e., {ph1 , ph2 , . . . , phk},
are known to be empty, then we can conclude Scp remains empty and we can avoid
the calculations towards generating the graphs of cp. This information can be also
recursively used to determine other subclasses whose set of graphs are empty. The
procedure Remove_Useless() uses these facts and a number of lemmas mentioned in
Section 3.7.3 to determine the classes that can be disregarded.

Note that, all these theorems and calculations to prune the generation tree are
actually computed before extending any graph. These pre-processings leave us with
a much smaller generation tree and are crucial for increasing the efficiency of the
generation process.

Later, in Section 3.8, we provide some theorems based on which we further increase
the efficiency by reducing the number of calls to nauty even when group information
is required to determine whether to accept or disregard a generated graph.

3.7.1 Determining the Empty Classes

In this section, we provide a number of theorems based on which we can rule of classes
with no graph belongs to them.
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Theorem 3.7.1. Let C be a set of cycles and n ≥ 2. For any graph X ∈ GC with n vertices we
have: |E(X)| − δ(X) ≤ ex(n− 1, C).

Proof. Let X ∈ GC be a graph with n vertices where |E(X)| − δ(X) > ex(n− 1, C). By
removing a vertex of minimum degree from X, we obtain a graph in GC with n − 1
vertices and e edges where e = |E(X)| − δ(X) > ex(n− 1, C) which is a contradiction.

Then Theorem 3.7.1 says for a class c′ = (nc′ , ec′ , dc′ , mc′ , tc′) ∈ U, if ec′ − dc′ >
ex(nc′ − 1, C), then GC ∩ S ′c∅.

Theorem 3.7.2. Let C be a set of cycles and n ≥ 3. The following holds:

1. If e− 2d + 1 > ex(n− 2, C), then GC ∩ S(n,e,d,m,B) = ∅.

2. If e− 2d > ex(n− 2, C) and m ≥ 2, then GC ∩ S(n,e,d,m,A) = ∅.

Proof. Let X ∈ GC ∩ S(n,e,d,m,B), then by removing two adjacent vertices of degree d, we
have a graph in GC with n− 2 vertices and e− 2d + 1 edges. Therefore, we must have
e− 2d + 1 ≤ ex(n− 2, C).
Let X ∈ GC ∩ S(n,e,d,m,A), then by removing two vertices of degree d, we have a graph
in GC with n− 2 vertices and e− 2d edges. Therefore, we must have e− 2d > ex(n−
2, C).

Theorem 3.7.3. For given n, e, d, m, the set S(n,e,d,m,A) is empty if one of the following holds:

1. There is no bipartite graph with m vertices in one part and n − m vertices in another
part, and md edges where at least one vertex in the first part is of degree d.

2. n−m < d.

Proof. The proofs are trivial.

Theorem 3.7.4. Let C3 ∈ C and for a given graph X, K(X) = {{x, y}| x, y /∈ mins(X) & N(x)∩
N(y) ∩mins(X) = ∅}. We have GC ∩ S(n,e,d,m,A) = ∅ if e−md > |K(X)| for any graph,
X ∈ S(n,e,d,m,A).

Proof. We show that for any graph X ∈ GC ∩ S(n,e,d,m,A), we have e − md ≤ |K(X)|.
Consider a graph X ∈ S(n,e,d,m,A) where e− md > |K(X)|. Since mins(G) is indepen-
dent, e−md is the number of edges with both ends in V(X) \mins(X). Therefore, if
e − md > |K(X)|, there is at least one edge between two vertices in V(G) \ mins(G)
that share a vertex of degree d and hence, G contains a C3.

Theorem 3.7.5. We have GC,B ∩ S(n,e,d,m,A) = ∅ if e > md and in every bipartite (m, n−m)-
graph with md edges where there is at least one vertex of degree d in the first part, we have all
the vertices of the second part to be in one component.



104 The Turán Numbers for Cycles

Proof. The proof is trivial.

Theorem 3.7.6. We have S(n,e,d,m,A) ∪ S(n,e,d,m,B) = ∅ if one of the following holds:

1. m < n(d + 1)− 2e.

2. d = n− 1 and m 6= n

3. d < n− 1 and m > (n(n− 1)− 2e)/(n− 1− d).

Proof. If there is a graph X ∈ S(n,e,d,m,A) ∪ S(n,e,d,m,B) (|V(X)| = n, |E(X)| = e, δ(X) = d
and |mins(X)| = m), then:

1. It is easy to see 2e ≥ dm + (n−m)(d + 1) = n(d + 1)−m⇒ m ≥ n(d + 1)− 2e.

2. If d = n− 1 then m = n.

3. For d < n − 1, let X′ be the complement graph of X. If X′ has e′ edges and
k vertices of maximum degree D, then kD ≤ 2e′. On the other hand we have
e′ = (n

2)− e, D = (n− 1)− d and k = m. So we have m(n− 1− d) ≤ n(n− 1)− 2e
and thus, m ≤ (n(n− 1)− 2e)/(n− 1− d)

The first part of Theorem 3.7.6 does not provide a tight bound when d is smaller
and e is closer to (n

2) but not to nd/2.

Theorem 3.7.7. Let C be a set of cycles. For any number of vertices n > 2, we have
S(n,e,d,m,A) ∪ S(n,e,d,m,B) = ∅ if e > n. ex(n−1,C)

n−2 .

Proof. If there is a graph X ∈ GC ∩ (S(n,e,d,m,A) ∪ S(n,e,d,m,B)) (|V(X)| = n, |E(X)| = e,
δ(X) = d and |mins(X)| = m), then by Theorem 3.7.1, we have e− d ≤ ex(n− 1, C).
Therefore:

d ≥ e− ex(n− 1, C)⇒ nd/2 ≥ n(e− ex(n− 1, C))/2.

On the other hand, we have e ≥ nd/2. Hence:

e ≥ n(e− ex(n− 1, C))/2⇒ (n− 2)e/2 ≤ n. ex(n− 1, C)/2

Therefore, e ≤ n.ex(n− 1, C)/(n− 2)

Theorem 3.7.7 says ex(n, C) ≤ n. ex(n−1,C)
n−2 . The following theorem introduces an

upper bound on number of edges in a bipartite graphs with no C4.

Theorem 3.7.8. For any graph in G{C4}∪B with (n1 + n2) vertices and e edges and for all
t ≤ n1, we have:

e ≤ n2 +

(
t
2

)
+ (n1 − t)

n2 + (t
2)

t
.
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Proof. Let X be a bipartite graph without C4, with (n1 + n2) vertices and e edges where
V(X) = V1 ∪ V2, |V1| = n1 and |V2| = n2. For t ≤ n1, consider a t-subset H =
{u1, u2, . . . , ut} ⊂ V1. Let Ai ⊂ V2 be the set of the neighbours of vertex ui, for each
i = 1, . . . , t. By inclusion-exclusion principle have:

n2 ≥ |A1 ∪ A2 ∪ . . . ∪ At| ≥ ∑
i=1,...,t

|Ai| − ∑
i<j<t

|Ai ∩ Aj|.

On the other hand, for all i, j ∈ {1, . . . , t} where i 6= j, we have |Ai ∩ Aj| ≤ 1 otherwise
G contains a C4. Therefore,

n2 ≥ ∑
i=1,...,t

|Ai| −
(

t
2

)
= ∑

i=1,...,t
deg(ui)−

(
t
2

)
.

Hence, for any t ≤ n1, we have n2 + (t
2) ≥ ∑

i=1,...,t
deg(ui).

This inequality holds for every t-subset including the subset with t largest degree
vertices. Let V1 = {v1, v2, . . . , vn1} where deg(v1) ≥ deg(v2) ≥ . . . ≥ deg(vn1). Then
we have:

e = ∑
i=1,...,t

deg(vi) + ∑
i=t+1,...,n1

deg(vi) ≤ n2 +

(
t
2

)
+ ∑

i=t+1,...,n1

deg(vi).

Since deg(vt) ≥ deg(vt+1) ≥ . . . ≥ deg(vn1), we have:

e ≤ n2 +

(
t
2

)
+ (n1 − t)deg(vt).

On the other hand, deg(vt) ≤ deg(vt−1) ≤ . . . ≤ deg(v1). So:

deg(vt) ≤
∑i=1,...,t deg(vi)

t
≤ n2 + (t

2)

t
,

and

e ≤ n2 +

(
t
2

)
+ (n1 − t)

n2 + (t
2)

t
.

3.7.2 Parental Rules

Given the definitions in Section 3.4.3, in this section, we provide a number of theorems
that determine necessary conditions for a class, p, to be a parent of another class, c.
The efficiency increases using these theorems by having a smaller generation tree,
ruling out classes that are not required.
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Theorem 3.7.9. If G ∈ GC3 is of type B, then the parent of G is of type A.

Proof. Let G′ be the parent of G and u be a winning vertex of G that is inserted last
during the generation process of G. We have V(G′) = V(G) \ {u}. Since G is of type B,
we have mins(G′) ⊆ NG(u). Therefore, any two vertices in mins(G′) are independent,
otherwise G contains a C3 that includes u. Hence, mins(G′) is independent and G′ is
of type A.

The two following theorems, determines some specifications of parents of a class
of type A.

Theorem 3.7.10. Let p, c ∈ U be two classes where p = (n′ = n− 1, e′ = e− d, d′, m′, t′) is
a parent of class c = (n, e, d, m, t = A).

1. If m = 1, then:

• we have d′ ≥ 1 when d = 0, and

• we have d′ ≥ d when d > 0

2. If m = 1 and d′ = d, then m′ ≤ d.

3. If m > 1, then d′ = d.

4. If m > 1 and t′ = B, then m′ ≥ m.

Proof. Let G ∈ Sc and G′ ∈ Sp be two arbitrary graphs where G′ is the parent of G and
we have G′ = G− {u}. We prove each part of the theorem, as follows:

1. The vertex u is the only vertex in G of degree d and the degree of any other
vertex in G is at least d + 1. When d = 0, removing u does not change the degree
other vertices. So any vertex in the parent graph is of degree at least d + 1 = 1.
When d > 0, removing u can decrease the degree of vertices in NG(u) by 1 and
the degree of other vertices remain unchanged. Hence, any vertex in G′ is of
degree at least d + 1− 1 = d.

2. Here again, the vertex u is the only vertex in G of degree d and the degree of
any other vertex in G is at least d + 1. Since d′ = d, we have δ(G′) = d = δ(G).
Therefore:

mins(G′) = {v | degG(v) = d + 1 $ v ∈ NG(u)}.
Hence, mins(G′) ⊆ NG(u) and m′ =

∣∣mins(G′)
∣∣ ≤ ∣∣NG(u)

∣∣ = d. That is, m′ =≤
d.

3. This one is trivial.
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4. Since t = A, the set mins(G) is independent. Therefore, by removing u ∈
mins(G), from G, the degree of all other vertices in mins(G) remains d and since
m > 1, we have d′ = d and mins(G′) = mins(G) \ {u} ∪ D where:

D =
{

v | v ∈ NG(u) & degG(v) = d + 1
}

.

Since G′ is of type B and mins(G) \ {u} is independent, there must be at least on
vertex in D that is adjacent to another vertex in mins(G′). Hence, |D| ≥ 1 and
m′ = |mins(G′)| ≥ |mins(G)| − 1 + 1 = m.

Theorem 3.7.11. If G ∈ GC3 ∩ S(n,e,d,1,A) is a child of G′ ∈ GC3 ∩ S(n′=n−1,e′=e−d,d′=d,m′,t′),
then t′ = A.

Proof. If the parent graph, G′, is of type B, then there are adjacent vertices, v and w, of
degree d in G′. Since m = 1, we have degG(v) = degG(w) = d + 1 and v, w ∈ NG(u).
Therefore, u, v and w form a C3 which is a contradiction.

Let p, c ∈ U be two classes where p = (n′, e′, d′, m′, t′) is a parent of class c =
(n, e, d, m, t). The theorem above states that if C3 is in the set of forbidden cycles and
m = 1, t = A, d′ = d, then t′ = A.

3.7.2.1 Graphs of Type A with Parents of Type A

In this section, we provide a number of lemmas, based on which, we decide if a class
with graphs of type A can have a parent whose graphs are also of type A, when
m > 1. Given a class, c = (n, e, d, m, A), we want to determine all parents of c with
graphs of type A. Let p = (n′, e′, d′, m′, A) be a parent of c. Clearly, we have n′ = n− 1,
e′ = e− d and d′ = d. Therefore, we only need to determine the possible values for
m′. Throughout this section, we assume G′ ∈ S(n′,e′,d′,m′,A) is parent of G ∈ S(n,e,d,m,A)

where m > 1 , i.e., G can is obtained by adding a vertex of minimum degree to G′. It
is easy to verify the following lemma:

Lemma 3.7.1. Let G and G′ be two graphs defined above, then we have n′ = n− 1, e′ = e− d,
d′ = d and m− 1 ≤ m′ ≤ m− 1 + d.

By this lemma, we know G′ ∈ S(n−1,e−d,d,m′,A), but we need to determine if such
a graph exists, i.e., if we have S(n−1,e−d,d,m′,A) 6= ∅. Our approach is to exhaustively
consider all possible values for m′. And for each value, we consider all possible struc-
tures of graphs in S(n−1,e−d,d,m′,A) based on some invariants such as the number edges
within the set of vertices of minimum degree, or the number of vertices of degree d+ 1
connected to a winning vertex. The lemmas in this section, rule out some impossible
structures and hence, some impossible values for m′.

Let G be a graph. We use the following definitions in the lemmas in this section:
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• X = mins(G) = {u ∈ V(G) : deg(u) = d}, therefore, m = |X|,

• Y = {u ∈ V(G) : deg(u) = d + 1} and q = |Y|,

• Z = {u ∈ V(G) : deg(u) ≥ d + 2} and r = |Z|,

• XX = {{uv} ∈ E(G) : u, v ∈ X},

• YY = {{uv} ∈ E(G) : u, v ∈ Y} and nyy = |YY|,

• ZZ = {{uv} ∈ E(G) : u, v ∈ Z} and nzz = |ZZ|,

• XY = {{uv} ∈ E(G) : u ∈ X&v ∈ Y} and nxy = |XY|,

• XZ = {{uv} ∈ E(G) : u ∈ X&v ∈ Z} and nxz = |XZ|,

• YZ = {{uv} ∈ E(G) : u ∈ Y&v ∈ Z} and nyz = |Y + Z|, and

• For every v ∈ X we define:

f (v) =
∣∣∣{x′ ∈ X | ∃y ∈ Y such that {vy}, {x′y} ∈ E(G)

}∣∣∣.
It is obvious that:

• |XX| = 0 (Since type(G) = A),

• nxy + nxz = md,

• nxy + 2nyy + nyz = q(d + 1),

• nxz + nyz + 2nzz ≥ r(d + 2),

• 2e = md + q(d + 1) + (nxz + nyz + 2nzz).

Let u be a winning vertex of G that is inserted last during the generation process of G.
We have V(G′) = V(G) \ {u} and we define:

d1 =
∣∣∣{y ∈ Y | y is adjacent to u

}∣∣∣.
Lemma 3.7.2. nxy ≤ q.

Proof. Suppose nxy > q. Then there is a vertex, w1, in Y that is adjacent to at least two
vertices in X, say x1 and x2. So we have f (x1) ≥ 2. Since G is of type A and u is a
winning vertex of G that is inserted last, i.e., V(G′) = V(G) \ {u}, by our definition of
genuine reduction in Section 3.4.2, we have f (u) ≥ f (x1) ≥ 2. That means there is a
vertex w2 ∈ Y where w2 is adjacent to u and some other vertex in X, say v. But then
after deleting u. The vertices w2 and v are both of the minimum degree and they are
adjacent to each other and G′ would be of type B which is a contradiction.
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The following lemma can be proven similarly:

Lemma 3.7.3. No pair of vertices in X can have a common neighbour in Y. That is, each
vertex in Y have at most one neighbour in X.

Lemma 3.7.4. If d1 = 0 then nxy = 0.

Proof. Having d1 = 0, implies f (u) = 0. If nxy > 0 then there will be a vertex v ∈ X
other than u, that has a neighbour in Y. But then, we have f (v) ≥ 1 ≥ f (u) which is a
contradiction with our definition of genuine reduction .

Lemma 3.7.5. We have 2e−md− q(d + 1) ≥ nxz.

Proof. If 2e−md− q(d + 1) < nxz, then we have:

2e < md + q(d + 1) + nxz < md + q(d + 1) + nxz + nyz + 2nzz

= ∑
x∈X

deg(x) + ∑
y∈Y

deg(y) + ∑
z∈Z

deg(z) = ∑
u∈V(G)

deg(u) = 2e.

That is, e2 < 2e, which is a contradiction.

Lemma 3.7.6. We have 2e−md− q(d + 1) ≥ r(d + 2).

Proof. If 2e−md− q(d + 1) < r(d + 2), then we have:

2e < md+ q(d+ 1)+ r(d+ 2) ≤ ∑
u∈X

deg(u)+ ∑
u∈Y

deg(u)+ ∑
u∈Z

deg(u) = ∑
u∈V(G)

deg(u) = 2e.

That is, 2e < 2e, which is a contradiction.

Lemma 3.7.7. A graph has an odd cycle if it contains a closed walk of an odd length.

Proof. Let G be a graph containing a closed walk, W, of an odd length and let C = W.
Consider a vertex, v, in the walk and traverse G starting from v, following the edges
of W. Whenever we visit a vertex y that has been already visited, if the walk is not
finished yet, we discard from the sequence of edges in C all the edges (in the cycle)
we last traversed since the previous time we visited y. If we face any odd cycle, then
we are done. Otherwise, the total number of edges discarded from C is even. Since C
had initially an odd number of edges, at the end of our traversal, the number of edges
remained in C is odd form a cycle containing v.

Lemma 3.7.8. If |XY|, |XZ|, |YZ| > 0 and there is an even path between any two vertices that
are both in X, both in Y, or both in Z, then G has an odd cycle and is not bipartite.

Proof. Let {x1, y1} ∈ XY, {y2, z2} ∈ YZ, {z3, x3} ∈ XZ and P1, P2 and P3 be even
paths from x3 to x1, from y1 to y2, and from z2 to z3, respectively. Then P1 ∪ P2 ∪ P3 ∪{
{x1, y1}, {y2, z2}, {z3, x3}

}
is a closed walk in G of an odd length. So by Lemma 3.7.7,

G has an odd cycle.
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3.7.2.2 Number of Edges Between Vertices in mins(G)

In this section, we provide some theorems that help calculate a lower bound for the
number of edges in the subgraph of a graph, G that is induced by the set of vertices
of minimum degree, mins(G). Having this lower bound larger than zero shows G is
of type B and when this lower bound is negative, a graph with those specification
does not exist, i.e., the set of graphs of a class with those specifications is empty. Also,
this lower bound gives a lower bound for the minimum degree in the subgraph of G
induced by mins(G) and hence, when G is of type B, it gives a lower bound for other
invariants of graphs and hence, reduces our search space.

The following theorem, gives upper bounds for this lower bound and hence, re-
stricts our search space to exhaustively look for a lower bound. The next three lemmas,
help to rule out some values for R(G) by checking whether there can be a bipartite
graph between mins(G) and V(G)/mins(G).

Theorem 3.7.12. For any graph G ∈ GC ∩ S(n,e,d,m,A), let R(G) be the number of edges in the
subgraph of G induced by mins(G). Then we have:

R(G) ≤ min
(

md/2, ex(m, C), ex(n−m, C) + md− e
)

.

Proof. Let GS be the subgraph of G induced by mins(G). GS has m vertices and the
degree of each vertex is at most d. Therefore, the total degree of vertices in GS is at
most md and we have R(G) ≤ md/2.
It is also obvious that R(G) ≤ ex(m, C) otherwise GS and hence, G contains a forbidden
cycle.
We also have e = e1 + e2 + R(G) where e1 is the number of edges with no end in
mins(G) and e2 is the number of edges with exactly one end in mins(G). On the
other hand, we have e2 + R(G) = md − R(G). Therefore, e = e1 + md − R(G) and
R(G) = e1 + md− e ≤ ex(n−m, C) + md− e.

Lemma 3.7.9. In a bipartite graph, if the vertices of one part are all in one connected com-
ponent, then adding an edge between two vertices of that component will make the graph
non-bipartite.

Proof. Since the graph is bipartite, any path between any two vertices in one part is
even. Now if the vertices of one part are all in one connected component, then there
is an odd path between any two vertices. Therefore, adding an edge between any two
vertices in that part forms an odd cycle.

Lemma 3.7.10. Let G be a bipartite graph where V(G) = V1 ∪ V2 and for i = 1, 2, uci(G)
be the number of pairs of vertices, {u, v}, in Vi where u and v do not share a neighbour. Then
adding at least uci(G) + 1 edges between the vertices in Vi forms a triangle.
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Proof. Obviously adding an edge between a pair of vertices in Vi that share a neigh-
bour, forms a C3. If we add more than uci(G) edges between the vertices in Vi, then at
least one of these edges is added to between two vertices that share a neighbour and
hence, a C3 is created.

The proof of the following lemma is trivial.

Lemma 3.7.11. For each class c = (n, e, d, m, t) ∈ U where n = m, if e 6= md
2 then Sc = ∅,

otherwise for each G ∈ Sc there are exactly e = md
2 edges with both ends in mins(G).

3.7.2.3 Bipartite Graphs with no C4

For a given class, c = (n, e, d, m, t) ∈ U, we have Sc ∩ G{C4}∪B = ∅ if there for all n1

and m1, there is no bipartite graph with n1 + n− n1 vertices, m1 and m−m1 vertices of
degree d in the first and second part, respectively. Therefore, Theorem 3.7.13, is a tool
to rule out classes with no graph in G{C4}∪B . The following three lemmas are used to
prove this theorem, where we define a pair of vertices {x, y} to be covered by a vertex, z,
if z is adjacent to both x and y. Let ncov(z) be the number of pairs of vertices that are
covered by z. We say a pair of vertices is covered, if it is covered by at least one vertex.
For a bipartite graph, G where V(G) = V1 ∪V2, we define tcov2(G) = ∑z∈V1

ncov(z).

Lemma 3.7.12. Let G ∈ GC4∪B be a bipartite graph with n = n1 + n2 vertices. We have
tcov2(G) ≤ (n2

2 ).

Proof. If tcov2(G) > (n2
2 ), then by the pigeonhole principle, there is at least one pair of

vertices, say {x, y}, in V2 that is covered by at least two vertices, say w and z, in V1.
Hence, we have {w, x}, {x, z}, {z, y}, {y, w} ∈ E(G) and there is a C4 between vertices
x, y, z and w, which is a contradiction.

Lemma 3.7.13. Let S be the set of all sets consisting of h non-negative integers with total value
of R and a = {a1, . . . , ah} be the set in S where for all 1 ≤ i, j ≤ h, we have |ai − aj| ≤ 1. If
f (s) = ∑

k=1,...,h
(sk

2 ), then we have f (a) ≤ f (s) for each s ∈ S.

Proof. First note that there can only be one set in S with the same property as a.
We show that for any s ∈ S/{a}, there is s′ ∈ S where f (s′) < f (s) and therefore,
f (a) ≤ f (s) for each s ∈ S. Consider an arbitrary set s ∈ S/{a}. Since s 6= a, there are
x and y where 1 ≤ x, y ≤ h and sy − sx > 1. Therefore,

∑
i=1,...,h

(
si

2

)
=

(
sx

2

)
+

(
sy

2

)
+ ∑

i=1,...,h & i 6=x,y

(
si

2

)
.

Now consider the set s′ = s/{sx, xy} ∪ {sx + 1, sy − 1}. Obviously s′ ∈ S. We have:

f (s′) = f (s)−
(

sx

2

)
−
(

sy

2

)
+

(
sx + 1

2

)
+

(
sy01

2

)
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= f (s) +
sx(sx + 1)− sx(sx − 1) + (sy − 1)(sy − 2)− sy(sy − 1)

2
= f (s) + sx − sy + 1 < f (s).

That is f (s′) < f (s).

Lemma 3.7.14. If ∑
k=1,...,h

(sk) = R, then:

∑
k=1,...,h

(
sk

2

)
≥ p

(
r
2

)
+ q
(

r + 1
2

)
,

where r = bR/hc, q = R− hr and p = h− q.

Proof. Let a1, . . . , ah be a sequence where ∑k=1,...,h(ak) = R and for all 1 ≤ i, j ≤ h, we
have |ai − aj| ≤ 1. According to Lemma 3.7.13, we have:

∑
k=1,...,h

(
sk

2

)
≥ ∑

k=1,...,h

(
ak

2

)
.

On the other hand, it can be easily verified for each 1 ≤ i ≤ h, we have ai ∈
{bR/hc, bR/hc + 1}. In fact, R − hbR/hc elements of a has the value of bR/hc + 1,
and h− (R− hbR/hc) elements of a has the value of bR/hc. Therefore:

∑
k=1,...,h

(
ak

2

)
= (R− hbR/hc)

(bR/hc+ 1
2

)
+ (h− (R− hbR/hc))

(bR/hc
2

)
.

Now if r = bR/hc, q = R− hr and p = h− q, then:

∑
k=1,...,h

(
sk

2

)
≥ q

(
r + 1

2

)
+ p

(
r
2

)
.

Theorem 3.7.13. Let G be a bipartite graph in GC4∪B ∩S(n=n1+n2,e,d,m=m1+m2,t) where V(G) =
V1 ∪ V2, |V1| = n1, |V2| = n2 and there are m1 and m2 vertices of degree d in V1 and V2,
respectively. If k = (e−m1d)/(n1−m1), q = e−md− k(n1−m1) and p = (n1−m1)− q,
then we have:

m1

(
d
2

)
+ p

(
k
2

)
+ q
(

k + 1
2

)
≤
(

n2

2

)
.

Proof. There are m1 vertices, say u1, . . . , um1 in V1 of degree d, and n1−m1 vertices, say
v1, . . . , vn1−m1 in V1 of degree larger than d. Suppose di be the degree of vi for each
i = 1, . . . , n1 −m1. We have:

∑
i=1,...,n1−m1

di = e−m1d.
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Therefore, by Lemma 3.7.14,

∑
i=1,...,n1−m1

(
di

2

)
≥ p

(
r
2

)
+ q
(

r + 1
2

)
where r = b(e−m1d)/(n1 −m1)c, q = (e−m1d)− (n1 −m1)r and p = (n1 −m1)− q.
On the other hand, by Lemma 3.7.12, we have:(

n2

2

)
≥ tcov2(G) = ∑

z∈V1

ncov(z) = ∑
z∈V1

(
deg(z)

2

)

= ∑
i=1,...,m1

(
d
2

)
+ ∑

i=1,...,n1−m1

(
di

2

)
≥ m1

(
d
2

)
+ p

(
r
2

)
+ q
(

r + 1
2

)
.

Therefore, (
n2

2

)
≥ m1

(
d
2

)
+ p

(
r
2

)
+ q
(

r + 1
2

)
.

3.7.2.4 Bipartite Subgraphs

In many cases, to decide whether the set of graphs of a given class is empty, we use
the theorems provided in this sections on the existence and the structure of bipartite
graphs. Given n1, n2, e, d, the theorems in this section, help to determine whether a
bipartite graph of order n1 + n2 with e edges exists where at least one vertex in the
first part is of degree d. They also give some useful information about the structure of
such graphs.

Theorem 3.7.14. Let G be a (n1, n2)-bipartite graph with parts V1 and V2, where |V1| = n1.
All vertices in V1 are in one connected component if the number of covered pairs of vertices in
V1 is at least (n1

2 )− n1 + 2.

Proof. Let G be a bipartite graph satisfying the condition of the theorem. We have at
least (n1

2 )− n1 + 2 covered pairs of vertices in V1. Therefore, we have n1 ≥ 2 and every
vertex in V1 is at least in one covered pair, otherwise the number of covered pairs is at
most (

n1 − 1
2

)
=

(n1 − 1)(n1 − 2)
2

=
(n1 − 1)n1 − 2(n1 − 1)

2
=

(
n1

2

)
− n1 + 1

which is a contradiction.
We proceed the proof by induction on n1, the number of vertices in V1. It is easy

to verify the theorem holds for n1 = 2. Suppose the theorem holds for some k, i.e., for
any (k, n2)-bipartite graph, if at least (k

2)− k + 2 pairs of vertices in the first part of the
graph are covered, then all the vertices in that part are in one connected component.
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Now consider an arbitrary (k+ 1, n2)-bipartite graph, H, where at least (k+1
2 )− (k+

1) + 2 pairs of vertices in VH
1 , the first part of H, are covered. We need to show the

vertices in VH
1 are in one connected component.

If all the pairs of vertices in VH
1 are covered, then the statement holds for H. Oth-

erwise, let {x, y} be an uncovered pair in VH
1 . By removing x, the number of covered

pairs in VH
1 can be reduces by at most k− 1 and the graph, H′, obtained by removing

x has at least (k+1
2 )− (k + 1) + 2− (k− 1) covered pairs of vertices in VH

1 /{x}. On the
other hand, (k+1

2 )− (k + 1) + 2− (k− 1) = (k(k + 1)− 2k)/2− k + 2 = (k
2)− k + 2.

And since H′ is a (k + 1, n2)-bipartite graph, by our assumption, all the vertices
in VH

1 /{x} are in one component. We showed any vertex must be in a covered pair.
Therefore, there exists y ∈ VH

1 /{x}, where there is a path of length two between x and
y. Thus, the vertices in VH

1 are in one connected component.

Corollary 3.7.15. Let G be a (n1 + n2)-bipartite graph where V(G) = V1 ∪V2. If the number
of the uncovered pairs in V1 is at most n1 − 2 then all the vertices in V1 are in one connected
component.

Proof. If the number of uncovered pairs in V1 is at most n1 − 2, the number of covered
pairs in V1 is at least (n1

2 )− (n1− 2) and by Theorem 3.7.14, all the vertices in V1 are in
one connected component.

Theorem 3.7.16. Let G ∈ GB∪C4 be a (n1 + n2)-bipartite graph where V(G) = V1 ∪V2. The
number of covered pairs in V2 is at least q(e/n1

2 ) + (n1 − q)(e/n1+1
2 ) where q = e− n1be/n1c

and p = n1 − q.

Proof. Since G ∈ GC4 , if any pair of vertices, say {x, y}, in V2 is covered by at least two
vertices in V1, say u and v, then there is a C4 between x, y, u and v. Hence, every pair
of vertices in V2 is covered by at most one vertex in V1 and the number of covered
pairs in V2 equals to:

tcov2(G) = ∑
z∈V1

ncov(z) = ∑
z∈V1

(
deg(z)

2

)
.

Let d1, . . . dn1 be the degree sequence of vertices in V1. We have ∑i=1,...,n1−m1
di = e. So

by Lemma 3.7.14, we have:

covt2 = ∑
i=1,...,n1

(
di

2

)
≥ p

(be/n1c
2

)
+ q
(be/n1 + 1c

2

)
where q = e− n1be/n1c and p = n1 − q.

The proof of the following lemma is trivial.
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Lemma 3.7.15. Let G be a (n1 + n2)-bipartite graph with e edges where V(G) = V1 ∪V2. If
n1 = 1 the following statements hold:

• The vertices in V2 are all in one connected component only if e = n2.

• The number of uncovered pairs of vertices in V2 is (n2
2 )− (e

2).
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3.7.3 Grand Parental Rules

Let c1, c2, c3 ∈ U be three classes where c1 is a parent of c2 and the class c2 is the parent
of c3. We say c1, is a grand parent of c3 (via c2), if there is a graph in Sc3 that is generated
in a genuine way from a graph, X, in Sc2 where X is generated in a genuine way from
a graph in Sc1 .

Each class can have multiple parents. Therefore, for three given classes, c1, c2, c3 ∈
U, where c1 is a parent of c2 and c2 is the parent of c3, the class c1 is not necessarily the
grand parent of c3. That is, given two classes, c1, c2 ∈ U, having a class, c2 where C1

is a parent of c2, and c2 is a parent of c3, is a necessary condition for c1 being a grand
parent of c3, but is not a sufficient condition.

Consider two classes, a, b ∈ U where a is a parent of b. Let F = {q1, . . . , qh} be the
set of all parents of a and J ⊆ Sa be the set of all graphs in Sa that can be extended in
a genuine way to a graph in Sb. For i = 1, . . . , h, let Ki ⊆ Sa be the set of all graphs in
Sa that can be generated in a genuine way from a graph in Sqi . In this case, for each
i = 1, . . . , h, qi is a grand parent of b if and only if J ∩ Ki 6= ∅.

In our algorithms, we receive a set, I, of some classes, and we produce all graphs
in those class. Let H be the set of all classes whose graphs are required to be generated
during the generation process of graphs of input classes. We build a superset, K, of
the set H, starting from K = I, recursively adding the parents of classes in K. During
this recursive procedure, as we explained above, we may add classes to K where each
is a parent of a parent of a class in K but is not a grand parent of any class in K.
The graphs in such classes are not required to be generated during the generation of
graphs of input classes and pruning the generation tree by ruling out these classes
from K, increases the efficiency. Furthermore, withing each class in K/I, we only need
to generate graphs in those subclasses whose corresponding parent is a grand parent
of a class in K.

Unfortunately, it is not always possible to determine the exact set of grand parents
of a class. However, in this section, we present a number of necessary conditions for a
class to be a grand parent of a given class (via a specific class). For each two classes, a
and b, where a is a feasible parent of b, these conditions help to find a smaller superset
of grand parents of b (via a). Each class, q, in this superset is called a feasible grand
parent of a (via b). In this case, the subclass, aq, is a feasible parent of the subclass ba.
The function Is_gpc(q, a, b) in Algorithm 12 uses these theorems to determine if q is a
feasible grand parent of b via a.

For example, consider the classes c3 = (24, 46, 3, 4, B), c2 = (23, 43, 2, 1, C) and
c1 = (22, 41, 3, 7, B). The class c1 is a feasible parent of c2 and c2 is a feasible parent of
c3. But Theorem 3.7.17 says c1 is not a grand parent of c3.

Throughout this section we assume, G1 ∈ S(n1,e1,d1,m1,t1), G2 ∈ S(n2,e2,d2,m2,t2) and
G3 ∈ S(n3,e3,d3,m3,t3) are arbitrary graphs where and G1 is obtained from G2 by removing



§3.7 Efficiency and Pruning the Generation Tree 117

the vertex v, a winning vertex of G2, and G2 is obtained from G3 by removing the
vertex u, a winning vertex of G3. Hence, on the generation tree, G1 is the parent
of G2 and G2 is the parent of G3. For i = 1, 2, 3 and for a vertex y ∈ V(Gi), we
define degi(y) = degGi(y) and Ni(y) = NGi(y). Therefore, we have deg3(u) = d3 and
deg2(v) = d2.

Theorem 3.7.17. If d1 = d3 and d2 = d1 − 1, then m3 − 2 ≤ m1 ≤ m3 + 2d2 − 2.

Proof. Form d2 = d1 − 1, we have m2 = 1 (t2 = A), and from d2 = d3 − 1, we have
t3 = B. Hence, we can infer no vertex in mins(G3)/{u, v} is adjacent to u or to v in G3.
Therefore, the degree of all vertices in mins(G3) \ {u, v} remains unchanged in G1 and
we have:

mins(G3) \ {u, v} ⊆ mins(G1).

Let H be the set of vertices of degree d1 + 1 in G3 that are adjacent to either u or
v. Note that no vertex in of degree d1 + 1 can be adjacent to both u and v in G3. Since
t3 = B, we have u, v ∈ mins(G3) and {u, v} ∈ E(G3). Hence, |H| ≤ 2(d3 − 1) and we
have:

m1 = |mins(G1)| = |mins(G3) \ {u, v}|+ |H| ≤ m3 − 2 + 2(d3 − 1) = m3 + 2d2 − 2.

And:
m1 = |mins(G1)| ≥ |mins(G3) \ {u, v}| = m3 − 2.

Corollary 3.7.18. If t3 = B, t2 = A, m2 = 1 and d3 = d1, then m3− 2 ≤ m1 ≤ m3 + 2d2−
2.

Proof. From t3 = B, we have d2 = d3 − 1 = d1 − 1. Therefore, by Theorem 3.7.17, we
have m3 − 2 ≤ m1 ≤ m3 + 2d2 − 2.

Theorem 3.7.19. If G1, G2, G3 ∈ GC4 and d1 = d3 − 2 then m1 = 1.

Proof. Since d1 = d3 − 2, any vertex in mins(G1) is adjacent to both u and v. Suppose
m1 ≥ 2 and we have at least two distinct vertices, sayx and y, in mins(G1). Then there
is a C4 in between x, y, u and v which is a contradiction.

Corollary 3.7.20. If G1, G2, G3 ∈ GC4 , t3 = B and t2 = B, then m1 = 1.

Proof. From t3 = B and t2 = B, we infer d1 = d3 − 2 and by Theorem 3.7.19, we have
m1 = 1.

Theorem 3.7.21. If G1, G2, G3 ∈ GC4 and d2 = d3, m3 = 1 and t2 = B (d1 = d3− 1, m2 ≥ 2
) then m1 = 1.
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Proof. Since d2 = d3, m3 = 1, we have mins(G2) ⊆ N3(u) and v ∈ N3(u). Since t2 = B
we have mins(G1) ⊆ N2(v) and mins(G1) ⊆ mins(G2)/{v}. Therefore, mins(G1) ⊆
N3(u) ∩ N2(v). If m1 > 1, then there are distinct x, y ∈ N3(u) ∩ N2(v) and G3 contains
a C4 which is a contradiction.

Theorem 3.7.22. If G1, G2, G3 ∈ G{C3,C4}, t3 = B, t2 = A and m2 ≥ 2 then t1 = A.

Proof. Since t3 = B, we have mins(G2) ⊆ N3(u) and v ∈ N3(u), and since m2 ≥ 2, we
have mins(G1) ⊆ (N3(u) ∪ N3(v)) \ {u, v}. We show the subgraph of G3, induced by
(N3(u) ∪ N3(v)) \ {u, v \ {u, v} is empty.

By G3 ∈ GC3 , we have N3(u) ∩ N3(v) = ∅ and no edge can have both ends in
N3(v) or in N3(u). By G3 ∈ GC4 , for every x ∈ N3(u) \ {v} and y ∈ N3(v) \ {u},
we have {x, y} /∈ E(G3). Thus, there is no edge in the subgraph of G3, induced by
(N3(u) ∪ N3(v)) \ {u, v \ {u, v}. Therefore, the subgraph of G3, induced by mins(G1)
is also empty. This means t1 = A.

Theorem 3.7.23. If t3 = B, t2 = A and m2 ≥ 2, then m1 ≤ m3 −m2 + d3 − 2.

Proof. From t2 = A and m2 ≥ 2, we have d1 = d2 and fromt3 = B, we have d2 = d3− 1.
Therefore, we have d1 = d3 − 1. Also, from t3 = B and t2 = A, we have:

{x | deg3(x) = d3 & x ∈ N3(u) ∩ N3(v)} = ∅.

Therefore, we have:
mins(G1) = K1 ∪ K2 ∪ K3

where:

• K1 = {x | deg3(x) = d3 + 1 & x ∈ N3(u) ∩ N3(v)},

• K2 = {x | deg3(x) = d3 & x ∈ N3(u)/{v} & x /∈ N3(v)}, and

• K3 = {x | deg3(x) = d3 & x ∈ N3(v)/{u} & x /∈ N3(u)}.

On the other hand, we have:

K1 ∪ K2 ⊆ N3(u)/{v}

and
K3 ⊆ mins(G3)/ (mins(G2) ∪ {u}).

Hence:

m1 ≤ |K1 ∪ K2| + |K3| ≤ (d3 − 1) + (m3 −m2 − 1) = m3 −m2 + d3 − 2.
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Theorem 3.7.24. If G1, G2, G3 ∈ GC3 , t3 = B, t2 = A and m2 ≥ 2 then m1 ≤ m3 − 2.

Proof. Let K1, K2 and K3 be the sets defined in the proof of Theorem 3.7.23. Since the
conditions of Theorem 3.7.23 are also hold here, we still have:

mins(G1) = K1 ∪ K2 ∪ K3 .

By t3 = B, we have {u, v} ∈ E(G3), and since G1, G2, G3 ∈ GC3 , we have K1 = ∅ and:

mins(G1) = K2 ∪ K3 .

It is easy to see
K2 ∪ K3 ⊆ mins(G3)/{v, u}

Therefore, m1 ≤ m3 − 2.

Theorem 3.7.25. If G1, G2, G3 ∈ GC4 , t3 = B, t2 = A and m2 ≥ 2 then m1 ≤ m3 − 1.

Proof. Let K1, K2 and K3 be the sets defined in the proof of Theorem 3.7.23. Since the
conditions of Theorem 3.7.23 are also hold here, we still have:

mins(G1) = K1 ∪ K2 ∪ K3 .

Every vertex in K1 is adjacent to both u and v. Therefore, if |K1| > 1, graph G3

contains a C4 and since G1, G2, G3 ∈ GC4 , we have |K1| ≤ 1. Also, as shown in the
proof of Theorem 3.7.24, we have K2 ∪ K3 ⊆ mins(G3)/{v, u}. Hence, m1 ≤ m3 − 21 =
m3 − 1.

Theorem 3.7.26. If G1, G2, G3 ∈ GC3 , t3 = B, t2 = A and m2 ≥ 2 then m1 ≤ 2m2 − 2.

Proof. Let K1, K2 and K3 be the sets defined in the proof of Theorem 3.7.23. Since the
conditions of Theorem 3.7.23 are also hold here, we have mins(G1) = K1 ∪ K2 ∪ K3.
On the other hand, since t3 = B, we have {u, v} ∈ E(G3), and since G3 ∈ GC3 , we have
N(u) ∩ N(v) = ∅. Therefore:

• K1 = ∅,

• K2 = {x | deg3(x) = d3 & x ∈ N3(u)/{v}}, and

• K3 = {x | deg3(x) = d3 & x ∈ N3(v)/{u}}.

The vertex u is winning in G3 and by definition of a winning vertex we gave in
Section 3.4.2, we have:

|K3|+ 1 ≤ |K2|+ 1.

Also,
mins(G2) = {x | deg3(x) = d3 & x ∈ N3(u)} = K2 ∪ {v}.
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Hence, |K2| = m2 − 1. Altogether, we have:

m1 = |mins(G1)| = 0 + |K2|+ |K3| ≤ 2|K2| = 2(m2 − 1).

Thus m1 ≤ 2m2 − 2.

Theorem 3.7.27. If G1, G2, G3 ∈ GC4 , t3 = B, t2 = A and m2 ≥ 2 then m1 ≤ 2m2 − 1.

Proof. The proof is similar to the proof of Theorem 3.7.19. The only difference is, here
we have |K1| ≤ 1 as we argued in the proof of Theorem 3.7.25. Hence:

m1 = |mins(G1)| = 1 + |K2|+ |K3| ≤ 1 + 2|K2| = 1 + 2(m2 − 1),

and m1 ≤ 2m2 − 1.

3.8 Efficiency and Group Calculations

In GCCP method, when a graph is generated, it is accepted only if it has been gen-
erated in a genuine way. By our definitions, a graph, G, is generated in a gen-
uine way if the vertex inserted last is a winning vertex of G. As defined in Sec-
tion 3.4.2, winning vertices in a graph, are those with lexicographically largest 4-tuple
x(v) = (x0(v), x1(v), x2(v), x3(v)) where the values of x0, x1 and x2 are combinatorial
invariants. When there are more than one vertex with the largest value of (x0, x1, x2)
and our newly added vertex is one of them, then we need to calculate x3(). By def-
inition, for each vertex v, the value of x3(v) is the largest canonical label of a vertex
in the orbit containing the vertex v. Hence, can call nauty to canonically label the ver-
tices and calculate x3() for each vertex. But calling nauty is expensive and we want to
avoid it when possible. The trick is, we don’t really need to calculate the value of x3()
for all vertices. Let K be the set of all vertices with lexicographically largest 3-tuple
(x0(v), x1(v), x2(v)). Based on the definition of x3, to decided whether the last inserted
vertex, n (which is already in K), is winning, all we need to know is that if n is in the
same orbit as the vertex in K with the largest canonical label. When the vertices of a
graph are distinguished from each other, we can use vertex coloured graphs. We ben-
efit from how nauty manages vertex coloured graphs. It considers the colours to come
in some order; i.e., there is a 1st colour, a 2nd colour, etc.. Then the canonical labels of
vertices are calculated in order of colour. That is, the vertices of the first colour have
the labelled first, of the second colour next, and so on.

When the three invariants x1, x2 and x3 fail to determine if vertex n is winning, we
use the values of these invariants that we have calculated, to colour the graph. This
colouring increases the efficiency in two ways:

• By assigning the last colour to vertices in K, we enforce the largest canonical
label to be assigned to a vertex in K and we avoid the search for the vertex with
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largest canonical label that is in K to check if that vertex is in the same orbit as
the last inserted vertex n.

• The definition of automorphism respects colours: each vertex can only be mapped
onto a vertex of the same colour. Our colouring is based on vertex invariants.
Therefore, it does not change the automorphism group but it helps the efficiency
of nauty by providing some pre-processed information and a partition where the
vertices of each orbit of automorphism group are all in one part.

After colouring the vertices based on x1, x2 and x3 where the vertices in K get the
last colour, we try to avoid calling nauty using a function that starts from the partition
of vertices based on the colouring and recursively creates a new partition based on the
number of neighbours of vertices in each partition where the order of parts are not
changed and the order of new parts are determined the same as in nauty . At the end,
we have a partition of vertices P = P1, . . . , Ph where for any two vertices, u and v, in
a same part, say Pi, and for any 1 ≤ j ≤ h, the vertices u and v have same number of
neighbours in Pj. And of course, any two vertices in the same orbit of automorphism
group are in the same part of P. Therefore, the last part contains all vertices in the
last orbit calculated by nauty but it can possibly contains more vertices. When it can
be shown that the last part only consists of the vertices in the last orbit, then we can
decide easily about n being winning. For example when the last part, Ph is of size
one, then n is the winning only if Ph = {n}. In this section, we present a number of
theorems and lemmas providing sufficient conditions to have the last part equals to
an orbit and thus, a call to nauty can be avoided. More general theorems can be found
in [144]. The following definition of an equitable partition is used in this section.

Definition 5. Let P = P1, . . . , Ph be a partition of vertices of a graph, X. We say P is equitable
if for any two vertices, u and v, in a same part, say Pi, and for any 1 ≤ j ≤ h, the vertices u
and v have same number of neighbours in Pj.

Theorem 3.8.1. For an undirected graph X of n vertices, any cell of size two, say {u, v} is an
orbit if N(u) \ {v} = N(v) \ {u}.

Proof. It is easy to see (u, v) is an automorphism of X.

Lemma 3.8.1. For an undirected graph, an equitable partition of the vertices where all non-
trivial cells are of size two, is the orbits partition.

Proof. Consider an equitable partition, P, of the vertex set of an undirected graph, X,
where all non-trivial cells are of size two, say {u1, v1}, {u2, v2}, . . . , {uk, vk}. We now
prove the permutation π = (u1, v1), (u2, v2), . . . , (uk, vk) is an automorphism of the X.
Consider two vertices x and y. We must show xπ is adjacent to yπ in Xπ if and only if
x and y are adjacent in X.
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• If one of these vertices, say x, is in a trivial cell, then for each i, the vertex x is
either adjacent to both ui and vi, or is adjacent to neither of them. Therefore:

– If y is also in a trivial cell, then clearly π does not change the adjacency
status of x and y.

– If y is in a non-trivial cell, , {y, w}, then since P is equitable, we have x and
y are adjacent iff x and w are adjacent. On the other hand, we have x = xπ,
and w = yπ. Hence, x and y are adjacent iff x = xπ and yπ are adjacent.

• If x and y are in non-trivial cells, then:

– If x and y are in a same cell, then obviously π has no effect on their adja-
cency status.

– If x and y are in different cells, {x, z} and {y, w}. Then we can show x and
y are adjacent iff z and w are adjacent. Suppose in contrary {x, y} ∈ E(X)
while {w, z} /∈ E(X). Then since P is equitable, x and z are in one cell, and x
has at least one neighbour in cell {y, w}, then z must be adjacent to y. Then
y is adjacent to two vertices in cell {x, z} while w has at most one neighbour
in that cell which is a contradiction with P being equitable. Similarly, it is
not possible to have {w, z} ∈ E(X) while {x, y} /∈ E(X). Thus,x and y are
adjacent iff z and w are adjacent. On the other hand we have z = xπ w = yπ.
Hence, x and y are adjacent iff xπ and yπ are adjacent.

Lemma 3.8.2. For an undirected graph, an equitable partition of the vertices where all non-
trivial cells are of size two except one of size three, is the orbits partition.

Proof. Consider an equitable partition, P, of the vertex set of an undirected graph,
X, where there is one cell of size three, {a, b, c}, and all other non-trivial cells are
of size two, say {u1, v1}, {u2, v2}, . . . , {uk, vk}. We now prove the four permutations
π1 = (u1, v1), (u2, v2), . . . , (uk, vk), π2 = (a, b), π3 = (a, c) and π4 = (b, c) are automor-
phisms of X. Consider two vertices x and y. We must show for each i = 1, 2, 3, 4 we
have xπi and yπi are adjacent in Xπi if and only if x and y are adjacent in X.

• If one of these vertices, say x, is in a trivial cell, then xπi = x for i = 1, 2, 3, 4.
If y is not in the cell of size three, then similar to the first part of the proof of
Lemma 3.8.1, we can see π1 has no effect of on the adjacency of x and y. On the
other hand, for i = 2, 3, 4, we have yπi = y and hence, πi has no effect on the
adjacency of x and y.

If y ∈ {a, b, c}, thenπ1 clearly has no effect on adjacency of x and y. So are πi for
i = 2, 3, 4 because x is adjacent to none or all vertices in {a, b, c}.
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• If x and y are both in cells of size two, then for each i = 2, 3, 4, we have x = xπi

and y = yπi and hence, xπi and yπi are adjacent in iff x and y are adjacent. The
proof for π1 is similar to the second part of the proof of Lemma 3.8.1.

• If one vertex, say x = a, is in the cell of size three and the other vertex, y, is in
a cell of size two, say {y, z}, then one can easily verify none of the permutations
above can change the adjacency status between x and y by noting either there is
no edge from {y, z} to {x = a, b, c} or y and z are both adjacent to every vertex
in {x = a, b, c}.

• If x and y are both in the cell of size three, the proof is straightforward, noting
that the subgraph induced by {a, b, c} is either a K3 or a K̄3.

Lemma 3.8.3. For an undirected graph, an equitable partition of the vertices where all cells
are trivial except two cells of size three, is the orbits partition.

Proof. Consider an equitable partition, P, of the vertex set of an undirected graph,
X, where there are only two non-trivial cells of size three, D1 = {a, b, c} and D2 =
{u, v, w}. Since P is equitable, there can only be 0, 3, 6 or 9 edges between D1 and
D2. When there are zero or 9 edges between the two cells, the proof is easy. Also, by
symmetry, having 6 edges is similar to having 3 edges. Hence, we only consider the
case where there are exactly three edges between the cells. Suppose these edges are
{a, u}, {b, v} and {c, w}. We claim the permutations π1 = (a, b)(u, v), π2 = (a, c)(u, w)
and π3 = (b, c)(v, w) are automorphisms of X. For each i = 1, 2, 3, 4, we need to show
for any two arbitrary vertices x and y, we have xπi and yπi are adjacent in Xπi if and
only if x and y are adjacent in X.

• If x and y, are in trivial cells, then for i = 1, 2, 3, 4, we have xπi = x and yπi = y.

• If one of these vertices, say x, is in a trivial cell and the other is in a non-trivial
cell, say y = a, then xπi = x for i = 1, 2, 3, 4 and since P is equitable x is either
adjacent to all or none of the vertices in D1 and no permutations mentioned
above can change the adjacency between x and y.

• If both x and y are in one cell of size three, say D1. Since the subgraph induced
by D1 is either a K3 or a K̄3, it is easy to see the claim is true.

• If both x and y are in two different cells of size three. If there is zero or nine edges
between D1 and D2, it is trivial that our claim is true. Suppose there are exactly
three edges, {a, u}, {b, v} and {c, w}, between these two cells. Whether there is
an edge between x and y, say x = a and y = u, or there is no edge between x and
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y, say x = a and y = v, we can easily verify none of the permutations mentioned
above can change the adjacency status between x and y. By symmetry, So is
when there are exactly six edges between D1 and D2.

Therefore, π1 = (a, b)(u, v), π2 = (a, c)(u, w) and π3 = (b, c)(v, w) are automorphisms
of X, D1 and D2 are orbits and P is the orbits partition.

Lemma 3.8.4. For an undirected graph X, let P be an equitable partition of the vertices of X
where all cells are trivial except two cells of size three and one cell of size two. The partition P
is the orbits partition.

Proof. Let D1 = {a, b, c}, D2 = {u, v, w} and D3 = {x, y}. Similar to argument used
in proof of, we can assume {a, u}, {b, v}, {c, w} ∈ E(X) are the only edges between D1

and D2. Since each vertex in D3 is adjacent to zero or three vertices in D1 and zero or
three vertices in D2, we can verify the permutations π1 = (a, b)(u, v), π2 = (a, c)(u, w),
π3 = (b, c)(v, w) and π4 = (x, y)are automorphisms of X.

Lemma 3.8.5. For an undirected graph X, let P be an equitable partition of the vertices of X
where all cells are trivial except one cell of size two and one cell of size four. The partition P is
the orbits partition.

Proof. Let D1 = {u, v} and D2 = {x, y, w, z} be the two non-trivial cells:
Each vertex in {u, v} can be adjacent to none, two or four vertices in D2. If they are
each adjacent to exactly two vertices, then we suppose u is adjacent to x and y, and v
is adjacent to w and z. It is now easy to verify π1 = (x, y)(w, z), π2 = (x, w)(y, z)(u, v)
and π3 = (x, z)(y, w)(u, v) are automorphisms of X.

Lemma 3.8.6. For an undirected graph X, let P be an equitable partition of the vertices of X
where all cells are trivial except one cell of size four and two or more cells of size two. Then any
cell of size two is an orbit.

Proof. Let D1 = {u1, v1} and D2 = {u2, v2} be the cells of size two and D3 = {a, b, c, d}
be the cell of size four. Each vertex in a cell of size two can be adjacent to zero, two
or four vertices in D3. If the vertices in D1 or D2 are adjacent to zero or four vertices
in D3, then by Lemma 3.8.5, P is an orbits partition. So we can assume each vertex in
D1 ∪ D2 has exactly two neighbours in D3. Suppose u1 is adjacent to a and b while
v1 is adjacent to c and d. If u2 and v2 have same neighbours of u1 and v1 in D1,
respectively, then it is easy to verify π1 = (a, b)(c, d), π2 = (a, c)(b, d)(u1, v1)(u2, v2)
and π3 = (a, d)(b, d)(u1, v1)(u2, v2) are automorphisms of X. Otherwise, without loss
of generality, we can assume u2 is adjacent to x and w while v2 is adjacent to y and z.
We can verify π′1 = (u1, v1)(u2, v2)(a, d)(b, c) is an automorphism of X. Therefore, u1

is in the same orbit as v1 and u2 is in the same orbit as v2. This means D1 = {u1, v1}
and D2 are orbits.



§3.8 Efficiency and Group Calculations 125

Note that although the cells of size two in a partition, P, that satisfies condition in
Lemma 3.8.6, are orbits, the cell of size four may not be an orbit and hence, P is not
necessarily an orbits partition.

Lemma 3.8.7. For an undirected graph X, let P be an equitable partition of the vertices of X
where all cells are trivial except one cell of size five and one cell of size two. The partition P is
the orbits partition.

Proof. Since P is equitable, there is either no edges between the two non-trivial cells,
or both vertices in the cell of size two are adjacent to all vertices in the cell of size five.
Also, the induced subgraph by these five vertices is a K̄5, a C5 or a K5 where with each
of them, it is easy to see the partition is the orbits partition.

Lemma 3.8.8. For an undirected graph X, let P be an equitable partition of the vertices of X
where all cells are trivial except one cell of size four and one cell of size three. The partition P
is the orbits partition.

Proof. Let D1 and D2 be the cells of size 3 and 4, respectively. Since P is equitable,
either there is no edge between D1 and D2, or every vertex in D1 is adjacent to all
vertices in D2. Also, the subgraph induced by D1 is either K̄3, K3 or C3. While he
subgraph induced by D2 is either K̄4, K4, C4 or a consists of two disjoint edges. One
can verify any permutation on D1 or D2 is an automorphism and hence, P is the orbits
partition.

Theorem 3.8.2. For an undirected graph of n vertices, an equitable partition of the vertices
with at least n− 4 cells is the orbits partition of the vertices of the graph.

Proof. Consider an equitable partition, P, of k ≥ n− 4 cells, on the vertex set of a graph
with n vertices.

• If k = n, then obviously the partition is the orbits partition.

• If k = n− 1, then we have exactly one cell of size two, say {x, y}, and any other
cell is trivial and by Lemma 3.8.1 P is the orbits partition.

• If k = n− 2 then the only non-trivial cells can be either exactly one cell of size
three or exactly two cells of size two. Hence, by Lemmas 3.8.1 and 3.8.2, P is the
orbits partition.

• If k = n− 3 then we have three cases for non-trivial cells:
Case 1: Exactly one cell of size four, say D = {x, y, u, v}. Whether there is none,
two, four or six edges between the vertices in D, it is easy to verify the three
permutations π1 = (x, y)(u, v) π2 = (x, u)(y, v) and π3 = (x, v)(u, y) are auto-
morphisms of the graph.
Case 2: Exactly one cell of size three and exactly one cell of size two. Lemma 3.8.2
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gives a proof for this case.
Case 3: Exactly three cells of size two. Lemma 3.8.1 gives a proof for this case.

• If k = n− 4 then we have five cases based on the non-trivial cells:
Case 1: Exactly one cell of size five, say {x, y, u, v, w}:
Since the partition is equitable, the induced subgraph by these five vertices is a
K̄5, a C5 or a K5 where with each of them, it is easy to see the partition is the
orbits partition.
Case 2: Exactly one cell of size four and one cell of size two. Lemma 3.8.5 gives
a proof for this case.
Case 3: Exactly two cells of size three. Lemma 3.8.3 gives a proof for this case.
Case 4: We have exactly one cell of size three and two cells of size two. Lemma 3.8.2
gives a proof for this case.
Case 5: We have exactly four cells of size two. Lemma 3.8.1 gives a proof for this
case.

Theorem 3.8.3. For an undirected graph of n vertices, let P be an equitable partition of the
vertices with n− 5 cells. Then any cell of size at most three is an orbit.

Proof. The possible cases are as follows:

• All non-trivial cells are of size 2 except possibly one cell of size three. This case
can be proven using Lemmas 3.8.1 and 3.8.2.

• The only non-trivial cells are two cells of size three and possibly one cell of size
two: This case can be proven using Lemmas 3.8.3 and 3.8.4.

• The only non-trivial cells are one cell of size two and one cell of size five: This
case can be proven using Lemmas 3.8.7.

• The only non-trivial cells are two cells of size two and one cell of size four: This
case can be proven using Lemmas 3.8.6.

• The only non-trivial cells are one cell of size three and one cell of size four: This
case can be proven using Lemmas 3.8.8.

3.9 Conclusion and Future Work

Let K be an arbitrary subset of {C3, C4, C5, . . . , C32}. Based on the theorems and al-
gorithms in this chapter, we developed a set programs that receive a set of forbidden
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cycles, C, and a set of classes, I , where C = K or C = {C3, C5, C7, . . .} ∪ K, and
I = {c1, c2, . . . , ch}. For each i, the programs produce all graphs in Sci ∩ GC by the
generation method of GCCP where the generation tree is efficiently pruned using the
theorems presented in this chapter.

These programs can be used to generate extremal graphs, EX(n, C) and calculate
Turán numbers, ex(n, C), where n ≤ 64 and C = K or C = {C3, C5, C7, . . .} ∪ K. Using
this program, we calculated for the first time, some unknown values of ex(n, C) and
discovered the corresponding extremal graphs, EX(n, C). Our new results are listed
in tables below. More details are provided in Appendix A. A catalogue of extremal
graphs we generated can be found at http://users.cecs.anu.edu.au/ bdm/data/extremal.html.

By investigating the extremal graphs in EX(n, {C4} ∪ B), we obtained new results
on the exact values of Zarankiewicz numbers. These results are presented in Table 3.9.
The previously known values of Zarankiewicz numbers can be found in [94, 58, 67,
101].

a b Z2,2(a, b)
21 23 108
22 22 108
21 24 110
22 23 110
23 23 115
23 24 118
24 24 122
24 25 126
25 25 130
25 26 134
25 27 138
26 26 138
26 27 142

a b Z2,2(a, b)
27 27 147
27 28 151
28 28 156
27 30 160
28 29 160
28 30 165
29 29 165
29 30 170
30 30 175
30 31 180
31 31 186
31 32 187

Table 3.9: New results for the exact values of Zarankiewicz numbers, Z2,2(a, b)

The set of extremal graphs we discovered are yet to be studied in search for in-
teresting properties and structures. For example, according to our results, we have
ex(n, {C4} ∪ B) = ex(n, {C3, C4, C5}) for n ≤ 63 that is the largest n for which the value
of ex(n, {C3, C4, C5}) is known. Also, we have ex(n, {C4, C6}∪ B) = ex(n, {C3, C4, . . . , C7})
for n ≤ 60 that is the largest n for which the value of ex(n, {C3, C4, . . . , C7}) is known.
This information inspires the natural conjecture that ex(n, {C4, . . . , C2k}∪ B) = ex(n, {C3, C4, . . . , C2k+1}).
That is, EX(n, {C3, C4, . . . , C2k+1}) always contains at least one bipartite graph.
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0 1 2 3 4 5 6 7 8 9

30 96 102 106 110 113 117 122

Table 3.10: New results for the exact values of ex(n, {C4})

0 1 2 3 4 5 6 7 8 9

30 87 90 95 99 104 109 114
40 120 124 129 134 139 145 150 156 162 168
50 176 178

Table 3.11: New results for the exact values of ex(n, {C3, C4})

0 1 2 3 4 5 6 7 8 9

20 43 45 48 50 53 55 58 62
30 65 67 70 73 77 79 82 86 89 93
40 96 100 105 107

Table 3.12: New results for the exact values of ex(n, {C4, C5})

0 1 2 3 4 5 6 7 8 9

40 106 108 110 115 118 122 126
50 130 134 138 142 147 151 156 160 165 170
60 175 180 187

Table 3.13: New results for the exact values of ex(n, {C3, C4, C5})

0 1 2 3 4 5 6 7 8 9

20 45
30 47 49 51 53 55 58 59 61 63 66
40 68 70 72 74 77 79 81 83 86 88
50 91 94 96 98

Table 3.14: New results for the exact values of ex(n, {C3, C4, C5, C6})
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0 1 2 3 4 5 6 7 8 9

30 56 58 60
40 63 64 66 68 70 72 75 77 80 81
50 83 85 87 90 92 94 96 98 100 103
60 105

Table 3.15: New results for the exact values of ex(n, {C3, C4, C5, C6, C7})

0 1 2 3 4 5 6 7 8 9

40 108 110 115 118 122 126
50 130 134 138 142 147 151 156 160 165 170
60 175 180 186 187

Table 3.16: New results for the exact values of ex(n, {C4} ∪ B)

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 8 9
10 10 12 13 14 16 18 19 20 22 24
20 25 27 29 30 32 34 36 38 40 42
30 45 46 47 49 51 53 55 56 58 60
40 63 64 66 68 70 72 75 77 80 81
50 83 85 87 90 92 94 96 98 100 103
60 105 108

Table 3.17: New results for the exact values of ex(n, {C4, C6} ∪ B)

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 7 8
10 10 11 12 13 15 16 17 18 20 21
20 23 24 25 27 28 30 31 32 34 36
30 37 38 40 42 43 44 46 48 49 51
40 52 54 55 57 59 60 62 63 65 67
50 68 70 71 73 75 76 78 80 82 84
60 85 87 89

Table 3.18: New results for the exact values of ex(n, {C4, C6, C8} ∪ B)



130 The Turán Numbers for Cycles



Chapter 4

A Hierarchical Canonical labelling and its
Application in Generation of Graphs

Abstract

We present a new class of canonical labellings, hierarchical canonical labelling, for graphs
in which if the vertices of a graph G are canonically labelled by {1, . . . , n}, then G \ {n}
is also canonically labelled. We provide examples of such canonical labellings. As an
application of these labellings, we introduce a new method of generation based on
this labelling that combines the benefits of two well-known methods of generation:
Orderly Generation and Generation by Canonical Construction Path.

131
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4.1 Introduction

An unlabelled graph is an abstraction of a relation or a network between a number of
objects. When we talk about unlabelled graphs, we are solely talking about the struc-
ture of graphs; purely abstract concepts. We usually add extra properties to unlabelled
graphs to make it easier to present, store, manipulate or to refer to them. For example,
when we draw a graph on a piece paper, we are basically adding dimensional prop-
erties to the vertices of the graph. When we represent graphs in computer memory
by storing their adjacency matrices, we are actually assigning labels to their vertices.
Although it is possible, at least in theory, to access and manipulate unlabelled graphs
without adding extra properties, but it is not practically an easy task. For example, one
may describe a series of structural properties or invariants of a graph to the point that
only one unlabelled graph with those properties exists and the graph can be uniquely
distinguished. Some examples of less complicated invariants of graphs are the num-
ber of vertices, different cycles in graphs, the way the cycles intersect, or the distance
between the vertices of a certain degree. Another way to refer to an unlabelled graph
is to assign a number or a name to each graph. The problem with these two methods
is that they are practically too hard and nearly impossible for most graphs while they
do not help much in accessing the subgraphs either.

In many applications, having more than one labelled graph representing each unla-
belled graph does not create any problem and one can choose any arbitrary represen-
tative to work with. But in many others, it is important to have a unique representative
for each unlabelled graph, specially when it comes to comparing two graphs to see if
they are equivalent or isomorphic. That’s where canonical labellings come into the
scene. We explain this concept in the following:

In a labelled graph with n vertices, the vertices can be labelled by {1, 2, . . . , n}.
Recall from Chapter 1, an adjacency matrix of a labelled graph, G, is an n× n-binary-
matrix, AG, where AG[i, j] = 1 if and only if vertices i and j are adjacent in G. We say
two labelled graphs are identical if their adjacency matrices are the same. A bijection
from the vertices of a graph to itself that takes the graph to an identical graph is called
an automorphism of that graph. The set of all automorphisms of a graph is called
the automorphism group of the graph. The orbits of this group form a partition of the
vertex set of the graph where for any two vertices i and j in one part, there is an
automorphism that takes i to j. Roughly speaking, all the vertices in one part are
equivalent; they have the same role in the graph. In Figure 4.1, the graphs G1, G2 and
G3 are identical with the adjacency matrix shown in Figure 4.2 and the permutations
(1 3) and (0 1)(2 3) are two automorphisms of them.
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Figure 4.1: Graphs G1, G2 and G3 are identical.

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

Figure 4.2: The adjacency matrix of the identical graphs shown in Figure 4.1 is pre-
sented. One can verify the permutations (1 3) and (0 1)(2 3) take this matrix to itself.

Two labelled graphs are isomorphic if their adjacency matrices can be obtained from
each other by some permutations; swapping some columns and the respective rows,
i.e., there is a bijection from the vertices of one graph to the vertices of the other one
that preserves the adjacency and non-adjacency of the vertices. Such bijection is called
an isomorphism between the two graphs. All isomorphic graphs represent the same
unlabelled graph. The graph G1 is called an isomorph of G2 if G1 is isomorphic to G2.
The canonical labelling is defined as a way of assigning a unique labelled representative
graph to each isomorphic class of labelled graphs. It is actually simply assigning a
unique adjacency matrix to each unlabelled graph and fixing the set of the neighbours
of each vertex. Noting this helps to avoid the confusion when we consider other ways
of presenting graphs such as drawing or mapping them on a two-dimensional space.

In that sense, canonical labellings serve to unlabelled graphs as Biometric IDs do
to humans, that is, every unlabelled graph has a unique corresponding canonically la-
belled graph. A canonical labelling can be considered as a way of assigning a unique
number or a name to each unlabelled graph. For example, consider the number ob-
tained by concatenating the rows of the adjacency matrix of a canonical isomorph.
Based on these numbers, a total ordering on graphs can be defined. Unfortunately,
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Figure 4.3: Isomorphic graphs G0 and G1.

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

Figure 4.4: Adjacency matrices of isomorphic graphs G0 and G1 shown in Figure 4.3.

the set of Natural numbers is not a subset of the set of the numbers obtained this way
from all graphs that are canonical isomorphs. In general, no polynomial algorithm is
known to rank all unlabelled graphs.

The output of canonical labelling of a graph is called the canonical isomorph. Thus,
every two isomorphic graphs have the same canonical isomorph. It is, of course,
possible to have different isomorphisms between two isomorphic graphs. Therefore,
an isomorphism from a graph to its canonical isomorph is not necessarily unique. For
example, consider graphs G1 and G2 in Figure 4.3 with the adjacency matrices that are
shown in Figure 4.4. The two bijections depicted in Figure 4.5 represent two different
isomorphisms from G1 to G2. We define these concepts more precisely in the following
section.

One main application of canonical labellings is in the graph isomorphism prob-
lem where we want to determine if two labelled graphs are isomorphic. Having cal-
culated the canonical isomorphs of the two given graphs, we can decide if the two
graphs are isomorphic by simply checking if their canonical isomorphs are identical.
The graph isomorphism problem has many practical applications such as in enumer-
ating different combinatorial objects. This problem is also of special interest in the
complexity-theory. Isomorphism problem is clearly in the complexity class of NP but
there is no known polynomial time algorithm determining if there is an isomorphism
between two graphs. Hence, this problem is one of the few problems that are in NP
but not known to be in P, or to be NP-complete [103]. A solution to this problem
can involve testing all possible permutations in the hope of finding an isomorphism
between the two graphs. The program nauty [144], calculates a canonical labelling
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0 → 0
1 → 2
2 → 1
3 → 3
bijection1

0 → 0
1 → 2
2 → 3
3 → 1
bijection2

Figure 4.5: Two isomorphisms from G0 to G1 that are shown in Figure 4.3.

of graphs based on a type of backtrack search where the search tree is pruned using
discovered automorphisms. Although the algorithm used to develop nauty has expo-
nential running time on some inputs but it performs very efficiently for most graphs.
Examples of classes of graphs where the time complexity behaviour of this algorithm
is polynomial or exponential can be found in [167, 90].

In this chapter, we introduce the concept of hierarchical canonical relabellings for
graphs where by removing the vertices with the largest labels from a canonical iso-
morph, the remaining subgraph is also canonical. We also give an example of appli-
cations of this labelling that introduces a new method of generation of graphs.
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4.2 Hierarchical Canonical Labellings for Graphs

A canonical labelling chooses one representative for each isomorphism class of labelled
graphs. More precisely a canonical labelling is a function, C, that takes a labelled graph,
G, to a labelled graph, C(G), called canonical isomorph of G, where:

• C(G) is isomorphic to G, and

• For any graph, H, isomorphic to G we have C(H) = C(G)

We say a graph is a canonical isomorph, canonical, or canonically labelled, by a given
canonical labelling if the graph is identical to its image under that canonical labelling.
We define a canonical labelling function, C, to be hierarchical if for any n-vertex graph,
G, canonical by C, and for any k < n, the graph obtained by removing the k largest
vertices is also canonical by C.

There can be more than one isomorphism from the adjacency matrix of a graph
to its canonical form. A canonical relabelling is a function that fixes an isomorphism
or relabelling for each graph to its canonical form. In the rest of this chapter, for any
labelled graph, G, and permutation, P, we define GP to be the labelled graph obtained
by applying the permutation P on the vertices (and thus edges) of G. Hence, a canon-
ical relabelling is a function, D, that takes a labelled graph, G, to the permutation,
D(G), also called the canonical isomorphism of G, where:

• GD(G) is a graph isomorphic to G, and

• For any graph, H, isomorphic to G we have HD(H) = GD(G).

Note that any canonical relabelling, D, deduces canonical labelling, C, where
C(G) = GD(G). A canonical relabelling function is called hierarchical canonical rela-
belling if it deduces a hierarchical canonical labelling.

One simple way to define a canonical labelling is to consider the vectors obtained
by concatenating the rows of the upper triangle of each adjacency matrix in an iso-
morphism class and define the canonical isomorph to be the matrix with the lexico-
graphically smallest vector. It might not seem trivial but this canonical labelling is
not hierarchical, i.e., if an adjacency matrix of a graph of order n is canonical, then
the result of removing the last row and column, is a matrix of order n− 1 that is not
necessarily canonical. For example, the adjacency matrix A1 shown in Figure 4.6 is in
the canonical form but the adjacency matrix A2 obtained from A1 by removing the last
row and column, is not canonical. One can verify this by considering the canonical
matrix A3 in Figure 4.7. This adjacency matrix can be obtained from A2 by applying
the permutation [0, 2, 3, 5, 1, 4]. This means A3 and A2 are isomorphic. On the other
hand, it is easy to see the vector corresponding to A3 is lexicographically smaller than
the vector corresponding to A2. Hence A2 is not in canonical form. However, if we



§4.2 Hierarchical Canonical Labellings for Graphs 137

consider the vectors obtained by concatenating the rows of the lower triangles of each
adjacency matrix in an isomorphism class and define the canonical isomorph to be the
matrix with the lexicographically largest vector [79, 182], then it is easy to verify this
canonical labelling is hierarchical. But this canonical labelling can not be calculated
efficiently.

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 1
0 0 0 0 1 0 1
0 0 1 1 0 0 0
0 1 0 0 0 0 0
1 0 1 1 0 0 0

Figure 4.6: The canonical adjacency matrix A1.

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 1 1 0 0 0

Figure 4.7: The canonical adjacency matrix A3. This can be obtained by applying
the permutation [0, 2, 3, 5, 1, 4] on the matrix obtained by removing the last row and

column of A1.

We introduce a more efficient hierarchical canonical relabelling in Section 4.2.1.
This relabelling uses a canonical relabelling function, basic relabelling, as its base. We
present a recursive and an iterative algorithm to calculate this relabelling. This rela-
belling is shown to be canonical and hierarchical in Section 4.2.2.
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4.2.1 The Recursive Hierarchical Canonical Labellings

Let B be a canonical relabelling. To calculate the recursive hierarchical canonical re-
labelling of a graph with n vertices, the labelling B is applied n times. Each time, we
relabel the graph to its canonical form by B and then we fix the label of the vertex
with the largest label before removing this vertex and its incident edges to obtain a
graph to be considered in the next step. We repeat this process until only one vertex is
remained. Relabeling the graphs at each iteration to their canonical forms is a way to
remember, after deleting the last vertex, the role of each vertex in the original graph.
For example, consider two vertices that are in the same orbit in the new graph but in
two different orbits in the original graph.

The following Algorithms illustrate, more precisely, how we calculate this rela-
belling that is an isomorphism from a graph to its hierarchical canonical form.

Algorithm 17 The Getcan_Rec algorithm
1: procedure Getcan_Rec(graph: G = (V, E), int: n, func: Can_Relabel )
2: if n = 1 then
3: can[n] = n
4: else
5: lab1[]← Can_Relabel (G, n)
6: can[n] = lab1[n]
7: E′ = ∅

8: for i← 1, . . . , n− 1 do . G′ =
(

G \ {lab1[n]}
)lab1

9: k = lab1[i]
10: for each j where {j, k} ∈ E do
11: if j 6= lab1[n] then
12: add {lab−1

1 [j], i} to E′

13: end if
14: end for
15: end for
16: lab2[]← Getcan_Rec( G′ = (V \ {n}, E′) , n− 1, Can_Relabel )
17: for i← 1, . . . , n− 1 do
18: can[i]← lab1[lab2[i]]
19: end for
20: end if
21: return can[]
22: end procedure

Algorithms 17 and 18 perform recursively and iteratively, respectively. They accept
as input a graph, G with vertex set, V, and the edge set, E, an integer, n, that is the
number of vertices of G, and a canonical relabelling function, Can_Relabel that serves as
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the basic relabelling. The input procedure, Can_Relabel, takes a graph and returns its
canonical isomorphism. The output, can[], is an isomorphism from G to its canonical
form. Note that when we present an isomorphism from a graph, G1, to a graph, G2,
by an array, X, then X[b] = a shows the bijection from vertex a in G1 to vertex b in G2.
In Algorithms 18, at each step, the array sofar stores the bijection from the input graph
to the isomorphic graph that is obtained up to that step.

Algorithm 18 The Getcan_It algorithm
1: procedure Getcan_It( graph: G = (V, E), int: n, func: Can_Relabel )
2: for i← n, . . . , 1 do
3: sofar[i]← i
4: end for
5: for i← n, . . . , 1 do
6: lab[]← Can_Relabel (G, i)
7: can[i]← sofar[lab[i]]
8: E′ = ∅
9: for j← 1, . . . , i− 1 do

10: sofar[j]← sofar[lab[j]]
11: k = lab[j]
12: for each h where {h, k} ∈ E do
13: if j < lab[i] then
14: add {lab−1[h], j} to E′

15: end if
16: end for
17: end for
18: if i > 1 then
19: V ← V \ {i}
20: E← E′

21: G = (V, E)
22: end if
23: end for
24: return can[]
25: end procedure
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4.2.2 Formal Proof

In this section, we prove the relabelling calculated by Algorithms 17 and 18 is a hi-
erarchical canonical relabelling. Let C be the relabelling calculated by Algorithms 17
and 18, and B be the canonical relabelling they use as the basic canonical relabelling
that is calculated by the input procedure Can_Relabel. Theorem 4.2.1 indicates the re-
lation C is a function. This means, C assigns a unique relabelling, C(G), to each graph
G. Theorem 4.2.2 and 4.2.3 show C is a canonical relabelling and Theorem 4.2.4 proves
C is hierarchical.

We first describe our algorithm by defining some functions. For any graph, G, let
H1(G) = GB(G), P∗G,1 = PG,1 = B(G) and for each 1 < i < n, ki = n− i + 2 and Ai(G)
be the subgraph of Hi−1(G) induced by the set of vertices with labels smaller than ki.
We define Bi(G), PG,i, P∗G,i and Hi(G) as follows:

PG,i = B(Ai(G))

Bi(G) = Ai(G)B(Ai(G)) = Ai(G)PG,i

P∗G,i(v) =

{
PG,i(v) v < ki

v v ≥ ki

Hi(G) is the graph obtained from Bi(G) by inserting the vertices n, n− 1, . . . and ki
and adding their incident edges so that:

E(Hi(G)) = E(Bi(G))⋃ {
{u, v}| u, v ≥ ki & {u, v} ∈ E(Hi−1(G))

}
⋃ {

{u, v}| u ≥ ki & v < ki & {u, PG,i(v)} ∈ E(Hi−1(G))

}
.

(4.1)

Therefore, Hn−1(G) = GP∗G,1 P∗G,2 ...P∗G,n−1 , and we have:

C(G) = P∗G,1 P∗G,2 . . . P∗G,n−1 ,

and
GC(G) = Hn−1(G).

Figure 4.8 illustrates the algorithms in terms of Ais, Bis, His, PG,is and P∗G,i.
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Figure 4.8: The process of calculating the hierarchical canonical relabelling by Algo-
rithms 17 and 18 in terms of Ais, Bis, His, PG,is and P∗G,is is presented where each box
is a graph whose vertices are sorted vertically in the order of their labels. The vertices
with a circle around their labels are those whose labels have been already determined

and will not be relabelled till the end of the algorithm.
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Lemma 4.2.1. For any graph, G, and for each 1 < i < n, we have Hi(G) = (Hi−1(G))P∗G,i .

Proof. We have E(Bi(G)) =

{
{u, v}| u, v < ki & {PG,i(u), PG,i(v)} ∈ E(Hi(G))

}
.

Hence:

E(Hi(G)) ={
{u, v}| u, v < ki & {PG,i(u), PG,i(v)} = {P∗G,i(u), P∗G,i(v)} ∈ E(Hi−1(G))

}
⋃ {

{u, v}| u, v ≥ ki & {u, v} = {P∗G,i(u), P∗G,i(v)} ∈ E(Hi−1(G))

}
⋃ {

{u, v}| u ≥ ki & v < ki & {u, PG,i(v)} = {P∗G,i(u), P∗G,i(v)} ∈ E(Hi−1(G))

}
.

=

{
{u, v}| {P∗G,i(u), P∗G,i(v)} ∈ E(Hi−1(G))

}
(4.2)

Therefore:
Hi(G) = (Hi−1(G))P∗G,i .

Lemma 4.2.2. For any two graphs, G1 and G2, and for each 1 < i < n, if Hi−1(G1) =
Hi−1(G2), then P∗G1,i = P∗G2,i and Hi(G1) = Hi(G2).

Proof.

Hi−1(G1) = Hi−1(G2)⇒ Ai(G1) = Ai(G2)⇒ B(Ai(G1)) = B(Ai(G2))

⇒ PG1,i = PG2,i → P∗G1,i = P∗G2,i.
(4.3)

And since Hi−1(G1) = Hi−1(G2), we have:

(Hi−1(G1))
P∗G1,i = (Hi−1(G2))

P∗G2,i .

By applying Lemma 4.2.1, we have:

Hi(G1)) = Hi(G2)) .

Theorem 4.2.1 indicates the relation C is a function.

Theorem 4.2.1. For any two identical graphs G1 = G2 we have C(G1) = C(G2).

Proof.
G1 = G2 ⇒ B(G1) = B(G2)⇒ P∗G1,1 = P∗G2,1.
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Also,
G1 = G2 ⇒ GB(G1)

1 = GB(G2)
2 ⇒ H1(G1) = H1(G2) .

According to Lemma 4.2.2 and by induction, for all 1 ≤ i < n, we have:

P∗G1,i = P∗G2,i and Hi(G1) = Hi(G2).

Hence:

P∗G1,1 P∗G1,2 . . . P∗G1,n−1 = P∗G2,1 P∗G2,2 . . . P∗G2,n−1 ⇒ C(G1) = C(G2) .

Theorem 4.2.2. For any graph, G, the graph GC(G) is isomorphic to G.

Proof. We have:
GC(G) = Hn−1(G) = GP∗G,1 P∗G,2 ...P∗G,n−1 .

Therefore, P∗G,1 P∗G,2 . . . P∗G,n−1 is an isomorphism from G to C(G).

Theorem 4.2.3. For any two isomorphic graphs, G1 and G2, we have GC(G1)
1 = GC(G2)

2 .

Proof. Since G1 and G2 are isomorphic, we have GB(G1)
1 = GB(G2)

2 and hence H1(G1) =
H1(G2). According to Lemma 4.2.2, and by induction, for all 1 ≤ i < n we have
Hi(G1) = Hi(G2). Therefore:

Hn−1(G1) = Hn−1(G2)⇒ GC(G1)
1 = GC(G2)

2 .

Note that when G1 and G2 are isomorphic, C(G1) is not necessarily the same as
C(G2). The reason is, although for any 1 < i < n we have P∗G1,i = P∗G2,i, but B(G1) and
B(G2), and hence, P∗G1,1 and P∗G2,1 may not necessarily be the same.

To show the relabelling we introduced is hierarchical, we consider the following
definitions. For any graph H and any subset of vertices S, H[S] is the subgraph of H
induced by S. For each n− k < i < n, we define:

Mk,i(G) = (Hi(G))[{1, . . . , k}].

Lemma 4.2.3. For any graphs G1 and G2 with n and k vertices, respectively, if for some
1 ≤ i < k− 1 we have Mk,n−k+i(G1) = Hi(G2) then Mk,n−k+i+1(G1) = Hi+1(G2).

Proof. If for some 1 ≤ i < k− 1 then:

Mk,n−k+i(G1) = Hi(G2)⇒ An−k+i+1(G1) = Ai=1(G2)⇒ B(An−k+i+1(G1)) = B(Ai+1(G2)).



144 A Hierarchical Canonical labelling and its Application in Generation of Graphs

Hence for v < n + 1− i we have:

vB(An−k+i+1(G1)) = vB(Ai+1(G2)) ⇒ vPG1,n−k+i+1 = vPG2,i+1 .

Thus, for v ≤ k, we have:

vP∗G1,n−k+i+1 = vP∗G2,i+1 ⇒ E((Hn−k+i+1(G1))[{1, . . . , k}]) = E(Hi+1(G2)).

Therefore, Mk,n−k+i+1(G1) = Hi+1(G2).

Theorem 4.2.4. The canonical relabelling, C, we have defined above, is hierarchical.

Proof. Let G be a graph with n vertices and G′ =
(
GC(G)

)
[{1, . . . , k}] for some k < n.

It is easy to verify G′ is isomorphic to An−k+1(G). Hence:

B(G′) = B(An−k+1(G))

⇒ H1(G′) = Bn−k+1(G) = Hn−k+1(G))[{1, . . . , k}] = Mk,n−k+1(G).
(4.4)

Therefore, Mk,n−k+1(G) = H1(G′). According to Lemma 4.2.3, and by induction, for
any 1 ≤ i ≤ k− 1 we have Mk,n−k+i(G) = Hi(G′). Thus, for i = k− 1 we have:

Mk,n−1(G) = Hk−1(G′).

On the other hand, we have:

Mk,n−1(G) = Hn−1(G)[{1, . . . , k}] =
(
GC(G)

)
[{1, . . . , k}].

Also,

Hk−1(G′) = G′C(G
′) =

((
GC(G)

)
[{1, . . . , k}]

)C
((

GC(G)
)
[{1,...,k}]

)
.

Therefore:

(
GC(G)

)
[{1, . . . , k}] =

((
GC(G)

)
[{1, . . . , k}]

)C
((

GC(G)
)
[{1,...,k}]

)
.

This means the graph obtained by removing the vertices larger than k from a graph
canonical by C, is also canonical by C. Thus C is hierarchical.

Note that it is important to use a canonical relabelling as the base that fixes an
isomorphism from each graph to its canonical form. If B gave a random isomorphism
between a graph to its canonical form (instead of a fixed canonical relabelling), then
Lemma 4.2.2 can not be applied and C is not necessarily a function. This means for
a graph G, there could be more than one permutation or labelled graphs calculated
as C(G) which does not satisfy the definition of the canonical labellings. As a simple
example, let B be a random relabelling we use as the basic relabelling. Consider
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identical labelled graphs, G1 and G2, as depicted in Figure 4.9. Let H1(G1) = H1(G2) =
G1 and P∗G1,1 = P∗G1,1 = (1). The graph A2(G1) = A2(G2) is a K3 as shown in Figure 4.9.

Hence, GB(G1)
1 = GB(G2)

2 is also a K3 with the same adjacency matrix as A2(G1). Let
PG1,2 = (1) while PG2,2 = (1 3). This is possible since B is not a canonical relabelling
and more than one isomorphism from each graph to its canonical isomorph can be
defined by F. Thus, P∗G1,2 = (1) while P∗G2,2 = (1 3). If we have P∗G1,3 = P∗G2,3 = (1), then
P = (1) and P′ = (1 3) are the calculated isomorphisms of G1 and G2, respectively,
while GP

1 = H3(G1) 6= H3(G1) = GP′
2 as it is depicted in Figure 4.9.
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G1 = G2

H1(G1) = H1(G2)

H2(G2)

B2(G1)

H2(G1)

A3(G1)

B3(G1)

H3(G1)

A3(G2)

B2(G2)

B3(G2)

H3(G2)

(1)

\{4}

(1)

\{3, 4}

(1)

A2(G1) = A2(G2)

4

4

2

1

3

3

1

1

1 4

(1)

1 443

3 4

3

(1 3)

\{3, 4}

2

1

2

2

1

2

1

2

1

1

2 2

3

1

1

2

2

2

3

3

2

3

1

2

Figure 4.9: The graphs G1 and G2 are identical while their canonical forms H3(G1)
and H3(G1) are not. This is an example of failing to uniquely determine the canonical
form for each class of isomorphism by a similar algorithm where a canonical labelling

is used instead of a canonical relabelling.
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4.2.3 Implementations and Testing

We implemented the relabelling we introduced, using the canonical relabelling cal-
culated by nauty as the basic relabelling. The procedure nauty, as we explained in
Chapter 1, returns a canonical isomorph by returning the corresponding isomorphism.
Since, there can be more than one isomorphism from one graph to another, nauty could
randomly choose any isomorphism between G and the canonical isomorph it calcu-
lates. In this case, the output of nauty is not a canonical relabelling even though the
canonical isomorph can be deduced by that.

Luckily, nauty has the option of performing deterministically. Having this option
activated, the relabelling output by nauty is chosen deterministically and serves as a
canonical relabelling. To have nauty perform deterministically, we only need to call
ran_init(k) before calling nauty. This gives the fixed seed of k to the randomizing
function and force nauty to perform deterministically in practice.

To test our relabelling is actually hierarchical, we took files of random graphs
and applied our hierarchical relabelling to these graphs, removed the vertex with
the largest canonical label from each graph and checked if the new graphs are all
in the canonical form by our hierarchical relabelling. We also successfully produced
all graphs up to 11 vertices.

To test our hierarchical relabelling is actually calculating a canonical labelling, we
used the function genrang in package nauty, to produce a file, F, containing a number
of random graphs. Each time, we used the function ranlabg to randomly relabel the
graphs in F and produced a new file, F′, whose graphs are isomorphic (but probably
different) to the graphs in F, correspondingly. Next, our hierarchical relabelling was
applied to the graphs in F′ to obtain a new file of graphs ,F′′. We, then, checked the file
F” is the same each time, that is, irrelevant to the initial labelling of a graph, when the
graphs are isomorphic, applying the relabelling our method outputs for each graph,
to the same graph, always gives the same labelled graph. The content of F′′, can be
compared with the previous content line by line. When the files are bigger we com-
pared the results of hashing the content of the files using the function shasum.
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4.3 Natural Orderly Generation

As mentioned in Chapter 1, generation of graphs has many applications in different
fields of science as well as in industry. The main challenge in generating graph classes
is to find an efficient way to avoid isomorphic copies. Generation methods such as
the orderly generation [79, 182] and GCCP [146], each suggests a non-comparison
based approach to avoid isomorphic copies. Each of these methods may appear more
efficient than the other for generating certain classes of graphs. In Chapter 1, these
two methods are described. In the orderly generation, only canonical graphs are gen-
erated. Hence canonical graphs are generated by extending smaller canonical ones.
when a graph is generated, it goes through a canonicity test that involves processing
the information of all vertices of the graph. This test can be, in many cases, computa-
tionally much more expensive than the genuineness test in GCCP where we basically
process the information about the newly added sub-object. Although this genuineness
test can be as complex as canonicity test, it is much less complex in many cases. On
the other hand, after a graph, G, is accepted, in GCCP method, at the cost of calcu-
lating the automorphism group of G, we avoid applying equivalent extensions on G
and hence we have a much smaller generation tree. While in the orderly generation,
all the equivalent extensions are applied on G and the produced isomorphic copies
are later discarded via the canonicity test. Also, GCCP allows many lookaheads that
increase the efficiency. Therefore, each of these two methods can perform more effi-
ciently than the other method for certain classes of graphs. We propose a new method
of generation for graphs, the natural orderly generation based on hierarchical canonical
labellings that combines the benefits of the orderly generation and GCCP. This method
is basically a version of the orderly generation in which:

• A generated graph is accepted iff it is a canonical isomorph (the orderly genera-
tion).

• The extension is adding a vertex (the natural extension).

• The canonical labelling function is a hierarchical canonical labelling.

4.3.1 Why the Natural Extension?

The natural extension is of a particular interest with many applications in generation of
graphs. The class of all graphs up to a certain number of vertices can be generated with
this method. Adding a number of post-filterings can give certain classes of graphs.
Our generation of PGPs is of similar nature where we post-filter any generated PGP
that is not in the class of our interest and does not have any descendant in that class.
Thus, we prune the generation tree at nodes where the subtrees rooted from them
does not contain any node in the class of our interest.
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Specific classes of graphs can be also directly generated with the natural extension.
In particular, the classes that can be defined by some hereditary properties. A prop-
erty P is hereditary if every induced subgraph of a graph with property P also has
property P. Therefore, for classes of graphs with a given hereditary property, say P,
the extensions can be limited to those where the new vertex is only added in a way
that the generated graphs remain in the class. The natural extension we used with the
GCCP method for generating graphs avoiding given set of cycles, is of this kind.

Therefore, with this extension, the natural orderly generation method can be used
for generation of different classes of graphs.

4.3.2 Why the Hierarchical Canonical Labelling?

While in GCCP, any canonical relabelling can be considered and the choice of ex-
tensions is independent of the choice of canonical relabelling, the orderly generation
endures some limitations in choosing extensions and canonical labellings. Given a
class of graphs and a fixed canonical labelling, in the orderly generation, only those
extensions can be considered where each canonical isomorph in the class we want to
generate can be extended from another canonical isomorph.

But finding such extensions for efficient canonical labelling functions, such as the
one calculated by nauty, can be too difficult. The hierarchical canonical labellings solve
this problem with which different classes of graphs can be generated for the first time
by the orderly method. The reason is if a graph G with n is a canonical isomorph ac-
cording to a hierarchical canonical labelling, H, then by definition, the graph obtained
from G by removing the vertex labelled n, is also a canonical isomorph according to
H. This means, regardless of the exact definition of the canonical labelling, each graph
with more than one vertex that is a canonical isomorph, can be extended from another
canonical isomorph when the canonical labelling is hierarchical.

4.3.3 Using the Recursive Hierarchical Canonical Labelling

The recursive hierarchical canonical labelling introduced earlier in this chapter can be
also used for generating graph classes by the method of natural orderly generation.
As it is explained, this method of canonical labelling can be n times slower than the
most efficient known canonical labelling. However, when a graph is generated, we
might be able to decide whether the generated graph is a canonical isomorph (by
the recursive hierarchical canonical labelling) while avoiding part of the computation
needed to calculate the recursive hierarchical canonical relabelling. The idea is using
the hierarchical property of this labelling, as well as the fact that the relabelling of the
vertex with the k-th largest canonical label gets fixed after kth recursion. Thus, similar
lookaheads as in GCCP method are also possible in the natural orderly generation that
uses the recursive hierarchical canonical labelling.
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4.4 Conclusion and Future Work

More Efficient Hierarchical Canonical Labellings

In this chapter, we introduced an efficient hierarchical canonical labellings. The la-
belling we presented is O(n) times slower than the most efficient known canonical
relabelling where n is the number of the vertices of an input graph. The existence of a
more efficient hierarchical canonical labellings is open. One natural question is:

Question: Is there any hierarchical canonical labelling with the same time complexity
as of the most efficient known canonical labelling?

Increasing the Efficiency of the Natural Orderly Generation

One approach to increase the efficiency of the generation methods that use the recur-
sive canonical relabelling we introduced here is to find a way base on the definition of
the basic relabelling to decrease the number of calls to the basic relabelling or to abort
early in the computations of the basic relabelling. For example, an efficient solution to
the problem of finding the vertex with the largest canonical label for any (or at least
one) canonical labelling function without calculating the whole labelling, would help
developing more efficient generation algorithms based on the hierarchical canonical
labellings.

Question: In the natural orderly generation, each graph is generated by extend-
ing a canonically labelled graph. How can this property be exploited along with the
properties of the recursive hierarchical canonical relabelling to provide lookahead to
decide early whether to accept or reject a generated graph without calculating the
whole canonical relabelling?

k-Hierarchical Canonical Labellings

The same idea can be used for defining k-hierarchical canonical labellings where by
definition if G is canonical, then removing the k largest vertices (or any number of
vertices that is multiple of k ) gives a canonical graph.

Note that k-hierarchical canonical labelling gives k disjoint generation trees where
the roots of the trees are all graphs with 1, 2, . . . , k vertices.

It is obvious if a canonical labelling is k-hierarchical, then for any natural number
m, it is also mk-hierarchical. Although mk-hierarchical is weaker than k-hierarchical
but the earlier can be calculated more quickly. Hence in some applications, in might
be sufficient and more efficient to consider k-hierarchical labellings for k > 1, for ex-
ample, in generation of a class of graphs where the extension is applied by adding k
vertices.
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Question: What are other relations between k1-hierarchical and k2-hierarchical
canonical labellings for 1 ≥ k1 6= k2?

Question: Is there any class of graphs whose generation process with k-hierarchical
canonical labellings( k > 1) is more efficient than with simple hierarchical canonical
labellings?
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Appendix A

Results on Turán Numbers and Extremal
Graphs

In this appendix, the known results and new results on extremal graphs with several
forbidden sets of cycles are presented in a number of tables. Each table is for one set
of forbidden cycles and has four columns that contain the number of vertices, n, the
number of edges, e, the minimum degree, d, and the number of graphs, # with those
specifications. For each number of vertices, all possible values of the number of edges
and minimum degree an extremal graph are listed.

155
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A.1 The Exact Values of ex(n, {C4})

n e d #
4 4 1 1

total 1
5 6 2 1

total 1
6 7 1 2

2 2
total 4

7 9 2 5
total 5

8 11 2 5
total 5

9 13 2 10
total 10

10 16 3 2
total 2

11 18 2 7
3 4

total 11
12 21 3 3

total 3
13 24 3 2

total 2
14 27 3 1

total 1
15 30 4 2

total 2
16 33 3 2

total 2
17 36 3 1

total 1
18 39 3 1

total 1
19 42 3 2

4 3
total 5

20 46 4 1
total 1

n e d #
21 50 4 1

total 1
22 52 2 2

3 4
4 7

total 13
23 56 4 1

total 1
24 59 3 2

4 18
total 20

25 63 4 9
total 9

26 67 4 6
5 2

total 8
27 71 4 7

total 7
28 76 5 1

total 1
29 80 4 2

total 2
30 85 5 1

total 1
31 90 5 1

total 1
32 92 2 1

3 2
4 6

total 9
33 96 5 18

total 18
34 102 6 1

total 1
35 106 4 1

total 1
36 110 5 5

total 5

n e d #
37 113 3 4

4 7
total 11

38 117 4 5
5 ≥ 14
6 ≥ 1

total ≥ 20
39 122 5 ≥ 1

6 ≥ 0
total ≥ 1

40 127 5 ≥ 2
6 ≥ 0

total ≥ 2
128 6 ≥ 0

total ≥ 0
41 132 5 ≥ 3

6 ≥ 0
total ≥ 3

133 5 ≥ 0
6 ≥ 0

total ≥ 0
42 137 4 ≥ 0

5 ≥ 2
6 ≥ 1

total ≥ 3
133-139 total ≥ 0

43 142 3-4 ≥ 0
5 ≥ 6
6 ≥ 1

total ≥ 7
143-145 total ≥ 0

44 148 3-5 ≥ 0
6 ≥ 2

total ≥ 2
149-151 total ≥ 0
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n e d #
45 154 3-5 ≥ 0

6 ≥ 1
total ≥ 1

155-158 total ≥ 0
46 157 0-2 ≥ 0

3 ≥ 3
4 ≥ 3
5 ≥ 0
6 ≥ 3

total ≥ 9
158-165 total ≥ 0

47 163 0-5 ≥ 0
6 ≥ 1

total ≥ 1
164-170 total ≥ 0

48 168 0-4 ≥ 0
5 ≥ 1
6 ≥ 8
7 ≥ 1

total ≥ 10
169-175 total ≥ 0

49 174 0-5 ≥ 0
6 ≥ 6
7 ≥ 0

total ≥ 6
175-182 total ≥ 0



§A.1 The Exact Values of ex(n, {C4}) 159



160 Results on Turán Numbers and Extremal Graphs

A.2 The Exact Values of ex(n, {C3, C4})

n e d #
5 5 2 1

total 1
6 6 1 1

2 1
total 2

7 8 2 1
total 1

8 10 2 1
total 1

9 12 2 1
total 1

10 15 3 1
total 1

11 16 1 1
2 2

total 3
12 18 2 5

3 2
total 7

13 21 3 1
total 1

14 23 2 1
3 3

total 4
15 26 3 1

total 1
16 28 2 5

3 17
total 22

17 31 3 14
total 14

18 34 3 15
total 15

19 38 4 1
total 1

20 41 3 1
total 1

n e d #
21 44 3 1

4 2
total 3

22 47 3 2
4 1

total 3
23 50 3 5

4 2
total 7

24 54 4 1
total 1

25 57 3 3
4 3

total 6
26 61 4 2

total 2
27 65 4 1

total 1
28 68 3 1

4 3
total 4

29 72 4 1
total 1

30 76 4 1
total 1

31 80 4 1
5 1

total 2
32 85 5 1

total 1
33 87 2 3

3 6
4 3

total 12
34 90 3 73

4 160
5 4

total 237

n e d #
35 95 5 5

total 5
36 99 4 20

5 16
total 36

37 104 5 7
total 7

38 109 5 2
total 2

39 114 5 1
total 1

40 120 6 1
total 1

41 124 4 1
total 1

42 129 5 1
total 1

43 134 5 1
total 1

44 139 5 2
total 2

45 145 6 1
total 1

46 150 5 1
6 1

total 2
47 156 6 1

total 1
48 162 6 1

total 1
49 168 6 1

total 1
50 175 7 1

total 1
51 176 1 1

2 2
3 2
4 2

total 7
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n e d #
52 178 2 21

3 75
4 49
5 3

total 148
53 181 3 521

4 ≥ 2074
5 ≥ 93
6 ≥ 0

total ≥ 2688
181–182 total ≥ 0

183 6 ≥ 0
total ≥ 0
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A.3 The Exact Values of ex(n, {C3, C4, C5})

n e d #
3 2 1 1

total 1
4 3 1 2

total 2
5 4 1 3

total 3
6 6 2 1

total 1
7 7 1 1

2 1
total 2

8 9 2 1
total 1

9 10 1 2
2 2

total 4
10 12 2 3

total 3
11 14 2 1

total 1
12 16 2 1

total 1
13 18 2 1

total 1
14 21 3 1

total 1
15 22 1 1

2 2
total 3

16 24 2 3
3 1

total 4
17 26 2 4

total 4
18 29 3 1

total 1
19 31 2 1

total 1

n e d #
20 34 3 1

total 1
21 36 2 1

3 2
total 3

22 39 3 2
total 2

23 42 3 1
total 1

24 45 3 1
total 1

25 48 3 1
total 1

26 52 4 1
total 1

27 53 1 1
2 2
3 1

total 4
28 56 4 1

total 1
29 58 2 1

total 1
30 61 3 1

total 1
31 64 3 1

total 1
32 67 3 2

4 3
total 5

33 70 3 3
total 3

34 74 4 1
total 1

35 77 3 1
total 1

36 81 4 1
total 1

n e d #
37 84 3 1

4 2
total 3

38 88 4 2
total 2

39 92 4 1
total 1

40 96 4 1
total 1

41 100 4 1
total 1

42 105 5 1
total 1

43 106 1 1
2 2
3 2

total 5
44 108 2 6

3 5
4 1

total 12
45 110 2 57

3 119
4 7

total 183
46 115 5 1

total 1
47 118 4 1

total 1
48 122 4 1

total 1
49 126 4 1

total 1
50 130 4 1

total 1
51 134 4 1

total 1
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n e d #
52 138 4 2

5 1
total 3

53 142 4 3
total 3

54 147 5 1
total 1

55 151 4 1
total 1

56 156 5 1
total 1

57 160 4 1
5 2

total 3
58 165 5 2

total 2
59 170 5 1

total 1
60 175 5 1

total 1
61 180 5 1

total 1
62 186 6 1

total 1
63 187 1 1

2 2
3 2
4 1

total 6
64 189 2 10

3 15
4 6

total 31
190 5 ≥ 0

total ≥ 0
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A.4 The Exact Values of ex(n, {C3, C4, C5, C6})

n e d #
3 2 1 1

total 1
4 3 1 2

total 2
5 4 1 3

total 3
6 5 1 6

total 6
7 7 2 1

total 1
8 8 1 1

2 1
total 2

9 9 1 6
2 1

total 7
10 11 2 1

total 1
11 12 1 4

2 3
total 7

12 14 2 2
total 2

13 15 1 5
2 10

total 15
14 17 2 3

total 3
15 18 1 17

2 38
total 55

16 20 2 13
total 13

17 22 2 3
total 3

18 23 1 26
2 148

total 174

n e d #
19 25 2 48

total 48
20 27 2 18

total 18
21 29 2 5

total 5
22 31 2 3

total 3
23 33 2 2

total 2
24 36 3 1

total 1
25 37 1 2

2 7
total 9

26 39 2 3
3 3

total 6
27 41 2 3

total 3
28 43 2 2

total 2
29 45 2 1

total 1
30 47 3 1

total 1
31 49 3 1

total 1
32 51 2 2

3 3
total 5

33 53 2 5
3 3

total 8
34 55 2 10

3 10
total 20

35 58 3 1
total 1

n e d #
36 59 1 13

2 147
3 45

total 205
37 61 2 254

3 138
total 392

38 63 2 963
3 452

total 1415
39 66 3 1

total 1
40 68 2 1

3 10
total 11

41 70 2 16
3 38

total 54
42 72 2 168

3 252
total 420

43 74 2 1200
3 1952

total 3152
44 77 3 5

total 5
45 79 2 3

3 19
total 22

46 81 2 94
3 396

total 490
47 83 2 2882

3 ≥ 6212
total ≥ 9094

48 86 3 ≥ 54
total ≥ 54
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n e d #
49 88 2 ≥ 375

3 ≥ 674
total ≥ 1049

50 91 3 ≥ 29
total ≥ 29

51 94 3 ≥ 3
total ≥ 3

52 96 2 ≥ 13
3 ≥ 0

total ≥ 13
53 98 2 ≥ 36

3 ≥ 16
total ≥ 52

99 3 ≥ 0
total ≥ 0
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A.5 The Exact Values of ex(n, {C3, C4, C5, C6, C7})

n e d #
3 2 1 1

total 1
4 3 1 2

total 2
5 4 1 3

total 3
6 5 1 6

total 6
7 6 1 11

total 11
8 8 2 1

total 1
9 9 1 1

2 1
total 2

10 10 1 7
2 1

total 8
11 12 2 1

total 1
12 13 1 3

2 2
total 5

13 14 1 25
2 4

total 29
14 16 2 4

total 4
15 18 2 1

total 1
16 19 1 2

2 4
total 6

17 20 1 32
2 33

total 65
18 22 2 6

total 6

n e d #
19 24 2 2

total 2
20 25 1 8

2 24
total 32

21 27 2 2
total 2

22 29 2 1
total 1

23 30 1 4
2 33

total 37
24 32 2 6

total 6
25 34 2 2

total 2
26 36 2 2

total 2
27 38 2 1

total 1
28 40 2 1

total 1
29 42 2 1

total 1
30 45 3 1

total 1
31 46 1 1

2 2
total 3

32 47 1 19
2 25

total 44
33 49 2 4

total 4
34 51 2 4

3 1
total 5

35 53 2 1
total 1

n e d #
36 55 2 1

total 1
37 56 1 5

2 68
total 73

38 58 2 27
total 27

39 60 2 24
3 2

total 26
40 63 3 1

total 1
41 64 1 8

2 58
3 9

total 75
42 66 2 35

total 35
43 68 2 30

3 2
total 32

44 70 2 20
3 1

total 21
45 72 2 24

3 12
total 36

46 75 3 3
total 3

47 77 2 1
total 1

48 80 3 1
total 1

49 81 1 2
2 5
3 2

total 9
50 83 2 2

total 2
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n e d #
51 85 2 4

total 4
52 87 2 7

3 19
total 26

53 90 3 1
total 1

54 92 2 1
3 1

total 2
55 94 2 3

3 2
total 5

56 96 2 6
3 ≥ 3

total ≥ 9
57 98 2 ≥ 20

3 ≥ 17
total ≥ 37

58 100 2 ≥ 106
3 ≥ 29

total ≥ 135
101 3 ≥ 0

total ≥ 0
59 103 2 ≥ 0

3 ≥ 2
total ≥ 2

104 3 ≥ 0
total ≥ 0

60 105 2 ≥ 7
3 ≥ 20

total ≥ 27
106 2 ≥ 0

3 ≥ 0
total ≥ 0

107 3 ≥ 0
total ≥ 0
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A.6 The Exact Values of ex(n, {C4} ∪ B)

n e d #
4 3 1 2

total 2
5 4 1 3

total 3
6 6 2 1

total 1
7 7 1 1

total 1
8 9 2 1

total 1
9 10 1 2

2 1
total 3

10 12 2 3
total 3

11 14 2 1
total 1

12 16 2 1
total 1

13 18 2 1
total 1

14 21 3 1
total 1

15 22 1 1
2 1

total 2
16 24 2 3

3 1
total 4

17 26 2 4
total 4

18 29 3 1
total 1

19 31 2 1
total 1

20 34 3 1
total 1

n e d #
21 36 2 1

3 2
total 3

22 39 3 2
total 2

23 42 3 1
total 1

24 45 3 1
total 1

25 48 3 1
total 1

26 52 4 1
total 1

27 53 1 1
2 1

total 2
28 56 4 1

total 1
29 58 2 1

total 1
30 61 3 1

total 1
31 64 3 1

total 1
32 67 3 2

4 3
total 5

33 70 3 3
total 3

34 74 4 1
total 1

35 77 3 1
total 1

36 81 4 1
total 1

37 84 3 1
4 2

total 3

n e d #
38 88 4 2

total 2
39 92 4 1

total 1
40 96 4 1

total 1
41 100 4 1

total 1
42 105 5 1

total 1
43 106 1 1

2 1
3 1

total 3
44 108 2 6

3 5
4 1

total 12
45 110 2 57

3 119
4 7

total 183
46 115 5 1

total 1
47 118 4 1

total 1
48 122 4 1

total 1
49 126 4 1

total 1
50 130 4 1

total 1
51 134 4 1

total 1
52 138 4 2

5 1
total 3
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n e d #
53 142 4 3

total 3
54 147 5 1

total 1
55 151 4 1

total 1
56 156 5 1

total 1
57 160 4 1

5 2
total 3

58 165 5 2
total 2

59 170 5 1
total 1

60 175 5 1
total 1

61 180 5 1
total 1

62 186 6 1
total 1

63 187 1 1
2 1
3 1

total 3
64 189 2 10

3 ≥ 15
4 ≥ 6
5 ≥ 0

total ≥ 31
190 4 ≥ 0

5 ≥ 0
total ≥ 0
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A.7 The Exact Values of ex(n, {C4, C6} ∪ B)

n e d #
4 3 1 2

total 2
5 4 1 3

total 3
6 5 1 6

total 6
7 6 1 11

total 11
8 8 2 1

total 1
9 9 1 1

total 1
10 10 1 6

2 1
total 7

11 12 2 1
total 1

12 13 1 3
2 1

total 4
13 14 1 20

2 2
total 22

14 16 2 4
total 4

15 18 2 1
total 1

16 19 1 2
2 3

total 5
17 20 1 27

2 20
total 47

18 22 2 6
total 6

19 24 2 2
total 2

n e d #
20 25 1 8

2 19
total 27

21 27 2 2
total 2

22 29 2 1
total 1

23 30 1 4
2 29

total 33
24 32 2 6

total 6
25 34 2 2

total 2
26 36 2 2

total 2
27 38 2 1

total 1
28 40 2 1

total 1
29 42 2 1

total 1
30 45 3 1

total 1
31 46 1 1

2 1
total 2

32 47 1 14
2 13

total 27
33 49 2 4

total 4
34 51 2 4

3 1
total 5

35 53 2 1
total 1

n e d #
36 55 2 1

total 1
37 56 1 5

2 63
total 68

38 58 2 27
total 27

39 60 2 24
3 2

total 26
40 63 3 1

total 1
41 64 1 8

2 50
3 7

total 65
42 66 2 35

total 35
43 68 2 30

3 2
total 32

44 70 2 20
3 1

total 21
45 72 2 24

3 12
total 36

46 75 3 3
total 3

47 77 2 1
total 1

48 80 3 1
total 1

49 81 1 2
2 3
3 1

total 6
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n e d #
50 83 2 2

total 2
51 85 2 4

total 4
52 87 2 7

3 19
total 26

53 90 3 1
total 1

54 92 2 1
3 1

total 2
55 94 2 3

3 2
total 5

56 96 2 6
3 3

total 9
57 98 2 20

3 ≥ 17
total ≥ 37

58 100 2 ≥ 106
3 ≥ 29

total ≥ 135
59 103 3 ≥ 2

total ≥ 2
60 105 2 ≥ 7

3 ≥ 20
total ≥ 27

106 3 ≥ 0
total ≥ 0

61 108 2 ≥ 0
3 ≥ 3

total ≥ 3
109 3 ≥ 0

total ≥ 0
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A.8 The Exact Values of ex(n, {C4, C6, C8} ∪ B)

n e d #
5 4 1 3

total 3
6 5 1 6

total 6
7 6 1 11

total 11
8 7 1 23

total 23
9 8 1 47

total 47
10 10 2 1

total 1
11 11 1 1

total 1
12 12 1 7

2 1
total 8

13 13 1 23
total 23

14 15 2 1
total 1

15 16 1 3
2 1

total 4
16 17 1 27

2 2
total 29

17 18 1 157
2 3

total 160
18 20 2 5

total 5
19 21 1 21

2 6
total 27

20 23 2 1
total 1

n e d #
21 24 1 5

2 7
total 12

22 25 1 116
2 42

total 158
23 27 2 1

total 1
24 28 1 14

2 35
total 49

25 30 2 2
total 2

26 31 1 10
2 23

total 33
27 32 1 459

2 382
total 841

28 34 2 10
total 10

29 36 2 2
total 2

30 37 1 12
2 19

total 31
31 38 1 398

2 535
total 933

32 40 2 10
total 10

33 42 2 1
total 1

34 43 1 8
2 20

total 28
35 44 1 545

2 1545
total 2090

n e d #
36 46 2 26

total 26
37 48 2 1

total 1
38 49 1 9

2 60
total 69

39 51 2 1
total 1

40 52 1 24
2 268

total 292
41 54 2 8

total 8
42 55 1 138

2 1122
total 1260

43 57 2 8
total 8

44 59 2 1
total 1

45 60 1 12
2 255

total 267
46 62 2 3

total 3
47 63 1 36

2 1539
total 1575

48 65 2 30
total 30

49 67 2 1
total 1

50 68 1 16
2 1063

total 1079
51 70 2 25

total 25
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n e d #
52 71 1 692

2 23495
total 24187

53 73 2 612
total 612

54 75 2 31
total 31

55 76 1 1284
2 ≥ 43991

total ≥ 45275
56 78 2 ≥ 1930

total ≥ 1930
57 80 2 ≥ 75

total ≥ 75
58 82 2 ≥ 4

total ≥ 4
59 84 2 ≥ 1

total ≥ 1
60 85 1 ≥ 16

2 ≥ 912
total ≥ 928

86 2 ≥ 0
total ≥ 0

61 87 1 ≥ 0
2 ≥ 33

total ≥ 33
88 2 ≥ 0

total ≥ 0
62 89 1 ≥ 0

2 ≥ 3
total ≥ 3

90 2 ≥ 0
total ≥ 0
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