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Abstract

Single photons — discrete wavepackets of light — are one of the most funda-
mental entities in physics. In recent years, the ability to consistently create and
manipulate both single photons and pairs of photons has facilitated everything from
tests of quantum theory to the implementation of quantum-enhanced precision mea-
surements. These activities all fall within the scope of the rapidly-growing field of
quantum information — the exploitation of the properties of quantum states (and
specifically their capability to exist in superpositions) to accomplish tasks that would
not be possible with classical objects.

One stated goal of research in quantum information is to build a device con-
sisting of a network of quantum logic gates that can evaluate quantum algorithms.
The photonic implementation of individual logic gates has already been demon-
strated. However, partly due to standard methods of preparing single photons, cur-
rent schemes have severe limitations in terms of scaling up from a single logic gate
to multiple concatenated operations. Until now it has not been proven that single
photons can be generated in pure and indistinguishable quantum states, something
upon which the successful operation of optical quantum logic gates relies.

This thesis presents an experimental demonstration of simultaneous generation
of almost identical single photons in highly pure states from two independent sources
based on parametric downconversion. This is a process of photon pair generation
during the passage of a light beam through a nonlinear crystal; one photon from the
resulting pair is detected to herald the other. The work herein describes, refines,
and implements a technique that minimises the strong quantum correlations usually
present within each pair by spectral engineering of the source. This allows the her-
alded single photons to be in pure states, a property that is confirmed by observing
a high-visibility two-photon interference effect without spectral filtering.
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Chapter 1

Introduction

1.1 Overview and motivation

Ever since its inception, quantum mechanics has predicted seemingly counter-intuitive

results. Initially, this caused much consternation among the physics community in

the first half of the 20th century. Many “thought experiments” — which came to

be known by their German title of Gedankenexperiment — were conceived in an

attempt to resolve these apparent paradoxes through drawing on everyday intuition

about the world around us. We now know that the strange effects were not in fact

paradoxes at all, but that the results of quantum theory simply cannot be inter-

preted in terms of what we experience on a daily basis in the macroscopic world.

However, at the time there was no way of testing this.

The advent of the laser1 in 1960 opened up the field of experimental quantum

optics. For the first time it became possible to produce a coherent, low-divergence
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beam of light — a crucial development in experimental physics, despite the initial

opposition of the sceptical majority who believed this was “a solution looking for a

problem”2. During the final quarter of the 20th century, new techniques of generating

nonclassical states of light, all of which relied on the laser, were first demonstrated

and soon became widespread. Experiments utilising these ingenious methods allowed

practical investigations of ideas once only imagined by the pioneers of quantum

mechanics in the 1920s and 1930s. Most famous amongst these was perhaps the

refutation of local hidden variable theories as expressed in the Einstein-Podolsky-

Rosen paradox through the violation of the Bell inequalities3 with entangled pairs

of photons4–9.

The inherent usefulness of the laser stems from the fact that, due to the stimu-

lated nature of the amplification process within the laser gain medium, all the light

is emitted into the same limited set of electromagnetic field modes. Hence the num-

ber of photons per mode is much higher than could be achieved with any thermal

light source, making lasers exceptionally bright sources of light, essential for most

modern physics experiments. An analogy can be drawn here between the emission

of photons into identical field modes and the ability to prepare individual quantum

systems in indistinguishable states that is at the heart of in many of the experimen-

tal demonstrations of quantum mechanics that the laser has been used to achieve.

For example, by creating the first Bose-Einstein condensate (BEC)10 in 1995 it was

shown that cooling an ensemble of atoms to their ground state ensures that they are

all in indistinguishable states and allows the ensemble to coalesce into a mesoscopic
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object displaying quantum behaviour.

Although indistinguishability plays a leading role in the majority of quantum

phenomena, it is not trivial to produce single photons that are indistinguishable

in all their degrees of freedom. Single photons are fundamental excitations of the

electromagnetic field, itself the solution of Maxwell’s equations, and as such are in-

teresting for a number of reasons. Single photons and pairs of entangled photons

allow tests of quantum mechanics11, for example the violations of Bell’s inequalities

mentioned above. The optical implementation of quantum computation, whether

via the linear optics12 or cluster state13 model, requires sources capable of gen-

erating well-controlled photons. Linear optical quantum logic gates rely on the

Bose-Einstein coalescence of single photons incident on a beamsplitter – a so-called

Hong-Ou-Mandel interference14. However, this will only occur if the two photons are

indistinguishable15. Single photons are also necessary for certain kinds of quantum

cryptography, giving rise to provably secure key distribution.

1.2 What is a photon?

All the fifty years of conscious brooding have brought me no closer to the

answer to the question: What are light quanta? Of course today every

rascal thinks he knows the answer, but he is deluding himself.

A. Einstein

For the purpose of this article, a photon is any eigenstate of the total

number operator belonging to the eigenvalue 1.

L. Mandel16
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. . . the photon is not an object that can be pinned down like a beautiful

butterfly in a collection. The photon tells us, “I am who I am!” in no

uncertain terms and invites us to get better acquainted with it.

C. Roychoudhuri and R. Roy17

If there is anything to be learnt from these three quotes, it is that, although the

basic concept of a discrete wavepacket of light appears at first glance to be simple,

the photon is a tricky entity to really understand. After the introduction of the

quantization of atomic energy levels to solve the problem of black-body radiation

by Planck in 1900, it was Einstein’s explanation of the photoelectric effect in 1905

that provided the impetus for the modern quantization of the electromagnetic field.

Although this can be explained by a semiclassical theory of quantized exchange of

energy between atoms and the light field18,19, at the time it was taken as evidence for

the discrete nature of light. However, it was another twenty years before the name

“photon” was suggested for these fundamental objects by Gilbert Lewis, a chemist,

in 192620, though the original concept was of the photon as a “hypothetical new

atom, which is not light but plays an essential part in every process of radiation.”21,22

Light is an electromagnetic field and the formalism of the photonic description

arises most clearly from considering the solutions to Maxwell’s equations in an opti-

cal cavity23. The cavity defines a series of longitudinal solutions, known as modes,

for a given wavelength, each of which must have an integer number of wavelengths

in its optical path. The time-dependent solutions of these modes have the form of
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quantized harmonic oscillators and hence their energy levels, En, are discrete:

En = (n+ 1/2)h̄ω. (1.1)

We can define for this quantum harmonic oscillator operators, â†i and âi, that raise

or lower respectively the number of field excitations in a given mode i by one. These

operators are known as the creation and annihilation operators as they create or

destroy a single photon in mode i:

â†i |0〉 = |1〉, (1.2)

âi|1〉 = |0〉, (1.3)

where |1〉 is the state vector for a mode containing only one photon and |0〉 rep-

resents a mode containing no photons, the so-called vacuum state of the system.

Although no photons are present in this state and the expectation values of the field

quadratures are zero, fluctuations of the vacuum field mean that the quadrature

variances are non-zero. The zero-point energy of the quantum harmonic oscillator

means that no field mode is ever “empty”: vacuum fluctuations with energy (1/2)h̄ω

will always be always present.

This brings us to the most common, and probably unhelpful, definition of a

photon: |1〉, the result of the photon creation operator acting on the vacuum state.

For theoretical discussions of quantum optics and quantum information processing,

this type of state is often assumed to be the logical starting point — after all, surely
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it must be the simplest state to make. However, from the point of view of trying to

generate this type of state in the laboratory, what does this description really mean?

One obvious point is that the portrayal is incomplete: none of the various degrees

of freedom that our photon will inevitably have are explicitly expressed in this

description. These parameters include frequency, spatial distribution, momentum,

and polarisation.

First, let us consider including only the frequency of the photon (written as

angular frequency ω for convenience). It is a simple enough matter to rewrite the

creation and annihilation operators and state vectors to take this into account. The

creation operator becomes â†i (ωi), and when acting upon the vacuum state it creates

a photon in mode i with angular frequency ωi:

â†i (ωi)|0〉 = |ωi〉 (1.4)

So we now have a photon, |ωi〉, with a single well-defined frequency, ωi/2π. However,

we now encounter another problem: photons do not have a single frequency. Our

description thus far has assumed that the photon can only exist in a single frequency

mode, but for a realistic treatment of the quantized field, a multimode interpretation

of the photon must be used. This may at first sound strange, as the traditional

view of the particle nature of light tends to imply that the individual wavepackets

possess a well-defined (single) frequency. Upon reflection though it is clear that

this cannot be the case: a single-frequency photon would have infinite duration and
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could therefore not be a wavepacket at all.

To incorporate properly the frequency structure of our photon into its descrip-

tion, we must sum over all possible frequencies with a weight given by the frequency

distribution of the particular photon, f(ωi), as follows,

|Ψi(ω)〉 =

∫

dωif(ωi)â
†
i (ωi)|0〉. (1.5)

Considering only the frequency degree of freedom, this is the most complete math-

ematical description of a single photon in a pure state. It is interesting to note

that, having discarded the assumption that the photon has a single well-defined

frequency, we now have the possibility of broadband photons, something which will

appear again later in this thesis.

This is the formalism that will be used for describing photons in the following

discussions, although the mathematics provide little physical intuition as to what a

photon is. Despite its quantized nature, a photon has neither a uniquely specified

energy nor momentum. It is also not localized to a particular position in space or

time — indeed it can be spread over a broad region of both and many different paths.

Yet each photon is indivisible and upon detection will result in a single excitation in

a specific location. This leads to a more pragmatic (and popular) definition of the

photon, “a photon is what makes my photon detector go click”24.
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1.3 Pure states and mixed states

The representations of single-photon states that we have so far considered in Sec-

tion 1.2 are all examples of what are known as pure quantum states. This is the type

of state with which anyone who has completed a course in basic quantum mechanics

will be familiar; they can be completely described by a state vector |ψ〉. Pure states

are convenient for theoretical calculations as they are straightforward to manipu-

late and interpret, and are adequate to show the general properties of many simple

quantum systems.

However, real-world quantum systems do not exhibit the perfect coherence re-

quired for purity, and therefore pure states no longer provide a sufficient framework

for modelling them. In these cases, the system cannot be fully described through a

state vector alone and instead the density operator formalism must be used. Such

a system will be in a statistical mixture of an ensemble of pure states |ψi〉 each

weighted with a probability pi. The system is said to be in a mixed state and it can

be represented by a density operator ρ̂ that is defined to be 25

ρ̂ ≡
∑

i

pi|ψi〉〈ψi|. (1.6)

This density operator ρ̂ then provides a complete description of the system. Density

operators can of course also be used to represent pure states; in this case, p0 = 1,

pi6=0 = 0 and ρ̂pure = |ψ0〉〈ψ0|. This leads to a simple definition of the purity of any
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system given its density operator:

P = Tr
(

ρ̂2
)

. (1.7)

It is simple to see that P is unity for ρ̂pure and tends to zero for maximally mixed

states.

In the context of QIP, any impurity in the quantum states is usually detrimental.

Mixed states are incoherent (i.e. classical) mixtures and even when prepared in a

consistent manner they vary randomly from one iteration to the next. Therefore they

cannot generate high-quality interference phenomena, such as would be required for

linear optics quantum gates (see Section 1.8). Hence we wish to generate single

photons in pure states.

1.4 An ideal single photon source: The photon gun

So what type of source is required for photonic quantum information applications?

Two things are useful: single photons and pairs of entangled photons. Highly en-

tangled pairs are available through a variety of photon pair generation techniques

that are routinely implemented in many laboratories; these will be described in Sec-

tion 1.5. However, it has until now been difficult to build such a reliable source of

high-quality, indistinguishable single photons.

This leads us to consider the concept of the ideal single photon source and

the characteristics it would possess. Firstly, the photons produced by independent
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sources must be indistinguishable from one another. This means that one must

have control over all their degrees of freedom — frequency distribution, emission

time, spatial structure, momentum, and polarisation — to ensure that they are

identical. Secondly, the photons must be in pure quantum states so that they can be

used in optical quantum processing tasks. Thirdly, the photons should be available

on-demand: when a photon is requested, one (and only one) is delivered with a

probability of one. This type of idealized single photon source is often referred to as

a “photon gun” — a box with a button which, when pressed, triggers the release of

exactly one photon into the output channel.

However, there are many obstacles in the pursuit of such a source. The most

obvious one is loss; any realistic single photon generating device will suffer losses and

therefore will not be able to reliably output a photon every time one is requested. On

the other hand, some sources suffer from the problem of having a nonzero probability

of producing two photons simultaneously. A more subtle problem, and one often not

explicitly considered, is that of ensuring indistinguishability between the photons.

The conditions at the point of production must be controlled precisely to generate

photons with exactly the same structure — otherwise more photons will have to be

discarded through lossy filtering.

1.5 Methods of single photon generation

The first experiments specifically investigating single photon effects were performed

by exciting a sparsely-populated atomic beam and collecting the subsequent emis-
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sion. The two prime examples of this were implemented with different excitation

processes: an on-resonance excitation yielding a single fluorescence photon26 and

the emission of polarisation-entangled photon pairs after a two-photon excitation6.

These apparatuses were sufficient for demonstrations of the quantum nature of light,

but the clumsy and complex experimental setups — not to mention the quality of the

photons produced — were far from the ideal, user-friendly single photon source we

seek. This section gives a brief background to the modern techniques that get closer

to this ideal and how they relate to the work contained in this thesis. Further de-

tails on the methods of single photon generation can be found in the comprehensive

review articles by Lounis and Orrit27 and Oxborrow and Sinclair28.

1.5.1 Single emitters

The many different methods of generating single photons currently in use can be

divided into two broad categories. The first is that of sources with a single emitter,

such as a single atom or a quantum dot. To ensure that the individual photons emit-

ted from these sources have the same characteristics — for example their frequency

or spatial probability distribution — it is necessary to control the environment sur-

rounding the emitter, commonly by means of a cavity. By coupling the emitter

strongly to the cavity, emission can be encouraged into the electromagnetic field

modes of the cavity rather than the side modes. The creation of photons in some of

these sources is close to being deterministic — that is to say that having “pressed the

button”, the probability of generating a photon is close to unity. However, in many
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cases the collection efficiencies are poor, reducing the chance of having a useable

photon at the output. All single-emitter sources require either complex vacuum or

cryogenic equipment or advanced, intricate fabrication techniques, or both.

Single atoms are the obvious choice for use as an emitter of single photons. As-

suming the atom is excited into the correct state, photons must be emitted individu-

ally26, however, this emission is not easy to collect as it occurs in all directions29. In

cavity quantum electrodynamics (CQED), atoms are coupled to cavities to overcome

this problem. Within the cavity modes the density of states of the atomic emission

pattern is increased, hence the photons have a higher probability of being created

in a cavity mode and the collection efficiency can therefore be improved. The emis-

sion linewidths of atoms in cavities are generally narrow (on the order of 10MHz),

giving good coupling to other atomic transitions for storage of photonic quantum

states30 but poor timing information about the single photons. The availability of

detectors whose response time is fast relative to photon duration allows temporal

filtering of the single photons. This can be used to artificially hide any mixedness

and therefore the purity of these photons has not yet been demonstrated. In addi-

tion, the central frequency of the emission is sensitive to the exact local conditions

around the atom and hence it is difficult to get good overlap between single photons

from two separate, independent atoms. CQED systems are complex, involving many

laser systems and an ultra-high vacuum (UHV) chamber. Early atom-cavity sources

relied on atoms dropping from a magneto-optical trap (MOT) and passing through

the cavity31 or weak trapping in the cavity mode32, but recently it has been possible
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to hold a single atom in a cavity for durations of several tens of seconds with an

optical lattice33. A similar source of single photons is a single trapped ion34,35. The

advantage of ions is that it is much easier to trap an ion in a cavity than it is a

neutral atom as ions can be held in an radio-frequency dipole trap.

Advances in semiconductor fabrication technology over the last 20 years have en-

abled the construction of quantum dots and solid-state microcavities around them.

Narrowband single photon emission36,37 or pair emission38 occurs from the recom-

bination of electron-hole pairs formed during excitations of the quantum dot. The

major problem with these sources is that two quantum dots are never the same and

therefore their emission frequencies are different. Hence, interfering photons from

two independent quantum dots is almost impossible39. Nevertheless, some impres-

sive results have been achieved to date40 based on the interaction of time-delayed

photons originating from the same dot, but the purity of these photons is still imper-

fect. These sources are in themselves very compact but must be cooled to cryogenic

temperatures (usually liquid helium) by bulky equipment. Fabrication of quantum

dots in microstructured cavities is inherently complex.

Lattice defects in inorganic crystals, known as colour centres, can be used as

single photon sources. The most popular example of this is nitrogen-vacancy (NV)

centres in diamond. NV centres consist of a vacancy in the lattice adjacent to a

nitrogen impurity, where an electron becomes trapped and acts as an emitter. The

energy levels of NV centres act like a four-level system and single photon emission

has been observed on the central transition41,42. NV centre sources can be operated



14 1.5 Methods of single photon generation

at room temperature but background rates are generally high and, for bulk diamond

sources, total internal reflection in the sample makes extraction of the single photons

problematic. This can, however, be mitigated by forming the NV centre in a diamond

nanocrystal rather than a bulk sample43. An NV centre single photon source was

recently used to experimentally implement Wheeler’s delayed choice algorithm44,

demonstrating that a single photon is truly in a superposition of both arms of an

interferometer until a measurement is made.

1.5.2 Multiple emitters

The second category of single photon sources is those consisting of many emitters, for

example an atomic gas or a bulk medium. These sources are inherently probabilistic

— generally a train of pump laser pulses passes through the medium, but for each

pulse the probability of obtaining anything at the output is necessarily much less

than one. This would appear at first sight to make this type of source useless; what

is the point of a source that produces a single photon in any one of several million

time windows? Fortunately a solution exists to this apparent problem: rather than

generating photons one by one like the single emitters, multiple-emitter sources

actually create pairs of photons. Although it is initially unknown whether a given

pump pulse will have generated a pair of photons or not, if it has, the pair of daughter

photons can be split apart and one of them detected. The detection of one of these

photons then announces that a pair-generation event has occurred for that pump

pulse and, assuming that the other half of the pair has been successfully collected as
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well, a single photon is available in the other arm of the apparatus. This detection

process is known as heralding.

In the case of many emitters, the structure of the emission is determined by the

relative phase of the emitters in the ensemble. An output field can only be generated

in directions in which the emitters all remain in phase with the pump field. In these

directions constructive interference occurs between the components of the output

field generated at different points and the excitation field. In all other directions,

the oscillations of the emitters do not remain in phase with the pump hence no

output field will be found there. The coherent phasing of individual emitters to

obtain constructive interference is known as phasematching. It can be achieved by

several different methods, depending on the medium used, and will be discussed at

length throughout this thesis.

A laser-cooled atomic ensemble45,46 held in a magneto-optical trap can generate

single photons47,48 via an off-resonant Raman transition in a Λ-type system. First,

a collective excitation is created in the ensemble by one laser and confirmed by

detecting a single emitted photon. This excitation is then “read out” by a second

laser pulse and a single photon is emitted in the opposite direction to the first. Given

that one and only one photon was detected after the first pulse, a single photon will

be emitted upon application of the read pulse. Additionally, pair generation has also

been accomplished in atomic ensembles by a four-wave mixing process49,50. As in

the single atom or ion case, cooled atomic ensemble sources require several lasers and

a UHV system, and care must be taken to match the frequencies of two independent
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sources by switching off all fields before emission, though this is less difficult as

the emission linewidths are broader. Photon generation rates are generally low as

collection can be problematic. A significant advantage of this type of system is

that the photons are automatically of the correct linewidth and frequency to be

written into a quantum memory based on a similar atomic ensemble51–53 or enable

entanglement distribution54,55 across a quantum network via series of repeaters.

A recent advance in the field of single photon generation has been the devel-

opment of photon pair generation in optical fibre56–60. This is a four-wave mixing

process whereby the third-order nonlinearity of a homogeneous or microstructured

fibre allows pump photons to couple to a pair of non-degenerate photons61. These

photons are then separated from the pump by means of their spectrum. Fibre-based

pair sources have the advantages that the fibre allows a very long interaction length

to compensate for the very weak nonlinearity and the photons are generated in a

single spatial mode. However, the pairs are generally highly correlated in frequency

(see Section 1.7) so very tight filtering must be employed.

The final example of a multiple-emitter single photon source is parametric dow-

conversion62 (PDC). This is one of the most commonly used sources in quantum

optics as it provides a relatively straightforward method of generating single pho-

tons63. This thesis will investigate some aspects of PDC not taken into considera-

tion during the design of the majority of downconversion sources, and through this

demonstrate how source engineering can provide superior heralded single photons.

PDC is outlined in the next section.
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1.6 Parametric downconversion

Parametric downconversion64,65 is a three-wave mixing process wherein a pump

photon can decay into a pair of daughter photons, known (for historical reasons)

as the signal and idler. A medium whose polarisation has a nonlinear response to

the incident optical frequency provides the coupling between the fundamental and

sub-harmonic fields through its nonzero second-order susceptibility (χ(2))66. As the

process is parametric, in the limiting case no energy or momentum is transferred to

the medium and must therefore be conserved between the three fields. The equations

describing these conditions are known as the phasematching equations67,

ωp = ωs + ωi, (1.8)

~kp = ~ks + ~ki, (1.9)

where ωµ is photon angular momentum, ~kµ is wavevector, and µ = p, s, i denote

pump, signal, and idler respectively.

PDC can take place in two regimes: spontaneous62 and stimulated68. In spon-

taneous PDC, the daughter fields are seeded only by the vacuum fluctuations of

the electromagnetic field. In this case, the parametric gain is low and therefore the

probability of generating a daughter pair is small. Stimulated PDC is the high-gain

regime: the first pair is generated spontaneously, but, due to the high amplification,

this pair then acts as a seed for the sub-harmonic field, and many more pairs can

be generated concurrently. Clearly, in order to have a high-quality single-photon
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Figure 1.1 A schematic of type-II PDC. A blue pump pulse passes
through a second-order nonlinear crystal and each pump photon has
a small probability of decaying into two red daughter photons with
orthogonal polarisations. These are then split and one used to detect
the presence of the other.

source, the probability of generating two pairs at the same time must be small, and

hence all pair production must inevitably be spontaneous. This is achieved by en-

suring that the likelihood of generating a pair from a given pump pulse is low. All

the work contained herein is concerned with the spontaneous regime.

As a source of single photons, downconversion has the inherent advantages that

the apparatus required is simple — only a pump laser and a χ(2) nonlinear crystal are

needed to generate photon pairs, and the entire apparatus is at room temperature

and pressure. The variety of lasers and crystals available give a considerable amount

of flexibility in determining the parameters of the photons generated, allowing the

use of efficient, room-temperature detectors in many cases. This makes PDC one

of the most promising candidates for single photon sources in quantum information

applications.



1.6 Parametric downconversion 19

In order to exhibit a second-order nonlinearity a crystal must lack a centre of

inversion symmetry69 (these crystals are known as non-centrosymmetric 70) and as

a result all χ(2) crystals are optically anisotropic71. This leads to birefringence

— the refractive index of the crystal is dependent on the polarisation of the light

propagating within it. In the case of uniaxial crystals (all the crystals considered

in this thesis are of this type although downconversion can be performed in biaxial

crystals), there is a single axis of rotational symmetry, known as the optic axis or

c-axis of the crystal. Light of arbitrary polarisation traveling through a uniaxial

crystal can be decomposed into two orthogonal polarisations: the extraordinary ray

(e-ray) is polarised in the plane defined by the optic axis and the incident wavevector

(the principal plane), and the ordinary ray (o-ray) is polarised perpendicular to this

plane, as illustrated in Figure 1.2. Two refractive indices, ne and no, are then defined

when these two polarisations propagate at right angles to the optic axis (θ = 90◦).

As the o-ray electric field is always perpendicular to the optic axis, and due to

the crystal symmetry, no does not depend on the angle of propagation through the

crystal, θ. Conversely, the general form of the e-ray refractive index, ne(θ), varies

with the angle of the wavevector relative to the optic axis.

It is this birefringence that allows the energy and momentum phasematching

conditions (Equations 1.8 and 1.9) to be simultaneously satisfied within a single

nonlinear crystal for a range of pump and daughter frequencies72,73. The angle at

which perfect phasematching occurs for a given set of wavelengths, θ = θpm, is known

as the phasematching angle. It also gives rise to two differently-phasematched types
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Figure 1.2 Definitions of e-ray and o-ray polarisations in a non-

linear crystal. The angle subtended by the incident wavevector (~k)
and the crystal optic axis (~c) at which perfect phasematching occurs
is known as the phasematching angle, θ = θpm.

of PDC. In type-I phasematched PDC, a pump photon decays into a pair of photons

with the same polarisation as each other but orthogonal to the pump, whereas in

type-II phasematched PDC, a pump photon couples to two daughter photons, one

of which has the same polarisation as the pump but the other is orthogonal.

As well as being uniaxial, all the birefringent nonlinear media dealt with in this

thesis are so-called negative crystals, meaning that they satisfy the relation74

no > ne. (1.10)

As wavevector and frequency are related through

k(ω) =
n(ω)ω

c
, (1.11)
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Figure 1.3 An illustration of the variation of e- and o-ray refrac-
tive indices for two wavelengths in a normally-dispersive birefringent
crystal. Note that for the sake of clarity the differences between the
refractive indices have been scaled up dramatically.

for normally-dispersive media (in which refractive index increases with frequency),

this sets the particular polarisations that the two types of downconversion must have.

For type-I phasematching, the pump photon must be an e-ray, and the daughter

photons o-rays, and for type-II the pump must also be e-ray with one downconverted

photon being e-ray and the other o-ray.

The dependence of the e-ray refractive index on the propagation angle means that

each type of phasematching has its own characteristic emission pattern75,76, shown

in Figure 1.4, as phasematching can be satisfied in a range of directions. For type-I

PDC, the photon pairs are generated in a series of concentric cones, rotationally

symmetric about the pump propagation direction, and the angle of each cone is

proportional to the frequency of the pairs. As both photons from the same pair are



22 1.6 Parametric downconversion

Figure 1.4 PDC emission patterns for type-I (top left), type-II
(top right), type-II collinear (bottom left), and type-II beamlike (bot-
tom right) configurations. In each case, conjugate pairs are emitted
on opposite sides of the pattern from one another to satisfy momen-
tum conservation.

identical, their directions of emission are symmetric about the pump direction. In

type-II PDC, there is no pairwise symmetry, as one half of each pair is an e-ray and

the other an o-ray. The pairs are still emitted in a pattern of cones77, but without

rotational symmetry about the pump. For each frequency, two cones are present

with their centres separated in the principal plane, and in general they intersect

along two directions.

There are two special cases of downconversion that will be dealt with in this

thesis, the first of which is degenerate PDC. This is the case where the central
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frequencies of the distributions of both daughter photons are the same. The second

is collinear PDC — when the direction of the wavevectors of both downconverted

photons is the same as that of the pump. For type-II phasematching this is the case

where the e- and o-ray cones intersect along a single direction. Note that for certain

phasematching conditions, the collinear case can be degenerate — indeed this is the

form of downconversion mainly considered in this thesis.

1.7 Quantum correlations in PDC

All quantum states prepared in the laboratory are to some extent mixed and there

are many different ways by which a pure (or perhaps we should say almost pure)

state can be transformed into a mixed state. However, the process with which this

thesis is primarily concerned is the introduction of impurity to a subsystem of a

composite quantum system when a measurement is made on another part of the

system. This occurs as a result of correlations between individual components of

the system as a whole.

There exist two types of correlation within the output from a parametric down-

converter. Firstly, the coupling between frequency and momentum in a birefringent

crystal correlates the energy of each individual photon with its momentum (and

therefore direction of emission). Secondly, as discussed in Section 1.6, phasematching

of the downconversion process binds together the photons within each pair through

conservation rules. Hence, more significantly in the context of this thesis, there exist

additional pairwise correlations between photons.
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The transverse momentum of each pair must sum to zero and therefore the

transverse propagation directions of the daughter photons are anti-correlated75,78

— if one downconverted photon is produced traveling to the left of the pump, the

other will be to the right. This is illustrated in Figure 1.4. Even if we restrict the

discussion to the collinear type-II case (where transverse momentum is necessarily

zero) correlations will still in general be present between the frequency of one photon

and that of the other from the same pair79. This is simply as a result of the coupling

of the e-ray and o-ray frequencies due to phasematching. If such a correlated pair

is split up and one photon detected as a herald by a detector that cannot resolve

its frequency, this sums over the degrees of freedom of the detected photon and

projects the remaining photon into a mixed state, rendering it useless for most QIP

applications. This is explained further in Chapter 3.

The technique that is used in most present-day PDC sources to bypass this

problem is that of spectral filtering80–83. If the emission structure of a parametric

downconverter is not controlled, the photon pairs are emitted into many spatio-

temporal field modes84,85. These pairs are highly correlated in frequency and the

heralded single photons derived directly from them would be mixed. However, in

order to produce an approximation of purity in the heralded single photons, the

generated state is filtered towards a single mode using narrow spectral filters. This

discards any pairs that do not satisfy the criteria for purity — any exhibiting pairwise

correlations — and, as the filtering required for a given level of purity is generally

very tight, results in a huge drop in production efficiency. This becomes a problem
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if one wishes to perform experiments with multiple sources or with high photon

number.

In contrast, this thesis presents a technique of spectral engineering of photon

pairs that allows the generation of uncorrelated two-photon states. Pure, heralded

single photons can then be produced directly without the need for spectral filtering

and its associated loss.

1.8 Hong-Ou-Mandel interference

Photons interact only weakly with their environment. This makes them perfect for

transmitting information across networks — either through optical fibre or in free

space — where they act as so-called “flying qubits” (a qubit or quantum bit is a

logical element in a quantum information processing (QIP) system). However, these

weak interactions become a serious obstacle if one tries to use photons to perform

computational operations in any QIP scheme.

Initially, it was believed that, in order to implement a photonic QIP device,

it would be necessary to couple separate optical fields via nonlinear interactions86

— something that is easy to achieve with intense laser fields but technically very

difficult when the modes involved contain on the order of one photon each. How-

ever, in 2001 it was shown by Knill, Laflamme, and Milburn (KLM)12 that optical

QIP could in theory be accomplished without the use of these nonlinear interactions

between single photons. In fact, only three basic types of components would be

required: single photon sources, photon-number resolving detectors, and linear op-
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Figure 1.5 An illustration of the input and output modes of a
beamsplitter.

tical elements (beamsplitters and phase shifters). In their proposal, which became

known as the KLM scheme for linear optics quantum computation (LOQC), non-

linear field interactions are replaced by beamsplitters that allow mixing of optical

modes and hence interactions between single photons, and successful gate operation

that is conditional upon certain detectors firing.

The beamsplitter is simply a partially reflecting mirror with two input and two

output ports, as shown in Figure 1.5. In the case of a 50:50 beamsplitter, the two

input modes are mixed at the interface and whatever is in each input mode has

a probability of one half of ending up in each output mode. This illustrates the

reason why beamsplitters are such useful components in quantum optics: the indi-

visible nature of quantized fields results in the output modes being in a quantum

superposition that is a combination of whatever was incident on the beamsplitter.

Thus, as beamsplitters allow us to observe interference between weak fields,

they can be used to demonstrate the bosonic behaviour of single photons. This

is most simply demonstrated by considering a beamsplitter that has reflection and
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transmission coefficients, R and T respectively, that are assumed to be real23. We

can write down the transformation by such a beamsplitter of input modes 1 and 2

to output modes 3 and 4 as follows:

â3 = Râ1 + T â2

â4 = T â1 −Râ2, (1.12)

where the minus sign in the second equation arises from the phase relationship re-

quired to make R and T real while maintaining energy conservation at the interface.

Also by using the energy-conserving expression relating R and T , R2 + T 2 = 1 we

can find similar expressions relating the creation operators for the input modes to

those of the output modes:

â†1 = Râ†3 + T â†4

â†2 = T â†3 −Râ†4, (1.13)

The output state is found by substituting the transformed modes at the output for

the incident modes at the input, so, for the case of one single photon incident upon

each input port of this beamsplitter we have:

|ψ〉 = â†1â
†
2|0〉

=
(

Râ†3 + T â†4
) (

T â†3 −Râ†4
)

|0〉

=
(

RT â†3â
†
3 −R2â†3â

†
4 + T 2â†4â

†
3 − T Râ†4â

†
4

)

|0〉.

(1.14)
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Now, for a beamsplitter with transmission and reflection coefficients of equal magni-

tude (a 50:50 beamsplitter), R = T =
(

1/
√

2
)

and T 2−R2 = 0. Since the operators

â†3 and â†4 commute, Equation 1.14 reduces to:

|ψ〉 =
1√
2

(

â†3â
†
3 − â†4â

†
4

)

|0〉. (1.15)

Hence we see that the two crossed terms containing one photon in each output

mode have cancelled each other out. This result shows that, so long as the two

single photons are both pure and indistinguishable, they will always emerge in the

same output mode of the beamsplitter as each other.

This interference effect is known as photon bunching or Hong-Ou-Mandel inter-

ference (HOMI)14 and arises as a consequence of the phase shift that occurs upon

reflection at the beamsplitter interface. The output modes are in a superposition

state of all four terms in Equation 1.14, but for indistinguishable inputs, the second

and third terms (representing both photons reflected or both transmitted respec-

tively) are identical as shown in Figure 1.6. However, in the case where both fields

are reflected, they pick up a π phase change relative to the transmitted case, resulting

in the minus sign in front of the second term. Therefore, due to their indistinguisha-

bility, the second and third terms interfere destructively and cancel one another out,

leaving only the first and fourth terms: both photons in one output mode or both

in the other.

As well as being essential for LOQC, this effect is a useful tool for characterizing
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Figure 1.6 A pictorial representation of single photon interference
at a 50:50 beamsplitter, as demonstrated in Equations 1.14 and 1.15.
The outcomes of the upper two panels are clearly distinguishable from
one another, whereas the outcomes of the lower two panels are not.
Indistinguishability and the ensuing destructive interference between
these lower two panels results in the observation of photon bunching
from the remaining upper panels.
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single-photon states. If we were to perform a HOMI between two independent single

photons and place two photon detectors on the two outputs of the beamsplitter, we

would never observe simultaneous detection events at both detectors if our two

photons were pure and indistinguishable.

This interference is an intrinsically quantum effect. If one of the photons incident

on the beamsplitter is subjected to a variable time delay relative to the other, some

distinguishability will be introduced between them as a result of the additional

timing information available to an observer. As the time delay is scanned, the level

of distinguishability changes; when the photons are not temporally overlapped at

all upon arrival at the beamplitter (the exact definition of “temporally overlapped”

is discussed in Chapter 5), they are perfectly distinguishable and no interference

can occur, whereas when they are perfectly overlapped, as was assumed in the

calculation above, they are indistinguishable and perfect photon bunching should be

seen. Therefore, if one were to record the rate of coincidence detection events at the

two detectors as a function of the time delay (which is assumed to be small compared

to the coincidence window), one would observe that it drops from a constant value

where the photons are not overlapped to zero at zero time delay. This interference

pattern is called a HOMI dip, as shown in Figure 1.7, and its visibility is defined as

V =
PC(∞) − PC(0)

PC(∞)
, (1.16)

where PC(τ) is the probability of obtaining a coincidence event as a function of the
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Figure 1.7 A Hong-Ou-Mandel interference dip with V = 0.8.

time delay τ . The maximum value that the visibility can attain were the light arriv-

ing at the beamsplitter classical has been shown to be 0.516, but for the interference

of pure, indistinguishable single photons, the visibility will be 1.

1.9 The state of the art in photonic QIP

Several implementations of optical QIP protocols have been demonstrated to date.

Both the strategies for and the experimental verifications of quantum information

processing that have been published so far are reviewed much more comprehensively

than would be possible here by Ralph87 and Kok et al 88. All of these demonstrations

have relied on interfering single photons with each other. However, all single photon

sources suffer from random fluctuations in the properties of the photons from shot

to shot, for example in their emission time (commonly known as timing jitter) or

frequency. Therefore the emission structure of the ensemble of states is generally not

single mode. This degrades the interference visibility as, when two photons arrive
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at a beamsplitter, there is a chance that they will be distinguishable due to these

fluctuations.

This limitation of current single photon sources is a constraint on the perfor-

mance of quantum gates. Due to the statistical degradation of the state present

at the input, the gate will not function correctly during some fraction of the trials.

Previous implementations of QIP schemes have all required successful operations

to be distinguished from failures by conditioning the outcome on a particular pat-

tern of detection events. This applies both to ancillary measurements during gate

operation in the KLM scheme and to heralding detections indicating correct state

preparation in the cluster state model. However, in both cases the inability to input

the desired state on every shot means that error-free operation must be post-selected

not only on these ancillary measurements but also on the presence of logical qubits.

The fluctuation of the input means that in many cases there will not be a photon

in the information-carrying output modes and gate operation is non-deterministic

even given that the ancillary detections have been correctly made.

Instead of preparing imperfect nonclassical states, this idea of post-selection can

be taken to the extreme by inputting classical states to a system and conditioning the

measurement on a pattern of detector firings. A recent experiment demonstrated

that quantum-enhanced precision phase measurements are possible starting with

only weak coherent (classical) states and using post-selective measurements to “in-

vert the roles of state production and measurement”89. The price that one pays for

this is that most of the input resources are wasted as they do not contribute to the
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final result due to the poor overlap of the input state with the state projected onto

by the measurement. This reduces the frequency with which the desired outcome is

observed.

This issue of post-selection is not too much of a problem for experiments on small

numbers of photons as one can obtain a reasonable overlap between the imperfect

input and the ideal state. However, current gates are beginning to reach the stage

where it is the source quality that is limiting the performance of quantum algorithms

rather than the gates themselves90. If we want to move to higher photon numbers

and longer strings of concatenated gates we need better single photon sources.

Downconversion sources have improved vastly since the first demonstration of

parametric fluorescence in 197062, however, there is still a long way to go in closing

the gap between current sources and the ideal single photon generator. Table 1.1

gives the raw figures for a selection of several downconversion sources and other pair

generation sources to allow a comparison to be made with what follows in this thesis.

1.10 Thesis outline

This thesis is presented in six chapters. The first chapter has given a background on

the various methods of single photon generation and introduced some of the consid-

erations one has to take into account when working with parametric downconversion

as a heralded single photon source. The second chapter provides a more rigorous

theoretical treatment of PDC and phasematching in birefringent media. Chapter 3

deals with characterizing correlations in the two-photon states resulting from PDC
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and possible methods of removing these correlations by careful source design. Some

of the resulting experimental design issues are expounded in Chapter 4, including

the effects of focusing and a spatially-varying pump beam, along with the results

of a numerical model. Direct measurements of the spectral structure of photon

pairs from the downconversion source are compared with the results of this model.

Chapter 5 presents the main experimental methods and a detailed description of

the downconversion source used. The results of the interference experiments on two

heralded single photons from independent sources are presented. This gives a mea-

sure of the purity of the heralded single photons. The conclusions and an outlook

on future work are contained in Chapter 6.
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Chapter 2

Parametric Downconversion

In the first chapter, some of the concepts that will play leading roles in this thesis

were introduced. The purpose of this chapter is to further explain PDC and phase-

matching and set these within a mathematical framework to enable the subsequent

discussion of source engineering later in this thesis. The standard derivation of the

two-photon state from PDC is presented with details tailored for relevance to the

work contained herein. Phasematching in birefringent nonlinear media is consid-

ered in depth, including an intuitive explanation of the underlying mechanics and

techniques to visualise both type-I and type-II processes. The resulting spectral

structure of general joint two-photon states for both cases are shown to elucidate

the origins of spectral correlations between the daughter photons.

The field of nonlinear optics exploits the anharmonic response of a particular

medium to an incident optical field. The medium acts as an ensemble of oscillators

whose behaviour can be decomposed into frequencies that are the harmonics and sub-
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harmonics of the driving field. In the case of nonlinear crystals, the anharmonicity

in the frequency response is a consequence of the asymmetry of the crystal structure;

each oscillator is subjected to a potential that is distorted by the presence of the

crystal lattice. Therefore, when excited by the driving field, each oscillator has the

possibility of emitting a field at any of the harmonics of the initial excitation.

The nonlinearity of the medium is described by the response of its polarisation70,

P (ω), to an incident field with angular frequency ω:

P (ω) = ε0χ
(1)E(ω) + ε0χ

(2)E2(ω) + ε0χ
(3)E3(ω) + · · · . (2.1)

A medium exhibiting significant second-order nonlinearity will provide coupling be-

tween an incident field and two others through its χ(2) coefficient. Equation 2.1

can then be truncated after the second term. The field in this second term can be

expanded as

E2(ω) = E2
0 cos2 (ωt) =

E2
0

2
[1 − cos (2ωt)] , (2.2)

demonstrating the coupling between fields at ω and 2ω. The dipole polarisation of

the nonlinear medium in response to an incident field Ep(~r, t) is

P (2)
p (~r, t) = ε0

∑

m,n

χ(2)
p,m,nEm(~r, t)En(~r, t). (2.3)

where the indices p,m, and n represent fields that can be in any of the three Cartesian

coordinate directions. Therefore, the general form of χ
(2)
p,m,n for a given set of three
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fields is a 3×3×3 tensor, however, the permutation symmetry of the elements along

with symmetry properties of uniaxial crystals can be invoked to reduce this number

significantly. The displacement tensor, dp,m,n = 1
2χ

(2)
p,m,n, can then be re-expressed

in matrix form, and for any set of three fields an effective second-order nonlinear

coupling coefficient, deff , which is dependent on propagation direction and crystal

type, defined. We will not overly concern ourselves with the form of this coefficient

as it only appears as a constant influencing the frequency conversion efficiency (a

full description is given by Midwinter and Warner71). It is the coupling given by

this component of the material polarisation between the incident pump field and

the two output fields that allows the generation of photon pairs at around half the

pump frequency.

If these two emitted fields were considered as classical waves emanating from

an isolated emitter, they would propagate in all directions away from the source.

However, in a nonlinear crystal, one must consider the contributions to the total

field from the entire ensemble of emitters73. These emitters are driven coherently

by the pump field and their harmonic emission must remain in phase with this field

in order to sum constructively and form a macroscopic output. This is the essence

of phasematching an ensemble of emitters.

The requirement for constructive interference between the fields to obtain use-

able output means that the conditions for phasematching define what the output

state will be. Due to the inherent birefringence of the available nonlinear crystals,

these conditions are tied to the frequencies of the fields in the interaction and their
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propagation directions in the crystal. Hence in order to understand the structure

of the photon paris generated, it is vital to have a solid grasp of the mechanics of

phasematching.

By deriving the quantum state generated in dowconversion from first principles

it not only becomes clear how the form of the two-photon state arises but also that

the conditions for phasematching are found directly from the mathematics. In order

to be able to prepare pure, heralded single photon states it is essential to understand

the manner in which changing a parameter such as the pump wavelength or crystal

type affects the relationship between the daughter photons. Only then is it possible

to choose the conditions that will yield pure-state single photons.

2.1 Theory of parametric downconversion

This section presents a derivation of the quantum state generated by spontaneous

PDC in the perturbative regime. Similar calculations have been presented by many

authors, most relevantly for the current situation Hong and Mandel65, Rubin et

al 100, Grice and Walmsley79, and U’Ren101. The case considered in this derivation

is that of either type-I or type-II PDC with a pulsed pump laser, hence the daughter

photons are labeled using the historical names signal (s) and idler (i). The result

can then be applied to either type of PDC simply by choosing the polarisation of the

daughter photons within the crystal frame of reference. The pump field is denoted

p. During this derivation, for the sake of clarity, we assume plane-wave propagation

of the fields involved and therefore the functional dependence of the final state is on
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frequency only.

In the interaction picture, given that we started at time zero with a state |ψ0〉,

the state at a time t — after the interaction is complete — is then

|ψt〉 = T̂ exp

[

1

ih̄

∫ t

0
dt′ĤI(t

′)

]

|ψ0〉, (2.4)

where ĤI(t
′) is the interaction Hamiltonian of the system and T̂ is the time-ordering

operator. For the spontaneous regime, the downconverted modes are seeded only by

vacuum fluctuations, and so the initial state is the vacuum, |ψ0〉 = |0〉. Furthermore,

given that the interaction strength is small, this exponential can be expanded and

anything beyond the second term discarded:

|ψt〉 ≈
[

1 +
1

ih̄

∫ t

0
dt′ĤI(t

′)

]

|0〉. (2.5)

This is equivalent to stating that the probability of generating one pair of photons

within each interaction period is small and the probability of generating two is

negligible. This interaction period is defined as the time during which the pump

pulse is propagating through the nonlinear crystal, i.e. the pulse enters the crystal

at t = 0 and exits at time t.

The general form of the interaction Hamiltonian for a second order nonlinear

process can be written as the integral over the interaction volume V of the second

order contributions to the electromagnetic field energy density. For field Ep(~r, t) and
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dipole polarisation Pp(~r, t) this is

HI =
1

2

∫

V

dV Pp(~r, t)Ep(~r, t). (2.6)

where the fields arising from this polarisation are described in Equation 2.3.

Therefore we see that, following quantization of the field, ĤI for spontaneous

PDC can be written

ĤI(t) = ε0deff

∫

V

dV Êp(~r, t)Ês(~r, t)Êi(~r, t), (2.7)

where Êµ(~r, t) is the quantized field operator for field µ = p, s, i denoting pump, sig-

nal and idler respectively. By decomposing these field operators into their positive

and negative frequency components, Êµ(~r, t) = Ê
(+)
µ (~r, t) + Ê

(−)
µ (~r, t), the Hamilto-

nian can then be expressed as

ĤI(t) = ε0deff

∫

V

dV Ê(+)
p (~r, t)Ê(−)

s (~r, t)Ê
(−)
i (~r, t) + H.c. (2.8)

The components of the plane-wave field operators are23:

Ê(+)
µ (~r, t) = i

∫ ∞

0
dωµ

[

h̄ωµ

2ǫ0n(ωµ)VQ

]
1

2

âµ(ωµ) exp
[

i
(

~kµ(ωµ).~r − ωµt
)]

Ê(−)
µ (~r, t) = −i

∫ ∞

0
dωµ

[

h̄ωµ

2ǫ0n(ωµ)VQ

]
1

2

â†µ(ωµ) exp
[

−i
(

~kµ(ωµ).~r − ωµt
)]

, (2.9)

where VQ is the quantization volume. Note that if we were to generalize this deriva-
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tion to include the effects of Gaussian beam propagation these operators would also

be summed over wavevector. As the pump has to be a strong laser field, it can

be treated classically and the positive frequency component of its quantized field

operator from Equation 2.9 replaced with

Ê(+)
p (~r, t) ⇒ E(+)

p (~r, t) = Ap

∫ ∞

0
dωp α(ωp) exp

[

i
(

~kp(ωp).~r − ωpt
)]

, (2.10)

where Ap is the pump amplitude and α(ωp) is the spectral amplitude distribution

of the pump, known as the pump envelope function.

We now substitute Equations 2.9 and 2.10 into Equation 2.8 to yield the full

expression for the interaction Hamiltonian:

ĤI(t) = ε0deffAp

∫ ∞

0
dωp

∫ ∞

0
dωs

∫ ∞

0
dωi

∫

V

dV α(ωp)As(ωs)Ai(ωi)

â†s(ωs)â
†
i (ωi) exp

[

i
(

~kp(ωp).~r − ~ks(ωs).~r − ~ki(ωi).~r
)]

exp [−i (ωp − ωs − ωi) t] + H.c.

(2.11)

where we have used the simpliyfying substitution Aµ(ωµ) =
[

h̄ωµ

2ǫ0n(ωµ)VQ

]
1

2

. The

quantum state at time t can then be found by operating this Hamiltonian on the

input quantum state, |0〉, as in Equation 2.5. Note that when this operator is

applied to the vacuum state the Hermitian conjugate term vanishes as the action of

the annihilation operators on the vacuum gives zero: âs(ωs)|0〉 = âi(ωi)|0〉 = 0. The
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resulting expression for the output state is then

|ψt〉 = |0〉 +
iε0deffAp

h̄

∫ ∞

0
dωp

∫ ∞

0
dωs

∫ ∞

0
dωiα(ωp)As(ωs)Ai(ωi)

∫

V

dV exp
[

i
(

~kp(ωp).~r − ~ks(ωs).~r − ~ki(ωi).~r
)]

∫ t

0
dt′ exp

[

−i (ωp − ωs − ωi) t
′
]

â†s(ωs)â
†
i (ωi)|0〉.

(2.12)

In the situation presented here, downconversion is driven by an ultrashort pulsed

laser and the temporal profile of the pulses can be found by taking the inverse Fourier

transform of α(ωp):

α̃(t′) =

∫ ∞

0
dωpα(ωp) exp

[

−iωpt
′
]

. (2.13)

This function, which sets the interaction time, will be short compared to t, the time

when we are observing the generated quantum state after the interaction is deemed

to have finished. The time-dependent pump envelope sets the time period over

which the interaction takes place; the Hamiltonian is zero at times when α̃(t′) = 0.

Therefore the limits of the time integration in Equation 2.12 can be set to infinity.

The integral over t′ then becomes

∫ ∞

−∞

dt′ exp [−i (ωp − ωs − ωi) t] = δ(ωp − ωs − ωi) = δ(∆ω) (2.14)

so for all nonzero terms we must have ωp = ωs +ωi and the integral over ωp becomes

trivial. In addition, we make use of the fact thatAs(ωs) and Ai(ωi) are slowly varying

functions of frequency and are therefore approximately constant over the range of
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α(ωp). As(ωs) and Ai(ωi) can then be taken outside the integral and Equation 2.12

simplifies to

|ψt〉 = |0〉+
iε0deffApAs(ωs)Ai(ωi)

h̄

∫ ∞

0
dωs

∫ ∞

0
dωi α(ωs + ωi)

∫

V

dV exp
[

i
(

~kp(ωs + ωi).~r − ~ks(ωs).~r − ~ki(ωi).~r
)]

â†s(ωs)â
†
i (ωi)|0〉.

(2.15)

The integral over V can be decomposed into three integrals in Cartesian coordinates.

We set the crystal to be orientated such that its input and output faces are in the

xy-plane and it has length L in the z-direction. Imagining a collimated, plane wave

pump whose transverse profile fits entirely within the crystal faces, the limits of

integration in the x- and y- directions can be taken to be infinity:

∫

V

dV ei∆
~k.~r =

∫ ∞

−∞

dxei∆kxx

∫ ∞

−∞

dyei∆kyy

∫ L

0
dzei∆kzz (2.16)

where ∆kx = kp,x(ωs + ωi) − ks,x(ωs) − ki,x(ωi), and similarly for y and z. For

this case in which the transverse distribution of the pump is effectively ignored, we

see that the x and y integrals simply yield delta functions and the z term, when

multiplied by (1/L), gives a sinc function:

1

2L

∫

V

dV exp
[

i∆~k.~r
]

= δ(∆kx)δ(∆ky) exp

[

i∆kzL

2

]

sinc

[

∆kzL

2

]

. (2.17)

If the transverse pump distribution were considered more realistically we would
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obtain broader transverse phasematching functions more akin to the longitudinal

condition. However, the approximation above is valid for the scope of this work.

Additionally, a further simplification can be made by assuming that the pump and

downconverted fields propagate collinearly with one another along the z-axis. Then

the x- and y-components of the wavevectors are zero, ∆~k = (0, 0,∆kz), and Equation

2.16 becomes

∫

V

dV exp
[

i∆~k.~r
]

=

∫ L

0
dz exp [i∆kz]

= 2L exp

[

i∆kL

2

]

sinc

[

∆kL

2

]

, (2.18)

where ∆k = ∆kz. This case of collinear propagation is sufficient for the initial

discussion of factorable state generation discussed in Chapter 3 of this thesis. Sub-

stituting Equation 2.18 into Equation 2.15 we obtain the final expression for the

downconverted state in the case of collinear propagation, with the only functional

dependence being on the frequencies of the daughter photons:

|ψt(ωs, ωi)〉 = |0〉+2iε0deffApAs(ωs)Ai(ωi)L

h̄

∫ ∞

0
dωs

∫ ∞

0
dωi α(ωs + ωi)

exp

[

i∆kL

2

]

sinc

[

∆kL

2

]

â†s(ωs)â
†
i (ωi)|0〉.

(2.19)

This can be tidied up by grouping all the factors before the integrals together as an

efficiency term η so that

|ψt(ωs, ωi)〉 = |0〉 + η

∫ ∞

0
dωs

∫ ∞

0
dωiα(ωs + ωi)φ(ωs, ωi)â

†
s(ωs)â

†
i (ωi)|0〉, (2.20)
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where we have defined the collinear phasematching function to be

φ(ωs, ωi) = exp

[

i∆kL

2

]

sinc

[

∆kL

2

]

. (2.21)

Hence we see that the frequency dependence of the two-photon state generated in

PDC is given by the product of the pump envelope function, α(ωs + ωi), with the

phasematching function, φ(ωs, ωi). We can group these two functions together into

a new function, f(ωs, ωi), the joint spectral amplitude, and use this to describe the

joint spectral probability distribution of the photon pairs

F (ωs, ωi) = |f(ωs, ωi)|2 , (2.22)

where F (ωs, ωi) is known as the joint spectral intensity. Given that a photon pair

has been created, this is the probability of detecting a signal photon with frequency

ωs and a corresponding idler photon with frequency ωi.

2.2 Phasematching in birefringent media

Not only does the previous section provide the two-photon amplitude from PDC, it

also serves as a derivation of the phasematching conditions. Firstly, from integrating

over time in Equation 2.14, we obtain the energy matching condition:

ωp = ωs + ωi. (2.23)
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Secondly, integrating Equation 2.16 over space yields two delta functions and a sinc

function and hence we see that for the largest amplitude in the output state we

require ∆~k = 0 and

~kp = ~ks + ~ki. (2.24)

In the collinear case where ∆kx and ∆ky are necessarily zero, Equation 2.24 becomes

∆k = ∆kz = 0 and

kp(ωp, θp) = ks(ωs, θs) + ki(ωi, θi). (2.25)

These equations tell us the mathematical conditions that must be fulfilled for perfect

phasematching, however, they give little insight into the underlying physical process.

2.2.1 The physics of phasematching

To elucidate this process further and gain some feeling for the way in which these

equations permit phasematched emission from a nonlinear crystal, we can consider

a couple of simple cases. We begin by representing diagrammatically a simplified

model of degenerate type-I PDC in a negative uniaxial nonlinear crystal. This

is the simplest version of phasematching to investigate because the momentum

phasematching condition reduces to a relation between the refractive indices and

therefore the phase velocities. Due to the symmetry between the photon pair,

ks(ωs, θs) = ki(ωi, θi), and in the collinear case Equation 2.25 reduces to

kp(ωp, θp) = 2ks(ωs, θs) ⇒
ωp

kp(ωp, θp)
=

ω0

ks(ωs, θs)
. (2.26)
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where ω0 is the central downconversion frequency, equal to half the pump frequency

ωp due to energy conservation. The phase velocity is given by

vph =
ω

k(ω)
=

c

n(ω, θ)
, (2.27)

after application of Equation 1.11. Hence we see from Equation 2.26 that the wave-

fronts must travel at the same speed in the collinear configuration to achieve phase-

matching. This can be generalised to the noncollinear case where it becomes a

condition on the z-component of the phase velocity:

kp,z(ωp, θp) = 2ks,z(ωs, θs) ⇒
ωp

kp,z(ωp, θp)
=

ω0

ks,z(ωs, θs)
. (2.28)

Therefore the type-I case is relatively straightforward to visualise as we can simply

consider how the wavefronts propagate through the medium and look for the emission

directions in which the z-components of the phase velocity are equal.

These expressions allow an intuitive digrammatic representation of phasematch-

ing to be drawn. The pump, which is modelled as plane wave, is an e-ray and the

daughter photons are o-rays as the crystal is negative. The pump field is represented

by a set of parallel lines at its antinodes. So as to not clutter the diagram overly,

we envisage a row of emitters positioned along the pump wavevector. Although in

a real crystal the emitters would packed so densely that their lattice spacing would

be much less than the wavelength of the incident optical field, here we consider

only a subset of emitters at the instantaneous antinodes of the pump field. These
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emitters can be considered to be driven the hardest at that particular moment and

dominate the emission pattern, but the conclusions can anyway be generalised to

the closely-packed case. We treat each individual in this subset of emitters as a

Huygens secondary source of radiation at half the frequency of the pump field. As

the downconverted light propagates as an ordinary ray, the refractive index it expe-

riences does not depend on its angle relative to the optic axis and so the individual

emission patterns can be represented as a series of concentric circles at the antinodes

of the sub-harmonic field.

Firstly we take the unrealistic case of a crystal that has no birefringence and no

dispersion, depicted in Figure 2.1. The condition of no birefringence sets ne(ω, θpm) =

no(ω) for all frequencies ω at the particular pump propagation angle, θpm. As this

implausible crystal also exhibits no dispersion, there is a further condition that

the refractive index is the same for pump and downconverted fields, ne(ωp, θpm) =

no(ωs,i), and as a result all the wavefronts travel with the same phase velocity. Con-

sider now the directions in which the z-components of the phase velocities of the

pump and downconverted fields are the same. These are the points at which each

individual line of the pump field intersects the wavefront from the emitter corre-

sponding to the same cycle of the field. These crossing points are marked in Figure

2.1. These all occur where the emission circles are tangent to the pump field lines.

Connecting these points together we have a line along the direction of the pump

wavevector. This line corresponds to the direction in which the emitters are all in

phase with the pump field. Hence it is clear in this case that phasematching and
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Figure 2.1 Illustration of collinear phasematching in a crystal
without dispersion or birefringence. The vertical lines represent the
antinodes of the pump field. Each of the three black emitters has a
pair of concentric rings around it marking the field propagating away
from them at half the pump frequency. Colours simply link each
field to a specific emitter. Constructive interference occurs where the
emission wavefronts intersect with the corresponding pump antin-
odes, marked for each emitter by the grey-filled circles. Here this
takes place in the collinear direction only.

therefore coherent emission will occur only in the direction of pump propagation.

Indeed, in the case of a dispersionless medium, perfect collinear phasematching will

always occur.

Secondly, we add normal dispersion into the picture. Now because the frequency

of the o-ray downconverted field is half that of the e-ray pump, dispersion changes

the relative refractive indices of both fields so that ne(ωp, θpm) > no(ωs,i) and the

phase velocity of the downconverted field is increased relative to the pump. This

situation is shown in Figure 2.2. Due to their increased phase velocity, the wavefronts

of the PDC field travel faster than those of the pump and this is represented by the

enlargement of the emission circles (in this case, their diameter has been scaled up

by 1.1). Again, the points at which the z-component of the phase velocity is the
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Figure 2.2 Illustration of phasematching in a crystal with normal
dispersion but without birefringence. Due to the higher phase veloc-
ity of the longer wavelength fields, phasematching now occurs at an
angle to the incident field.

same for pump and downconversion are marked where corresponding lines intersect.

Note now that the lines do not meet where the circles are tangent to the pump field

lines — there is therefore no coherent addition in the collinear direction. Instead,

the points of intersection lie along a line at an angle to the direction of propagation

of the pump and noncollinear phasematching occurs.

Thirdly, if the condition set on the birefringence of the crystal is now relaxed so

that ne(ω, θpm) 6= no(ω), it can be seen that the introduction of birefringence alters

the direction of emission. In this case the crystal is negative (no(ω) > ne(ω, θpm))

and hence, as the downconverted field is o-ray, the increase in no(ωs,i) from the

birefringence counteracts its reduction due to dispersion. Therefore, in this case,

the birefringence acts to bring back the emission direction closer to collinear, as

demonstrated in Figure 2.3.
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Figure 2.3 Illustration of phasematching in a crystal with both
normal dispersion and birefringence. The reduction in phase velocity
of the generated fields by the birefringence brings the phasematching
angle back closer to the collinear direction.

It is worth noting that if in this model we had added birefringence before dis-

persion we would not have observed any phasematching. As noted in the previous

paragraph, the effect of birefringence in a negative crystal is to increase no relative

to ne, hence the phase velocity is reduced for the o-ray. Without the effects of dis-

persion, which reduces no relative to ne, the phase velocity of the o-ray would always

be too small for it to “catch up” with the e-ray, the lines on the figures would not

intersect, and phasematching would not occur. This is why for type-I phasematching

in a normally-dispersive birefringent medium the pump must always be e-polarised

and the downconversion o-polarised.

Through the tradeoff between dispersion and birefringence it is possible to ob-

tain degenerate collinear type-I phasematching in a realistic crystal. By choosing

a pump wavelength and crystal orientation angle that offsets the relative increase
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in ne over no from dispersion with the reduction in ne as a result of birefringence,

phasematching can be achieved. In this case ne(ωp, θpm) = no(ω0) and the situation

is again as depicted in Figure 2.1.

2.2.2 More complex phasematching conditions

These simplified examples give some feel for how phasematching takes place in a

birefringent medium. However, due to the asymmetry between signal and idler pho-

tons, the picture is much more complex for type-II processes. The simple conditions

on the phase velocities found in Equations 2.26 and 2.28 can no longer be applied

and therefore diagrams similar to those previously contrstructed are insufficient to

accurately describe the interaction.

Starting from the most straightforward case of type-II phasematching, that of

collinear and degenerate PDC, we can derive a different condition on the phase

velocities of the interacting fields. Taking Equation 2.25 and dividing by the central

downconversion frequency, ω0 = ωp/2 we find

2kp(ωp, θp)

ωp
=
ks(ωs, θs) + ki(ωi, θi)

ω0
. (2.29)

Therefore, we see that there is still a relationship that must be satisfied between the

phase velocities, albeit through their inverses. Equation 2.29 states that the inverse

phase velocities of the daughter photons must sum to twice that of the pump or,

equivalently, the inverse phase velocity of the pump must be equal to the average

inverse phase velocity of the downconverted fields. Clearly this is something that
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is neither intuitive to consider nor easy to represent graphically in an insightful

manner. However, instead of trying to analyze the type-II case in this way, an

easier condition to visualise can be found. Substituting Equation 1.11 relating the

wavevector to the refractive index and frequency into Equation 2.25 we obtain:

np(ωp, θp)ωp = ns(ωs, θs)ωs + ni(ωi, θi)ωi (2.30)

and for the degenerate case this becomes:

2np(ωp, θp) = ns(ωs, θs) + ni(ωi, θi). (2.31)

This condition on the refractive indices experienced by the three fields allows phase-

matching to be described using the index ellipsoids first shown in Figure 1.3. Figures

such as those presented subsequently were first drawn by the pioneers of phase-

matched second harmonic generation71–73.

As already mentioned, the o-ray refractive index is not dependent on the direction

of propagation, and is represented by a circle with radius no. Light traveling along

the optic axis must be o-polarised due to the crystal symmetry. The largest difference

between e- and o-rays occurs for propagation perpendicular to the optic axis and it

in this direction that ne is defined. An e-ray subtending an angle other than 90◦

with the optic axis will experience a refractive index value that lies on an ellipsoid,

the index ellipsoid, joining no on the axis to ne at 90◦ to the axis. This ellipsoid
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defining the e-ray refractive index is therefore:

x′2

n2
o

+
y′2

n2
o

+
z′2

n2
e

= 1. (2.32)

Here the optic axis lies along the z′-direction and so the linear optical response of

a uniaxial crystal is rotationally symmetric about this axis and the y′-direction can

be ignored. The radius of this ellipsoid, and therefore the angle-dependent e-ray

refractive index, can be parameterized as function of θ:

ne(θ) =

[

cos2 θ

n2
o

+
sin2 θ

n2
e

]− 1

2

. (2.33)

This is a convenient way in which to describe the e-ray refractive index.

The illustration of phasematching through the index ellipses is first demonstrated

for collinear type-I phasematching in a negative uniaxial crystal to facilitate a com-

parison with the simple model presented in Section 2.2.1. In this case the condition

for phasematching, Equation 2.31, reduces to

np(ωp, θp) = ns(ω0) = ni(ω0). (2.34)

and the situation is shown in Figure 2.4. Phasematching occurs where the pump

index ellipse intersects the circle representing the signal and idler index. This takes

place at a propagation angle θpm relative to the optic axis and in this type of picture

it is easy to see how this phasematching angle arises. The arrows in the figure



2.2 Phasematching in birefringent media 57

Figure 2.4 Collinear type-I phasematching in a negative uniaxial
crystal. The blue ellipse is the angle-dependent pump refractive in-
dex and the red circle is the o-ray refractive index at half the pump
frequency. Phasematching occurs where the two intersect.

describe the wavevectors of the pump and dowconverted light and, as in Equation

2.24, these must be equal.

Unlike the previous model, it is straightforward to extend this to type-II phase-

matching by using the full form of Equation 2.31. Again we first take the case of

collinear degenerate phasematching in a negative crystal, as shown in Figure 2.5.

The radius of the pump ellipse has now been multiplied by two, the o-ray circle is

placed with its centre at the origin, and the centre of the e-ray ellipse rests on the

circumference of this circle. By varying the sizes of both the circle and the ellipse

(through changing the frequencies of the downconverted photons while maintaining

degeneracy) as well as the position of the ellipse on the circumference of the circle,

a set of parameters can be found whereby the downconversion ellipse touches tan-
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Figure 2.5 Collinear type-II phasematching in a negative uniaxial
crystal. The blue ellipse is twice the pump refractive index, the red
ellipse and circle are respectively the refractive indices of the e- and
o-ray downconverted fields.

gentially that of the pump at only one point. The e- and o-ray wavevectors then

lie parallel to that of the pump. This set of parameters defines the phasematching

angle of the pump at which degenerate collinear phasematching occurs.

Now imagine translating this PDC ellipse around the circumference of the o-

ray circle without changing the size of either. For the same pump angle, a second

position can be found where the two ellipses intersect at the terminus of the pump

vector, as shown in Figure 2.5. Phasematching also occurs here, but the wavevectors

of the downconversion are then no longer parallel to the pump direction, and hence
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Figure 2.6 Noncollinear type-II phasematching in a negative uni-
axial crystal. As for Figure 2.5 but the position of the e-ray ellipse
has been adjusted to illustrate noncollinear phasematching.

this situation describes noncollinear phasematching. Signal and idler photons are

emitted at a pair of conjugate angles to the pump.

Hence we see that for this pump wavevector there are two ways of phasematching

the production of photon pairs, one collinear and one noncollinear. However, we have

only considered a two-dimensional analysis of the situation. If this were extended

to three dimensions we would find that, as the index ellipsoids are rotationally

symmetric about their optic axes, the emission patterns would be cones, one for the

e-ray and one for the o-ray, where we have taken a section through the cones to
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find only two angles of emission. Generalizing still further, the cones do not always

intersect, and when they do it is not always tangentially as in the collinear case, as

was shown in Figure 1.4.

So we have seen how phasematching arises in birefringent media and how the

characteristics of the medium influence the emission directions. However, so far this

has explained nothing about the frequency structure of the pairs, something that

will be essential for the discussion of pure single photon generation.

2.3 The form of the two-photon state

In Section 2.1, the two-photon state from PDC was derived and expressed in Equa-

tion 2.20. This led to the two-photon joint spectral amplitude being defined as the

product of the pump envelope function with the phasematching function:

f(ωs, ωi) = α(ωs + ωi)φ(ωs, ωi), (2.35)

where the function f(ωs, ωi) contains all the spectral (and therefore temporal) in-

formation about the two-photon state. The joint spectral amplitude is in general

complex as it contains the phases of both the phasematching function and the pump

function (if it is not transform limited), so we define a real joint spectral intensity

(or joint spectrum), F (ωs, ωi), that is the modulus squared of the joint amplitude.

The pump envelope function is taken to be a Gaussian function of the pump

frequency centered at twice the central downconversion frequency, ω0, and defined
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as

α(ωp) = exp

[

iϕ(ωp) −
(

ωp − 2ω0

σ

)2
]

. (2.36)

For most of the discussion in this thesis it is assumed that the pump laser has approx-

imately flat phase and therefore ϕ(ωp) is set to zero. Equation 2.36 is transformed

into a two-dimensional function of signal and idler frequency by the substitution

ωp = ωs + ωi

α(ωs + ωi) = exp

[

−
(

ωs + ωi − 2ω0

σ

)2
]

, (2.37)

which is clearly symmetric in the two frequencies. σ is defined in terms of the full

width at half maximum (FWHM) bandwidth of the spectral intensity as follows:

σ =
FWHMω√

2 ln 2
=

2πc

λ2
0p

FWHMλ√
2 ln 2

(2.38)

where FWHMω and FWHMλ are the FWHM bandwidths of the pump intensity

distribution measured in frequency and wavelength respectively. It is clear that the

width of the pump envelope function is proportional to the bandwidth of the pump

laser, and this can therefore affect the correlations between the daughter photons,

as will be explained in the next chapter. A range of pump functions for different

bandwidths is displayed in Figure 2.7.

The general form of the phasematching function is that of a sinc function, as

given in Equation 2.21, that drops — with a rapidity dependent on the inverse

of the crystal length — away from the line of zero phase mismatch between the
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Figure 2.7 Intensity distributions of pump functions with central
wavelengths of 400 nm and bandwidths of 0.4, 1, 4, and 10 nm. Note
that all plots of this type contained within are plotted as a function of
signal and idler frequency and labelled in wavelength for convenience.
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pump and daughter photons. The particular configuration of an individual phase-

matching function is controlled by the optical properties of the nonlinear crystal

used for the interaction. Every commonly available birefringent crystal has a set

of empirical equations, known as the Sellmeier equations74, that describe the varia-

tion in the o- and e-ray refractive indices as a function of wavelength and, in some

cases, temperature. From these equations the phase mismatch over a range of signal

and idler frequencies can be found in the manner of Equation 2.30, and hence the

phasematching function plotted.

2.3.1 Type-I phasematching

A type-I phasematched process generates daughter photons with the same polarisa-

tion as each other. Therefore they both experience identical dispersion and hence

the phasematching function and two-photon state must be symmetric in the line

ωs = ωi.

A typical calculated type-I phasematching function is shown in Figure 2.8. In

this case the nonlinear crystal was a 2mm long piece of β-barium-borate (BBO)

— one of the most widely used downconversion crystals — arranged in a collinear

configuration to produce degenerate pairs at 800 nm. The phasematching angle for

this arrangement is θpm = 29.2◦. The crystal is pumped by 1 nm FWHM pulses and

hence the phasematching function is similar to the pump function except that it is

slightly curved. This curvature limits the overlap of the two functions and hence the

bandwidth of the downconversion. Multiplying these two functions together gives
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Figure 2.8 Phasematching intensity and joint spectral probability
distribution for a 2 mm long collinear type-I phasematched BBO crys-
tal pumped at 400 nm by 1 nm bandwidth pulses (this corresponds
to the second pump function plotted in Figure 2.7).

the two-photon joint probability distribution for this process. Note that, regardless

of the bandwidth of the pump, the photon pairs will always be highly negatively

correlated in frequency for a type-I process as a result of their symmetry.

2.3.2 Type-II phasematching

Conversely, in type-II processes, individual daughter photons will in general expe-

rience different dispersion from their siblings, and this breaks the symmetry of the

phasematching function. The line of zero phase mismatch can therefore subtend a

broad range of angles with the frequency axes, dependent on the properties of the

Sellmeier equations for the particular nonlinear crystal. It is this additional flexibil-

ity of type-II phasematching that will be exploited in the next chapter to produce

factorable states by setting the angle of the phasematching function at a given pair
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Figure 2.9 Phasematching intensity and joint spectral probability
distribution for a 2mm long collinear type-II phasematched BBO
crystal pumped at 400 nm by 4 nm bandwidth pulses (this corre-
sponds to the third pump function in Figure 2.7).

of wavelengths.

Figure 2.9 demonstrates this point by illustrating the type-II collinear degenerate

phasematching function for BBO. The phasematching angle has now changed to

θpm = 42.3◦ to give the correct dispersion for pump and e-ray dowonconverted light

to achieve phasematching, and as a result φ(ωs, ωi) is rotated towards vertical. In

addition, the type-II phasematching function is slightly broader than that for type-I.

Clearly this changes the overlap with the pump function (here, 4 nm FWHM), and

the final joint spectrum is plotted in the second panel of the figure. Although this

has altered the spectral correlations between signal and idler photons, they are still

highly correlated in frequency and hence a heralded photon from this source would

inevitably be in a mixed state.
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Chapter 3

Two-Photon State Engineering

The phenomenon of Hong-Ou-Mandel interference between two single photons was

introduced in Chapter 1. This effect is vital to photonic implementations of quan-

tum computation and fundamental new technologies, but it is challenging to prepare

single photons with the required levels of purity and indistinguishability to yield the

high-visibility interference exploited in these techniques. So is it possible to achieve

good interference with some impurity in the single photons used? To answer this

question, an attempt to interfere two photons in mixed states of frequency at a beam-

splitter is considered in the opening section of this chapter. Subsequently, through

studying the density operator for a heralded single photon, it is shown that this re-

duced state can be pure if and only if the joint spectral amplitude distribution of the

intial pair is factorable. Two methods of quantifying this factorability are explained.

Firstly, the use of the Schmidt decomposition in this context is revised, though it

can only be applied to a specific class of simplified two-photon states. Secondly,
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the singular value decomposition, not utilised in previous studies of factorable state

generation, is introduced as a method of determining the factorability of any bipar-

tite state. A detailed numerical analysis of the effects of spectral filtering, present

on the output of almost all standard downconverters to limit spectral correlation, is

developed to further motivate this work on ab initio factorable pair production. The

origin of factorable states in the strictly collinear regime of type-II downconversion

is presented, following in the footsteps of Grice et al 102 and U’Ren et al 101.

Consider two single photons in mixed states sent simultaneously one into each of

the input ports 1 and 2 of a 50:50 beamsplitter, as illustrated in Figure 1.5. For the

purposes of this analysis, the photons are described by distributions over a discrete

set of n frequency modes and initially each photon is in a classical mixture of all the

possible frequency modes. However, this mode decomposition could be performed in

any complete basis suitable for the system under investigation, for example spatial

or temporal mode for photons, and hence the result is applicable to any variable in

which the photon exhibits mixedness. The density operators for single photons in

mixed frequency states in spatial modes 1 and 2 can be written

ρ̂1 =
n

∑

i=1

p1i|ω1i〉〈ω1i| =
∑

i

p1iâ
†
1i|0〉〈0|â1i

ρ̂2 =
n

∑

j=1

p2j |ω2j〉〈ω2j | =
∑

j

p2j â
†
2j |0〉〈0|â2j , (3.1)

where â†1i is the creation operator for a photon in spatial mode 1 and frequency
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mode i and
∑

i p1i = 1. These individual input states have purities given by

P1 = Trρ̂2
1 =

n
∑

i=1

p2
1i, P2 = Trρ̂2

2 =
n

∑

j=1

p2
2j , (3.2)

and the total input state is

ρ̂ =
∑

i

∑

j

p1ip2j â
†
1iâ

†
2j |0〉〈0|â1iâ2j . (3.3)

The beamsplitter relationships remain as in Equation 1.12 but with the addition of

frequency subscripts:

â†1i =
1√
2

(

â†3i + â†4i

)

â†2j =
1√
2

(

â†3j − â†4j

)

, (3.4)

and the transformed input state becomes

ρ̂ =
1

4

∑

i

∑

j

p1ip2j (â†3iâ
†
3j−â

†
3iâ

†
4j + â†3j â

†
4i − â†4iâ

†
4j)|0〉

〈0| (â3iâ3j − â3iâ4j + â3j â4i − â4iâ4j) .

(3.5)

The projection operator25 for detecting a coincidence event at the two outputs is

also required. Throughout this thesis, detectors are modelled as silicon avalanche

photodiode single photon counting modules with a broadband frequency response

that is assumed to be flat over the range of frequencies we are interested in. The
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detectors are not frequency resolving and therefore cannot perform any spectral

filtering unless an external filter is placed in front of them. Furthermore, due to the

mechanics of the avalanche process within the silicon diode, the temporal resolution

of the detectors is many times longer than the coherence time of the downconverted

photons, so they cannot be used to temporally filter the photons either. The operator

for a single detection event is therefore an incoherent sum over a range of frequencies:

Π̂D =
∑

d

pd|ωd〉〈ωd|. (3.6)

A coincidence event will result from simultaneously detecting a photon of either

frequency mode in both of the spatial modes 3 and 4. The operator for these

possibilities is then given by

Π̂2C =
∑

i

∑

j

â†3iâ
†
4j |0〉〈0|â3iâ4j . (3.7)

The expectation value of this operator is then given by the standard expression

Tr
(

ρ̂Π̂2C

)

.

The action of Π̂2C on ρ̂ removes any terms in which both photons appear in the

same output port and the outcome of the measurement becomes

Tr
(

ρ̂Π̂2C

)

= Tr





1

4

∑

i

∑

j

p1ip2j

(

−â†3iâ
†
4j + â†3j â

†
4i

)

|0〉〈0| (−â3iâ4j + â3j â4i)



 .

(3.8)

We then consider two separate cases. In the first, the two photons both happen to
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be in the same frequency mode, so i = j, â†3iâ
†
4j = â†3j â

†
4i, and Equation 3.8 evaluates

to zero. In this case, as both photons ended up with the same frequency, they were

measured to have been indistinguishable upon incidence at the beamsplitter, perfect

interference occurred and there was no coincidence at the detectors. On the other

hand, if each photon was measured to be in a different frequency mode, then i 6= j

and Tr
(

ρ̂Π̂2C

)

= 1
2 . The photons no longer interfere at the beamsplitter due to their

distinguishable frequencies and each simply has a one in two chance of ending up in

each of the output ports. Therefore the overall probability of making a coincidence

measurement with no time delay between the photons is given by

P2C(0) = Tr
(

ρ̂Π̂2C

)

=
1

2

∑

i6=j

∑

j

p1ip2j

=
1

2

∑

i6=j

p1i

∑

j

p2j =
1

2
P (i 6= j),

(3.9)

where P (i 6= j) is the probability that i is not equal to j. This in turn allows

the visibility of the resulting interference effect to be found from Equation 1.16.

As discussed in Section 1.8, when a long time delay, τ , is introduced between the

two photons they will never interfere regardless of the states they are in, and the

coincidence probability will simply be P2C(τ) = 1/2. The visibility is then

V = 2

[

1

2
− P2C(0)

]

= 2

[

1

2
− 1

2
(1 − P (i = j))

]

= P (i = j), (3.10)

and we see that, in order to obtain high visibility, the two states must have a high

probability of being in the same mode.
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In order to relate this result to the purities of the input states, the two input

distributions are set to be identical, so p1i = p2j for all i = j, and P1 = P2. The

probability of i = j is then found to be

P (i = j) =
∑

i=j

p1ip2j =
∑

i

p2
1i = P1 (3.11)

⇒ V = P1 = P2. (3.12)

Therefore, for indistinguishable but mixed input states, the visibility is a measure

of their purity. Pure input states are required for high visibility and conversely,

high visibility demonstrates that the input states are pure. If the two states are

distinguishable, it can be seen from Equation 3.11 that P (i = j) will be reduced

and hence the visibility will also be degraded.

The general trends of these results can be elucidated if we further restrict the

two input states to be a statistical mixture of n frequency modes each having equal

probability. Therefore P (i = j) = n
n2 = 1

n
, which can be substituted into Equation

3.9 to give

P2C(0) =
1

2

(

1 − 1

n

)

. (3.13)

For perfect interference, we require that P2C(0) = 0. It is clear from the result in

Equation 3.13 that this can only be achieved if n = 1, in other words that the input

states are both in a single frequency mode. This condition necessarily reduces the

states in Equation 3.1 to pure states as the summations are over only one mode.

Furthermore, for these equiprobable states, the visibility can be found from the
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number of modes over which the input states are mixed:

V = 2

[

1

2
− 1

2

(

1 − 1

n

)]

=
1

n
. (3.14)

Therefore the visibility of the HOMI dip will fall off with the inverse of the number

of modes in a mixed input, and input states must be pure to give high visibility.

3.1 Factorability and purity

The general state from downconversion, up to the two-photon component, was de-

rived in Section 2.1. Taking Equation 2.20, ignoring the vacuum component which

will anyway be eliminated by heralding103, and dropping the efficiency coefficient,

the two-photon state can be written

|Ψ(ωs, ωi)〉 =

∫ ∞

0
dωs

∫ ∞

0
dωif(ωs, ωi)â

†
s(ωs)â

†
i (ωi)|0〉, (3.15)

where the joint spectral amplitude f(ωs, ωi) was defined as α(ωs + ωi)φ(ωs, ωi).

This is clearly a pure state, yet the joint spectral amplitude can contain correlations

between the spatio-temporal degrees of freedom of the daughter photons, as was

demonstrated in Section 2.3. This combination of purity and correlation causes the

two-photon part of |Ψ(ωs, ωi)〉 to be entangled in the frequency of the signal and

idler photons.

In the entangled two-photon state |Ψ(ωs, ωi)〉 written in Equation 3.15, when

one photon is detected as a herald the remaining single photon will become mixed.
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The only way in which the heralded photon can be projected into a pure state is if

there is no entanglement in the initial state. As we will see in this section, this can

only be realised by making f(ωs, ωi) factorable into a function of ωs multiplied by

a function of ωi so that |Ψ(ωs, ωi)〉 is a product state. Measuring one photon will

then have no effect on the other.

The density operator for the two-photon state in Equation 3.15 is

ρ̂ =

∫

dωs

∫

dωi

∫

dω̃s

∫

dω̃i f(ωs, ωi)f
∗(ω̃s, ω̃i)

â†s(ωs)â
†
i (ωi)|0〉〈0|âs(ω̃s)âi(ω̃i).

(3.16)

In order to have a heralded single photon, one of the photons from a pair must

be detected. As well as removing the vacuum term, this sums over the degrees of

freedom of the measured photon and projects the remaining photon into a state that

is described by the reduced density operator of ρ̂. For detection of the idler photon,

the reduced density operator for the signal is defined to be the partial trace over the

idler’s degrees of freedom25:

ρ̂s ≡ Tri (ρ̂) , (3.17)

and similarly for the reduced density operator for the idler. Here only the frequency

of each photon is considered explicitly and so this partial trace is found by integrating

over a dummy state |ω′〉 that is an energy eigenstate of the idler

ρ̂s =

∫

dω′〈0|âi(ω
′) ρ̂ â†i (ω

′)|0〉. (3.18)
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After multiplying this out and performing the integrals over ωi and ω̃i, the reduced

density operator for the signal photon is

ρ̂s =

∫

dωs

∫

dω̃sfs(ωs, ω̃s)â
†
s(ωs)|0〉〈0|âs(ω̃s), (3.19)

where the function describing the frequency distribution of the signal photon is given

by

fs(ωs, ω̃s) =

∫

dω′f(ωs, ω
′)f∗(ω̃s, ω

′). (3.20)

It is apparent that ρ̂s will only describe a pure state if the function fs(ωs, ω̃s) is

factorable so that Equation 3.19 can be rewritten with fs(ωs, ω̃s) = gs(ωs)g
∗
s(ω̃s).

However, this will only be the case for all ω′ if the function f(ωs, ω
′) is also factorable

such that f(ωs, ω
′) = gs(ωs)h(ω

′) and Equation 3.20 reduces to

fs(ωs, ω̃s) = gs(ωs)g
∗
s(ω̃s)

∫

dω′h(ω′)h∗(ω′). (3.21)

This requirement of factorability in f(ωs, ω
′) to prepare a pure reduced state is

equivalent to the same constraint of factorability on the initial joint amplitude func-

tion. Therefore, for pure heralded single photons the initial two photon state must

satisfy

f(ωs, ωi) = gs(ωs)gi(ωi). (3.22)

This means that all frequency correlations, and by extension all correlations, in the

initial state are eliminated.
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3.1.1 A brief note on notation

In the previous section, it was demonstrated that factorability in the two-photon am-

plitude is required for the heralding of pure single photons directly from a source of

photon pairs. This condition can clearly never be achieved with plane-wave pumped

type-I PDC, but, as we will see, the additional flexibility of type-II phasematching

allows a greater degree of control over the parameters of the source. Therefore all

of the remainder of this thesis refers to type-II downconversion and hence the signal

and idler are re-designated to be e-ray and o-ray to avoid any confusion. All the

crystals considered herein are negative uniaxial, and therefore the pump will always

be e polarised. To remind the reader of this, henceforth the pump, e-ray, and o-ray

photons’ wavevectors will be expressed as ke(ωp), ke(ωe), and ko(ωo) respectively.

Note that ωo, the o-ray frequency, is distinct from ω0, the central downconversion

frequency. Both theoretically and experimentally, the condition is enforced that all

collected downconversion is (at least approximately) collinear and therefore correla-

tions in transverse momentum are small. Furthermore it is assumed that the her-

alded photons will eventually have their transverse degrees of freedom constrained

by a single-mode fibre and therefore the discussion of factorability is restricted to

the frequency degree of freedom.
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3.2 Calculating photon pair correlations

3.2.1 The Schmidt decomposition

Given that the initial two-photon state from PDC is required to be uncorrelated

to prepare pure heralded single photons, it is essential to have an accurate method

of quantifying exactly how factorable the joint state is and hence predicting for

a given state what level of purity can be expected in the heralded photons. The

most intuitive method for doing this is through the Schmidt decomposition of the

two-photon state104,105.

The Schmidt decomposition is a unique method of expressing a bipartite system

in terms of a complete set of basis states. For example, the Schmidt decomposition

of the two-photon state in Equation 3.15 can be found by expressing |Ψ(ωe, ωo)〉 as

a linear superposition of product states:

|Ψ(ωe, ωo)〉 =
∑

j

√

λj |ζj(ωe)〉|ξj(ωo)〉, (3.23)

where the coefficients λn are real, non-negative, and normalized such that

∑

j

λj = 1. (3.24)

The orthonormal basis states |ζj(ωe)〉 and |ξj(ωo)〉 are known as Schmidt modes; each

set is dependent on only one subsystem of |Ψ(ωe, ωo)〉. The number of elements

required in the sum to express |Ψ(ωe, ωo)〉 in terms of the Schmidt modes then
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indicates the degree of factorability of the two-photon state. This can be quantified

by the Schmidt number, K 106, defined as107

K ≡ 1
∑

j(λj
2)

≡ 1

Tr{(ρ̂e)2}
≡ 1

Tr{(ρ̂o)2}
, (3.25)

where ρ̂e and ρ̂o are the reduced density operators for the e- and o-ray photons. K

is a measure of how many frequency Schmidt modes are active in the two-photon

state and hence it is an entanglement measure. A factorable product state will be

unentangled and can be described using only one pair of Schmidt modes; therefore

it will have λ1 = 1, λj>1 = 0 and K equal to unity. A state maximally entangled in

frequency would require an infinite number of Schmidt modes to describe it, each

with a vanishingly small λj coefficient, and therefore K would equal infinity.

From Equation 3.25 and the definition of purity given in Equation 1.7 we also

see that (1/K) yields the purity of either reduced state. Therefore the Schmidt

decomposition of the initial two-photon state can be employed to predict the purity

of the heralded single photons. This provides another way of demonstrating that the

joint amplitude must be factorable to produce pure states. A pure single daughter

photon requires K = 1 — a condition that can only be satisfied through |Ψ(ωe, ωo)〉

being a product state and the photons being prepared in a single pair of modes.

Therefore f(ωe, ωo) must be factorable.
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3.2.2 The singular value decomposition

There are only certain limited classes of states for which it is possible to calculate

the Schmidt decomposition analytically (see Section 3.4), yet it would be conve-

nient if the value of K could be calculated for any arbitrary two-photon state108.

Fortunately, there exists a matrix operation that is the analog of the Schmidt de-

composition and can be computed numerically for any input state.

Let the state |ψ(ωe, ωo)〉 be represented by the square matrix F where Fmn is the

matrix element representing f(ωe,m, ωo,n) and ωe,m and ωo,n are discrete frequencies

of the e-ray and o-ray respectively. The singular value decomposition (SVD) of F is

then defined as the decomposition of F into three matrices, two of which are unitary,

U and V †, and one diagonal, D, such that

F = UDV †. (3.26)

The unitary matrices then contain the modes into which the initial state has been

decomposed. U is dependent only on ωe and its jth column, Umj , where j is held

constant over e-ray frequency index m, represents the e-ray Schmidt mode |ζj(ωe)〉

while V † depends only on ωo and the jth row V †
jn describes the o-ray Schmidt mode

〈ξj(ωo)|. The diagonal elements of D are called the singular values of F ; they

are non-negative and entered in descending order of magnitude. It can be seen by

multiplying out the three matrices on the right hand side of Equation 3.26 that each

element of D describes how much of each of the modes listed in U and V † are mixed
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at each pair of e-ray and o-ray frequencies to form F . Therefore the elements of F ,

specifying the amplitude at every pair of frequencies, each contain a sum over all j

mode pairs.

The singular values can be swiftly calculated for relatively large matrices by

numerical means (for example in Matlab) and the value of the Schmidt number

found simply by normalizing D and summing the squares of the elements. This

technique is particularly powerful as the Schmidt number can be determined quickly

even for states for which an analytical solution to the Schmidt decomposition does

not exist.

3.3 Correlated two-photon states and filtering

All downconversion sources demonstrated to date have exhibited strong pairwise

correlations between the daughter photons109–111. Indeed, many experimental-

ists have sought to maximise these correlations to create highly entangled photon

pairs91,112–114 ideal for use in applications such as quantum key distribution115–118

or quantum state teleportation119–122. However, all sources exhibiting correlations

are useless for generating pure single photons.

The typical example of a downconverted two-photon state shown in Figure 2.9,

in this case generated by pulsed pumping at 400 nm of a 2 mm BBO crystal cut

for collinear type-II phasematching, exhibits clear correlations between the frequen-

cies of the daughter photons. These correlations preclude the direct generation of

pure heralded single photons, yet several experiments have been performed where
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heralded single photons from two such sources (either BBO or another source that

produces correlated states) are interfered with reasonable visibility80–83. This is

brought about by the “brute force” method of heralded single photon generation,

that of spectral filtering123.

The action of filtering is to throw away most of the photons that display pairwise

correlations with no attempt made to remove these correlations at the point of

production. Therefore it is very lossy as the majority of the pairs produced in

any given time window have to be discarded from the ensemble in order for the

remainder to be able to approximate an uncorrelated state. Photons in correlated

pairs of modes are removed from the ensemble to leave something that approximates

single mode behaviour124.

This situation can be modelled by assuming that the filters have Gaussian trans-

mission functions, though the specific form of the filter function makes little dif-

ference to the results of the calculation. These spectral transmission functions are

given by

gS(ωµ) = 4

√

2

πσ2
S

exp

[

−
(

ωµ − ω0

σS

)2
]

, (3.27)

where µ = e, o and σS is the filter width, defined in a similar manner to σ in Equation

2.38. The joint two-photon amplitude directly from the downconversion crystal is

then multiplied by one or two of these filter transmission functions — corresponding

to a filter in one or both output arms — to produce the final filtered joint amplitude.

The purity of the heralded single photons from this source can then be found by

taking the numerical SVD of the final state.
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Figures 3.1 and 3.2 demonstrate the effect of applying a narrowband spectral

filter to one or both photons of the correlated two-photon state from type-II BBO.

The purity of the heralded photons is plotted as a function of the filter bandwidth

along with two other figures of merit for the source. The first is the theoretical

maximum heralding efficiency of each source, defined125 for perfect detectors as the

ratio of the coincidence count rate, RC , to the count rate at the trigger detector,

RT :

ηH =
RC

RT
. (3.28)

This corresponds to the heralded photon from one pair being available given that

its twin has been detected. It can be calculated in the case of a filtered source

as the ratio of the integral of the joint spectral intensity with the filter only on

the trigger arm to that with filters in both arms. The second is the normalized

overall coincidence count rate for the source, defined as the integral of the final

filtered joint spectrum over the integral of the initial state. It is clear that for both

filtering configurations, filtering increases the purity of the heralded photons; indeed

this purity can be made arbitrarily close to unity by reducing the filter bandwidth.

However, such filtering comes at a price, either in the overall count alone or both

the overall count rate and the heralding efficiency.

With a filter in the trigger arm only, the heralding efficiency is not affected as the

signal photon will in theory definitely be useable. However, the overall coincidence

count rate is reduced due to the cut in the trigger rate. In the case of BBO, as the

joint spectrum is broader in the o-ray than the e-ray, the reduction in overall count
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rate will be minimised by filtering only the e-ray in preference to filtering only the

o-ray, as the proportion of photons let through a filter in the e-ray arm alone will be

greater than if the same filter were put in the o-ray arm only. This is the situation

depicted in Figure 3.1; the e-ray only is filtered and these filtered photons are used

as the heralds. Even though ηH is not reduced, if this type of source were used to

generate high-purity heralded photons, the overall coincidence count rate would be

very small because the filter bandwidth required to get to a high level of purity is

so narrow that the count rate in the trigger arm would be tiny. For example, to

prepare heralded single photons with a purity of 0.95 the filter bandwidth could not

be greater than 1 nm and would pass only 11% of the generated photon pairs.

On the other hand, by filtering both arms, although the filter bandwidth needed

to attain the same purity is much less narrow, the heralding efficiency would be

necessarily reduced as many of the signal photons would have to be discarded and

hence even in theory only a small proportion of them would be available. The

broader o-ray bandwidth of the joint spectrum from BBO also gives a preferential

scheme for this filtering configuration: the better heralding efficiency is obtained by

using the o-ray as a herald rather than the e-ray. By cutting out proportionally

more photons in the trigger arm the fraction that are thrown away in the heralding

arm can be made as small as possible and hence the heralding efficiency obtained

is as high as it can be. Even so, for a required purity of 0.95 in the heralded e-ray

photons, the maximum possible heralding efficiency is reduced to 0.75 at a filter

bandwidth of 4 nm, passing 12% of the generated pairs. This is shown in Figure 3.2.
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Figure 3.1 Demonstration of the effects of filtering only the e-
ray from a 2 mm long collinear type-II BBO PDC source pumped at
400 nm with a pump bandwidth of 4 nm. The top three plots illustrate
the joint spectra for filter bandwidths of 1 nm (left), 5 nm (centre),
and 25 nm (right). The bottom plot shows the effect of filtering on
the inverse Schmidt number (blue, equal to the heralded purity), the
heralding efficiency (green), and the normalised coincidence count
rate (red).
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Figure 3.2 Demonstration of the effects of filtering both arms of
a 2 mm long collinear type-II BBO PDC source pumped at 400 nm
with a pump bandwidth of 4 nm. The top three plots illustrate the
joint spectra for filter bandwidths of 1 nm (left), 5 nm (centre), and
25 nm (right). The bottom plot shows the effect of filtering on the
inverse Schmidt number (blue), the heralding efficiency (green), and
the normalised coincidence count rate (red).
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When considering only one PDC source generating one pair of photons at a time,

filtering is not a huge problem in terms of the count rates expected. For example,

if the necessary filtering for the level of purity required from a spectrally-correlated

source means that one must use a filter that has a 50% overall probability of trans-

mitting each photon (summed across the entire bandwidth of both the filter and the

photons), then the likelihood of a pair being transmitted is still a quarter. However,

filtering does becomes more of an obstacle if one wants to perform an experiment

requiring the delivery of two pairs, either from one source or in independent sources.

In this case, the probability of having two pairs available after filtering given that

two were generated (itself a relatively unlikely event) is only 6%.

Nevertheless, some impressive experiments requiring the generation of at least

two pairs in sources that must use filtering have recently been demonstrated. Among

these proof-of-principle experiments are the implementation of optical quantum

gates126, linear optics quantum computation127, and cluster state quantum com-

putation128. Furthermore, parametric downconversion sources have been used to

generate entanglement between more than two photons82,129, demonstrate entan-

glement swapping between two pairs130, and build “Schrödinger cat” states131,132

— superpositions of quasi-classical states.

Experiments with two pairs are already pushing the limits of what can be

achieved with a correlated PDC source, but filtering becomes a far more serious

problem when moving to higher photon numbers. The probability of having n pairs

available after filtering given that n pairs were generated goes as the (2n)th power
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of the filter transmission. For the same filtering regime yielding photons of the same

purity as before, the probability of having four pairs transmitted is less than half

a percent. Hence filtering is not scalable to higher photon numbers and a more

effective approach to pure-state photon preparation must be found.

3.4 Generation of factorable states

A more elegant approach to preparing pure heralded single photons would be to gen-

erate photon pairs directly in factorable states. If this could be achieved there would

be no need for lossy spectral filters and no longer any fundamental tradeoff of the

purity of the single photon states against the heralding efficiency and count rates.

Several methods have to date been proposed for the management of correlations

created between pairs of downconverted photons at the point of production. These

are mostly based on manipulating the spectra of the downconverted pairs through

the phasematching conditions either by changing the structure of the pump beam

or engineering the dispersion characteristics of the source itself, or a combination of

both. Techniques primarily reliant on pump control include the angular dispersion

of the pump beam from a grating before sending it through the source133–135; this

alters the phasematching conditions at different angles and is known as achromatic

phasematching. A similar situation will be revisited in Chapter 4. The spectral

structure can also be affected by altering the spatial profile of the pump beam

and the geometry of the phasematched output136,137. A side-pumped waveguided

dowconversion source generating counter-propagating photons was proposed to per-
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mit photon-pair generation with arbitrary spectra138,139 but this inevitably results

in a very short interaction length between the pump and the nonlinear medium.

Additionally, control of the spatial emission pattern has been studied through the

spatial profile of the pump140 and microstructuring the nonlinear medium to alter

the phasematching conditions141.

However, none of these techniques has yet shown the ability to generate the

factorable states required for pure heralded single photon preparation. Nevertheless,

there exists one approach to spectral engineering specifically proposed with the idea

of tailoring the joint spectrum from a downconverter to minimise the correlations

between the daughter photons in mind. This was first expounded by Grice et al 102

and is outlined in this section.

To see how factorable state generation might be accomplished, let us return to

the two-photon state in Equation 3.15. The product of the pump function with

the phasematching function can be simplified by approximating the sinc function in

Equation 2.21 with a Gaussian as follows:

φ(ωe, ωo) = e
i∆kL

2 sinc

(

∆kL

2

)

≈ e
i∆kL

2 exp

[

−γ
(

∆kL

2

)2
]

, (3.29)

where the constant γ = 0.193 is set to match the FWHM bandwidth of the Gaussian

to that of the sinc function. A further simplification is to make an approximation of

the wavevector mismatch, ∆k ≈ ∆k0, by taking the Taylor expansion of the three

wavevectors for pump, signal, and idler about the degenerate central downconver-
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sion frequency ω0. Only terms up to the second order are retained, and breaking

this down into the zeroth, first, and second order contributions to the wavevector

mismatch we have

∆k0 = ∆k
(0)
0 + ∆k

(1)
0 + ∆k

(2)
0 . (3.30)

Due to phasematching at the central frequency, the zeroth order contribution dis-

appears:

∆k
(0)
0 = ke(2ω0) − ke(ω0) − ko(ω0) = 0, (3.31)

and the first order contribution is expressed as

∆k
(1)
0 = k′e(2ω0)(ωp − 2ω0) − k′e(ω0)(ωe − ω0) − k′o(ω0)(ωo − ω0), (3.32)

where prime denotes differentiation with respect to angular frequency. The fre-

quency detunings are now replaced with two new variables, νe = ωe − ω0 and

νo = ωo − ω0, and using the energy conservation condition (Equation 2.23) we

have

∆k
(1)
0 =

[

k′e(2ω0) − k′e(ω0)
]

νe +
[

k′e(2ω0) − k′o(ω0)
]

νo

= aeνe + aoνo, (3.33)

where the new coefficients are the mismatches between the inverse group velocities
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of the pump and daughter fields, given by

ae = k′e(2ω0) − k′e(ω0), ao = k′e(2ω0) − k′o(ω0). (3.34)

Similarly for the second order contribution to the wavevector mismatch we have

∆k
(2)
0 =

1

2
k′′e (2ω0)(ωp − 2ω0)

2 − 1

2
k′′e (ω0)(ωe − ω0)

2 − 1

2
k′′o (ω0)(ωo − ω0)

2

=
1

2

[

k′′e (2ω0) − k′′e (ω0)
]

ν2
e +

1

2

[

k′′e (2ω0) − k′′o (ω0)
]

ν2
o + k′′e (2ω0)νeνo

=
1

2
beν

2
e +

1

2
boν

2
o + beoνeνo, (3.35)

where

be = k′′e (2ω0) − k′′e (ω0), bo = k′′e (2ω0) − k′′o (ω0), beo = k′′e (2ω0). (3.36)

A good approximation to the phasematching function close to ω0 can then be formed

by the substitution of these expansions into Equation 3.30 and thence Equation 3.29.

The resulting approximation of φ(ωe, ωo) can be further simplified by analyz-

ing where correlations in the two-photon state will arise. As we care only about

constructing a factorable state, terms that will not under any circumstances lead to

correlations can be abandoned. However, we must contemplate not only correlations

in the spectral domain (contained in the real part of the joint amplitude), but also

temporal correlations that can be “hidden” in the phase of the joint amplitude. A

linear phase term in Equation 3.29 will not lead to temporal correlations as it would
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only cause a shift of the Fourier transform of f(ωe, ωo), whereas a quadratic phase

term would cause a tilt in the joint temporal distribution. Therefore we need only

consider the second order terms in the imaginary exponent. Conversely, as the real

exponent gets squared, only the first order terms are required as the square of these

will dominate over the vanishingly small effects of the second order terms squared.

Therefore the approximation to the phasematching function can be reduced to

φ(νe, νo) = exp

[

i
L

4

(

beν
2
e + boν

2
o + 2beoνeνo

)

− γ
L2

4
(aeνe + aoνo)

2

]

. (3.37)

The pump function (Equation 2.36) can also be written in terms of the new detunings

νe and νo. If we assume a quadratic phase on the pump, given by ϕ2/2 then we have

α(νe + νi) = exp

[

−iϕ2

2
(νe + νi)

2 −
(

νe + νo

σ

)2
]

. (3.38)

The approximate joint spectral amplitude is then

f(νe, νo) ≈ exp

[{

i

(

L

4
be −

ϕ2

2

)

−
(

γ
L2

4
a2

e +
1

σ2

)}

ν2
e

]

exp

[{

i

(

L

4
bo −

ϕ2

2

)

−
(

γ
L2

4
a2

o +
1

σ2

)}

ν2
o

]

(3.39)

exp

[{

i

(

L

2
beo − ϕ2

)

−
(

γ
L2

2
aeao +

2

σ2

)}

νeνo

]

=exp
[

−i
(

neν
2
e + noν

2
o + neoνeνo

)

−
(

meν
2
e +moν

2
o +meoνeνo

)]
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where the e-ray coefficients are given by

me = γ
L2

4
a2

e +
1

σ2
, ne =

L

4
be −

ϕ2

2
, (3.40)

and similarly for the o-ray and crossed term coefficients. All the spectral correlations

are contained within the real part of this function, and temporal correlations arise

from this real part and its associated phase.

Considering firstly the spectral correlations alone, the joint spectral intensity,

|f(νe, νo)|2, is a two dimensional Gaussian distribution whose aspect ratio is set by

the magnitudes of me and mo and whose tilt is dependent on meo. It is this tilt that

causes spectral correlation. A new parameter, ̺, can be defined in terms of these m

coefficients as follows

−2 < ̺ =
meo√
memo

< 2. (3.41)

When ̺ = 0 then the joint spectral intensity will have no tilt and therefore no

correlations in frequency.

This can be generalized to the construction of a two-photon state with neither

spectral nor temporal correlations. If we set meo = neo = 0 and hence discard the

last exponential in Equation 3.39 then both the phase and magnitude of f(νe, νo)

are factorable into a function only of νe multiplied by a function of νo alone. A

two-photon state with this factorable joint amplitude would have no correlations

between the e-ray and o-ray frequencies or emission times. All the correlations arise

from the exponent containing crossed terms in νe and νo and it is this exponent that
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must be made zero to enable factorable state generation.

In most realistic situations, the magnitude of neo is sufficiently small that tempo-

ral correlations resulting from the phase of f(νe, νo) have little appreciable impact on

the overall level of correlation of the two-photon state compared to the effect of cor-

relations in the amplitude of f(νe, νo). Certainly it is primarily spectral correlations

with which the experimentalist must be concerned to achieve something approaching

a factorable state. If additional factorability is desired after the spectral domain has

been taken care of, the phase of the pump pulse, ϕ2/2, can be adjusted using a prism

line to impart negative dispersion and set neo to be exactly zero. This corresponds

to the pump pulse being exactly transform-limited when it reaches the mid-point

of the crystal101. However, this level of control is not required for the experiments

presented herein and the remainder of this section will deal with eliminating solely

spectral correlations. The question of phase on the joint spectrum will be revisited

later.

So how is it possible to achieve meo = 0? Using Equations 3.33 and 3.39, the

full expression for the coefficient required to be zero is

meo = γ
L2

2

[

k′e(2ω0) − k′e(ω0)
] [

k′e(2ω0) − k′o(ω0)
]

+
2

σ
= 0. (3.42)

The mechanics of phasematching in a standard birefringent crystal allow two meth-

ods of fulfilling this condition. The dispersion relations make it possible to adjust the

relative values of k′e(2ω0), k
′
e(ω0), and k′o(ω0) by selecting the phasematched down-
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conversion wavelengths via the crystal orientation and pump wavelength. It is on this

principle that both methods of factorable state generation in bulk media are based.

The first method concerns the situation where the derivative of the pump wavevec-

tor lies between those of the two daughter photons: k′e(ω0) < k′e(2ω0) < k′o(ω0). By

taking the inverse of this inequality it can be seen that it corresponds to a condition

on the group velocities of the three fields. The group velocity is defined to be

vg =
∂ω

∂k(ω)
=

1

k′(ω)
(3.43)

and therefore the group velocity of the pump must be between those of the two

daughter photons. This demonstrates why, in the collinear case, it is important

to have the flexibility offered by type-II phasematching, as this condition clearly

could never be met in a type-I system. If the condition is fulfilled, the first term in

Equation 3.42 will now be negative and the following equality between the crystal

length and pump bandwidth must be satisfied:

L =
2

σ
√
γaeao

. (3.44)

So long as this condition is fulfilled, the resulting joint spectral intensity will be

factorable.

This can be thought of graphically in terms of the plots of the two-photon joint

spectrum first presented in Section 2.3. Methods that result in factorable states rely

on manipulating the phasematching function in a particular manner that negates
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the negative correlations introduced by the pump envelope function. The situa-

tion considered immediately above equates to juxtaposing the negative slope of the

pump function with a positively-correlated phasematching function. By matching

the bandwidth of the pump to that of the crystal using the relationship in Equation

3.44, one can end up with a state that is factorable in frequency. The phasematch-

ing function will be orientated at 45◦ if the pump group velocity is exactly half way

between those of the two daughter photons — this is known as the symmetric group

velocity matching condition.

This is demonstrated in Figure 3.3. For BBO, the group velocity of an e-ray at

800 nm is approximately the average of the group velocities of an e-ray and an o-ray

at 1.6µm. This results in a positively-correlated phasematching function, and this

is shown in the figure for a 2mm long BBO crystal cut for type-II phasematching

at 1.6µm (θpm = 28.9◦). By pumping this crystal with ultrafast pulses at 800 nm

and setting the bandwidth of the pulses to be 14 nm, the condition for factorability

is satisfied. The state resulting from the multiplication of these two functions is

roughly circular, as illustrated in the figure. For a perfectly circular joint spectral

intensity, the group velocity of the pump must be the average of the group velocities

of the downconverted photons. This situation also illustrates the importance of using

a broadband pulsed pump laser as the bandwidth of the pump must match that of

the crystal to ensure factorability. In this case, there are no spectral correlations and

the joint spectral intensity is factorable. Another helpful feature of the exponential

approximation to the phasematching function and truncated expansion of the phase
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mismatch is that it allows one to take the analytic Fourier transform of the spectral

amplitude and hence find the joint temporal intensity. This is also plotted in Figure

3.3 and demonstrates that, for a pump with flat spectral phase, there are also no

temporal correlations in the approximate state.

The second method of making meo = 0 is also reliant on having a broadband

pump, in fact one that is broadband enough relative to the bandwidth of the phase-

matching function that

γL2 ≫ 4

σ
(3.45)

and the term in Equation 3.42 containing the inverse of the pump bandwidth can

be ignored. Therefore, for a broadband pump and long crystal (with its associated

small phasematching bandwidth), meo can be approximated by

meo ≈ γ
L2

2

[

k′e(2ω0) − k′e(ω0)
] [

k′e(2ω0) − k′o(ω0)
]

. (3.46)

It is clear that this can be set to zero by making the group velocity of either the

e- or the o-ray downconverted field equal to that of the pump. In the case of

downconversion in a uniaxial crystal, this must be done by matching the group

velocities of the pump and the o-ray daughter photon. Therefore, o-ray photons will

propagate through the crystal alongside the pump while e-ray photons will “walk

off” temporally from the pump due to their different group velocity. Hence this is

known as asymmetric group velocity matching.

The particular phasematching function for this situation will be broadband in the
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Figure 3.3 Factorable state generation in BBO. Exponential ap-
proximation to phasematching intensity centered at 1.6µm (top left)
and pump intensity distribution for 14 nm bandwidth (top right).
Resulting joint spectral intensity (bottom left) and joint temporal
probability distribution (bottom right) both of which are completely
factorable.
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frequency of the group velocity matched o-ray and much narrower in the frequency

of the e-ray photon. The phasematching function does not exhibit any tilt; it is

“vertical” when plotted as a function of e- and o-ray frequency, and it is this that

can make the two-photon state uncorrelated. The pump envelope function must be

sufficiently broadband to allow this phasematching function to dominate the form

of the joint state.

This gives the general framework describing the basic conditions that need to

be satisfied to generate factorable states. For the approximate forms of the two-

photon states considered in this section, it is possible to find their analytic Schmidt

decompositions and hence quantify any correlations. Although this would appear

at first to be a very useful technique, in fact it is less insightful than one might

imagine. These approximate, plane-wave two-photon states with flat phase do not

describe accurately enough the situation encountered in experiments, where the joint

spectra have curvature from third and higher order components of the wavevector

mismatch. Additionally any structure in or focusing of the pump beam can have a

dramatic impact on the overall factorability. Therefore the numerical singular value

decomposition of the exact two-photon state is often more appropriate.

Nonetheless, a brief investigation of the analytic Schmidt decomposition for such

states is justified to give some insight into how the technique works. Finding the

Schmidt decomposition requires the solution of a pair of integral eigenvalue equa-
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tions104

∫

dω′

∫

dωof(ωe, ωo)f
∗(ω′, ωo)ζn(ω′) = λnζn(ωe)

∫

dω′

∫

dωef(ωe, ωo)f
∗(ωe, ω

′)ξn(ω′) = λnξn(ωo). (3.47)

The solutions to these equations for the type of state in Equation 3.39 with the

complex exponential set to zero are given by Hermite polynomials102 that can be

written in the form142

√

1 − µ2

∞
∑

n=0

µnζn(α1x1)ξn(α2x2)

= exp

[

− 1 + µ2

2(1 − µ2
(α2

1x
2
1 + α2

2x
2
2) +

2µ

1 − µ2
α1α2x1x2

]

. (3.48)

By equating coefficients between this expression and Equation 3.39 a quadratic equa-

tion relating µ and the m coefficients can be found. Substituting the definition of ̺

in Equation 3.41 into the solution for µ gives

µ =
−2 +

√

4 − ̺2

̺
, (3.49)

which tends to 1 as ̺ tends to zero. The magnitudes of the Schmidt modes, λn,

can then be described by comparing Equation 3.48 to the definition of the Schmidt

decomposition given in Equation 3.23:

λn = (1 − µ2)µ2n. (3.50)
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Therefore, by calculating the m coefficients from the Sellmeier equations of a given

nonlinear crystal and the pump bandwidth, it is possible for this type of state to

find the magnitudes of the Schmidt modes directly and hence quantify the degree

of correlation from the number of active modes. In this case the Schmidt number is

K =
1 + µ2

1 − µ2
, (3.51)

obtained by summing the Schmidt mode magnitudes from zero to infinity.

We can now compare the factorability of a two-photon state approximating that

plotted in Figure 2.9 for type-II phasematched BBO pumped at 400 nm with that

of the uncorrelated state from BBO pumped at 800 nm. The magnitudes of the

Schmidt modes for both states are shown in Figure 3.4. For the correlated state,

the probability of finding the photon pair in the lowest order mode is just over 50%,

and K = 2.89, showing that the emission is multimode in character. Heralded single

photons from this state would be mixed, and the only way to get good interference

visibility would be to sacrifice count rates and use spectral filters. However, in the

case of the uncorrelated state, due to the conditions set on the parameters defining

the spectral structure, ̺ is equal to zero and therefore K = 1. The emission is into

a single spectral mode and heralded pure single photons could be generated directly

without any filtering.
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Figure 3.4 Magnitudes of the first eight Schmidt coefficients for
the approximate state generated by collinear type II BBO pumped
at 400 nm (left, state is an approximation to that in Figure 2.9) and
800 nm (right, state as in Figure 3.3).

3.4.1 KDP and factorable two-photon states

The factorable state formed by symmetric group velocity matching in BBO studied

in the previous sections has the advantage that it can be pumped with a standard

femtosecond titanium:sapphire laser at 800 nm. However, the main disadvantage

is that the pairs generated cannot be detected using silicon-based single photon

detectors as these are not sensitive to light at 1.6µm. Instead the only widely

available solid-state detectors suitable at this wavelength are much less efficient

indium-gallium-arsenide-based devices. This emphasizes the point that, for each

particular nonlinear crystal, the conditions for factorability can only be fulfilled over

a certain range of wavelengths102 and, for most crystals, this puts the downconverted

photons beyond the useful range of silicon photodetectors (up to about 1µm).

Therefore it is essential to select the correct nonlinear crystal to allow factorable

state generation in the required wavelength range. Ideally, this would be to produce
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downconverted photons at less than 900 nm or so, where the efficiency curve for sili-

con detectors is still relatively high, and also allow pumping with a widely available

type of broadband pulsed laser, an obvious choice for this downconversion range

being the second harmonic of titanium:sapphire at around 400 nm. This goal can

be achieved through the asymmetric group velocity matching regime in potassium

dihydrogen phosphate (KDP).

At a phasematching angle of 67.8◦ in KDP, an e-ray pulse at 415 nm will travel

with the same group velocity as an o-ray pulse at 830 nm, hence fulfilling the con-

dition for asymmetric group velocity matching in Section 3.4. This results in a

vertical phasematching function that is broadband in o-ray frequency but narrow-

band in the e-ray. The collinear, plane-wave phasematching function is plotted in

its approximate form for a 5mm long crystal in Figure 3.5, along with the pump

envelope function for a broadband frequency-doubled titanium:sapphire laser cen-

tered at 415 nm, and the resulting two-photon joint intensity distribution. This is

clearly highly factorable; the Schmidt number for this approximate distribution is

K = 1.01. Therefore, over 99% of the emission is into the first Schmidt mode.

There is an intuitive physical explanation for how this single-mode emission

takes place. As any o-ray downconversion would travel alongside the e-ray pump at

their mutual group velocity of 1.97× 108 m/s, its possible emission time is therefore

constrained to be contiguous with the highly temporally localized pump pulse. Hence

o-ray daughter photons must be emitted into a mode that is similar to the broadband

single temporal mode of the pump, and, as the modal structure of the o-ray photon
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Figure 3.5 Factorable state generation in KDP. Approximate
phasematching intensity for 5mm collinear type-II KDP centered at
830 nm (top left) and 4 nm bandwidth pump function at 415 nm (top
right). Lower panels show the resulting factorable spectral (left) and
temporal (right) intensity distributions.
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Figure 3.6 Magnitudes of the first eight Schmidt coefficients for
the approximate state generated by collinear type II KDP pumped
at 415 nm (state as in figure 3.5).

is restricted to a single mode, so is that of the e-ray daughter photon. However, the

e-ray downconverted photons travel at a group velocity of 2.02× 108 m/s. An e-ray

photon created at the entrance face of the long crystal would have walked off ahead

of the pump, whereas one created at the exit face would not, so the temporal mode

structure of the e-ray photon is much less localized. Therefore emission is into a

single broadband mode for the o-ray photon and a narrower bandwidth single mode

for the e-ray photon. The single temporal mode structure of the photon pairs results

in exceptionally low jitter in the arrival time of the single photons.

3.4.2 Additional methods of group velocity matching

The technique of selecting the pump wavelength and bulk birefringent nonlinear

medium to give the correct dispersion properties to match either symmetrically or

asymmetrically the group velocities of the three fields is the simplest way to achieve

factorable state generation. For the purposes of the work presented here, there exists
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an ideal, widely-available nonlinear crystal, KDP, and pump laser system, frequency-

doubled titanium:sapphire, to implement this procedure in the laboratory. However,

there are a limited number of combinations of crystals and wavelengths wherein this

protocol is possible, and these may not provide the required output in all situations.

This leads to the consideration of whether there exist any other regimes in which

group velocity matching can be satisfied.

One possibility is to use something other than a bulk crystal for the nonlinear

medium143. A series of identical nonlinear crystals that are not group velocity

matched can be separated by linear but birefringent crystal spacers designed to

compensate for the temporal walkoff in the nonlinear regions to form a so-called

“crystal superlattice”144. By reversing the sign of the walkoff in the linear media,

the relative positions fields that have walked off in the nonlinear sections are reversed

during their traversal of the linear sections. In this way, in theory effective group

velocity matching can be performed and factorable states prepared. However, one

requires stringent tolerances on the thicknesses of the linear and nonlinear sections,

something that is not possible with current manufacturing techniques.

Another potential method of obtaining factorable states is to utilise the trans-

verse momentum of the pump and downconverted beams to provide an additional

constraint on the phasematching landscape145. Repeating the derivation in Sec-

tion 2.1 for type-I PDC with a pulsed pump that rather than being plane-wave

is focused to a Gaussian spot, the resulting two-photon state has an additional

multiplicative term that is a phasematching condition on the transverse wavevec-
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tors101. For type-I PDC, this transverse phasematching function is dependent on

the difference between the daughter frequency detunings, unlike the longitudinal

phasematching function which is dependent on their sum. Therefore the transverse

function is positively correlated in the daughter frequencies, and (analogous to the

case of the positively-correlated longitudinal phasematching function in the case of

BBO pumped at 800µm) when multiplied by the negatively correlated longitudinal

phasematching function (analogous to the pump in the case of BBO) can produce an

uncorrelated state. This requires that a condition on the pump spot size relative to

the crystal length is satisfied and that the angle between the downconverted beams

that are collected is well-defined, for example by fibres. Additionally, it is essential

that the pump function has enough bandwidth to not affect the joint amplitude.

However, as this technique does not rely on group velocity matching through the

material properties of the crystal it can be applied at any wavelength and is less

dependent on finding exactly the right nonlinear crystal.



Chapter 4

Experimental Demonstration of

Factorable State Generation

The model of downconversion as a plane-wave, collinear process combined with the

approximation of the phasematching function as a Gaussian is sufficient to find the

broad conditions required for factorable state generation. This model was used in

Chapter 3 to derive the technique of group velocity matching and it was demon-

strated that, within this framework, factorable state generation should be possible

in two different regimes: symmetric and asymmetric.

In this chapter, the conditions surrounding asymmetric group velocity matching

in KDP will be investigated in more detail. In preparation for this, the Gaussian

approximation for the phasematching function must be abandoned and the full ex-

pression for the wavevector mismatch used in preference to the truncated Taylor

expansion. These two changes respectively allow not only the side lobes on the
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Figure 4.1 Comparison of joint spectra generated using the ex-
ponential phasematching approximation with truncated wavevector
mismatch (left) with those calculated from the full mismatch (right).
Three individual joint spectra were calculated for three different
phasematching angles separated by 1.5◦ and plotted on the same
axes for ease of comparison. Each individual joint spectrum is for
the collinear case. Note the exaggerated tilt on the nondegenerate
joint spectra in the case of truncated mismatch.

phasematching sinc function but also its curvature due to higher order phase mis-

match terms to be seen — changes that can make an appreciable difference to the

factorability of the overall two-photon state. In fact, as the Taylor expansion was

taken about the degenerate downconversion frequency ω0, the validity of the trun-

cation is limited to a very small frequency range around the degenerate point. If

using the truncation away from this point the removal of the proper curvature from

the phasematching function can give predictions of a joint spectrum tilted in the

opposite direction from the correct spectrum calculated with the full expression for

∆k. This is demonstrated in Figure 4.1.

The exact phasematching function and two-photon state for collinear type-II
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KDP pumped at 415 nm is shown in Figure 4.2. The slight curvature of the phase-

matching function can now be seen, however, in a realistic experimental situation,

this strict collinear calculation is still not enough to correctly model the two-photon

states generated.

As described in Chapter 1, the degenerate emission from a type-II downcon-

verter is into a pair of cones which, for collinear phasematching, intersect along the

direction of the pump wavevector. In interference experiments, this complicated

emission pattern requires that the spatial modes over which the e-ray and o-ray

downconversion are collected are defined either using apertures or by coupling the

light into single-mode optical fibres. Practically, it is more convenient to have the

downconverted light coupled into single-mode fibre as this makes the experiment less

susceptible to misalignment and delivers photons that can be easily distributed to

subsequent pieces of apparatus. The action of the optics that couple light into the

fibre is to map a single transverse Gaussian optical mode from the crystal onto the

mode supported by the fibre. Hence the fibre acts as a spatial filter and to get good

coupling efficiency into the fibre, preferential emission from the downconverter into

the correct spatial mode must be encouraged. This is done by focusing the pump

into the nonlinear crystal, rendering the collinear model inappropriate for simulat-

ing the states that will be generated. Furthermore, inhomogeneities in the pump

beam can also introduce correlations that cannot be modelled with the techniques

presented thus far.

In order to explain clearly the effect that each of these factors has on the joint
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spectrum, the three key factors that must be understood and controlled to obtain a

factorable state from asymmetrically group velocity matched KDP will be introduced

one by one in this chapter. These three effects are firstly the pump focusing, then

the fibre collection angle, and lastly the frequency inhomogeneities of the pump

— here in the form of spatial chirp. Individual illustrations of their effect on the

joint spectrum will be shown explicitly, followed by an explanation of how one may

be traded off against another. A numerical model is developed that allows the

experimentalist to model accurately the effects of changes in the focusing geometry or

the pump and crystal characteristics upon the factorability of the final state. Then a

method for characterizing experimentally the joint spectral intensity is demonstrated

along with results of measurements made on the joint spectrum from KDP. These

experimental results are shown to be in good agreement with the predictions of the

numerical model.

The detailed numerical study of factorable state generation in a plausible exper-

imental situation presented in this chapter was an essential precursor to achieving a

successful laboratory demonstration of pure single photon preparation. It represents

a significant advance on previous work on factorable states from downconversion

sources as it allows a full understanding of how focusing and pump effects can in-

troduce correlations to a state that would otherwise be factorable. Furthermore, it

can be applied to other nonlinear crystals to study the states generated therein.

Finally in this chapter, a measurement of the degree of second order coherence of

the source is described. This confirms the nonclassical nature of the emission from
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the downconverter and that the heralded states can, to a very good approximation,

truly be considered to be single photons.

4.1 Experimental factors affecting factorability

4.1.1 Pump focusing

The focusing of pump pulses into a nonlinear crystal is perhaps the most obvious

way in which the majority of experimental situations differ from the plane-wave

model of downconversion derived in Section 2.1. Even though, as in the situation

at hand, the focusing need not be tight, it can still have a significant effect on the

joint spectrum. There are several schools of thought on exactly how one should

focus into a downconversion crystal depending on the configuration and the criteria

that require optimization. None of these result in a strict set of rules that can

be applied to any given experiment but the general consensus is twofold. Firstly,

tighter focusing broadens the spatial distribution of the pairs146 and reduces the

level of spatial entanglement between the daughter photons. Secondly, to increase

the coupling efficiencies of the pairs into single mode fibre, one must focus to a

smaller spot in the crystal92,147.

However, consideration should also be given to the effects of spatial walkoff in

the nonlinear crystal. As the pump is e-polarised, the birefringence of the crystal

means that the Poynting vector of the pump will not be collinear with its wavevector

and as the beam traverses the crystal it will skew off in the plane of the optic axis.
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This has the seemingly counter-intuitive effect of smearing out the spatial emission

pattern of the o-ray rather than the e-ray daughter photons. The e-ray photons

travel in the same direction as the pump whereas o-ray photons do not walk off and

hence travel in the direction of their wavevector. So, as the e-ray pump walks off

to the side, o-ray daughter photons can be emitted in the forward direction from all

points along the line of the pump beam, spreading out their emission spatially as

illustrated in Figure 4.3. To be able to image into a fibre the volume in the crystal

whence emission occurs, it is desirable that the pump walkoff should not be larger

than the pump spot size.

An optimal solution for balancing these two opposing forces is not simple to find.

Here we adopt an approach often employed to maximise the efficiency of nonlinear

optical processes by setting the Fresnel number of the pumping system to be as close

to unity as possible given the constraint of spatial walkoff. Approaching a Fresnel

number of one by matching the Rayleigh range of the pump focus to the length

of the crystal encourages preferential emission into a single spatial mode, allowing

efficient fibre coupling of the downconverted pairs148. The pump Fresnel number is

defined as

Fpump =
zR
L

=
πw2

0

λpL
(4.1)

where w0 is the radius of the pump beam waist. Therefore zR, the Rayleigh range

of the pump focus, must be of the order of the crystal length. The crystal must

be at least several millimeters long to ensure that Equation 3.46 is valid, and so

we see that for a crystal of L = 5mm the Fpump = 1 condition gives a relatively
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Figure 4.3 Illustration of spatial and temporal walkoff during
collinear downconversion in KDP. The blue pump pulse enters the
crystal from the left and walks off spatially from the direction of
its wavevector. For each of the five time bins (t1 − t5) considered
there exists a probability amplitude for a possible downconversion
event (represented by blue blobs), all of which have the potential to
create a pair of daughter photons (red blobs). An e-ray photon cre-
ated would travel in the same direction as the pump but at a higher
group velocity, whereas an o-ray would travel in the direction of the
pump wavevector but at the same group velocity as the pump. At
the exit face of the crystal, these amplitudes sum coherently so that
the resulting e-ray distribution is long in time and narrow in space,
opposite to the o-ray distribution which is short in time but spread
out in space.
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large beam waist radius of w0 = 25µm. For a pump beam of around a millimeter

in diameter, a fairly long focal length lens (f ≈ 200 mm) will provide the required

focusing conditions.

An additional constraint in the system under investigation here is to maintain

the level of factorability in the joint spectrum given the focusing conditions required

for efficient coupling. The principal effect of a light focus upon the joint spectrum

is that, within the pump beam that was previously considered to be collimated,

there now exists an angular distribution of wavevectors. This angular spread can

be estimated simply through the geometry of the pumping system: the FWHM

distribution of propagation angles in the crystal will, in the paraxial limit, be equal

to the ratio of the FWHM beam diameter of the collimated pump beam incident

on the the focusing lens to the distance from the lens to the crystal (i.e. the focal

length of the lens):

∆θ ≈ 2wlens

f
. (4.2)

This is shown in Figure 4.4. Every angle within this pump distribution will expe-

rience different phasematching conditions due to its unique propagation direction

relative to the optic axis of the crystal. Hence over the corresponding range of an-

gles exiting the crystal there will be a spread of downconversion wavelengths, each

associated with the particular pump angle that gave rise to the pair, and each with

a different central wavelength. As this distribution will eventually be coupled into

single-mode fibre and hence summed to give the total two-photon amplitude, the

relationship of these new wavelengths to one another becomes very important. Any
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Figure 4.4 The angular range of wavevectors contained in the fo-
cus of a Gaussian beam that was initially collimated can be approx-
imated by the ratio of the beam size at the lens to its focal length.

trends here could lead to unwanted spectral correlations in the joint state.

This coupling of downconversion wavelength to angle is shown in Figure 4.5.

This is a plot of the collinear, degenerate phasematched wavelength in KDP as

a function of the phasematching angle, expressed as the difference between this

angle and 67.8◦, the collinear phasematching angle at 830 nm. It can be seen that

this central downconversion wavelength changes rapidly as a function of angle, and

that, when considered over a broad wavelength range, this variation is not linear.

However, in the second panes of the figure the central wavelength range around

830 nm is plotted, and in this region the phasematched wavelength is approximately

proportional to the angle. The gradient of this section demonstrates the sensitivity

of wavelength to angle — a change in angle of only 1◦ will move the central collinear

wavelength by over 10 nm.

The effect that this has on the joint spectrum is more pronounced for the e-ray

than the o-ray due to the orientation of the phasematching function. A change in

the central downconversion wavelength appears primarily as a translation of the
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Figure 4.5 Change in degenerate collinear phasematching wave-
length against collinear phasematching angle in KDP. The phase-
matching angle is expressed as the difference from the perfect collinear
phasematching angle at 830 nm. The right panel shows the approx-
imately linear variation in wavelength over a small range of angles
close to the zero.

centre of the phasematching function. This shifts the e-ray wavelength but leaves

the o-ray to be affected only through the energy conservation of the pump envelope

function. The secondary effect is to introduce tilt to the degenerate section of the

phasematching function as the group velocity matching condition between pump

and o-ray is no longer fulfilled at the new wavelengths.

However, simply changing the collinear phasematching angle is not sufficient

to represent pump focusing as it assumes that the angle at which the output is

collected also changes. In a situation where the output is collected at a certain fixed

angle, as happens in the scenario of focused PDC, we have to consider noncollinear

phasematching. The outcome is similar to the collinear case, as changing the pump

propagation angle while leaving the output angle fixed also translates the centre of

the phasematching function. A schematic diagram of pump focusing with a fixed

output angle is shown in Figure 4.6, while Figure 4.7 illustrates the associated change
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Figure 4.6 Schematic of pump focusing with a fixed downconver-
sion collection angle.

in the noncollinear phasematching function as the angle of the pump is varied. Nine

noncollinear phasematching functions are plotted for nine pump propagation angles,

with the output angle constant at the angle of perfect collinear phasematching at

830 nm, θ = 67.8◦.

As the e-ray wavelength changes with pump angle, the e-ray distribution is broad-

ened as, even for weak focusing, the shift in wavelength will be of the same order

as the collinear e-ray bandwidth. In itself, this would not introduce any additional

correlations to the state, but, as mentioned in the previous paragraph, the o-ray

wavelength is coupled to that of the e-ray by the energy conservation condition.

Therefore, as the e-ray wavelength gets shorter, so the o-ray must get longer and

vice versa. Clearly, through this relationship, focusing has the potential to bring cor-

relations to a state that for collinear pumping would have none. Thus tilt could be

introduced to the overall joint spectrum through focusing, reducing the factorability

of the two-photon state.
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Figure 4.7 Illustration of how changing the pump angle of non-
collinear KDP affects the phasematching function. Angles are in steps
of 0.375◦, running from the largest angle between the pump and the
optic axis at the top left to the smallest at the bottom right and
centered on collinear phasematching at 830 nm.
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4.1.2 Fibre coupling collection angle

Another related focusing effect arises from the collection of the downconversion into

single-mode fibres. For a downconversion system pumped with a collinear beam, the

output is still distributed in the “two cones” pattern explained in Section 1.6. Each

photon pair with given e- and o-ray frequencies is emitted along a specific pair of

cones with opening angles that are defined by the pair of frequencies. Therefore the

frequency of the light within the distribution has an angular dependence due to the

dependence of the e-ray refractive index on the angle of propagation. Figure 4.8 is a

schematic of downconversion collection over a range of angles for a collimated pump,

the effect of which upon the noncollinear phasematching function is demonstrated

in Figure 4.9. This figure shows plots of the phasematching function for KDP with a

collimated pump incident at θ = 67.8◦ but varying the angle of emission of the e-ray

(and by association the o-ray also). As this emission angle is varied, the phasematch-

ing function again shifts sideways, but note now that this change is not monotonic.

As the e-ray angle is scanned in one direction, the phasematching function initially

moves one way but then, close to the collinear point, this movement reverses and

the function turns back on itself. This is a result of the group velocity matching

condition for collinear phasematching being at a turning point in ∆k(ωe, ωo) relative

to ωo.

This dependence of the phasematched wavelength on the e-ray emission angle

means that, even for a downconversion system pumped with a collimated beam,

the frequency of the pairs are dependent on the angle of emission. Therefore, the
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Figure 4.8 Schematic of downconversion collection over a range of
angles with a collimated pump.

joint spectrum of the overall state is related to the angle over which the pairs are

collected. The situation is similar for a system with a focused pump, however the

effects of pump focusing and collection angle are now compounded as for each angle

in the pump distribution the corresponding distribution of frequencies over e-ray

emission angle will change.

One function of the collection apparatus is to select a certain angular range of

output from the downconverter and discard everything else. For collection into a

single-mode fibre, the effect is to project the output state onto a Gaussian transmis-

sion function that is dependent on the emission angle. This angular distribution can

be estimated in the same way as that of the pump — the angular distribution cou-

pled into the fibre is the ratio of the diameter of the beam coupled into the fibre over

the distance from the crystal to the coupling lens. Similarly to the pump focusing

condition, it is desirable to have the Fresnel number of the collection optics equal

to one for good coupling, corresponding to a one-to-one mapping of the pumped

volume in the crystal onto the fibre collection mode.
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Figure 4.9 Illustration of how changing the e-ray emission angle
of noncollinear KDP affects the phasematching function. Angles are
in steps of 0.375◦, running from the largest angle between the e-ray
emission and the optic axis at the top left to the smallest at the
bottom right and centered on collinear phasematching at 830 nm.
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4.1.3 Spatial chirp

The last factor that one has to consider arises from the method of generating the

pump pulses at 415 nm. In order to obtain high efficiency in the second harmonic

generation (SHG) of the titanium:sapphire laser, it is necessary to maximise the

intensity of the pulses in the SHG crystal. To that end, the fundamental beam needs

to be focused tightly into the nonlinear medium. Hence a range of phasematching

angles is present in the SHG crystal also, though this distribution is much broader

than that in the downconversion crystal. Similarly to the downconversion situation,

the differing phasematching conditions across the beam correlates the frequency of

the upconverted pulses with their angle of propagation. This angle is mapped onto

transverse beam position by the collimating lens following the SHG crystal and

the frequency-doubled pulses, destined to pump the downconversion, are therefore

spatially chirped — their central wavelength changes with position across the beam.

In the experiments presented here, BBO angled for type-I phasematching at

830nm is used for frequency doubling due to its high nonlinearity and consequent

high conversion efficiency. As this crystal is uniaxial it is only the change in angle

in the principal plane that makes a significant difference to the phasematching con-

ditions; changes of angle perpendicular to this do not. It is for this reason that the

output beam is spatially chirped in only one dimension. Compared to downconver-

sion, the roles of e- and o-ray are reversed — here two photons from the o-ray pump

combine to produce one e-ray output photon. Therefore the spatial chirp, which is

in the plane of the optic axis, appears in the same plane as the output polarisation.
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In the perpendicular direction the central frequency is independent of position.

When focused into the KDP crystal, position in this spatially chirped beam is

once again mapped back onto angle. Therefore each of the different phasematching

angles present in the pump distribution in the downconversion crystal will have

a different central pump wavelength, hence the effective pump envelope function

will be angularly dependent. Graphically, this corresponds to translating the pump

function along the line ωe = ωo. Without any focusing, this would not significantly

increase the level of correlation in the two-photon state as the chirped pump would

just act like a more broadband unchirped pump. However, when combined with the

changes in phasematching function as a result of focusing, this angular variation in

the pump function can introduce much stronger correlations into the joint spectral

distribution than simply the focusing alone. The effects of a spatially chirped pump

beam are demonstrated in Figure 4.10 by plotting a series of five joint spectra

corresponding to five collinear phasematching functions at different angles. These

are similar to those shown in Figure 4.7, but here each phasematching function

is multiplied by a pump function centered at a different wavelength to simulate a

spatially chirped beam. It is clear that, in the case of positive correlation between

pump frequency and phasematching angle, one could sum over the joint spectra in

the range displayed and end up with a total joint spectral intensity uncorrelated in

e- and o-ray frequency, whereas in the negatively correlated situation, summing over

the joint spectra shown would give a highly correlated state. This situation becomes

more complicated when the e-ray output angle is also varied.
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Figure 4.10 An illustration of how pump spatial chirp can affect the joint
spectrum in the case of a focused pump in KDP. Five discrete directions of
propagation within a continuous pump distribution are considered; the left col-
umn shows positive correlation of pump frequency with phasematching angle,
the right shows negative correlation. At the top, the five discrete joint spectra
resulting from the multiplication of five collinear phasematching functions at
different phasematching angles by five pump functions whose central wave-
length depends on the angle of propagation in the crystal are shown labelled 1
to 5. Angles change in half degree steps, centered on collinear phasematching
at 830 nm, while pump wavelengths are separated by 5 nm. The lower half is
a schematic representation of the difference between the two cases above, with
the phasematching functions in red and the pump functions in blue. Both
phasematching functions move by ∆λe; both pump functions move by ∆λp

but in opposite directions for positive and negative spatial chirp. For posi-
tive chirp, the change in the phasematching function is compensated by the
corresponding change in the pump wavelength, whereas for negative chirp the
phasematching and pump movements compound one another. For a continu-
ous pump distribution, one would sum over the range of the five joint spectra
shown, hence resulting in a factorable distribution in the case of positive spatial
chirp but a correlated state for negative spatial chirp.
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4.2 Numerical modelling

The familiar phasematching conditions and two-photon state derived in Section 2.1

form the basis of a model that allows the selection of the correct parameters to

give factorability taking into account the three issues outlined above. Due to the

complexity of the phasematching landscape once all the required angles and wave-

lengths have been included, an analytic solution for the overall two-photon state

is impossible. However, by considering the superposition of a set of numerically-

calculated plane-wave solutions, a good approximation of the output state can be

found, allowing the effects of changes in individual settings to be distinguished.

An accurate representation of downconversion including focusing must handle

more than simply collinear phasematching, and therefore a three-dimensional model

could be required, immediately complicating the situation enormously. However,

for the experiment presented herein, this can be simplified to only include two di-

mensions. As the downconversion process takes place in a uniaxial crystal and all

the angles considered are small, the angle of propagation out of the principal plane

does not cause a significant change in the phasematching conditions. The important

angle is the projection of the angle of propagation onto the principal plane as, to

within a small error, this sets the e-ray refractive index. In addition, the beam from

the second harmonic generation is spatially chirped in only one direction. If the

polarisation of the SHG beam is not rotated before it reaches the downconversion

crystal, this spatial chirp will also lie in the principal plane of the downconverter as

the pump must be an e-ray and the spatial chirp is in the same plane as the pump’s
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polarisation. Therefore all the important angles and wavelength dependences lie

in the principal plane of the KDP crystal and the problem reduces to only two

dimensions.

The phasematching conditions must therefore be adapted to two dimensions to

give relationships linking the input and output angles that can be phasematched at

each wavelength. The pump and downconverted momenta are resolved into com-

ponents in the x-, y-, and z-directions, with the z-axis lying along the direction of

perfect collinear phasematching and making an angle of θpm with the optic axis of

the crystal. The optic axis, and hence the principal plane, is set in the xz-plane and

all the y-components of the wavevectors can then be set to zero. This leaves the

wavevector mismatches as:

∆kx = ke,x(ωp, δp) − ke,x(ωe, δe) − ko,x(ωo)

∆kz = ke,z(ωp, δp) − ke,z(ωe, δe) − ko,z(ωo). (4.3)

where the components of the pump wavevector are found from Figure 4.11 to be

ke,x(ωp, δp) = ke(ωp, θp) sin δp,

ke,z(ωp, δp) = ke(ωp, θp) cos δp, (4.4)

where kµ(ωµ, θµ) = |~kµ(ωµ, θµ)| and θµ is the angle subtended by each ray and the

optic axis, θµ = θpm − δµ. Similar expressions can be written down for the e- and o-

ray components. As in Equation 2.17, perfect transverse phasematching is assumed



128 4.2 Numerical modelling

Figure 4.11 Definition of angles in the numerical model.

in the x-direction so that

ke(ωp, θp) sin δp = ke(ωe, θe) sin δe − ko(ωo) sin δo. (4.5)

Note that, for a given value of δp, Equation 4.5 cannot be solved analytically for δe

due to the dependence of the e-ray wavevector on angle. However, a simple solution

does exist for δo:

δo = arcsin
ke,x(ωp, δp) − ke,x(ωe, δe)

ko(ωo)
(4.6)

where the pump and e-ray wavevectors have been written as their x-components for

clarity, with the θµ dependences implicit in this. So for a given set of {ωp, δp, δe} the

angle δo that gives perfect transverse phasematching at every pair of e- and o-ray

frequencies can be found.

The wavevector mismatch in the z-direction is subsequently given by Equations
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4.3 and 4.6 as

∆kz(ωe, ωo, δp, δe) = ke(ωe + ωo, θp) cos δp − ke(ωe, θe) cos δe

− ko(ωo) cos

[

arcsin

(

ke,x(ωe + ωo, δp) − ke,x(ωe, δe)

ko(ωo)

)]

, (4.7)

where the x-components are as defined in Equation 4.4. Therefore, for set values

of the pump angle and e-ray collection angle, from this relationship can be found

the wavevector mismatch for each pair of frequencies of the daughter photons. For

phasematching in the longitudinal direction, the relationship from Equation 2.17 is

again used:

φ(ωe, ωo, δp, δe) = e
i∆kzL

2 sinc

(

∆kzL

2

)

. (4.8)

By substututing the mismatch from Equation 4.7 the plane-wave phasematching

function and hence the joint spectrum can be plotted for any pair of angles δp and

δe.

In order to calculate the joint spectrum of a realistic photon pair, however, a

set of these plane wave solutions must be taken over the full range of pump and

collection angles. Firstly, the focused pump is represented by a superposition of

plane waves, summed over the angle δp:

E(+)
p (~r, t) = Ap

∫ ∞

0
dωp

∫ π
2

−π
2

dδp α(ωp, δp) exp
[

i
(

~ke(ωp, δp).~r − ωpt
)]

. (4.9)

The Gaussian angular dependence of the pump is written implicitly in α(ωp, δp), and
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for linear spatial chirp the central pump frequency becomes a function of the same

angle, δp:

α(ωp, δp) = α(ωe + ωo, δp) (4.10)

= exp

[

−
(

ωe + ωo − 2(ω0 + qδp)

σ

)2
]

exp

[

−
(

δp
σL

)]

,

where q is a constant, defined at ω0, describing the rapidity with which the central

pump frequency changes across the angular distribution of the pump. The angular

bandwidth of the pump, set by the strength of the lens before the downconversion

crystal, is given by σL and the central wavevector of the pump distribution lies along

the z-axis. Secondly, the collection of the downconversion into single-mode fibres is

modelled by two Gaussian filter functions, one dependent on δe and the other on δo:

gF (δe) = 4

√

2

πσ2
F

exp

[

−
(

δe
σF

)2
]

, gF (δo) = 4

√

2

πσ2
F

exp

[

−
(

δo
σF

)2
]

, (4.11)

where it is assumed that the angular acceptance bandwidth σF is identical for both

photons and the peak transmission is along the z-axis (at δe = δo = 0).

Substituting these expressions into the derivation of the two-photon state in

Section 2.1, the result then becomes

|ψ(ωe, ωo)〉 =

∫ ∞

0
dωe

∫ ∞

0
dωo

∫ π
2

−π
2

dδp

∫ π
2

−π
2

dδe

∫ π
2

−π
2

dδo α(ωe + ωo, δp)

φ(ωe, ωo, δp, δe)gF (δe)gF (δo)â
†
e(ωe, δe)â

†
o(ωo, δo)|0〉. (4.12)



4.2 Numerical modelling 131

For small angles of emission, δo ≈ −δe; this effectively assumes that if the e-ray

photon passes the filter and is collected into the fibre, the o-ray photon is also.

Making this approximation reduces by one the number of sums in the numerical

calculation hence reducing the processing time required. Equation 4.12 reduces to

|ψ(ωe, ωo)〉 =

∫ ∞

0
dωe

∫ ∞

0
dωo

∫ π
2

−π
2

dδp

∫ π
2

−π
2

dδe α(ωe + ωo, δp)

φ(ωe, ωo, δp, δe)g
2
F (δe)â

†
e(ωe, δe)â

†
o(ωo,−δe)|0〉 (4.13)

and the joint spectral amplitude distribution is then given by

f(ωe, ωo) =

∫ π
2

−π
2

dδp

∫ π
2

−π
2

dδe α(ωe + ωo, δp)φ(ωe, ωo, δp, δe)g
2
F (δe). (4.14)

Note that the Gaussian filter function g2
F (δe) is the angular distribution of the pairs

that are collected into the fibre. This set of equations form the basis upon which the

two-photon state generated by a focused pump and collected into single-mode fibre

can be modelled numerically. The results of such a model are discussed in Section

4.2.2.

4.2.1 Measurements of angular distributions

To obtain meaningful results from this model, the range of angles over which one

should sum for a given experimental configuration must be known, along with the

amount of spatial chirp on the pump. In order to quantify these, three measurements

were made: the pump beam diameter, the pump spectrum as a function of position
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Figure 4.12 Data for pump beam diameter and associated inten-
sity distribution. From the fit statistics, the resulting error in the
Gaussian width was determined to be approximately 1%.

in the beam, and the collected mode diameter. Through these parameters and

knowledge of the focal lengths of the lenses used in a particular configuration, the

values of σL, q, and σF can be calculated and inserted into the model.

First the diameter of the pump intensity distribution was measured using a razor

blade on a translation stage to cut the beam. The power after the blade was recorded

as a function of the blade position as it was translated through the beam in the x-

direction. The data, fitted with an error function, are displayed in Figure 4.12.

This error function was differentiated to find the intensity distribution of the pump.

The FWHM of this intensity distribution, measured to be 0.71mm, and the focal

length of the pump lens were used to obtain the FWHM of the angular intensity

distribution and thence σL for the angular amplitude distribution.

Next, the spatial dependence of the central pump wavelength was characterized.

By mounting an Ocean Optics USB2000 spectrometer (serial number USB2G3493)

on a single-axis translation stage that could be orientated either horizontally or
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vertically, the 10µm-wide entrance slit of the spectrometer could be scanned across

the beam, first in the x-direction and then in the y-direction. For each data set,

the position of the spectrometer in the orthogonal direction was set to maximise the

signal. The pump spectra were recorded at intervals of 0.1 mm in each direction, and

the results for each direction are shown in Figure 4.13. As anticipated, the pump

wavelength in the vertical (y) direction is independent of position as the optic axis of

the SHG crystal was orientated horizontally and therefore the e-ray refractive index

is only weakly dependent on angle in the vertical direction. However, the effects of

spatial chirp in the horizontal (x) direction are significant; this is manifest in Figure

4.13 in the dramatic shift of the pump spectrum as the position of the entrance

slit of the spectrometer was scanned horizontally across the beam. The amount of

spatial chirp in the horizontal direction was quantified by fitting each of the measured

spectra with a Gaussian function and then plotting the central wavelengths of these

distributions as a function of position in the beam. The results of this process are also

shown in Figure 4.13. The wavelength range of the spectrometer went only as low as

650 nm, hence the pump at 415 nm had to be viewed in the second diffracted order of

its grating. Therefore, although the pump was at about 415 nm, these spectra were

measured to be around 830 nm. It is for this reason that in Equation 4.10 the spatial

chirp was defined at the central downconversion frequency rather than the central

pump frequency. Therefore the value of the dependence of the pump frequency on

angle in the horizontal plane, q, obtained directly from the second-order diffracted

spectral data is the correct value for the model.
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Figure 4.13 Spatial chirp data. The top panels show the raw
spectral data (viewed in the second order of the spectrometer) at
different positions across the second harmonic beam scanning the
spectrometer slit in 0.1mm steps in the x-direction (left) and the y-
direction (right). The central wavelengths of Gaussian fits to the data
are displayed below each set of spectra along with linear best fit lines
to the central seven data points. The gradients of the linear fits are
11.1 nm/mm and 1.56 nm/mm in the x and y directions respectively
and the largest of the errors on the central wavelengths for the fits is
similar in size to the points.



4.2 Numerical modelling 135

From the lower left plot in Figure 4.13 it can be seen that, close to the centre

of the beam, the x-dependence of the central wavelength is approximately linear.

This high-intensity central region contains most of the power in the pump beam,

and hence it is the downconversion arising from this part of the pump that makes

the predominant contribution to the final joint spectrum. Hence for the purposes

of modelling the output, we can consider the spatial chirp to be linear and ignore

any deviations from this in the low-intensity wings of the distribution. The gradient

of a linear fit to the central seven points, found to be 11.1 nm per millimetre at

830 nm, was therefore taken as the dependence of the pump wavelength on position

for insertion in the model. This result together with the measured FWHM diameter

of the intensity distribution allowed the value of q to be found.

The observed behaviour of the central SHG wavelength can be explained by

considering the intensity dependence of the conversion efficiency for the process of

frequency doubling. The constraints imposed by phasematching alone would give,

over a small range of angles such as we are dealing with here, a linear dependence of

SHG wavelength upon angle (and therefore also position). This linear dependence of

the degenerately-phasematched wavelength was shown in the case of KDP in Figure

4.5 but is also true for BBO, though with a different gradient. This trend is fol-

lowed close to the centre of the spatial distribution as in this region the intensity is

high and the output wavelength is controlled only by the phasematching conditions.

However, moving away from this central section towards the wings of the intensity

distribution, the conversion efficiency from fundamental to second harmonic drops
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off with the falling intensity. The reduction in intensity is correlated with a shift

in wavelength away from the wavelength that is phasematched at the centre of the

spatial distribution (in this case, 415 nm). This corresponds to a correlation of con-

version efficiency with wavelength within the spatial distribution: the most efficient

upconversion takes place at the centre of the spatial distribution and hence at the

centre of the wavelength distribution. Therefore, when selecting with the spectrom-

eter slit a single output angle towards the edge of the beam, although the perfectly

phasematched wavelength is linearly dependent on the spectrometer position, the

measured spectral distribution is skewed towards the median wavelength (415 nm)

due to the higher conversion efficiency there. This effect is manifest in two places

in the data: firstly it can be seen that the individual spectra at the edges of the

spatial (and spectral) distribution are markedly non-Gaussian as the tails closer to

the centre of the entire distribution are larger than those on the outlying side, and

secondly in the wings of the beam the centres of the fits to the spectra deviate away

from linear behaviour towards the median wavelength.

The final requirement was the width of the mode coupled into the fibre. This

was found with a similar technique to that employed in the measurement of the

pump diameter. The fundamental beam from the laser system was coupled into

a single-mode fibre and sent from the output of the fibre back through the PDC

coupling system in the reverse direction. The blade was then positioned adjacent

to a lens placed one focal length after the crystal to collimate the downconversion

before its journey to the fibre coupling optics. A power meter was put in the reverse
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Figure 4.14 Data for collected mode diameter and associated in-
tensity distribution. From the fit statistics, the resulting error in the
Gaussian width was determined to be approximately 2%.

beam after the blade and the power recorded as a function of the transverse blade

position. Figure 4.14 shows the variation of the power against the blade insertion.

This set of data was also fitted with an error function, the derivative of which gave

the intensity distribution of the fibre-coupled mode for single counts. From this and

the focal length of the collimating lens, the angular bandwidth for the amplitude

distribution of the mode for pair collection, g2
F (δe), was calculated.

4.2.2 Results of the model

A numerical simulation based on the equations in this section was implemented in

Matlab. The program was run to generate joint spectra over a range of values of

parameters such as the pump angular distribution, collected mode angle, crystal

length, and the central phasematching angle (the crystal angle, θpm). This allowed

the effects of different experimental configurations upon the properties of the joint

spectrum, in particular its factorability, to be observed. The factorability in each
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configuration was quantified using the Schmidt number, K, found from the SVD of

the final joint spectral amplitude summed over the relevant angles.

From an experimental viewpoint, some parameters are easier to control than

others. For example, the magnitude of the spatial chirp on the pump beam is set by

the type of crystal used for SHG, its length, and how tightly the pump is focused

into it. However, the need for as much pump power as possible means that, once a

good combination of lens and SHG crystal has been found for efficient upconversion

of a particular laser, it is desirable that these remain fixed for the duration of the

experiments in hand. Hence the spatial chirp on the pump beam is essentially

predefined and difficult to change, although it could be removed entirely with an

additional prism pair at the cost of some lost pump power. On the other hand, the

direction of the spatial chirp can be switched simply by rotating the downconversion

crystal by 180◦ about the central pump direction (the z-direction). As the spatial

chirp has been defined in the principal plane of the crystal, this direction is either

positive or negative; for the purposes of this discussion, positive spatial chirp is

defined as pump wavelength increasing with δp, or in other words, pump frequency

dropping as the angle between the pump and the optic axis is reduced (see Figure

4.11). It then becomes clear that rotating the optic axis of the crystal about the

z-direction by 180◦ effectively reverses the sign of the spatial chirp while maintaining

the same overall phasematching conditions for the final summed two-photon state.

This is achieved in the model simply by switching the sign of the spatial chirp that

is input.
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Other PDC source parameters that are relatively simple to change experimentally

include the pump focusing, collection angle, crystal angle, and crystal length (so

long as a range of crystals are available for use). This still suggests that a large

number of parameters must be searched over to find the optimum configuration

for factorable state generation. However, it can be narrowed down by a number

of considerations, some as a result of the conditions required for factorability and

others from experimental limitations.

The pump focusing conditions on one hand should be set to get as close to

Fpump = 1 as possible to maximise generation in the single mode that gets coupled

into the fibres, but on the other hand, due to the effect of spatial walkoff in the

crystal, the spot size cannot be made too small. For a given crystal length and

pump beam diameter, this criterion sets a limit on the minimum focal length of the

pump lens and hence the maximum angular distribution of the pump. For KDP

phasematched at 830 nm, the walkoff angle is just over 1◦, so for a 5mm long crystal

the total walkoff is 90µm — larger than the optimum spot size for Fpump = 1. These

two considerations must therefore be balanced against one another. In addition, the

angular range for a given pump beam diameter is restricted to a few discrete values

as suitable lenses (see Section 5.3.1) are only available in a limited range of focal

lengths.

There is a similar tradeoff for the collection angle. It should be set so that the

fibre coupling apparatus maps the pumped volume of the crystal onto the mode

volume of the fibre to maximise the coupling efficiency. This condition can most
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successfully be found by testing experimentally various focusing configurations be-

fore the fibres to maximise the collected count rates. This is obviously dependent

on the pump focusing conditions — for tighter pump focusing, a larger angular

range must be collected into the fibres to obtain good count rates. However, as de-

scribed earlier in this section, increasing the collection angle can introduce additional

correlations to the joint spectrum. These two requirements must be satisfactorily

balanced against one another, again taking into account the available optics.

The crystal length must be sufficiently large relative to the inverse pump band-

width that Equation 3.45 is valid and factorable state generation is possible, but

not so long that spatial walkoff becomes a problem. The crystal angle can be set to

whatever value gives the best factorability, but as the angle is changed away from

phasematching at 830 nm the central frequencies of the approximately collinearly

phasematched signal and idler photons will move away from degeneracy. This in

itself does not cause a problem as the range over which the silicon APDs are sensi-

tive is sufficient for large changes in angle, however, some of the downstream optical

elements (particularly the fibre-based 50:50 coupler used in subsequent experiments)

are not broadband enough to cope with large deviations. Therefore the angle must

be restricted to be close to θpm = 67.8◦.

Figures 4.15 and 4.16 demonstrate some of the results of the model for positive

and negative spatial chirps respectively. The joint spectra were all evaluated on a

100×100 grid in frequency space over a range of 40 nm for both the e- and o-rays.

These plots are for a 5 mm crystal and 7.5 nm of spatial chirp across the 700µm
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FWHM diameter of the pump intensity distribution. The intensity FWHM pair col-

lection angle is 0.15◦, 0.3◦, and 0.45◦ left to right while the FWHM angular intensity

of the pump distribution is 0.02◦, 0.08◦, 0.16◦, and 0.27◦ top to bottom, correspond-

ing to focal lengths of 2000 mm, 500 mm, 250mm, and 150 mm respectively for this

pump beam diameter. The sums were performed over all combinations of 11 equally

spaced angles in both the pump and collected distributions. It can be seen that the

behaviour of the joint spectrum is very different for opposite spatial chirps. How-

ever, generally the distributions become broader and more correlated as the level

of focusing is increased. As expected, spatial chirp does not affect the two-photon

state generated by light focusing as all the frequencies in the pump beam experience

approximately the same phasematching conditions.

By running the model repeatedly it was possible to generate plots of the ex-

pected purity to show the optimum values of various parameters for factorable state

generation. Some of these are shown in Figures 4.17 and 4.18; note that in these

calculations the joint spectra were evaluated on a 50×50 grid to reduce the process-

ing time. Although it would have been difficult to control some of these parameters

experimentally (for example the magnitude of the spatial chirp), it is nonetheless

interesting to be able to see their effects on the expected purity and to find the

optimal values. In fact, a positive spatial chirp with the experimentally observed

value (7.5 nm across the FWHM beam diameter) yields almost the highest purity

for a pump beam centered at 415 nm.

The clearest result from this model is that, in order to prepare a state that
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Figure 4.15 Predicted joint spectral intensities for a range of pump
and collection angles for positive spatial chirp. See text for details.
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Figure 4.16 Predicted joint intensities for a range of pump and
collection angles for negative spatial chirp. See text for details.
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Figure 4.17 Numerical optimisation plots showing the expected
purity as a function of pump centre wavelength (top) and FWHM
pump angle (bottom) against spatial chirp. In the first plot, the
FWHM pump angle was 0.16◦ and in the second the pump wavelength
was 415 nm. In both the pair collection angle was 0.3◦. Note that
in neither case does zero spatial chirp give the highest anticipated
purity.
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Figure 4.18 Numerical optimisation plots showing the expected
purity as a function of crystal length against central phasematching
angle for 7.5 nm of spatial chirp in the positive direction (top) and
negative direction (bottom). The central phasematching angle (θpm

in Figure 4.11) is expressed as the difference from collinear phase-
matching at 830 nm. The FWHM pump angle was 0.16◦ and the pair
collection angle was 0.3◦.
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is anywhere close to factorable, it is essential to understand the effects of spatial

chirp. Although it was not considered in the initial proposals for factorable state

generation, some spatial chirp can in fact be a help rather than a hinderance on the

road to factorability, as shown in Figure 4.17. However, the spatial chirp and the

crystal must be correctly orientated relative to one another — if they are not, the

resulting state will be correlated. If the spatial chirp, pump focusing, and crystal are

carefully matched though, the resulting state can be made highly factorable. This

can be thought of as the change in pump frequency with angle due to the spatial

chirp offsetting the shift in central downconversion wavelength that occurs as a result

of the different phasematching conditions across the beam due to focusing. Hence

these two effects can be made to cancel one another out and produce a factorable

state. The exact focusing and crystal parameters required to achieve this are most

easily found through the numerical model presented here as no simple relationship

exists.

4.3 Joint spectral measurements

The final source configuration decided upon to yield the best combination of fac-

torability and pair generation rate was a 5mm KDP crystal cut for type-II phase-

matching at 830 nm, with the pump focused by a 250mm focal length lens, and

the emission from the crystal collimated by a 150mm lens placed one focal length

afterwards. This gave a FWHM pump angular intensity distribution of 0.16◦ and

an intensity FWHM pair collection angle of 0.30◦. A more detailed description of
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the source setup is given in Chapter 5.

The predicted Schmidt number of the amplitude distribution resulting from a

source using this set of parameters isK = 1.05 for positive spatial chirp butK = 1.20

if the spatial chirp is negative, as estimated using the numerical model outlined

above. However, it was necessary to confirm this prediction by a direct measurement

of the joint spectrum of the photon pairs149 to check that such a source performs to

the level suggested by the model.

To this end, two grating spectrometers were used to map the joint spectral in-

tensity of the photon pairs111. This can quantify the degree of spectral correlation

between the downconverted pairs, although it provides no information about the

phase of the joint spectral amplitude and therefore the degree of temporal correla-

tion remains unknown. With the e-ray downconverted photons having been coupled

into one single-mode fibre and the o-rays into another (see Chapter 5 for details of the

source alignment procedure), the exit faces of these two fibres replaced the entrance

slits in two commercial grating spectrometers. The broadband o-rays were sent to

an Andor Shamrock spectrometer (model number SR303I-B) with a 150 lines/mm

grating blazed for 800 nm and the narrower e-rays to a Jobin-Yvon Triax 320 spec-

trometer with a 600 lines/mm grating blazed for 1µm. These gratings were chosen

so that the angular dispersion of the e-ray photons would be about four times that

of the o-ray photons and hence approximately equal to the inverse of the ratio of

their spectral widths.

The output of each spectrometer was collected directly into a multimode fibre
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without any coupling optics. The core diameter of these fibres therefore defined

the effective resolution of the spectrometers: larger diameter fibres gave increased

count rates but reduced the resolution. Three different core diameter fibres were

available: 62.5µm, 105µm, and 200µm diameter. The fibre tips were both mounted

on motorized x and manual yz translation stages. The two manual translation axes

allowed for accurate positioning of the fibre tips at both the correct height and

longitudinal position in the focal planes of the spectrometers. The motorized x

translation moved the fibres transversely across the focal planes and hence controlled

the central wavelength that each fibre collected. The motorised translation axes were

carefully aligned to be parallel to the focal planes of each spectrometer, and both

spectrometers were levelled to ensure that the gratings were not tilted away from

vertical. Although the grating angles in both spectrometers could in theory have

been computer controlled instead of moving the fibres, the age of this particular

Triax spectrometer meant that the control software was not available. In addition,

interfacing both spectrometers with the same LabView Virtual Instrument (VI)

would have been much more time consuming than writing a VI to control the two

stages. On the output end of each fibre was a silicon avalanche photodiode (APD)

for photon counting (details of the detection scheme and counting electronics are

also contained in Chapter 5). A diagram of the apparatus for the joint spectral

intensity measurement is shown in Figure 4.19.

The resolution of the spectrometers was measured by coupling broadband pulses

directly from the titanium:sapphire oscillator through each and plugging the outputs
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Figure 4.19 Apparatus for measurement of joint spectra. KDP
= downconversion crystal, LWP = long-wave-pass filter, PBS = po-
larising beamsplitter, SMF = single-mode fibre, MMF = multimode
fibre, APD = avalanche photodiode.
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of the multimode fibres into a high-resolution optical spectrum analyser (OSA, Ando

AQ6317B). In order to make the measurement in an efficient manner, it is important

to match the resolution of the spectrometers to the count rates available. Although it

is clearly advantageous to make a high-resolution measurement of the joint spectrum,

it must be mapped in two dimensions and therefore the time taken to make the

measurement goes up with the square of the number of steps. In addition, to make

the resolution high a smaller diameter fibre is required, and the number of photons

collected goes down with the inverse square of the core diameter, and therefore it

becomes necessary to count for longer at each position to obtain an adequate number

of counts to ensure good statistics. Therefore the time required for each measurement

is highly dependent on the fibre diameter and a compromise must be reached between

count rates and resolution to make a good measurement (“good” being defined here

as high enough resolution to show any correlations but not taking a prohibitively

long time). So as not to waste counts, it is desirable to run each spectrometer at

its resolution limit, so the size of each step should be the same as the resolution,

i.e. approximately the core diameter of the fibre. For the count rates and resolution

required here, the 105µm core fibres gave the best performance, and it was these

that were used for the measurements presented herein. OSA data for these fibres

are shown for both spectrometers in Figure 4.20. The maximum resolution for each

spectrometer with these fibres on the outputs was found from the FWHM of the

OSA traces: 0.5 nm in the case of the Jobin-Yvon (e-ray) spectrometer and 2 nm for

the Andor (o-ray).
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Figure 4.20 Data from the OSA measurements demonstrating the
resolutions of the two spectrometers with the 105µm fibres on each
output. The Andor spectrometer trace is shown in red, and the
Jobin-Yvon in blue.

Both spectrometers were calibrated against the same factory-calibrated Ocean

Optics USB2000 spectrometer. The narrowband spectrum obtained by running the

oscillator in continuous wave (CW) mode was first measured with the Ocean Optics

spectrometer to ascertain its central wavelength. The beam was then sent to each

of the other two spectrometers in turn and, with a power meter on the output of the

multimode fibre, the throughput was maximised by translating the fibre tip with

only the motorised stage. The position of the stage was then recorded, and the

process repeated at a number of different wavelengths spanning the range in which

the downconversion was to be measured. In this way a calibration curve was built

up for each spectrometer, as plotted in Figure 4.21.

With the downconversion coupled through the spectrometers, monitoring the

coincidence rates between the two APDs while scanning independently the two stages

allowed the joint spectral intensity to be mapped out. The movement of the stages

and the photon counting was controlled by a custom-built LabView VI. The fibres
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Figure 4.21 Wavelength calibration data for the spectrometers.
Jobin-Yvon on the left, Andor on the right.

were scanned across the required wavelength range in a series of 16 steps, covering

approximately 10 nm by 40 nm for e- and o-ray respectively. The step sizes along

each axis in this grid were therefore not equal; the e-ray was sampled at intervals

of just over 0.5 nm, and the o-ray in steps slightly greater than 2 nm. Therefore

both spectrometers were stepped in increments close to their respective resolutions.

The joint spectral data was acquired by first setting the o-ray wavelength via the

translation stage on the Andor spectrometer output, and then moving the stage after

the Jobin-Yvon spectrometer to each of the proscribed e-ray wavelength settings in

turn. For each pair of wavelengths the coincidence counts were recorded for a period

of 60 s. After each e-ray scan was complete the o-ray stage moved to its next point

and the process was repeated. The source configuration was as outlined at the

beginning of this section and joint spectra were taken for both positive and negative

spatial chirp by rotating the crystal about the z-direction.

The experimental data are presented in Figure 4.22 alongside the joint spectral
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distributions predicted by the numerical model given the same source parameters.

It can be seen that the agreement between the two is very good for both positive

and negative spatial chirp. The experimental spectral intensity distribution is highly

factorable in the case of positive chirp; if flat spectral phase is assumed across the

corresponding joint amplitude distribution, the associated Schmidt number is 1.02.

On the other hand, for negative chirp the joint state is much less factorable, with

K = 1.14.

This can be compared more quantitatively with the output of the model by

finding the Schmidt number for the amplitude distribution predicted by the model

assuming that we have no information about the phase. This was done by calculating

the SVD of the square root of the joint spectral intensity rather than directly from

the joint amplitude. The comparison between the model and the data is displayed

in Table 4.1, along with the figures for the model inclusive of its phase. It can

be seen that the model accurately predicts the Schmidt number expected for the

measured intensity distribution for both directions of chirp, but the true Schmidt

number for the predicted amplitude distribution including phase is a little higher. It

is from this final Schmidt number that the expected visibility for the interference of

heralded photons from each distribution can be calculated. For a positively-chirped

pump beam, this gives a projected maximum purity and visibility of just over 0.95.

A further method of comparing the correlations present in each spectrum is to

plot the e-ray wavelength at which the maximum count rate occurs at every o-ray

point. For the experimental data, this is most accurately done by fitting each data
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Figure 4.22 Top: Joint spectra calculated from the numerical
model for the measured experimental parameters with positive spa-
tial chirp (left) and negative spatial chirp (right). Bottom: Measured
joint spectral probability distributions for positive spatial chirp (left)
and negative spatial chirp (right).
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Positive chirp Negative chirp

K P K P
Data 1.02 0.979 1.12 0.894

Model (no phase) 1.03 0.970 1.17 0.854

Model (with phase) 1.05 0.953 1.19 0.839

Table 4.1 Comparison of Schmidt number (K) and projected pu-
rity (P) for the measured joint intensity distributions, the model
without any phase, and the model with phase for both spatial chirp
directions.

slice at constant o-ray wavelength with a Gaussian distribution in e-ray wavelength.

The centres of these fits can then be plotted against the o-ray wavelength at which

they were taken. As the results from the model are at much higher resolution and

are therefore more smoothly varying, it is adequate for these plots to simply take

the e-ray wavelength that gives the maximum value of the intensity distribution at

each o-ray wavelength.

The results of this process are shown in Figures 4.23 and 4.24. For the measured

spectra, in the case of the uncorrelated spectrum resulting from positive spatial

chirp on the pump beam, it can be seen that the centre of the e-ray spectrum is

almost constant over the entire o-ray spectrum. The fit line to these e-ray central

wavelength points changes by only half a nanometre over 30 nm of o-ray bandwidth,

again demonstrating the factorable nature of this state. However, for negative spa-

tial chirp, the e-ray centre wavelength is anti-correlated with o-ray wavelength and

appears to exhibit a quadratic dependence. This can be compared to the results

from the model in Figure 4.24 which display the same behaviour.
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Figure 4.23 Central e-ray wavelengths of Gaussian fits to slices of
constant o-ray wavelength from measured joint spectra. The depen-
dence in the case of positive pump spatial chirp is shown on the left
and negative chirp on right. The lines are quadratic fits to the data
to guide the eye.
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Figure 4.24 e-ray wavelength giving maximum spectral intensity
as a function of o-ray wavelength for joint spectra calculated by model
using experimental parameters. Positive chirp on the left and nega-
tive chirp on the right.
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Figure 4.25 The simulated joint temporal intensity distributions
for downconversion from KDP in the case of positive (left) and neg-
ative (right) spatial chirp. For positive chirp, it can be seen that the
temporal structure is approximately single mode. It is this that gives
the photons their exceptionally low timing jitter.

The high level of agreement between the simulated and measured spectral data

allows the numerical model to be used to estimate the temporal structure of the

photon pairs. This cannot be done from the experimental spectra as the data is an

intensity measurement alone and any phase information (that can lead to temporal

correlations) is lost. However, by taking the numerical Fourier transform of the

simulated spectral amplitudes in the case of positive and negative chirp, we gain

some insight into the temporal distribution of the photon pairs. The results of

this are shown in Figure 4.25; the difference between the lack of any temporal

correlation in the case of positive spatial chirp and the tilt of the joint temporal

intensity distribution for negative chirp can be clearly seen.
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Positive chirp Negative chirp

e-ray o-ray e-ray o-ray

Model 5.4 nm 21.0 nm 5.4 nm 25.0 nm

Data 3.5 nm 16.4 nm 3.4 nm 19.8 nm

Table 4.2 Comparison of FWHM bandwidths of the marginal fre-
quency distributions calculated from the model and the measured
joint spectral data.

Finally, the measurements on the joint spectrum provide a means of estimating

the bandwidths of the daughter photons from the marginal distributions of both the

e-ray and o-ray. The marginal frequency distribution of each photon is found by

integrating over the frequency of the other photon — the results of these sums on

the joint spectral data are shown in the cases of both positive and negative chirp

in Figure 4.26. These are compared with the estimations of the bandwidths found

from the marginal distributions calculated by the numerical model in Table 4.2.

The bandwidths from both agree reasonably well, especially in the trends displayed:

the e-ray bandwidths remain approximately constant for both spatial chirps but the

o-ray bandwidths are significantly broader in the case of negative chirp. However,

the model overestimates the bandwidths in all cases.

4.4 Second order coherence measurement

An important test of the quality of a single photon source is to demonstrate that

its output does indeed consist of single photons, and that, when a single photon is

present in the output mode, the probability of there being a second photon present
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Figure 4.26 Marginal distributions of measured joint spectra for
e-rays (top) and o-rays (bottom) with positive chirp on the left and
negative on the right.
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simultaneously is low. In the case of a downconverter, this can be done by measuring

the degree of second order coherence of the heralded beam in the manner of Hanbury-

Brown and Twiss150. The classical definition of the second order coherence is23

g(2)(τ) =
〈Ī(t)Ī(t+ τ)〉

〈Ī(t)〉2 =
〈E∗(t)E∗(t+ τ)E(t+ τ)E(t)〉

〈E∗(t)E(t)〉2 , (4.15)

where Ī(t) is the cycle-averaged intensity at time t and angle brackets denote a

statistical average over a time long compared to the coherence time. g(2)(τ) is

therefore a measure of the normalised level of intensity correlation for the same

beam at times separated by τ . For a classical light source, the definition of g(2)(τ)

in terms of the real intensities Ī(t) permits the application of Cauchy’s inequality151,

relating any real numbers Ī1 and Ī2 by

2Ī1Ī2 ≤ Ī2
1 + Ī2

2 . (4.16)

Through this it can be demonstrated for any classical light source that the degree

of second order coherence at τ = 0 must satisfy the inequality

1 ≤ g
(2)
cl (0) ≤ ∞. (4.17)

To obtain an expression for g(2)(τ) that is valid for quantized fields, one simply

replaces the classical field amplitudes in the final part of Equation 4.15 with their

quantum mechanical field operator counterparts. However, in this case, it cannot be
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proven that the inequality in Equation 4.17 holds, as the definition of g(2)(τ) does

not reduce to the same relationship between the intensities. The only condition that

must be fulfilled by g(2)(0) for a nonclassical light source is that of positivity:

0 ≤ g(2)
qu (0) ≤ ∞, (4.18)

because the value of g(2)(τ) depends on the expectation values of the products

of operators and their Hermitian conjugates. Therefore, any measurement that

places g(2)(0) in the range between zero and one suggests that a light source is

nonclassical. Indeed, for a perfect single photon source one would always obtain

g(2)(0) = 0, demonstrating that it would never be possible to detect two photons

emitted simultaneously by the source. Such measurements have been performed on

a wide range of single photon sources26,41,152,153.

A straightforward measurement of g(2)(0) for the KDP downconversion source

was performed following the method set out by U’Ren et al 154, a schematic of which

is shown in Figure 4.27. The pairs from one downconverter were split; one half

of each pair was sent directly to a detector as a herald, and the other half to a

50:50 beamsplitter (in this case actually a 50:50 single mode fibre coupler) with

one detector on each output. The rate of single detection events (“singles”) for

all detectors (Rh, Rs1, and Rs2 for herald, signal 1, and signal 2 respectively) and

coincidence detection events (“coincidences”) between the herald detector and either

(Ch,1 and Ch,2) or both (Ch,1,2) of the signal detectors following the beamsplitter
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were recorded. Thus, the probability of detecting a single photon in either of the

signal arms for each heralding event that occurs is

P1 =
Ch,1 + Ch,2

Rh
(4.19)

and the probability of detecting two signal photons for every herald is

P2 =
Ch,1,2

Rh
. (4.20)

The value of g(2)(0) is then found from the ratio of the probability of generating two

signal photons for one herald detection to the square of the probability of generating

only one:

g(2)(0) =
2P2

P 2
1

=
2RhCh,1,2

(Ch,1 + Ch,2)2
(4.21)

where the factor of 2 in the numerator arises from the 50:50 split ratio of the beam-

splitter. Putting the measured numbers for the KDP source into this formula gave

the value of the second order coherence as g(2)(0) = (5± 1)× 10−3. This is very low

for a bulk PDC source and is comparable with the best g(2)(0) figures measured for

other sources currently available. It demonstrates that this is a high-performance

source in terms of the single photon nature of the heralded output.
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Figure 4.27 Apparatus for g(2)(0) measurement. Labels as in Fig-
ure 4.19, and 50:50 SMF = 50:50 single-mode fibre coupler.
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Chapter 5

Multiple source interferometry:

A purity test

At the beginning of Chapter 3 the HOMI visibility for two identically impure photons

was found to be equal to their purity. This result, expressed in Equation 3.11,

demonstrates that the condition for high-visibility interference between two single

photons is not only that they are indistinguishable but also that they are both in

pure states.

Furthermore it was shown in Section 3.1 that the heralded single photons from

a downconversion source will only be pure if they are derived from factorable pairs.

Considering these two findings in the light of one another, it becomes clear that

high-visibility interference between single photons from two independent sources

can only be achieved if those sources generate factorable pairs, or, conversely, that

the visibility of the interference gives a measure of the factorability for two iden-



166 5.1 Twin-source HOMI calculation

tical sources. This relationship can be derived from first principles by calculating

the heralding and subsequent interference of photons from two initially pure pairs

prepared in independent sources. A similar calculation was performed by Grice155

in the context of factorable state generation.

This twin-source HOMI calculation is outlined in the first section of this chap-

ter and the result used to study the dependence of the interference pattern on the

overlap between the two photons being interfered. The relationship between the co-

herence time of the photons and the dip width is found. A new method of placing a

lower bound on the purity of two partially distinguishable photons from their inter-

ference visibility is presented, based on the calculation at the beginning of Chapter 3

combined with an overlap measure. A detailed description of the construction, align-

ment, and operation of the apparatus to experimentally demonstrate pure heralded

single photon generation is presented. Finally, the resulting data for the HOMI in-

terference of both the e-ray and o-ray photons are shown, along with an optimization

of the source heralding efficiency.

5.1 Twin-source HOMI calculation

A schematic of the experiment is shown in Figure 5.1. The initial four-photon state

is the product of two photon pairs, created in two independent sources:

|Ψ4〉 =

∫ ∞

0
dωe1

∫ ∞

0
dωo1

∫ ∞

0
dωe2

∫ ∞

0
dωo2

f1(ωe1, ωo1)f2(ωe2, ωo2)â
†
e1(ωe1)â

†
o1(ωo1)â

†
e2(ωe2)â

†
o2(ωo2)|0〉,

(5.1)
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Figure 5.1 Schematic representation of the twin-crystal HOMI ex-
periment.

where the labels on the creation operators are to denote whether the photon is e-

or o-ray and the source that they originated from (1 or 2). One photon from each

pair is split off as a herald and the remaining photons are interfered at a 50:50

beamsplitter.

To observe the HOMI between the two heralded photons, we are interested in

the rate of fourfold coincidences at both heralding detectors (labelled h1 and h2)

and both signal detectors (labelled s1 and s2) as a function of the relative time delay

τ between the two pairs. The operator for detection of all four photons at times
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th1, th2, ts1, ts2 for the two herald and two signal photons respectively is

Π̂4C(th1, th2, ts1, ts2) = Ê
(−)
h1 (th1)Ê

(−)
h2 (th2)Ê

(−)
s1 (ts1)Ê

(−)
s2 (ts2)|0〉

〈0|Ê(+)
s2 (ts2)Ê

(+)
s1 (ts1)Ê

(+)
h2 (th2)Ê

(+)
h1 (th1)

(5.2)

where the electric field operators are defined as in Equation 2.9 but here we consider

only the frequency degree of freedom. By mapping this operator onto the source

modes using the beamsplitter relations (including an additional phase from the time

delay) the positive frequency parts of these field operators are

Ê
(+)
h1 (th1) =

∫ ∞

0
dωh1 âo1(ωh1)e

−iωh1th1 (5.3)

Ê
(+)
h2 (th2) =

∫ ∞

0
dωh2 âo2(ωh2)e

−iωh2th2 (5.4)

Ê
(+)
s1 (ts1) =

1√
2

∫ ∞

0
dωs1

[

âe1(ωs1)e
−iωs1τ + âe2(ωs1)

]

e−iωs1ts1 (5.5)

Ê
(+)
s2 (ts2) =

1√
2

∫ ∞

0
dωs2

[

âe1(ωs2)e
−iωs2τ − âe2(ωs2)

]

e−iωs2ts2 . (5.6)

The probability of a fourfold detection event at times th1, th2, ts1, ts2 can be found

from

P4C(th1, th2, ts1, ts2) = 〈Π̂4C〉 = 〈Ψ4|Π̂4C |Ψ4〉 = |〈Ê(+)
4C |Ψ4〉|2, (5.7)

where Ê
(+)
4C is the positive frequency part of Π̂4C and the time dependences have been

dropped for clarity. Performing this calculation and making the assumption that

the detectors used are slow compared to the interaction time at the beamsplitter,

we can then integrate over all possible detection times to find the probability of a
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fourfold coincidence as a function of the time delay τ :

P4C(τ) =
1

4

∫ ∞

0
· · ·

∫ ∞

0
dωh1dωh2dωs1dωs2

∣

∣

∣
f1(ωs1, ωh1)f2(ωs2, ωh2) − f1(ωs2, ωh1)f2(ωs1, ωh2)e

−i(ωs2−ωs1)τ
∣

∣

∣

2
.

(5.8)

For perfect interference we require P4C(τ) to go to zero when the two photons are

coincident on the beamsplitter at τ = 0. From Equation 5.8 it is clear that this can

only happen if

f1(ωs1, ωh1)f2(ωs2, ωh2) = f1(ωs2, ωh1)f2(ωs1, ωh2). (5.9)

To satisfy this condition for all ω, firstly the two joint spectral amplitudes must be

equal:

f1(ωs, ωh) = f2(ωs, ωh) = f(ωs, ωh), (5.10)

and secondly they must both be factorable:

f(ωs, ωh) = gs(ωs)gh(ωh). (5.11)

Equation 5.10 corresponds to indistinguishability between the photons and Equation

5.11 to the purity of each photon individually. So for perfect interference, the photon

pairs must be in factorable states. Note that the situation of interfering independent

photons from separate sources described here is distinct from that shown by Hong,

Ou, and Mandel in the first HOMI experiment14 and many subsequent single source
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demonstrations. With a single PDC source, high-visibility HOMI interference can

be seen upon interfering the two daughter photons from the same pair even when

they exhibit strong correlations as long as the pair is symmetric. However, such a

source cannot be used for pure single photon generation and, when two are operated

independently, the interference between photons from different pairs will be poor.

For pairs satisfying the criteria for factorability, the integration over the herald

frequencies in Equation 5.8 is trivial and the expression for the interference pattern

becomes

P4C(τ) =
1

4

∫ ∞

0

∫ ∞

0
dωs1dωs2

∣

∣

∣
gs1(ωs1)gs2(ωs2) − gs1(ωs2)gs2(ωs1)e

−i(ωs2−ωs1)τ
∣

∣

∣

2
.

(5.12)

This holds for two pure photons with arbitrary frequency distributions. Taking the

photon spectra to be normalised Gaussian frequency distributions

gsµ(ωsµ) = 4

√

2

πσ2
sµ

exp

[

−
(

ωsµ − ωsµ,0

σsµ

)2
]

, (5.13)

where ωsµ,0 is the mean frequency and µ = 1,2, and substituting into Equation 5.12,

the probability of a fourfold coincidence becomes

P4C(τ) =
1

2
− σs1σs2

σ2
s1 + σ2

s2

exp

[

−
(

σ2
s1σ

2
s2τ

2 + 4(ωs2,0 − ωs1,0)
2

2(σ2
s1 + σ2

s2)

)]

. (5.14)

Plots of this interference dip for various parameters are shown in Figure 5.2.

For two photons with equal frequency bandwidths σs, the FWHM of the dip is
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Figure 5.2 Interference dips plotted for pure heralded photons.
The black plots are for completely indistinguishable photons and
therefore have V = 1. In the left panel, both photons have band-
widths of 3.5 nm, one is centered at 830 nm and the other is offset by
1 nm (dark blue, V = 0.89), 2 nm (light blue, V = 0.64), and 3 nm
(green, V = 0.36). In the right panel, both photons are centered at
830 nm, one has a bandwidth of 3.5 nm while the bandwidth of the
other is multiplied by a half (red, V = 0.80), two (blue, V = 0.80),
and four (green, V = 0.47). Note that the halfwidth of the cases
with varying central wavelength remains constant but changes with
bandwidth.

found to be:

δτ =
4
√

ln 2

σs
. (5.15)

Note that, as long as the photons are identical and can be assumed to have simple

Gaussian distributions, the dip width does not depend on their temporal profile

(for example any quadratic phase resulting in temporal chirp or other higher-order

phase contributions), only on the inverse of their bandwidth. Hence the dip does

not measure the photons’ duration. Furthermore, in order to be considered to have

any temporal overlap at the beamsplitter, two photons that are not transform-

limited must be coincident to within their coherence time rather than their duration.

Defining the coherence time as the halfwidth of the temporal intensity distribution,
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taking the inverse Fourier transform of the spectral amplitude of these photons gives

a coherence time of

tc =
2
√

2 ln 2

σs
, (5.16)

and the relationship between the dip width and the coherence time is therefore

tc =
δτ√

2
. (5.17)

This expression allows the coherence time of the photons as measured by the HOMI

dip to be compared with that from the photon spectra.

The effect on the interference visibility of a beamsplitter whose split ratio is not

exactly 50:50 can be investigated by modifying Equations 5.5 and 5.6 to include

explicitly the amplitude coefficients for reflection and transmission, R and T , as in

Section 1.8. The fourfold coincidence probability for identical pure photons is then

P4C(τ) = R4 + T 4 − 2R2T 2 exp

[

−σ
2
sτ

2

4

]

. (5.18)

Applying the energy-conserving condition R2 + T 2 = 1, the visibility is found from

Equation 1.16 to be

V (R) =
2R2 − 2R4

1 − 2R2 + 2R4
(5.19)

This is plotted in Figure 5.3. It can be seen that, close to R2 = 0.5 the visibility

varies relatively slowly with changing R. Hence a beamsplitter with a split ratio as

poor as 40:60 can still give visibilities of over 90%.
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Figure 5.3 Visibility of fourfold coincidence HOMI interference
pattern as a function of beamsplitter reflectivity.

5.2 Resolving distinguishability and purity

Photon pairs with joint spectra calculated directly from the Sellmeier equations will,

even in the case of KDP, exhibit some level of correlation, and pairs generated in

independent sources will inevitably not be identical. In this more realistic situation,

the integrals in Equation 5.8 can no longer be separated and performed analytically.

It is therefore difficult to distinguish the contributions to the loss of visibility from

impurity in the heralded photons from those due to imperfect overlap. However,

we can bring to bear the tools introduced in earlier chapters and hence settle the

question.

We wish to be able to resolve the contributions to any loss in visibility from the

two distinct effects of imperfect mode matching resulting in distinguishability be-

tween the two photons and imperfect interference due to impurity in each individual

photon. Refering back to the calculation of the interference of two mixed-state pho-

tons at a beamsplitter in Chapter 3 allows us to find an expression for the visibility
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in the case of distinguishable photons. From Equations 3.10 and 3.11, if the two

distributions are assumed to be different, the visibility is now given by

V =
∑

i=j

p1ip2j = Tr (ρ̂1ρ̂2) . (5.20)

This contains contributions to non-unit visibility from both poor overlap and im-

purity and, in order to successfully separate these two effects, we require a measure

of the overlap of the two states. However, many commonly used benchmarks, such

as the fidelity or the trace distance, are inappropriate to this application as they

incorporate traces of square roots of matrices and therefore cannot be rearranged as

necessary. Furthermore they cannot be easily related to experimentally measurable

qualities. One more suitable criterion is the operational distance, also known as the

Hilbert-Schmidt norm. This defines the distinguishability to be156:

O(ρ̂1, ρ̂2) = ‖ρ̂1 − ρ̂2‖2 , (5.21)

where
∥

∥

∥
Â

∥

∥

∥

2
is the Frobenius norm, defined as Tr

{

A†A
}

. Expanding Equation 5.21,

we can write

O(ρ̂1, ρ̂2) = Tr{(ρ̂1 − ρ̂2)
†(ρ̂1 − ρ̂2)}

= Tr{(ρ̂1)
2} + Tr{(ρ̂2)

2} − 2Tr{ρ̂1ρ̂2}, (5.22)

and rearranging with the help of Equation 5.20 we find the result for the visibility
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in terms of both the purities and the overlap:

V =
P1 + P2 −O(ρ̂1, ρ̂2)

2
. (5.23)

The operational distance is zero for indistinguishable states and two for perfectly

distinguishable states. This result confirms that, for indistinguishable states, the

visibility is simply a measure of the mean purity.

In addition, Equation 5.23 can be used to find a minimum level of purity given

a particular level of overlap between the states. For two photons in pure but dis-

tinguishable states, the visibility would be the maximum possible for that level of

distinguishability. If the photon spectra were known, one could find the contribu-

tion to the loss of visibility from that distinguishability. This gives an upper bound

on the visibility given the level of overlap and hence a lower bound on the purity.

Substituting two distinguishable pure states, ρ̂1 = |ψ1〉〈ψ1| and ρ̂2 = |ψ2〉〈ψ2|, into

Equation 5.20, the maximum visibility for any two distinguishable states is found to

be

Vmax = Tr{|ψ1〉〈ψ1|ψ2〉〈ψ2|} = |〈ψ1|ψ2〉|2. (5.24)

This overlap can be calculated by measuring the spectrum of each photon. Hence

the minimum experimental purity can be found given that the maximum possible

visibility, Vmax, is known for the level of spectral distinguishability present. Assum-

ing that the purity of both photons is approximately the same, this minimum purity
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is the ratio between Vmax and the measured visibility, Vexpt:

Pmin =
Vexpt

Vmax
. (5.25)

Therefore, for a given measured interference visibility we can place a definite lower

bound on the purity of the heralded single photons. This result is used in Section

5.3.4 to find the minimum purity from the experimental data.

5.3 Twin-source HOMI experiment

5.3.1 Experimental apparatus

The experimental apparatus for the twin source HOMI experiment is displayed in

Figure 5.4. A titanium:sapphire oscillator (500mW, 76 MHz, λ0 = 830 nm, 20 nm

FWHM) was double-passed through an external prism line for dispersion compen-

sation before passing through a half waveplate (HWP) and being focused by an f =

50 mm achromatic lens into a 700µm BBO crystal angled for type-I phasematching

at 830 nm. This produced horizontally polarised second harmonic pulses centered

at 415 nm with a bandwidth of approximately 4 nm and an average power of around

150 mW (though this could be reduced using the HWP before the lens). The spatial

chirp properties of these pulses were as illustrated in Figure 4.13. The frequency-

doubled pulses were collimated with an f = 75mm fused silica (SiO2) lens and the

remaining fundamental beam filtered out with a combination of two dichroic mirrors

(highly reflecting (HR) at 415 nm and highly transmitting (HT) at 830 nm) and a
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2 mm thick Schott BG39 short-wave-pass (SWP) coloured glass filter. The second

harmonic power remaining after filtering, to use as the pump beam for the down-

conversion, was over 100 mW. Upon moving a beam dump, an additional pair of

dielectric mirrors (HR at 830 nm) placed behind the dichroic mirrors, in conjunction

with a Schott BG665 long-wave-pass (LWP) glass filter, allowed the remaining fun-

damental beam to be used as an alignment tool. A polarising beamsplitter (PBS)

was placed in this alignment beam to clean up its polarisation.

Two alignment apertures separated by 625 mm preceded a 45◦ incidence 50:50

beamsplitter (BS) that divided the pump beam into two. Both beams were then

directed to the two downconversion crystals, the reflected beam off one steeering

mirror and the transmitted beam via a time delay controlled by an automated

translation stage (Physik Instrumente M111.1DG) to match the arrival times of the

two pulses at the crystals. The pump beams, each with a power of 40 mW, were

both focused with f = 250mm SiO2 lenses into two 5 mm long KDP crystals cut

for type-II phasematching placed one focal length away from the lenses. The KDP

crystals were orientated with their optic axes in the horizontal plane and mounted

in mirror mounts to allow fine control of the rotation angle about their vertical axes.

Following the downconverters, the remaining pump light was filtered out firstly by

a pair of SiO2 LWP dichroic mirrors in each arm and secondly by 2 mm thick anti-

reflection (AR) coated RG665 LWP filters. Subsequently, the downconverted pairs

were collimated with f = 150mm lenses.

The collimated pairs in each arm were then separated with PBSs, each preceded
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Figure 5.4 Apparatus for two-crystal HOMI experiment. See text
for details.



5.3 Twin-source HOMI experiment 179

by a HWP. Setting the HWPs not to rotate their input polarisation led to the e-ray

photons being transmitted at the PBSs and the o-rays reflected, whereas rotating

the polarisation of the pairs by 90◦ gave the opposite outcome at the PBSs. The

reflected beams were then each coupled into single-mode fibre (SMF) using a steering

mirror, an f = 15 mm aspheric lens, and Elliot Scientific single-mode 3-axis flexure

stages. The other end of these fibres went directly to two Perkin-Elmer SPCM silicon

avalanche photodiodes (APDs) to act as the herald detectors. Each transmitted

beam from the two PBSs passed first through a HWP and then a quarter waveplate

(QWP) for polarisation control and were then coupled into the two inputs of a

50:50 single-mode fibre coupler (also known as a fibre beamsplitter (FBS), in this

case a Sifam FFS-830K62A11) with the same fibre coupling arrangement as for the

reflected arm. The two outputs of the 50:50 FBS went to another two Si APDs, the

signal detectors. This completed the optical setup.

It was crucial that all transmissive optics traversed by the SHG beam were

manufactured from pure SiO2. This material produces almost no fluorescence in

response to incident light at the pump wavelength, whereas other more dispersive

optical media, such as BK7 or any of the SF series of glasses, fluoresce heavily under

illumination by short wavelength light. This fluorescence is of course at a longer

wavelength than the pump, and hence has a high probability of passing through

the LWP filters following the PDC. Therefore it has the potential to create a very

high background signal of uncorrelated photons, resulting in many unwanted singles

counts that reduce both the heralding efficiency and interference visibility. Addi-
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tionally, these materials absorb a significant fraction of the pump beam, reducing

the true coincidence count rates. It was for the same reason of fluorescence that each

of the LWP glass filters following the PDC were placed after two dichroic mirrors

— the dichroics remove most of the pump beam, so that the glass filters can then

provide the remainder of the attenuation required at the pump wavelength while

producing very little unwanted fluorescence.

The electronic TTL signals from the four APDs were split and one half sent

directly to a National Instruments (NI) counting card connected to a PC to allow

the single detection rates at each APD to be monitored. The other half of the

signals were first inverted and attenuated before being discriminated using the single

inputs of four NIM (Nuclear Instrumentation Module) OR logic gates to convert the

original TTL pulses with lengths of around 40 ns to NIM signals approximately 3 ns

in duration. The NIM pulses from the herald detectors passed through variable

electronic time delays before arriving at two AND gates. The electronic time delays

were fixed to match the arrival times of both signals input to each gate. One AND

gate detected twofold coincidences between the herald and the signal detector on

one side of the optical setup and the other gate monitored the twofolds between the

herald and signal detector on the other side. The outputs of these two gates, one via

another electronic time delay, became the inputs for a final AND gate to measure

the fourfold coincidence rate. The outputs of all three AND gates went to the NI

counter card via a NIM to TTL converter. As required, the resulting coincidence

window for these electronics was approximately 5 ns — substantially smaller than
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the 13 ns between consecutive pulses from the laser system.

The count rates of pulses arriving at the counter card were recorded by a bespoke

LabView program. This was written to allow simultaneous control of the position

of the optical time delay stage and hence the coincidence rates for different optical

delays could be monitored over long time durations without requiring any further

input from the experimentalist.

5.3.2 Alignment procedure

Although the optical setup was fairly complex, once aligned it would remain reason-

able stable over days, if not weeks, at a time, requiring only small tweaks to keep it

so. Notwithstanding this, the initial development of a consistently successful align-

ment procedure for setting up the optical apparatus from scratch was a significant

step forward and hence warrants further discussion here.

After alignment of the SHG subassembly to generate blue pulses polarised hori-

zontally, the HWP beforehand was then rotated so that the input polarisation of the

fundamental to the SHG crystal was horizontal. This turned off the SHG process so

that the horizontally polarised fundamental beam could be used for rough alignment

of the downconversion crystals. The longitudinal position of the f = 75mm colli-

mation lens following the SHG crystal was adjusted to ensure that the fundamental

beam was collimated and the foci of the f = 250 mm lenses were at the centres of

the PDC crystals. This beam was then aligned on the two apertures before the

downconverters with a power meter.



182 5.3 Twin-source HOMI experiment

To manage properly the effects of spatial chirp, it was essential to mount both

KDP crystals with their optic axes parallel and in the correct orientation with respect

to the direction of the spatial chirp. Although manufacturers usually mark nonlinear

crystals to indicate a plane in which the optic axis lies, in general they do not

designate the direction of the axis. So it was with the KDP crystals used: here the

plane of the optic axis was shown but it was still necessary to distinguish between

the two possibilities for each of their directions. To this end, with the fundamental

alignment beam incident on the crystals, a HWP was temporarily placed in the

beam to rotate the polarisation to 45◦ and produce type-II SHG in the crystal. By

placing a SWP filter and spectrometer after the crystal, the SHG spectrum was seen

to shift as the crystal was rotated. In this way the orientation of the optic axes could

be determined and the KDP crystals set in the correct direction to make the sign of

the spatial chirp (as defined in Section 4.2) positive. Both crystals were then aligned

to be at approximately normal incidence.

The split ratio of the 50:50 BS for the pump beam was specified at 415 nm

and therefore at 830 nm most of the light was transmitted. However, enough was

reflected to allow alignment of both crystals. The transmitted and reflected beams

from both PBSs were coupled into their respective fibres, but, as the collection optics

were optimized to obtain efficient coupling of the PDC into single-mode fibre, the

coupling ratios were not especially high for the alignment beam. However, over 50%

could still be expected.

In order to see interference between heralded single photons at a FBS, their po-
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larisation has to match at the beamsplitter. However, the beams will experience

arbitrary — and in general different — polarisation rotations during their passage

through the two lengths of fibre leading to the interaction region. These rotations

must be pre-compensated before the photons enter the fibre so that their polarisa-

tions are identical upon reaching the beamsplitter. The level of pre-compensation

required was determined using the alignment beam and set with the waveplates in

the transmitted arms of the PBSs. One of the outputs of the FBS was sent through

another PBS and then to a power meter. The QWPs and HWPs in both arms were

then rotated to minimise the power transmitted by this PBS for each input in turn.

As the rotation in polarisation experienced in the output lead of the FBS was the

same for both inputs, although this technique does not result in the light at the FBS

being in a known polarisation state it does put the light from both inputs in the

same polarisation state. This is enough to ensure good interference.

The approximate zero point of the optical time delay could then be set. The

spectrum of the fundamental pulses was monitored at one of the outputs of the FBS

with a spectrometer while scanning the time delay. As the delay passed through

zero, fringes were observed on this spectrum, with the exact zero for the alignment

pulses at the position where almost total interference occurred across the entire

spectral bandwidth.

This concluded the approximate alignment performed with the fundamental

beam. This was good enough to give some coincidence counts from each crystal

to allow the coupling of the PDC into the fibres to be optimized. To do this, the
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HWP before the SHG was rotated back to generate pulses at 415 nm, the f = 75 mm

lens returned to the position that gave the best collimation of this beam, and the

SWP filter and beam dump replaced. With the HWPs before the PBSs set to trans-

mit whichever set of photons were to be interfered, the twofold coincidence count

rates were optimized by changing the position of the SMF tips using the flexure

stages and the angle of incidence on the fibre tip with the steering mirrors before

the aspheric lenses. For a pump power of about 40 mW per crystal, the measured

twofold coincidence rates were around 3000 s−1, suggesting a true coincidence rate

(without the FBS in place) of 6000 s−1. This resulted in a fourfold coincidence rate

of approximately 0.3 s−1 after the FBS, commensurate with the measured twofold

rates and laser repetition frequency.

5.3.3 Mode matching and marginal spectra

We know from previous chapters that the modes of two photons that are to be inter-

fered must be identical spatially, spectrally, temporally, and in polarisation to ensure

indistinguishability and yield a high-visibility dip. The main advantage of a FBS

over a free-space plate or cube BS is that, upon arrival at the interaction region,

both photons are in well-defined single spatial modes and hence are automatically

almost perfectly matched in that degree of freedom. The pre-compensation of both

photons by the waveplates before the input fibres resulted in the highest level of po-

larisation indistinguishability that one could hope for at the FBS, and the temporal

distinguishability was adjusted by the delay stage.
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As no spectral filtering was used, it was vital to control precisely the spectral

mode overlap of the photons sent to the FBS directly from the point of production

through the parameters of the sources themselves. As described in Chapter 4 the

overlap of the o-ray and, more crucially, the e-ray spectra is therefore controlled

simply by the phasematching angles of the crystals. Due to the high sensitivity

of the e-ray wavelength to the phasematching angle, it is the e-ray spectrum that

requires the most care to fully mode match. With both crystals set to be near to

normal incidence, the two e-ray spectra should be at least partially overlapped, but

this is not good enough to see the highest visibilities as the spectra will usually still

be offset by a significant fraction of their bandwidth. Two techniques can be used

to maximise the spectral overlap.

The first is to make a direct measurement of both e-ray spectral distributions.

This is the simplest method but it depends on the availability of a good grating

spectrometer and high-sensitivity CCD camera. For this measurement the same

fibre-coupled Andor Shamrock spectrometer from the joint spectral measurements

was used in conjunction with an Andor iXon electron-multiplying CCD camera.

Turning up the gain on the camera to its maximum setting and operating with

the 150 l/mm grating allowed the marginal spectra of both the e-ray and o-ray

downconversion from each crystal to be measured. First the e-ray spectrum from

one crystal was recorded and then the spectrum from the second was displayed and

matched to the first by observing in real time the movement of the spectrum as

the crystal angle was changed about its vertical axis. Through this technique, the
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two spectra could be overlapped to a high degree of accuracy (within 0.1 nm or so)

simply by eye. The final spectra from both crystals were then saved to be used in

calculating the degree of spectral overlap in Equation 5.24.

The second technique is to observe an interference effect that can be seen in the

twofold detection rates. With the HWPs before the PBSs set to rotate the polarisa-

tion of the e- and o-rays to ±45◦, there was a 25% chance that both photons from

each pair would be transmitted towards the FBS. By reconfiguring the electronics to

look for twofold coincidences between the outputs of the FBS (without heralding),

the interference between the amplitude for creation of a pair in one crystal and cre-

ation of a pair in the other was observed as the time delay was scanned through zero.

This interference between two possible (unheralded) paths involved the detection of

only two photons, and therefore required only one pair to be generated per pump

pulse (rather than two pairs in the case of the full HOMI interference). Hence the

data could be monitored at each time delay setting for only a short time interval

(0.5 s) while still registering a significant number of counts.

The interference pattern created in this configuration can be calculated with a

similar approach to that used to find the full four-photon HOMI dip. This time the

state consists of a superposition of a pair created in one crystal or a pair in the other

with equal probability:

|Ψ2〉 =
1√
2

∫ ∞

0
dωe1

∫ ∞

0
dωo1f1(ωe1, ωo1)â

†
e1(ωe1)â

†
o1(ωo1)|0〉

+
1√
2

∫ ∞

0
dωe2

∫ ∞

0
dωo2f2(ωe2, ωo2)â

†
e2(ωe2)â

†
o2(ωo2)|0〉.

(5.26)
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We now look for twofold coincidences at the two signal detectors following the beam-

splitter. The projection operator for a twofold detection measurement at times ts1

and ts2 is similar to the fourfold case:

Π̂2C(ts1, ts2) = Ê
(−)
s1 (ts1)Ê

(−)
s2 (ts2)|0〉〈0|Ê(+)

s2 (ts2)Ê
(+)
s1 (ts1), (5.27)

but now a photon originating in either polarisation mode (e-ray or o-ray) could reach

either detector. Hence the field operators must be summed over both polarisation

modes

Ê
(+)
s1 (ts1) =

1√
4

∑

µ=e,o

∫ ∞

0
dωs1

[

âµ1(ωs1)e
−iωs1τ + âµ2(ωs1)

]

e−iωs1ts1 (5.28)

Ê
(+)
s2 (ts2) =

1√
4

∑

µ=e,o

∫ ∞

0
dωs2

[

âµ1(ωs2)e
−iωs2τ − âµ2(ωs2)

]

e−iωs2ts2 , (5.29)

where µ = e, o represent the two polarisation modes emitted by each crystal. The

probability of a twofold detection event occurring at times ts1 and ts2 is calculated

in a similar manner to Equation 5.7 and the probability of obtaining a coincidence

can be found by integrating this over the detection times to give the result

P2C(τ) =
1

4

∫ ∞

0

∫ ∞

0
dωs1dωs2 |f2(ωs1, ωs2) + f2(ωs2, ωs1)

− [f1(ωs1, ωs2) + f1(ωs2, ωs1)] e
−i(ωs1+ωs2)τ |2.

(5.30)

In order to interpret this result, consider first the condition for unit visibility,
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P2C(0) = 0, requiring that

f1(ωs1, ωs2) + f1(ωs2, ωs1) = f2(ωs1, ωs2) + f2(ωs2, ωs1) (5.31)

⇒ f1(ωs1, ωs2) = f2(ωs1, ωs2) (5.32)

This equality makes no demands on the factorability of the joint spectral amplitude

function from each crystal, only that they are identical to one another. Therefore

this interference effect provides a perfect method of matching the spectral modes

from the two crystals.

Secondly, as the separability of the joint amplitude does not matter here, the

form of the interference effect can be studied most simply by calculating P2C(τ) for

two factorable but distinguishable pairs with Gaussian amplitudes. In this case, the

joint spectral amplitude from crystal 1 is of the form

f1(ωe1, ωo2) = ge1(ωe1)go1(ωo1), (5.33)

and similarly for crystal 2, where the functions ge1(ωe1) are defined in Equation 5.13.

Plots of the interference pattern for different central frequencies and overlaps of the

photons in each pair are shown in Figure 5.5. The parameters were chosen to model

the situation encountered for KDP. It is interesting to note that the width of the

narrow central area is dependent on the spectral bandwidth of the spectrally broad

o-ray photons, yet the overall visibility (essentially the visibility of these central

fringes) depends mainly on the overlap of the narrowband e-ray photons.
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Figure 5.5 Theoretical plots of the twofold coincidence interfer-
ence between the amplitudes for creation of a pair in one crystal or the
other. Left: photon bandwidths are FWHMλe = 3.5 nm, FWHMλo

= 16.5 nm; mean wavelength mismatches are 0 nm (black, V = 1),
10 nm in the o-rays (dark grey, V = 0.80), 5 nm in the e-rays (light
grey, V = 0.44). Right: FWHM photon bandwidths are FWHMλe

= 1.75 nm, FWHMλo = 16.5 nm; mean wavelength mismatches are
0 nm (black, V = 1), 10 nm between the o-rays (dark grey, V = 0.79),
5 nm between the e-rays (light grey, V = 0.16).

Real-time observation of this twofold interference effect allowed one crystal angle

to be adjusted to maximise the interference visibility and once this optimization had

taken place, the spectra from the two crystals were maximally overlapped. Note that

the changes in angle required were fractions of a degree and hence the adjustments

to the crystal angle made little difference to the delay. The necessary range of angles

could therefore be accessed without changing the zero point of the delay noticeably.

Data showing this interference effect are displayed in Figure 5.6. An additional

benefit of the observation of this secondary interference was to check the time delay

zero point.
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Figure 5.6 Twofold coincidence data for the alignment interference
between the amplitudes for creation of a pair in one crystal or the
other.

5.3.4 Interference of e-ray photons

First the interference of the two e-ray photons was studied by setting the HWPs

to transmit these at the PBSs. The fourfold count rates we recorded for periods of

900 s at a series of 13 equidistant delay stage positions over a range of about 200µm,

corresponding to a total delay range of approximately 1.5 ps. The twofold rates from

each crystal were also recorded for periods of 1 s at the same delay settings.

The resulting data are displayed in Figure 5.7. The fourfold coincidence data

were fitted with a Gaussian dip function with four free parameters: the value for

large delay, the visibility, the width, and the position of the zero delay point. The

HOMI dip for the heralded e-ray photons from independent sources recorded without

any spectral filters was thus found to have a visibility of V = 0.944±0.016 (standard

error on the fit) and a FWHM of 440 fs. The measured visibility agrees remarkably

well with the value of 0.95 calculated from the numerical model in Chapter 4. The
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temporal width of the dip corresponds to a coherence time of 310 fs, commensurate

with the measured spectral bandwidth of the e-ray photons — a pulse at 830 nm

with 3.5 nm of bandwidth would have a coherence time of 290 fs.

The central wavelengths of the fits to the two e-ray spectra (shown in Figure

5.8) were measured to differ by just over 0.1 nm, corresponding to approximately

2% of their FWHM bandwidths. Calculating the overlap of these two fits as in

Equation 5.24, the value of the maximum possible visibility was found to be Vmax =

0.981. Using the measured visibility, Vexpt = 0.944, the minimum purity of the e-ray

photons is Pmin = 0.962, proving that the heralded photons were prepared in states

of exceptionally high purity. Additionally, this figure is in good agreement with the

measurement made on the joint spectral intensity distribution and suggests that the

joint spectral amplitude has little phase across it.

5.3.5 Interference of o-ray photons

Secondly, the two o-ray photons were interfered by rotating the polarisation before

the PBSs by 90◦. The fourfold coincidences were again recorded for 900 s per point,

but this time for 15 points over a smaller range of delays (70µm, corresponding to

400 fs) to account for the greater spectral bandwidth of the o-ray photons.

The data are displayed in Figure 5.9, with the fourfold coincidences again fit-

ted with a Gaussian dip function. The visibility of the HOMI dip for the o-ray

photons was V = 0.891 ± 0.030 with a FWHM width of 92 fs. This width gives

a coherence time of approximately 65 fs, also consistent with the broad measured
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Figure 5.7 Interference of the unfiltered heralded e-ray photons.
Top: Fourfold coincidence data for e-ray HOMI dip, displaying V =
0.944 ± 0.016. Bottom: Constant twofold coincidence rates. The
error bars, simply from Poissonian counting statistics, are equal to
the square root of the number of counts at each point.
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Figure 5.8 Spectral overlap of two e-ray photons. Left: Data for
marginal distribution of e-ray photons from crystal 1 as measured
with the Andor spectrometer and camera along with Gaussian fit.
Right: Comparison of normalised fits to both e-ray spectra. Centres
differ by just over 0.1 nm and FWHM bandwidths by approximately
1 nm. The common spectrum in both plots is red.

spectral bandwidth (16.5 nm bandwidth suggests a coherence time of 62 fs). As there

is little phase on the joint spectrum, shown by the high interference visibility, the

time-bandwidth product of these photons should be almost Fourier transform lim-

ited, and their temporal duration will therefore only be slightly longer than their

coherence time.

5.4 Heralding efficiency

The heralding efficiency of a source measured with perfect detectors was defined in

Equation 3.28 as the ratio of the rate of coincidence counts in both arms to that

of singles in the trigger arm. However, in any experimental situation the quantum

efficiency of the detectors will inevitably be less than one, and hence sometimes a

coincidence event will not be registered when the signal photon reaches its detector



194 5.4 Heralding efficiency

!0.2 !0.1 0 0.1
Delay !ps"

1000

2000

3000

4000

T
w
o
fo
ld
s
#
1
s

!0.2 !0.1 0 0.1
Delay !ps"

50

150

250

F
o
u
rf
o
ld
s
#
9
0
0
s

Figure 5.9 Interference of the unfiltered heralded o-ray photons.
Top: Fourfold coincidence data for e-ray HOMI dip, displaying V =
0.891±0.030. Note much narrower temporal width than for the e-ray
interference. Bottom: Constant twofold coincidence rates. The error
bars represent Poissonian counting statistics.
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after a trigger event. This artificially reduces the measured ratio of coincidences to

singles, which is then known as the detection efficiency. The relation of the detection

efficiency, ηD, to the heralding efficiency, ηH , is through the quantum efficiency of

the detector in the signal arm, ηq:

ηH = ηqηD = ηq
RC

RT
. (5.34)

Knowledge of ηq therefore allows an estimate to be made of the heralding efficiency

of a source in the presence of imperfect detectors. During the data runs for the

interference dips presented in the previous sections the typical detection efficiency

was around 6.5%. However, in this case we must also take into account that the

presence of the FBS in the signal arm reduced the number of coincidence events to

half the value that would have been measured were the FBS replaced with a single

length of fibre. The true detection efficiency at which the system was performing

could then be inferred as twice the measured efficiency, or about 13%.

However, when using the e-ray photons as heralds the asymmetry of the joint

spectral distribution can be exploited to increase the heralding efficiency of the

source by careful spectral filtering. By placing in the e-ray arm only a high-

transmission filter whose bandwidth just exceeds that of the e-ray photons (around

4 nm), many of the background counts (most of which come from the fundamental

titanium:sapphire beam that has a bandwidth around five times that of the e-ray

photons) can be cut out without affecting the e-ray PDC photons. Therefore the
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singles rate in the herald arm can be reduced dramatically while not changing the

form of the two-photon state or discarding any PDC photons.

To test this proposal, a spectral filter with a bandwidth of 3 nm (slightly narrower

than the ideal, but the only suitable filter available) and peak transmission well over

95% at 830 nm was placed in the e-ray arm of one of the downconversion sources

configured to use the e-rays as heralds. The filter was angle tuned to set its central

transmission wavelength to maximise the twofold coincidence rate from the source.

In this way the detection efficiency was measured to be over 13% with the FBS in

place, giving a true detection efficiency of 26.3%. Furthermore, taking into account

the quantum efficiency of the APD in the signal arm (about 60% at this wavelength),

the source heralding efficiency can be estimated at almost 44%. Although higher

heralding efficiencies have been measured from spectrally correlated PDC sources

(notably from a pulsed waveguided source93 and a pulsed type-I bulk crystal source94

and a CW-pumped periodically-poled crystal96), this is still very high for a pulsed

bulk PDC source.



Chapter 6

Conclusion

The test of all knowledge is experiment. Experiment is the sole judge of

scientific “truth.”

R. P. Feynman157

Despite the ubiquitous usage of parametric downconversion in quantum optics

laboratories during the last twenty years, it was only recently that the potential

benefits resulting from the ability to control the spectral emission properties of

downconversion sources became apparent. It was first demonstrated theoretically

by Grice et al 102 that the technique of spectral engineering was a promising route

towards high-performance heralded single photon sources. The possibility of gener-

ating photon pairs in factorable states from a variety of nonlinear crystals through

the use of an ultrafast pump laser suggested that single photons could be prepared

directly in pure quantum states and hence the lossy spectral filters that had been

widely used to date could be discarded. The work contained in this thesis has built
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on the foundations of these previous studies and vindicated the concept of factorable

state generation by successfully demonstrating the interference of pure single pho-

tons from two such engineered sources.

6.1 Summary

Chapter 1 introduced the concept of a photon and the difference between pure states

and mixed states. The properties of an ideal single photon source were outlined and

then a general introduction to single photon sources, including parametric downcon-

version, was given. The principle of phasematching in a birefringent nonlinear crystal

was described along with how it gives rise to correlations in the pairs emitted by a

downconversion source. The phenomenon of Hong-Ou-Mandel interference between

two pure and indistinguishable single photons at a beamsplitter was calculated.

The second chapter gave some more details of the nonlinear properties of χ(2)

crystals that can lead to photon pair generation through phasematched interactions

in which the oscillations of every emitter in the ensemble remain in phase with the

pump field. The spectral dependence of the two-photon state created in PDC was

derived from the interaction Hamiltonian, and during this calculation the math-

ematical origins of the energy and momentum phasematching conditions became

clear. Subsequently, the mechanics of phasematching in a birefringent medium were

studied in more depth, firstly by considering a toy model of a two-dimensional type-

I interaction and how disperision and birefringence affect the emission structure,

and secondly through the picture of a type-II process in both the collinear and
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noncollinear regimes. The re-expression of the collinear two-photon joint spectral

amplitude as the product of the pump function with the phasematching function

was emphasized and the effects of these upon the joint state was examined in the

case of both type-I and type-II BBO.

Engineering a factorable two-photon state in the ideal collinear case was the

subject of Chapter 3. First it was shown that pure single photons are required

for high-visibility interference and then, through the reduced density operators for

individual heralded photons, that factorable states are needed to prepare pure sin-

gle photons directly from the source. The Schmidt decomposition was introduced

as a means of quantifying the degree of correlation in a bipartite state, and hence

the purity of heralded photons from a PDC source. As the Schmidt decomposi-

tion can only be found analytically for a small class of states, the singular value

decomposition was presented as a numerical method of determining the Schmidt

number of any arbitrary state. The detrimental effects of the most common method

of removing correlations from photon pairs — spectral filtering — were examined

upon the available pair generation rate and heralding efficiency of a typical type-II

BBO downconverter. It was demonstrated that there is a direct tradeoff between

these two parameters and the purity that one could reasonably expect given that

no source engineering has been carried out. The method of factorable state gener-

ation based on group velocity matching between the pump and either the average

velocity of the daughter photons or the velocity of just one of them was outlined

through the exponential approximation to the phasematching function. Factorabil-
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ity was demonstrated to first order in both the spectral and temporal domains with

a truncated expansion of the wavevector mismatch. The analytic Schmidt decom-

positions of the resulting approximate states were calculated in BBO and KDP for

the symmetric and asymmetric group velocity matching cases respectively.

Chapter 4 took the idea of group velocity matching, previously shown to give

factorability in the approximate two-photon states, and applied this concept to a

more realistic experimental situation. The effects on the joint spectrum of focusing a

spatially chirped pump beam into a downconversion crystal and then collecting the

PDC output into single-mode fibres were considered by calculating the exact state

for variations of the relevant angles. A method of modelling numerically the joint

state by enforcing phasematching in two dimensions and summing the resulting am-

plitudes over a range of input and output angles was shown. Measurements of both

the pump and collection angles along with the pump spatial frequency distribution

were made for the source in question and through inputting these figures to the

numerical model the expected joint spectral intensity could be plotted. Using two

fibre-coupled grating monochromators, a direct measurement of the joint intensity

was made and compared to the predictions of the model. It was shown that the

agreement between the two was very good and that factorable states could indeed

be generated under the correct conditions. The degree of second order coherence of

the source was measured to be almost zero demonstrating that the source produced

true single photons.

The penultimate chapter initially proved that the method for verifying the single
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photon purity, Hong–Ou–Mandel interference between the heralded emission from

independent sources, also provides a direct measurement of the factorability of the

two-photon states generated. However, to make an accurate estimate of the purity,

the inevitable presence of a small spectral mode mismatch between the heralded

photons required a means of distinguishing between this reduction in visibility and

that resulting from impurity in the individual photons. A detailed description of

the downconversion sources followed, along with the apparatus needed to measure

the interference effect. A reliable method of aligning the sources was presented,

including two techniques that enable the spectral distributions of the photons to be

matched as accurately as possible. The data for the interference of both the e-ray

photons and the o-ray photons were shown, demonstrating that both were highly

pure without the need for any spectral filters. Finally, the heralding efficiency of

the source was optimized by exploiting the form of the joint spectrum through the

use of a filter in the heralding arm that did not affect the photon pairs but cut out

many of the background singles counts. The resulting efficiency was exceptionally

high for a pulsed PDC source in a bulk medium.

6.2 Outlook

6.2.1 Future work with the KDP sources

The experimental demonstration of pure single photon preparation directly from

the spectrally engineered KDP crystals without any narrowband filtering is impor-
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tant in the context of downconversion as a viable source of photons for real-world

QIP applications. The next stage is to perform some proof-of-principle experiments

showing that worthwhile operations can be carried out with the output from these

sources. Two such experiments are described in this section.

Heralded NOON states

In order to move beyond probabilistic quantum tasks whose successful outcomes

must be post-selected on a particular pattern of detection events, one must have the

ability to reliably create nonclassical states with unit probability. If this could be

achieved, rather than waiting until the correct state happens to enter the apparatus,

the quantum state required to perform the given information processing or measure-

ment task can be input with certainty on every shot. This approach is, unlike the

post-selected one, scalable to large devices requiring many operations.

As an example we consider quantum-enhanced phase measurement. Through the

application of nonclassical states of light, the precision with which one can estimate

the relative phase ϕ between the arms of an interferometer can be higher for a given

level of resource use than would ever be possible with classical light158. In the ideal

situation, for a resource of N photons, the classical uncertainty in the measurement

scales as ∆ϕ ∝ 1/
√
N , whereas for the optimal quantum input159 the uncertainty

improves at a rate of ∆ϕ ∝ 1/N . In a lossless optical system the quantum state

that gives the largest enhancement of this precision is a so-called NOON state — a
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superposition of N photons in one arm and none in the other or vice versa:

|ψNOON〉 =
1√
2

(|Na, 0b〉 + |0a, Nb〉) . (6.1)

Precision phase measurements using similar states formed from the output of PDC

sources have been demonstrated160,161 but all were based on post-selected measure-

ments. Hence the effective resources used for a single NOON state measurement were

significantly greater than N photons as many of the photons that passed through

the interferometer were subsequently discarded and did not contribute to the mea-

surement outcome.

This problem of post-selection could be mitigated if one could generate an en-

tangled state that was conditioned on the detection of heralding photons before the

measurement apparatus162. In this case, one would know for sure when the cor-

rect state had been prepared, and only then send it through the interferometer. To

date, heralded entanglement generation has not been demonstrated in the labora-

tory. However, if we consider the quantum state in the two output arms of the 50:50

fibre coupler in the HOMI experiment presented in Chapter 5, at zero time delay

we find

|ψout〉 ≈
1√
2

(|2a, 0b〉 + |0a, 2b〉) , (6.2)

This is clearly a two-photon NOON state that has already been conditioned on the

arrival of two photons at the heralding detectors. Due to the ability of the KDP

sources to produce high-purity photons without any spectral filtering, these heralded
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NOON states can potentially be produced with high efficiency.

The next experiment that will be performed with the KDP sources is a demon-

stration of heralded NOON state preparation. The scheme is to combine at a polar-

ising beamsplitter the two fibre coupler output modes into two polarisation modes

in a single spatial mode, hence creating a polarisation-encoded NOON state. A

variable relative phase can then be introduced between the two polarisation modes

with a birefringent element, and the second interference performed by rotating both

polarisations by 45◦ and mixing them at a polarising beamsplitter. By monitor-

ing the coincidence counts between the two output modes of the final beamsplitter

as a function of the phase ϕ, interference fringes that oscillate at cos (2ϕ) should

be observed. As long as the visibility of the fringes is sufficient then the precision

with which the phase measurement can be made is greater than would be possible

classically with the same resources, as in the classical case the fringes would only

vary at cosϕ. This experiment is currently under way and some preliminary data

demonstrating the 2ϕ fringes have been recorded.

Continuous variable entanglement distillation

Information can be encoded not only in the discrete degrees of freedom of a quantum

entity (such as polarisation or number in the case of photons) but also in the con-

tinuous degrees of freedom, for example position or momentum. Encoding on these

continuous variables (CVs) allows more information to be carried by a single photon

than would be possible in the discrete case. Typically for optical CV encoding, the
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electric field itself is used as the variable through the field quadrature amplitudes X̂

and P̂ , analogous to the position and momentum operators.

Having prepared a system entangled in these field quadratures, upon distribution

across any realistic quantum network the inevitable effects of loss and decoherence

will be to reduce the entanglement between the elements of the system, eventually to

the point at which no entanglement remains163. In a fibre-based network operating

at telecommunications wavelengths, this will occur after transmission over a distance

of about 100 km. Therefore any protocol for long-distance distribution of entangle-

ment must include repeater substations between the sender and the receiver where

the entanglement can be restored to its initial level before being sent on towards

the destination. These “signal-boosting” intermediaries rely on a process known as

entanglement distillation 164 — through performing certain operations on a subset

of the elements (and thereby destroying them) one can increase the entanglement

between the remainder. Techniques for entanglement distillation of quantum states

whose description in phase space is initially Gaussian in form require165 operations

that are capable of “de-Gaussification” of the states, for example by removing a

single photon166,167. Entanglement distillation has been demonstrated in discrete

variables168,169 and the increase of entanglement shown through de-Gaussification

of quadrature-entangled beams170.

A method of entanglement distillation between photons from two pairs has been

designed using photon subtraction from each pair and subsequent interference of the

remaining modes at two beamsplitters, based on proposals by Browne et al 171 and
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Eisert et al 172. This scheme is dependent on the pairs initially being in factorable

states to give high-visibility interference at the beamsplitters, and hence the KDP

downconversion sources are ideal for its implementation. A second pair of KDP

sources has now been built with a view to accomplishing this goal. Additionally, the

recent implementation of a time-multiplexed photon-number-resolving detector173

should enable more efficient detection of the increased entanglement than would

otherwise be possible with binary APDs.

6.2.2 Factorable state generation in other media

The experiments contained in this thesis have demonstrated that factorable state

generation by group velocity matching is feasible in a bulk second-order nonlinear

crystal. However, using such a medium has inherent drawbacks, principally that the

spatial emission pattern is not naturally single mode and hence efficient coupling of

the pairs into single-mode fibre can be difficult. Other disadvantages are that the

interaction length between the pump and the crystal is generally limited to a few

millimetres or a couple of centimetres at most, and with a limited range of crystals

available, factorable state generation is only possible at certain wavelengths. There-

fore, to fulfil certain requirements one may need to consider other pair generation

systems that do not suffer from the same difficulties and whether the technique of

group velocity matching could be generalised to these media.
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Factorable states from fibre

Spontaneous pair generation by four-wave mixing in fibre has the twin benefits of

an almost unlimited interaction length between the pump and the medium (this

can compensate for the very small third-order nonlinearity), and pairs that are

automatically guided in a well-defined (usually single) spatial mode. Each set of

modes are subject to energy and momentum phasematching conditions similar to

those for PDC, so the pairs generated are in general highly spectrally correlated. Due

to the inverse dependence of the width of the phasematching function on the length

of the medium, the joint amplitude is especially narrow in the case of long fibres so

extremely tight filters would be required to eliminate these spectral correlations.

Nonetheless, very recently it has been shown theoretically174 that by satisfying

group velocity matching conditions between the pump and generated photons, fac-

torable pair generation is possible in fibre. The criteria that must be fulfilled are

very similar to those for downconversion — the group velocities can be matched

either symmetrically or asymmetrically, resulting in states that have similar or very

different photon bandwidths respectively. As the photon pair frequencies straddle

the pump frequency, group velocity matching can be achieved in any fibre, but in

a typical fibre the frequency at which it occurs may not lie within an advantageous

range.

The use of microstructured photonic crystal fibre (PCF) consisting of a small

solid silica core surrounded by a matrix of air-filled spaces separated by silica fila-

ments allows the properties of the fibre to be engineered. The modal dispersion can
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be set through the control of two parameters: the core diameter (typically around

2µm) and the ratio of air to silica in the surrounding cladding, known as the fill frac-

tion (anything from 30% to 95% air). Adjustments to these two parameters change

the two wavelengths at which zero group velocity dispersion (GVD) occurs and hence

the points where the phasematching curves will intersect the zeros of group velocity

mismatch. For PCF without birefringence, the pairs are generated co-polarised with

the pump and these crossing points are far from the pump wavelength — therefore

the photons are not within the efficient range of silicon APDs. Indeed, this has to be

the case for pair generation, as the output of the fibre must be dispersed spectrally

to split the pairs from the pump and close to the pump wavelength there will be

overwhelming uncorrelated background from Raman scattering of the pump. On

the other hand, with a birefringent PCF, the pairs are polarised perpendicular to

the pump, making their separation from the pump more straightforward, and the

group velocity matching condition can be satisfied with both close enough to the

pump to be easily detectable with silicon APDs.

The ability to construct the nonlinear material with exactly the desired prop-

erties is a great advantage of PCF. However, only a limited variety of PCFs are

available off-the-shelf, and to draw fibre to a custom specification is expensive.

Therefore, one must find among the standard designs a PCF with characteristics

that match as closely as possible those required for factorable state generation. An

experimental demonstration of pure single photon generation from a fibre source is

now being worked on.
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Factorable states from waveguide sources

Downconversion can also take place in an optical waveguide that is written into a

plain or patterned nonlinear crystal and will channel the pairs in a single optical

mode. This process will inevitably have a similar interaction length to that in a bulk

crystal, as it is simply limited by the size of the crystal that can be manufactured.

Although this is much shorter than a typical fibre, it is compensated for by the

relative strength of the second-order coupling in nonlinear crystals compared to that

of the third-order in fibres, so pair generation rates could be made similar to those

possible from fibre sources. The spatial confinement of the pairs in two dimensions

has allowed the observation of raw heralding efficiencies over 50% from a waveguide

written in quasi-phasematched peridically-poled KTP93.

The potential of PDC in waveguides for building high-efficiency, user-friendly

heralded single photon sources is clear, but restricting the interaction region to a

single dimension does nothing to reduce the spectral correlations within each pair.

Therefore, similarly to standard bulk sources, the generation of pure-state single

photons is not in general possible from waveguided sources. However, a recent

proposal by Raymer et al 175 suggested that by constructing a cavity around the

waveguide, one could accomplish factorable state generation.

By placing a downconverter in a high-finesse cavity that contains the daugh-

ter fields, emission can be restricted to a set of discrete cavity modes. Hence the

effect on the joint spectrum is to set up a regularly-spaced grid of probability am-

plitudes where the allowed signal and idler longitudinal cavity modes intersect97.
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For a macroscopic cavity consisting of dichroic mirrors placed before and after a

nonlinear crystal, these modes are closely spaced in frequency. Inevitably many will

fall under the downconversion phasematching function and pump envelope, whereas

for factorable state generation, we require that only one joint cavity mode will be

picked out by the phasematching and pump functions. For this to be the case, the

cavity must be very small (around 0.1 mm in length) and the resulting frequency

modes widely spaced. Such a microcavity can be fashioned around a waveguide by

longitudinally microstructuring either end of the waveguide itself. A periodic modu-

lation in the refractive index of the waveguide can form a distributed Bragg reflector

(DBR) that will reflect only the daughter fields and allow the pump to pass. In this

way a short cavity, designed such that only a single joint cavity mode is within the

phasematching function, can be built directly into the waveguide chip. The primary

excitation of only one joint cavity mode provides a high degree of factorability, but

it is almost inevitable that other modes will overlap to a small degree with the

phasematching and pump functions. These side modes can be made relatively far

from the desired mode and can easily be removed by filtering outside the cavity with

negligible decrease in expected count rates.

Constructing microcavities within a waveguide in a nonlinear medium presents

a significant technical challenge176 and is not possible with current fabrication tech-

niques. Hopefully though, new waveguide writing technology and microstructuring

methods will enable preliminary devices to be realised in the next few years.
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Integrated single chip source and processing

The potential for creating a source of factorable pairs in a single spatial mode along

with the ability to write ever-more complex waveguide-based components into a

variety of media177,178 herald the prospect of an integrated device that would be

capable of both generating pairs and performing processing tasks. A network of

UV-written beamsplitters and phase shifters on an optical chip could implement

photonic quantum logic operations on photons either generated in waveguides on the

same chip or delivered by fibres pigtailed onto the inputs of the device. Additional

fibres could be joined to the outputs to take the photons to either fibre-based photon-

number-resolving detectors or ordinary binary APDs. In this way, one can envisage a

compact and robust photonic QIP system built from a network of these devices that

would be capable of complex information-processing protocols. The demonstration

of heralded pure-state photon preparation contained in this thesis is an important

step along the road towards engineering such a device.
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Appendix A

A recipe for purity

Hopefully having read this thesis you will have a good idea of what is required to

build a parametric downconversion source capable of preparing pure heralded single

photons. However, for those readers who are in a hurry, here follows a summary

of the salient considerations that the experimentalist must bear in mind to obtain

a high-visibility HOMI dip without spectral filtering. They are organised approxi-

mately in order from laser to detection electronics.

1. Ensure that the fundamental beam is approximately transform limited before

second harmonic generation. If necessary use a prism line to compensate for

any quadratic phase.

2. Use a negative uniaxial crystal for frequency doubling. This restricts the spa-

tial chirp in the second harmonic beam to be in the same plane as the output

(e) polarisation and the optic axis.
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3. Fully characterise the SHG beam. Measure the spatial chirp along both trans-

verse directions (though if you have followed point 2 there should be no chirp

orthogonal to the polarisation of the beam) and the beam diameter.

4. Do not use any heavy glass transmissive optics (e.g. any SF-series glass, BK7,

etc.) between the frequency doubler and the long-wave-pass filters following

the downconverters. This applies to any downconversion experiment and en-

sures that there is as little unwanted fluorescence as possible.

5. Unless you really know what you are doing, do not pump both crystals using

the whole pump beam with the downconversion from the first crystal split off

with a dichroic mirror. Divide the pump before the crystals to ensure the same

focusing conditions in each crystal.

6. Build the setup as symmetrically as possible. Put the delay before the crystals

not after so that everything downstream of the lenses preceding the downcon-

verters is identical between the two sides.

7. Make sure that you know not only the plane in which the optic axis of each

crystal resides but also the direction that it points in. This is important to

get the spatial chirp direction correct. Check this by performing SHG in each

crystal and observing with a spectrometer the direction in which the spectrum

moves as the crystal is rotated. Do not rely on any markings on the crystal

made by the manufacturer to tell you the direction of the optic axis — this

will probably indicate the plane of the axis but not the direction. Even if a



215

pair of crystals are marked in the same way, do not assume that their axes

point in the same direction relative to the marking, they may well not.

8. Do a numerical calculation to make sure that the focusing parameters, spatial

chirp, and fibre mode collection angle match up to give a factorable state.

Check the optic axes are in the correct orientation to give the right direction

of spatial chirp.

9. Do not rotate the polarisation of the pump beam between the SHG and the

downconverters. In this way the spatial chirp will be in the same plane as the

incident polarisation and optic axes of the KDP and one only needs to consider

phasematching in two dimensions rather than three.

10. Use a 50:50 fibre coupler rather than a free-space beamsplitter. This will make

your life much easier.

11. Do not worry too much about having a 50:50 coupler split ratio that is exactly

50:50. The visibility is only weakly dependent on this — assuming it is better

than about 45:55 it will do. Do not trust the singles count rates to give you

a good estimate of the split ratio. Fibre 50:50 couplers are highly wavelength

dependent so any background counts that are not at the central frequency will

not experience the same split ratio, possibly leading to higher singles rates in

one arm than the other when using only one input.

12. Match the polarisations arriving at the 50:50 coupler, then do not touch the

fibres on the inputs.



216

13. Optimise the fibre coupling, then leave it alone.

14. Make sure that your time delay zero point is set correctly. The zero for down-

conversion may not be in exactly the same place as that for the alignment

pulses.

15. Ensure that both crystals are at exactly the same angle, especially if interfering

the e-ray photons. Initially set this by eye with the back reflection from the

front faces. If there is a single-photon sensitive spectrometer available, use it

to match the two spectra. Check the alignment interference and tweak the

angle of one of the crystals to maximise the visibility. This also serves as a

check on the time delay zero.

16. Check that the coincidence electronics are working properly.

17. If all else fails, measure the joint spectra from both crystals. If the state is not

factorable, think about why this might be.
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