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We demonstrate a swift ion-beam irradiation procedure based on electronic snot nucleard excitation

to generate a large index jump step-like optical waveguide sDn0<0.2, Dne<0.1d in LiNbO3. The

method uses medium-mass ions with a kinetic energy high enough to assure that their electronic

stopping power Seszd reaches a maximum value close to the amorphous slatentd track threshold

inside the crystal. Fluorine ions of 20 and 22 MeV and fluences in the range s1–30d31014 are used

for this work. A buried amorphous layer having a low refractive index s2.10 at a wavelength of

633 nmd is then generated at a controlled depth in LiNbO3, whose thickness is also tuned by

irradiation fluence. The layer left at the surface remains crystalline and constitutes the core of the

optical waveguide which, moreover, is several microns far from the end of the ion range. The

waveguides show, after annealing at 300 °C, low propagation losses s<1 dB/cmd and a high

second-harmonic generation coefficient s50%–80% of that for bulk unirradiated LiNbO3, depending

on the fluenced. The formation and structure of the amorphous layer has been monitored

by additional Rutherford backscattering/channeling experiments. © 2005 American Institute of

Physics. fDOI: 10.1063/1.1922082g

Ion implantation of light ions sH and Hed has been ex-

tensively investigated
1

as an alternative to classical methods,

impurity diffusion and ion exchange, to fabricate optical

waveguides in dielectric and electro-optic materials, such as

LiNbO3. It has the advantage of being a flexible universal

method. However, the obtained refractive index profiles

that are based on nuclear collision damage are smooth and

typically require very high irradiation fluences

s1016–1017 cm−2d. Recently, the use of heavier ions and

higher energies to obtain waveguides is starting to be ex-

plored. Silicon,
2

nickel
3

at 3 MeV, and oxygen,
4

fluorine,
5

and nitrogen
5

irradiations at around 5 MeV have already

been investigated. The fluences needed to achieve waveguid-

ing are markedly reduced down to around 1014 cm−2. How-

ever, the refractive index changes are neither large nor sharp,

and their origin is not well understood. Although the nuclear

collision damage still seems to be responsible for a signifi-

cant part of the refractive index modification in the low-

energy range, it has been pointed out that electronic excita-

tion could also be used to generate structural changes sand/or

damaged and modify the refractive indices.
4–6

Particularly,

oxygen and fluorine ions of 5 MeV generate a heavily dam-

aged layer at the surface after some critical fluence of

s2–6d31014 cm−2. Moreover, using silicon ions of 5 and

8 MeV, it has been recently found that such a surface layer is

optically isotropic and presents a low refractive index si.e.,

amorphous-liked, and that its thickness increases with

fluence.
6

The physical basis recalled to explain the process is

as follows: lattice amorphization is induced
7,8

along the tra-

jectories of bombarding ions whenever the electronic stop-

ping power Se is above a certain threshold Se,th. The so-called

latent tracks have a diameter of around a few nanometers.

When the irradiation fluence assures full overlapping of

the individual tracks, a homogeneous amorphous layer is

generated.

In this letter, we propose and implement a method, based

on the electronic excitation mechanism just described, to fab-

ricate an optical waveguide by means of choosing the experi-

mental irradiation conditions stype of ion, high enough en-

ergyd so that the maximum electronic stopping power sabove

or close to the threshold for electronic-induced amorphiza-

tiond lies inside the crystal and not at the surface. An opti-

cally isotropic low-refractive-index samorphous-liked region

is then generated inside the crystal, whereas the material re-

mains crystalline near the surface. The high-index crystalline

layer at the surface constitutes the core of an optical wave-

guide. Conceptually the procedure relies on the same optical

barrier scheme successfully applied with light-ion implanta-

tion, but using the more effective sas it has turned out to bed

electronic excitation. Moreover, the waveguide is several mi-

crons far from the end of range, thus keeping the impurity

level at a minimum. The method has been specifically ap-

plied to LiNbO3, which is a reference material
9

for electro-

optic and nonlinear optical sNLOd applications.

X- and Z-cut nominally pure sintegrated optical graded

LiNbO3 plates purchased from Photox Optical Systems, UK,
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were irradiated with F+4 ions at 20 and 22 MeV in the 5 MV

tandetron accelerator recently installed at the CMAM in the

University Autónoma de Madrid.
10

The samples were tilted

8° relative to normal incidence to avoid channeling and the

beam current density was kept below 200 nA/cm2 to mini-

mize charging and heating. In order to characterize the struc-

tural changes induced in the irradiated samples Rutherford

backscattering sRBSd/channeling experiments were per-

formed along the c-axis channel using H ions at 3 MeV. The

waveguide modes have been characterized by the prism-

coupling dark m-lines technique using a 5 mW He–Ne laser

sl=632.8 nmd. Propagation losses were determined by mea-

suring the scattered laser light along the beam trajectory in

the waveguide with a CCD camera. The second-harmonic

sSHd response was evaluated by using the method described

in Ref. 11 and applied to proton-exchange waveguides. As a

fundamental beam the 532 nm output sns pulsesd of a

frequency-doubled Nd:YAG laser was focused on the irradi-

ated surface of the plate to an intensity of 1012 W m−2 to

generate a SH beam at 266 nm. The light polarization is

chosen to probe the d33 coefficient.

In this work, the selected energy of the ion irradiation is

substantially higher than those previously used in implanta-

tion experiments both to assure the dominant effect of elec-

tronic excitation in waveguide formation and to have the

maximum of the electronic stopping buried a few microns

inside the crystal. In fact, the physical situation achieved

during irradiation is illustrated in Fig. 1sad showing the re-

sults of SRIM 2003 calculations for the nuclear sSnd and elec-

tronic sSed stopping powers for 22-MeV fluorine ions. The

maximum of the Seszd curve is inside the crystal at a depth of

about 4.5 mm, well separated from the peak value of the

nuclear stopping power Sn at the end of the ion range

sz<8 mmd. The generated waveguides show several sharp

dark modes for both ordinary and extraordinary polarizations

for fluences above a threshold value of 131014 cm−2. The

measured values of the effective refractive index squared

sNm
2 d are shown in Fig. 2 as a function of m2, m being the

mode order, for the various obtained modes. The obtained

refractive index profile for some representative fluences are

illustrated in Fig. 1sbd. The data corresponding to the thresh-

old fluence s131014 cm−2d indicate a maximum waveguide

thickness si.e., maximum damage depthd at around 4.5 mm,

in very good agreement with the maximum of Seszd, clearly

supporting the hypothesis of electronic induced amorphiza-

tion. For fluences above 231014 cm−2 the measured Nm
2 ap-

proximately follow a Nm
2 ~m2 dependence, as it is shown in

Fig. 2, indicating that an approximate step-like index profile

has been generated at the surface. The upper values of the

step profiles are consistent with those for the bulk crystal

sTable Id. The bottom level of the refractive index step is

obtained from the abrupt change in slope of the Nm
2 ~m2 plot.

It is approximately the same for the two polarizations and

coincides with the refractive index of amorphous LiNbO3

sRefs. 6 and 12d sna=2.10d. The thickness of the waveguid-

ing layer determined from the optical measurements is a

function of the irradiation fluence f, as it is clearly seen in

Fig. 2 and given in Table I. It reveals that the position of the

sfrontd boundary separating the crystalline and amorphous

layers moves towards the input surface of the sample on

increasing fluence. On the other hand, for Nm,na some reso-

nances are also measured which are caused by the refractive

index jump at the back amorphous-crystalline boundary as

indicated by the much smaller slope in Fig. 2. RBS/

channeling data shown below also indicate that the back

boundary moves towards the end of ion range. Given the

relevance for the waveguide performance si.e., high mode

confinement allowing the production of nonleaky narrow

monomode waveguidesd this estimated part of the refractive

index profile has also been plotted in Fig. 1sbd with dashed

lines sthe expected refractive index change in the nuclear

stopping layer, not relevant for this work, is neglectedd. This

boundary motion effect has been recently observed and at-

tributed to a reduction in the amorphization threshold with

fluence.
6

Note that optical barriers as wide as 4–5 mm are

obtained for fluences of ,131015 cm−2.

FIG. 1. sad Electronic sSed and nuclear sSnd stopping power of 22-MeV

fluorine ions in LiNbO3 calculated with SRIM 2003. sbd Ordinary snod and

extraordinary sned refractive index profiles obtained from the dark-mode

data ssolid linesd for some representative fluences. The estimated refractive

index profile susing the low-index optical resonances and RBS/channeling

datad corresponding to the back amorphous-crystalline boundary is also

shown with dashed lines.

FIG. 2. Effective refractive index squared sNm
2 d of the measured modes and

resonances as a function of the mode number squared sm2d for ordinary

sleftd and extraordinary srightd polarization, for the fluences indicated in the

figure. The squared refractive indices for the bulk LiNbO3 and for amor-

phous layer are also indicated with dashed lines.

TABLE I. Data for the Z-cut samples irradiated with 22-MeV F ions. hopt

and hRBS are, respectively, the waveguide thickness obtained from the dark-

mode optical measurements and from the RBS/channeling measurements.

ne,s and no,s refer to the surface refractive index for extraordinary and ordi-

nary polarization, respectively. x
33

s2d
snormd stands for the second-order sus-

ceptibility measured relative to a virgin substrate.

Fluence

sat/cm−2d

hopt

smmd

hRBS

smmd ne,s no,s x
33

s2d
snormd

131014 4.5 3.7 ¯ 2.286 0.8

231014 3.6 2.7 2.207 2.284 0.7

431014 3.0 2.3 2.208 2.281 0.6

131015 2.3 1.8 2.210 2.278 0.6

331015 2.0 1.6 2.211 2.278 0.5
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Figure 3 shows the RBS/channeling data taken by using

3-MeV H as probing ions on the irradiated z-cut samples.

One sees that at fluences above 1014 cm−2 a buried region

with random-like yield is observed. The thickness of the

waveguide layer decreases as the buried damaged layer

grows with fluence. Values are listed in Table I together with

the optical data. The front crystalline-amorphous boundary is

quite sharp in agreement with the optical sdark-mode datad.
On the other hand, the high-index surface layer shows rela-

tively clean channeled spectra suggesting a good crystallinity

and thus good optical properties.

Experimental data after implantation show high light

propagation losses associated to color centers introduced

during the irradiation. However, annealing treatments above

200 °C markedly improve the propagation, improving at the

same time the sharpness of the refractive index step. It is

noticeable that after 1 h annealing at 300 °C, the low refrac-

tive index of the amorphous layer remains unchanged. Figure

4 shows the losses measurement obtained for extraordinary-

index propagation in an X-cut sample irradiated with 20

-MeV F ions at the intermediate fluence of 431014 cm−2 and

annealed 1 h at 300 °C in air. The quantitative analysis of

the scattered light shows losses around 1 dB/cm, which ap-

pears competitive with values reported for waveguides pre-

pared by other implantation techniques.
2–5

In order to assess

the potential of the generated waveguide for NLO devices

the second-harmonic generation sSHGd response of the layer

has been measured for several fluences. By comparing to a

reference LiNbO3 substrate, the SHG susceptibility of the

waveguides at the crystal surface amounts to <80% of the

bulk value of unirradiated LiNbO3 for low fluences. For

higher fluences a monotonic decrease is found as given in

Table I. On the other hand, no substantial improvement is

obtained after annealing at 300 °C. The decrease in SHG

yield may be related to small structural disorder and to do-

main depolarization caused by the irradiation as previously

reported for He+ implantation in both LiNbO3 sRef. 13d and

KNbO3.
14

Further work on irradiation conditions, annealing,

and domain poling is needed.

In summary, a sharp step-like optical waveguide has

been generated at the surface by irradiating LiNbO3 sub-

strates with a 20–22 MeV F beam at fluences in the range

231014–331015 cm−2. At this energy, the electronic stop-

ping power reaches a maximum beneath the surface, with a

value close to the threshold for amorphization. A several-

micron-wide isotropic s“amorphous”d low-index layer

sn=2.10 at l=633 nmd is then created by the swift heavy

ion-beam irradiation. The crystalline surface layer constitutes

the waveguide core and approximately maintains the refrac-

tive index values of the bulk crystal. Therefore, large refrac-

tive index jumps of Dno<0.2 and Dne<0.1 are created, al-

lowing for the propagation of highly confined modes. The

high optical confinement, reasonable low waveguide losses

s,1 dB/cmd and significant second-harmonic efficiency

sabout 50%–80% of that for unirradiated LiNbO3d show a

promising performance for optoelectronic applications. Fur-

thermore, the method is expected to apply to other relevant

crystalline materials.
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FIG. 3. RBS/channeling spectra measured, with 3-MeV H along the c axis,

in Z-cut samples irradiated with 22-MeV F ions at the fluences of s1d 1

31014 striangles symbolsd, s2d 231014, s3d 431014, s4d 131015, and s5d

331015. For the purposes of clarity, only the spectra corresponding to

curves s2d and s5d are plotted for channels below 700. The depth scale

shown has been calculated using the density of the virgin LiNbO3; it under-

stimates the width of the buried amorphous layer since it is expected to have

a lower density.

FIG. 4. Loss measurement derived from the scattered light from the funda-

mental extraordinary mode of a waveguide produced by irradiating an X-cut

sample with 20-MeV F ions at a fluence of 431014 cm−2 and annealed in air

1 h at 300 °C. The strong peak is due to a scratch on the surface.
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