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Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require

specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the

transport channel—both in terms of low-order rms (envelope) properties as well as the higher-order phase-

space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial

Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge

fields including the following: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing

equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-

Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder

invariants. Important practical details necessary to specify these distributions in terms of standard

accelerator inputs are presented in a unified format. Building on this presentation, a new class of

approximate initial kinetic distributions are constructed using transformations that preserve linear

focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium dis-

tributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell

simulations are employed to show that the approximate initial distributions generated in this manner are

better adapted to the focusing channels for beams with high space-charge intensity. This improved

capability enables simulations that more precisely probe intrinsic stability properties and machine

performance.
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I. INTRODUCTION

Numerical simulations of charged particle beams using

the Vlasov-Maxwell equations have become an indispens-

able tool to analyze long-pulse accelerator systems with

high space-charge intensity [1–11]. Analytical theory can

become very cumbersome for realistic investigations of

systems with strong space-charge forces. Meanwhile, the

increasing power of digital computers and ever improving

numerical methods enable high-level modeling with lesser

degrees of idealization. Large-scale computer simulations

of Vlasov evolutions using particle-in-cell (PIC) methods

adapted from plasma physics [12,13] are routinely used to

identify physical mechanisms limiting transport [14–16],

to validate practical design concepts [17], and to support

interpretation of experiments where only limited diagnos-

tics are possible [9,18,19]. In the future, direct Vlasov

methods promise improved, low-noise simulations for im-

proved understanding of halo particle production and other

effects difficult to resolve with PIC methods [20–23]. It is

critical in many applications of Vlasov simulations of

intense beams to employ initial (‘‘load’’) distribution func-

tions that are well adapted to the transport lattice. If the

total beam propagation distance is not too long and the

injector is amenable to modeling, then the beam emission

from the source can be simulated and the subsequent

evolution through the transport and acceleration cycle of

the machine simulated for high-level ‘‘first-principles’’

modeling with limited assumptions [24–27]. Alter-

natively, the loaded distribution can be synthesized based

on reasonable extrapolations of limited experimental mea-

surements of the beam phase space at a diagnostic location

in the machine lattice [28,29]. Or finally, the initial beam

distribution can be assumed to be of a particular (ansatz)

form motivated by physical insight or generated by relaxa-

tion processes from a relatively simple initial ansatz dis-

tribution. The ansatz approach is especially useful when

analyzing intrinsic transport limits of beams with high

space-charge intensity—particularly if a smooth ‘‘equilib-

rium’’ beam distribution can be constructed which main-
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tains the functional form of the initial distribution. Then

well-established methods of plasma physics [30] can be

applied to understand the consequence of system perturba-

tions in a simplified manner.

In continuous-focusing channels the transverse applied-

focusing force is constant as the beam propagates in the

lattice. System energy is then conserved and an infinite

variety of stationary, stable equilibrium distributions with

appealing physical properties can be constructed from

distributions that are specified smooth functions of the

single-particle Hamiltonian [30–32]. At high space-charge

intensity, the self-consistent space-charge forces of the

continuous-focusing distributions lead to characteristic

Debye-screened density projections that one would expect

on physical grounds—with a flat core and a sharp edge

[30–32]. Unfortunately, the continuous-focusing model is

not in general directly applicable to laboratory systems.

Real applied-focusing lattices are typically periodic or

quasiperiodic structures where the applied forces vary

rapidly with the axial coordinate s. This variation of the

applied-focusing force vastly complicates the construction

of equilibrium or approximate equilibrium distributions

and also complicates beam stability [16,33–35]. The

s-varying applied-focusing fields can transfer energy into

and out of the beam, rendering the continuous-focusing

model only useful as an approximate, qualitative guide for

lattices with relatively weak applied focusing (i.e., low

undepressed particle phase advances).

In the presence of finite beam space charge, a well-

known self-consistent transverse equilibrium distribution

for a linear applied-focusing channel with arbitrary s var-
iations in the focusing forces is the Kapchinskij-

Vladimirskij (KV) distribution [30–32,36]. Although the

low-order properties of the KV distribution are appealing

physically, the full four-dimensional structure corresponds

to a singular, hyperellipsoidal shell in phase space. For

strong space charge, this singular structure drives unphys-

ical, higher-order instabilities [31,32,37–44] which limit

practical use of the KV distribution for initializing simu-

lations. The KV distribution is the only exact Vlasov

equilibrium known that is a function of linear-field

Courant-Snyder invariants [45]. Danilov et al. [46] inves-

tigate alternative classes of exact kinetic equilibrium dis-

tributions for linear forces. These distributions are highly

singular, and based on elementary plasma physics consid-

erations, can be expected to be unstable (similar to the KV

distribution) in regimes of high space-charge intensity.

Because of the limitations of the singular equilibrium

distributions (KV or otherwise) and the lack of known

smooth equilibria for focusing channels with s-varying
applied-focusing forces, approaches to generate initial ki-

netic distributions for simulations have been taken by

assuming specific nonequilibrium ansatz forms or by ap-

plying relaxation techniques. Such ansatz-type distribu-

tions in common use include the semi-Gaussian

distribution which retains the uniform charge-density of

the KV model within an elliptical envelope but modifies

the local temperature to be Gaussian-distributed and spa-

tially uniform [47]. This results in a beam edge that is not

locally in force balance and a spectrum of waves are

launched [16,48,49]. Depending on the application, such

waves may or may not pose a problem. Another ansatz

approach employed is to initialize beams that are functions

of Courant-Snyder invariants of single-particle orbits in the

applied-focusing fields [50,51]. Such distributions are

equilibria when space-charge forces are negligible but

can launch significant collective waves due to the lack of

consistent local force balance in the core of the beam when

space-charge forces are a significant fraction of the average

applied-focusing forces. Finally, several perturbative theo-

ries based on Hamiltonian averaging techniques [32,52–

58] and canonical transformations [59] have been devel-

oped to construct approximate, non-KV beam equilibria in

s-varying focusing channels. It is expected that the

Hamiltonian averaging techniques produce increasingly

reliable equilibrium representations at sufficiently weak

applied-focusing fields. The Hamiltonian averaging meth-

ods are beginning to be implemented and tested in self-

consistent Vlasov simulations [60]. Vlasov simulations of

the canonical transformation procedure of Ref. [59] have

been carried out and appear to verify near-equilibrium

structure for solenoidal periodic-focusing channels but

not for strong (quadrupole) periodic focusing.

Relaxation procedures have been developed to partially

circumvent the lack of a known smooth equilibrium distri-

bution with x-varying focusing forces. The intent behind

relaxation methods is to allow phase mixing, nonlinear

effects, and collective relaxation processes to effectively

relax the core of a nonequilibrium ansatz ‘‘initial’’ distri-

bution to a form better adapted to the applied-focusing

channel. These approaches presuppose the existence of a

stable underlying equilibrium, which particularly for

strong focusing strength may not be the case [16,33–35],

thereby limiting applicability. One approach tried is to

gradually increase the space-charge intensity by adjusting

species weights while evolving the beam [61,62], or simi-

larly by slowly removing nonlinear applied-field compo-

nents applied to better match the edge, while evolving the

beam [63]. Another approach has been to employ

‘‘Langevin’’ procedures where stochastic, scattering terms

and damping terms are added to the particle equations of

motion and the simulations are advanced until these terms

balance while driving the beam to a relaxed state [64]. In

these methods it can be difficult to parametrically deter-

mine sufficient propagation distances and criteria to spec-

ify adequate relaxation [15] and/or how rapidly the space-

charge intensity can be increased toward desired values.

Moreover, the desired beam parameters (emittances, etc.)

can be difficult to obtain. Recent work by Dorf et al.

[65,66] improves the relaxation approach by launching
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continuous-focusing distributions (equilibrium and other-

wise) and adiabatically modifying the focusing to periodic

form. Encouraging results are obtained by allowing the

beam to adapt to the channel while adiabatically reducing

the continuous-focusing fields simultaneously with in-

creasing periodic-focusing fields in a manner where nearly

constant net focusing strength is maintained.

In this study, conventional initial distributions employed

in beam simulations are first reviewed within a common

framework. Special attention is applied to generating

smooth, stationary equilibria in continuous-focusing chan-

nels. Continuous equilibria with ‘‘waterbag,’’ ‘‘parabolic,’’

and ‘‘thermal’’ forms are analyzed in detail. Procedures are

formulated for all types of distributions presented to initi-

alize macroparticles in PIC simulations. Results from these

standard distributions are then applied to develop a new

class of pseudoequilibrium distributions that are useful for

initializing Vlasov simulations of beams in transport chan-

nels with s-varying applied-focusing forces. The pseudoe-

quilibrium distributions are constructed by transforming

continuous-focusing equilibria to rms equivalency [31]

with a KV beam in a manner that preserves the linear

space-charge Courant-Snyder invariants. The pseudoequi-

librium distributions are not exact equilibria, but are rela-

tively easy to synthesize, and have appealing physical

properties that better reflect the relaxed, equilibriumlike

form expected in stable transport. The proximity to equi-

librium form reduces the initial transient waves associated

with the lack of full consistency, thereby simplifying in-

terpretation of the simulations. The procedure is formu-

lated using standard accelerator inputs. Results are

illustrated for transverse PIC simulations of four-

dimensional (4D) phase space describing an unbunched,

coasting beam. The results indicate that the loads will

prove superior to standard beam initializations—particu-

larly for high relative space-charge intensity. The method

used to generate the pseudoequilibrium distributions also

applies to 6D phase-space distributions if the axial particle

phase space is specified. Parametric simulation studies

carried out with initial pseudoequilibrium distributions

have already been applied to better understand the intrinsic

space-charge limits in the transport of matched beams in

periodic-focusing channels [16,33–35]. Parts of formula-

tions presented here have been developed through exten-

sions of cited material in a series of graduate level classes

on beam physics with high space-charge intensity taught

by Barnard and Lund at the U.S. Particle Accelerator

School [67] and the University of California at Berkeley

[68], and Lund at the French National Institute for

Research in Computer Science and Controls (INRIA)

school on modeling and computational methods for kinetic

equations [69].

The organization of this paper is the following.

Section II presents an overview of PIC simulation codes

employed in this study for testing loaded distributions

(Secs. II A and II B), and reviews system and numerical

parameters employed to characterize simulations

(Sec. II C). Classes of transverse distributions commonly

employed in simulations are summarized in Sec. III in-

cluding: equilibrium KV (Sec. III A) and continuous-

focusing distributions (Sec. III B), and nonequilibrium

semi-Gaussian (Sec. III C), and linear-field Courant-

Snyder invariant (Sec. III D) distributions. Important de-

tails are given in the Appendices to allow reasonably

abbreviated presentation in the main text without sacrific-

ing completeness. In Appendix A, acceleration effects are

analyzed in a manner to allow application of coasting-

beam results central to the paper to systems with slow

axial acceleration. Appendix B elucidates the important

connection between statistical rms emittances and single-

particle Courant-Snyder invariants for particles within a

KV distribution. Appendix C calculates the moments

and projections of distributions of linear-field Courant-

Snyder invariant distributions presented in Sec. III D.

Appendices D, E, and F provide extensive details on the

equilibrium structure of continuous-focusing waterbag,

parabolic, and thermal equilibrium distributions. This in-

cludes nonlinear equilibrium properties, solution of con-

straints to express the solutions in terms of standard

accelerator parameters, and simplifications to load the

distributions in PIC codes. These results are applied in

Sec. IV to construct classes of pseudoequilibrium distribu-

tions which improve on several aspects of the conventional

distributions reviewed. Straightforward procedures are for-

mulated to construct the distributions (Sec. IVA), and the

simulations presented (Sec. IVB) highlight key results.

Concluding comments in Sec. V outline the range of use-

fulness and limitations of the pseudoequilibrium

distributions.

II. SIMULATION DESCRIPTIONS

Here we briefly describe two electrostatic PIC simula-

tion codes employed and parameter choices made associ-

ated with example simulations carried out. This allows

succinct presentation of later examples while providing

complete details on numerical methods and parameters

employed so results can be reproduced. Methods described

are mostly standard and can be readily applied within a

variety of PIC codes used to simulate charged particle

beams with high space-charge intensity. The two codes

employed to evaluate the performance of initial distribu-

tions analyzed in this study are WARP (Sec. II A) and B-DYN

(Sec. II B). Example simulations are carried out on both

serial and parallel computer systems using both codes.

Code descriptions focus on specific numerical methods

employed. For simplicity, transverse simulations are car-

ried out of a coasting beam with a common set of system

parameters (Sec. II C). Parameter discussions are framed in

a general manner to highlight resolution and statistics

issues associated with PIC simulations.
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A. The WARP code

The WARP code is a versatile set of simulation tools

originally developed to model ion beams with intense

space charge for application to heavy ion fusion

[1,2,5,70,71]. Particle moving, fieldsolve, loading, and

diagnostic routines are linked to a Python interpreter to

enable a wide variety of simulations without modifying the

source code. The WARP code has both fully 3D, r-z, and
transverse 2D (xy) slice PIC packages in addition to a

moment package for centroid and envelope descriptions.

All PIC packages are multispecies. The transverse slice

package is applied for this study which leapfrog advances

macroparticles in time with time-advance steps iterated to

map macroparticles from slice to slice. Residence correc-

tions are applied when macroparticles enter and exit hard-

edge quadrupole focusing elements. The kinematics are

fully relativistic and leading-order self-magnetic field ef-

fects are included by gamma-factor corrections [32,72,73].

Various fieldsolvers can be applied to solve the discretized

Poisson equation with detailed conducting structures. Here

we employ a fast Fourier transform solver coupled with a

capacity matrix solver to implement boundary conditions

for a cylindrical, conducting beam pipe on a uniform,

square grid. Symmetry conditions can be exploited for

more efficient simulations (a"4# reduction in simulation

time with equivalent statistics and resolution for ideal

quadrupoles). A wide variety of initial distributions de-

scribed in this paper can be loaded as well as ‘‘first-

principles’’ simulations of ions emitted from space-charge

limited flow injectors, and various synthesized distribu-

tions based on extrapolations of a limited set of beam

properties (usually from measured experimental data).

Various ordered and pseudorandom number sequences

can be applied when generating particle loads.

Diagnostics include particle phase-space projections with

transforms to remove linear coherent flows (allowing better

visualization of small, nonlinear distribution distortions),

and various moment and binned quantities calculated from

the distribution (standard moments as well as fluid flows,

kinetic temperatures, etc.).

B. The B-DYN code

The B-DYN code was developed to study high space-

charge intensity beam dynamics during the final beam

bunching section in heavy ion fusion drivers [74–76].

The B-DYN code employs a 2D, transverse slice model.

When applied to longitudinally compressing beams, spe-

cies weights are adjusted to model increased transverse

space-charge forces resulting from the compression [77].

Macroparticles are advanced in the axial coordinate s using
the paraxial approximation, relativistic equations of mo-

tion, and the leapfrog method. Axial advance steps are

chosen so that macroparticles are not advanced through

element boundaries when entering and exiting hard-edge

quadrupoles. Leading-order self-magnetic field effects are

included using gamma-factor corrections [32,73]. The self-

field is calculated on a uniform, square grid by solving the

discretized Poisson equation using a multigrid, successive

over-relaxation method [78]. Conducting-pipe boundary

conditions are taken on the square grid boundary. System

symmetries are not exploited. A wide variety of distribu-

tions can be loaded. Sequences of pseudorandom numbers

are employed in generating particle loads.

C. Simulation parameters

In simulations carried out to illustrate distribution loads,

we assume a periodic focusing-off-defocusing-off (FODO)

quadrupole magnetic-focusing lattice or a continuous-

focusing lattice. The periodic FODO lattice has piecewise

constant lattice focusing functions !j in the j ¼ x; y planes

as illustrated in Fig. 1 with !x ¼ !!y. Quadrupole focus-

ing elements have fractional magnet occupancy  in the

lattice with period Lp ¼ 0:5 m. Equal axial-length and

equal-strength focusing and defocusing quadrupoles (‘ ¼

Lp=2) are separated by equal axial-length drifts [d ¼

ð1! ÞLp=2]. The scale of the !j are set by the unde-

pressed particle phase advance 0 (measured in degrees)

using a formula presented in Ref. [79] (0x ¼ 0y ' 0)

for0 ¼ 45( (for relatively weak focusing), and0 ¼ 70(

(for relatively strong focusing near the stability limit of the

lattice [16,33–35]). A pure Kþ ion beam is assumed with

Eb ¼ 1 MeV axial particle kinetic energy (nonrelativistic).

No spread in axial velocity is taken for simplicity, and the

beam is unbunched and coasting (not accelerating) in

the periodic lattice. The rms-edge emittance of the beam

is set as "x ¼ "y ¼ 50 mmmrad [see Eq. (24)] for both

strengths of applied-focusing fields considered. The beam

line charge  ¼ const is adjusted to obtain specified values

of the dimensionless perveance Q [see Eq. (22)]. The

initial beam envelope is taken to be rms matched in the

lattice according to the KV envelope equations [see

Eq. (21)], and the beam slice is launched at the axial

midpoint of a drift before a focusing-in-x quadrupole.

Depressed particle phase advances  (x ¼ y ' ) are

specified for the loaded beam with nonuniform charge

FIG. 1. Quadrupole FODO focusing lattice employed in illus-

trative simulations.
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density in terms of =0, calculated from an rms-

equivalent matched beam [31] [see Eq. (25)].

For continuous-focusing simulations, the same choices

described above for the FODO quadrupole lattice are

made, but the applied-focusing functions are set with !j ¼

k20 ¼ const. To further aid comparisons to FODO lattice

simulations, we take (arbitrarily) k0 ¼ ð=180(Þ0=Lp

with Lp ¼ 0:5 m.

Numerical parameters of the simulations are set for both

high resolution and good statistics (low noise) to better

evaluate the subsequent evolution of the distribution loads.

Parameter choices are specified for loaded distributions

with nonuniform space charge in terms of rms-equivalent

beam [31] edge radii rx and ry [see Eq. (23)]. Uniform,

rectangular transverse spatial grids are employed with x-
and y-grid increments xx and xy (xx ¼ xy) chosen for

Nr ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

rxry

xxxy

s

(1)

zones (typical Nr 2 ½20; 200+) across the matched-beam

radius, with Nr sufficiently large to resolve the structure of

the beam edge. Round (WARP, with rp radius) or square

(B-DYN, with 2rp side length) conducting beam pipes are

placed on the grid far enough from the matched envelope

excursions with

Np ¼
rp
ffiffiffiffiffiffiffiffiffi

rxry
p ; (2)

chosen large enough (typical Np ’ 3 here) to render

image-charge effects small. For a given value of Np,

image-charge effects will be more strongly mitigated in

WARP than B-DYN, because the round beam pipe more

closely matches the equipotentials external to a roughly

elliptical charge symmetry beam than a square pipe. In

general, correct image-charge modeling requires imple-

menting boundary conditions associated with the structure

of the aperture under consideration in the field solver. The

number of macroparticles per grid cell,

Nppg ¼
N

rxry=ðxxxyÞ
; (3)

whereN is the total number of macroparticles loaded, is set

large enough (typical Nppg 2 ½102; 104+ and even larger on

parallel machines) to reduce statistical noise on the grid

and to produce low noise in binned diagnostic quantities

such as densities and kinetic temperatures. Generally, we

find that the requirement of reducing noise for clear diag-

nostics to be more stringent than required for high-fidelity

simulations. Symmetry factors are included in measuring

Nppg inWARP simulations. The axial advance stepsizexs of

the macroparticles is set for

Ns ¼
Lp

xs

(4)

steps per period (typical Ns 2 ½100; 500+) to resolve both

rapidly varying in s applied-focusing forces of the lattice

(more restrictive), and evolving collective space-charge

waves (generally less restrictive). Total advance lengths

in s are carried out over relatively small numbers of lattice

periods because the purpose of the present analysis is to

evaluate initial transient deviations from the load to stress

nonequilibrium like characteristics rather than collective

relaxations over longer evolutions [15,48,49]. Diagnostic

plots of binned density are contrasted at successive lattice

periods to emphasize changes. Spatial binning grids can be

independently set from the fieldsolve grid to allow use of

coarser diagnostic meshes that reduce noise while resolv-

ing relevant features.

The simulation parameters Nr and Ns should also set

consistently with resolving the characteristic Debye

screening length D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0 xT=ðq
2 xnÞ

p

[see Secs. III and

Appendix F]. Here, xT and xn are characteristic spatially

averaged kinetic temperature and density measures over

the beam. One expects that the radial falloff distance of the

beam density will be related to the Debye length, and that

resolving the edge (i.e., Nr sufficiently large) will result in

the number of cells per Debye length,

ND ¼
D
ffiffiffiffiffiffiffiffiffiffiffiffi

xxxy

q ; (5)

being sufficiently large to resolve screening of interactions

for high space-charge intensity. Likewise, controlling sta-

tistical noise (i.e., Nppg sufficiently large) on a grid chosen

to resolve the Debye length will generally assure that the

number of macroparticles within a characteristic Debye

screening circle

NppD ¼ N
2
D

rxry
(6)

is sufficiently large. For charged particle beams with non-

uniform temperature and density as well as an effective

edge radii rx and ry that evolve in the focusing lattice,

issues of adequate resolution of plasma parameters can

depend on the specific distribution and application.

Although some guidance exists in simple neutral plasma

systems [12,13], generally for intense beams these issues

must be explored carefully to establish confidence that

quantities examined are adequately represented and nu-

merically converged.

III. FORMULATION AND REVIEW OF INITIAL

TRANSVERSE KINETIC DISTRIBUTIONS

COMMONLY EMPLOYED IN SIMULATIONS OF

LINEAR-FOCUSING CHANNELS

We consider a beam of particles of charge q and rest

massm. The beam can be fully specified by the x-p phase-

space coordinates of the particles evolving in time. For
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present purposes, we model an axially thin, transverse slice

of beam evolving in the accelerator lattice as a function of

the axial coordinate s of the slice in the machine. The slice

moves axially with velocity bc ¼ const and relativistic

gamma factor b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1! 2
b

q

¼ const. Here, c is the

speed of light in vacuo. The transverse phase space of the

beam is described by the spatial coordinate x? ¼ xx̂þ yŷ
and the angle x0

? that the particle makes with the axis of the

machine. Primes henceforth denote derivatives with re-

spect to s, and in the paraxial approximation, x
0
? ’

v?=ðbcÞ, where v? is the transverse particle velocity.

In the Vlasov description, the slice is modeled by a

continuous, single-particle distribution function

f?ðx?;x
0
?; sÞ. In the paraxial limit, f? evolves as an

incompressible fluid in 4D transverse phase space accord-

ing to the nonlinear Vlasov equation [30–32,67–69]

"

@

@s
þ

@H?
@x0

?
,

@

@x?
!

@H?
@x?

,
@

@x0
?

#

f?ðx?;x
0
?; sÞ ¼ 0: (7)

Here,

H?ðx?;x
0
?Þ ¼

1

2
x
02
? þ

1

2
!xx

2 þ
1

2
!yy

2 þ
q

m3
b

2
bc

2


(8)

is the single-particle Hamiltonian, !jðsÞ (j ¼ x; y) are the

usual functions describing linear applied-focusing forces

of the lattice [31,79], andðx?; sÞ is the self-field potential
generated by the beam space charge. The potential 

satisfies the transverse Poisson equation,

r2
? ¼ !

q

0

Z

d2x0?f?; (9)

with  subject to the appropriate boundary conditions on

the transverse machine aperture. Here, 0 is the permittiv-

ity of free space.

The Vlasov-Poisson system given by Eqs. (8) and (9)

models the transverse beam evolution in the continuum

approximation. The system is solved as an initial value

problem where f?ðx?;x
0
?; sÞ is specified at some initial

value of s ¼ si. Any positive-definite distribution function

formed from a set of single-particle constants of the motion

fCig will produce a valid, exact ‘‘equilibrium’’ solution to

the Vlasov equation. Here, the notion of equilibrium is that

the form of f? ¼ f?ðfCigÞ does not evolve in s. A special

case of this is a stationary equilibrium with @f?=@s ¼ 0.

Stationary beam equilibria occur in continuous-focusing

systems with !j ¼ const and are extensively analyzed in

Sec. III B. Self-consistency requires that the equilibrium

distribution f?ðfCigÞ generates the required self-field con-

figuration needed for validity of the constants of the mo-

tion. Exact self-consistency is highly nontrivial for

focusing channels with s-varying applied-focusing forces

described by !jðsÞ.

In direct Vlasov simulations, a specified initial (s ¼ si)
distribution f?ðx?;x

0
?; s ¼ siÞ need only be loaded on the

phase-space grid of the simulation. For distributions with-

out singularities or sharp edges the distribution loading for

direct Vlasov codes is straightforward. The spatial x? and

angle x
0
? grid of the simulation should, of course, be

chosen accordingly to resolve distribution variations in

phase space. For beams with sharp edges or discontinuities,

there will generally be errors involved in discretizing the

distribution unless numerical methods that are specific to

the type of distribution are employed. For more customary

PIC simulations [12], a finite distribution of macroparticles

must be synthesized to represent the continuous initial

Vlasov distribution. Although the PIC method can simplify

the treatment of distributions with sharp edges or disconti-

nuities, sufficiently large numbers of macroparticles must

be employed to adequately sample the distribution and

limit statistical noise associated with the discretized rep-

resentation. Undesired correlations between macropar-

ticles must be prevented. Generally, procedures are

formulated to load phase-space coordinates exploiting dis-

tribution symmetries and using probability transforms of

pseudorandom uniform deviates typically available in

mathematical library functions. This is generally prefer-

able to Monte Carlo sampling of f? due to statistical noise

issues. Examples of explicit macroparticle initialization

methods for various distributions will be discussed in sub-

sequent sections.

Equations relating the focusing functions !j to magnetic

and/or electric fields of practical focusing elements are

presented in Refs. [31,79]. If the lattice has nonlinear

applied fields, appropriate terms can be added the Vlasov

equation (7) and the !j functions describe only the linear

component focusing terms (excluding skew couplings).

The !j can be periodic in s or not. For periodic lattices,

the scale of the !j can be regarded as fixed by the unde-

pressed phase advances 0j (measured in degrees per

lattice period) of a single particle evolving in the absence

of the beam in the linear applied fields of the lattice

[31,79]. For the FODO quadrupole lattice used in illustra-

tive simulations in this paper, 0x ¼ 0y ' 0.

The beam line-charge density,

 ' q
Z

d2x?
Z

d2x0?f?; (10)

is constant ( ¼ const) in slice models when particles are

not lost from the system. In later 3D generalizations  will

be allowed to vary with s in a specified manner. Statistical

averages over the full transverse phase space of the beam

slice are denoted by

h, , ,i? '

R
d2x?

R
d2x0? , , , f?

R
d2x?

R
d2x0?f?

; (11)

and restricted angle averages over x? by
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h, , ,ix0
?
'

R
d2x0? , , , f?
R
d2x0?f?

: (12)

We will frequently employ distribution moments such as

the number density of beam particles

n '
Z

d2x0?f?; (13)

the x- and y-plane coherent flow angles hx0ix0
?
and hy0ix0

?
,

and the incoherent flows (i.e., effective kinetic tempera-

tures)

Tx ' hðx0 ! hx0ix0
?
Þ2ix0

?
¼ hx02ix0? ! hx0i2

x
0
?
; (14)

with an analogous equation for Ty. Moments that are

formed by integrating over degrees of freedom of the

distribution f? are sometimes called projections (e.g.,

the density n is the x-y distribution projection).

Generally, to account for centroid motion, transverse

phase-space coordinates are measured relative to the

charge center of mass of the beam using

~x? ¼ x? ! hx?i?; ~x0
? ¼ x

0
? ! hx0

?i?: (15)

For notational simplicity, we henceforth assume an on-axis

centroid with hx?i? ¼ 0 ¼ hx0
?i?. It is straightforward to

modify results presented for nonzero centroid evolution by

replacing x? ! ~x?.
If the beam slice is accelerated axially by specified

longitudinal forces, then bb ! const is allowed to vary

as some prescribed function of s. It is shown in Appendix A
that, if the acceleration is slowly varying, then the formu-

lation presented above is applicable when interpreted in

terms of appropriately transformed variables. Con-

sequently, results presented for bb ¼ const here and in

subsequent sections can also be applied to accelerating

beams provided that variables are consistently interpreted.

This remains true even if the beam is axially long and bb

varies from the head to the tail of the pulse.

A. The Kapchinskij-Vladimirskij equilibrium

distribution

The so-called KV equilibrium distribution was con-

structed by Kapchinskij-Vladimirskij [36] and has been

extensively studied [30–32,37–45,67–69]. Here, we review

properties of the distribution for later use in formulating

alternative, smooth distributions to load. The KV distribu-

tion can be symmetrically expressed as

f?ðx?;x
0
?; sÞ ¼



q2"x"y


$%

x

rx

&

2

þ

%

rxx
0 ! r0xx

"x

&

2

þ

%

y

ry

&

2

þ

%

ryy
0 ! r0yy

"y

&

2

! 1

'

: (16)

Here, ðxÞ is the Dirac delta function [ðxÞ ¼ 0 for x ! 0

and
R
dxfðxÞðxÞ ¼ fð0Þ for any integrable function fðxÞ],

rj ¼ rjðsÞ (j ¼ x; y) are the edge (envelope) radii of the

uniform-density elliptical beam core, r0j ¼ r0jðsÞ are the

envelope angles, and "j ¼ const are the rms-edge emittan-

ces of the beam. The KV distribution is an exact equilib-

rium solution of the Vlasov equation (7) in the absence of

nonlinear image-charge forces (axisymmetric system with

@=@ ¼ 0, or free-space approximation) [30,32,36]. This

follows because the KV distribution is a function of single-

particle Courant-Snyder invariants of the linear applied

focusing and linear space-charge defocusing forces gener-

ated by the distribution itself (see Appendix B), and there-

fore an initial distribution with the KV form given by

Eq. (16) maintains the KV form for all s. Using techniques
similar to those employed in the derivation of the density

inversion theorem in continuous-focusing channels (see

Sec. III B), it can be shown that the delta-function form

of Eq. (16) arises naturally to produce a uniform-density

elliptical beam consistent with Courant-Snyder invariant

forms [67,68]. Canonical transforms can also be applied to

equivalently express a wide variety of superficially differ-

ent appearing expressions of the KV distribution in sym-

metrical canonical form [i.e., fðq;pÞ / ðq2 þ p
2 ! 1Þ for

2D canonical variables q and p] [45]. Danilov et al. [46]

investigate alternative classes of exact kinetic equilibrium

distributions for linear forces using both Courant-Snyder

andWronskian-type invariants of the particle orbits. These

distributions are highly singular in an analogous sense to

the KV distribution, and in several cases represent theories

that are cold in one or more phase-space planes. The added

Wronskian invariant appears to allow construction of

linear-force distributions in 3D when one or more phase-

space planes are cold.

Projections and moments of the KV distribution are

most readily calculated using canonical transforms (see

Appendix C and Refs. [30,67,68]). All two-dimensional

(2D) phase-space projections of the KV distribution cor-

respond to uniformly filled ellipses. The orientation and

shape of the elliptical projections evolve in s as the beam
propagates in the lattice. The density n of the KV distri-

bution (i.e., the x-y projection) is uniform within an ellip-

tical beam envelope with

n ¼
Z

d2x0?f? ¼

" 
qrxry

; if ð x
rx
Þ2 þ ð y

ry
Þ2 < 1;

0; otherwise:
(17)

This uniform-density beam produces linear self-field

forces within the beam when nonlinear image-charge ef-

fects are absent (free-space or aperture sufficiently large).

Two-dimensional x-x0 and y-y0 phase-space projections can
be calculated as

Z

dy
Z

dy0f? ¼

(


q"x
; if ð x

rx
Þ2 þðrxx

0!r0xx
"x

Þ2 < 1;

0; otherwise;

Z

dx
Z

dx0f? ¼

(


q"y
; if ð y

ry
Þ2 þð

ryy
0!r0yy
"y

Þ2 < 1;

0; otherwise:

(18)
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First- and second-order moments of the KV distribution are

summarized in Table I. From these moments, the j-plane
coherent flow angles are

hx0ix0
?
¼

"

r0x
x
rx
; if ð x

rx
Þ2 þ ð y

ry
Þ2 < 1;

0; otherwise;

hy0ix0
?
¼

"

r0y
y
ry
; if ð xrx

Þ2 þ ð yry
Þ2 < 1;

0; otherwise;

(19)

and the kinetic temperatures [i.e., incoherent flows, see

Eq. (14)] are

Tj ¼

" "2j
2r2j

ð1! x2

r2x
! y2

r2y
Þ; if ð x

rx
Þ2 þ ð y

ry
Þ2 < 1;

0; otherwise:
(20)

These parabolic temperature profiles drop to zero at the

beam edge, which is consistent with linear thermal pres-

sure and a sharp beam edge.

Although the full four-dimensional KV distribution (16)

is a manifest (hypershell) invariant, projections of the beam

evolve in s. In the absence of perturbations (applied field,

perturbed distribution, induced image charges, etc.), the

envelope radii rj evolve according to the so-called KV

envelope equations [31,36,79]:

r00j þ !jrj !
2Q

rx þ ry
!

"2j

r3j
¼ 0: (21)

Here,

Q ¼
q

20mc23
b

2
b

¼ const (22)

is the dimensionless perveance. If the focusing functions

!j are periodic in s, and the initial beam parameters are

‘‘matched,’’ then the solution for rj will have the same

periodicity as the lattice. This, in general, requires specific

choices for the envelope functions rj and angles r0j at the
axial coordinate s where the distribution is specified

[31,79]. An efficient procedure for numerically calculating

the matched-beam envelope under various parameter

specifications is presented in Ref. [80].

For the KV distribution, the envelope radii rj, the enve-

lope angles r0j, and the emittances "j ¼ const are related to

second-order statistical moments of the distribution (see

also Table I) as

rx ¼ 2hx2i1=2? ; ry ¼ 2hy2i1=2? ;

r0x ¼ 2
hxx0i?
hx2i1=2?

; r0y ¼ 2
hyy0i?
hy2i1=2?

(23)

and

"x ¼ 4½hx2i?hx02i? ! hxx0i2?+1=2;
"y ¼ 4½hx2i?hx02i? ! hxx0i2?+1=2:

(24)

When the envelope rj is matched to a periodic-focusing

lattice, the depressed phase advance of particles oscillating

within the core of the beam under the action of linear

applied-focusing fields and linear space-charge defocusing

fields can be calculated from [30,31,79]

j ¼ "j
Z Lp

0

ds

r2j
; (25)

where Lp is the lattice periodicity length. The ratio of

depressed to undepressed phase advance j=0j, also

called the tune depression, provides a convenient measure

of relative space-charge strength with j=0j ! 1 in the

limit of vanishingly small space-charge strength (Q ¼ 0),

and j=0j ! 0 in the limit of maximum space-charge

strength ("j ¼ 0). For systems with symmetry between the

x and y planes that result in x ¼ y, we denote j ' 

for notational simplicity.

Although Eqs. (23)–(25) apply to a KV beam, they are

often used to characterize non-KV distributions in an

‘‘rms-equivalent’’ sense [31,81], where a non-KV distribu-

tion (with generally nonlinear beam self-fields internal to

the beam) is replaced by a KV distribution with the same

energy, line charge, and first- and second-order moments as

the actual beam. Sacherer’s study in Ref. [81] shows that an

unbunched beam with charge density constant on elliptical

surfaces (i.e., with x2=r2x þ y2=r2y ¼ const) obeys the KV

envelope equation (21) provided the envelope radii rj and

emittances "j are calculated with the generalized beam

TABLE I. Moments of the KV distribution. All second-order

moments not listed vanish (i.e.,
R
d2x0?xyf? ¼ 0, hxyi? ¼ 0).

Moment Value
R
d2x0?x

0f? r0x
x
rx
n

R
d2x0?y

0f? r0y
y
ry
n

R
d2x0?x

02f? ½r02x
x2

r2x
þ "2x

2r2x
ð1! x2

r2x
! y2

r2y
Þ+n

R
d2x0?y

02f? ½r02y
y2

r2y
þ

"2y
2r2y

ð1! x2

r2x
! y2

r2y
Þ+n

R
d2x0?xx

0f?
r0x
rx
x2n

R
d2x0?yy

0f?
r0y
ry
y2n

R
d2x0?ðxy

0 ! yx0Þf? 0

hx2i? r2x
4

hy2i? r2y
4

hx02i? r02x
4
þ "2x

4r2x

hy02i? r02y
4
þ

"2y
4r2y

hxx0i? rxr
0
x

4

hyy0i? ryr
0
y

4

hxy0 ! yx0i? 0

16½hx2i?hx02i? ! hxx0i2?+ "2x
16½hy2i?hy02i? ! hyy0i2?+ "2y
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using the averages defined in Eqs. (23) and (24). However,

for non-KV beams the rms-edge emittances "j defined by

Eq. (24) generally evolve in s [82,83].
The KV envelope equation (21) can be employed with

self-consistent s-varying emittances [defined by Eq. (24)]

as an average force-balance equation for statistical edge

radii rj [defined by Eq. (23)] that describe a wide variety of

distributions [31,79,81]. If the emittance variations have a

negligible effect on the evolution of the rj, then the KV

equation can be applied with "j ¼ const for low-order

system modeling. Bands of parametric instability de-

scribed by the KV envelope equations predict parameter

regions where machines cannot reliably operate

[31,79,84]. Unfortunately, the singular structure of the

KV distribution leads to unphysical, higher-order collec-

tive mode instabilities [31,32,37–44] that render the distri-

bution generally unsuitable to employ as an initial

distribution function in Vlasov simulations of beams with

high space-charge intensity. Further reducing the applica-

bility of the KV distribution, Neuman has shown that KV

distribution (16) in 4D phase space is not generalizable to

6D phase space (see Appendix A of Ref. [45]). This

follows from bounds established by Neuman which show

that the density projection of any distribution of linear-

force Courant-Snyder invariants in 6D phase space cannot

produce a uniform-density ellipsoidal bunch projection in

3D necessary for linear space-charge forces and self-

consistency. The authors of Ref. [46] investigate classes

of 6D phase-space distributions with linear forces by ex-

ploiting Courant-Snyder and Wronskian symmetries si-

multaneously. However, these distributions are highly

singular in a similar manner to the KV case. Elementary

plasma physics considerations suggest that they can be

expected to be unstable (similar to the KV distribution)

in regimes of high space-charge intensity.

Loading the initial KV distribution (16) in a direct

Vlasov code can be challenging due to the singular

(delta-function) structure of f?. Optimal loading proce-

dures generally center on how to best represent the singular

delta function defining the hypershell surface in 4D phase

space where f? ¼ const on the discrete phase-space grid

of the simulation. For PIC simulations, an initial KV

distribution can be loaded several ways. In one approach,

the fact that the Courant-Snyder invariant argument of the

delta function define a hyperellipsoidal shell in 4D x?-x
0
?

phase space with

%

x

rx

&

2

þ

%

rxx
0 ! r0xx

"x

&

2

þ

%

y

ry

&

2

þ

%

ryy
0 ! r0yy

"y

&

2

¼ 1

(26)

can be employed. A finite number of macroparticles can be

loaded with phase-space coordinates uniformly distributed

on the 4D hyperellipsoid (or to the extent possible with a

finite number of particles) defined by Eq. (26).

In another macroparticle loading approach, the KV dis-

tribution property that
R
dx1

R
dx2f? is a uniformly filled

ellipse when x1 and x2 are chosen to be any two of the

phase-space coordinates x, y, x0, and y0 can be exploited.

This approach has the virtue that techniques developed can

be generalized to apply to loading other classes of distri-

butions (see Secs. III B and IV). One procedure [85] based

on uniform elliptical projections is to first load macro-

particle coordinates x? consistent with uniform beam

density within the elliptical envelope radii rj [see

Eq. (17)]. This can be accomplished using two indepen-

dent, uniformly distributed random numbers ûr 2 ½0; 1Þ
and û 2 ½0; 1Þ for each macroparticle and taking

x ¼ rx
ffiffiffiffiffi

ûr
p

cosð2ûÞ; y ¼ ry
ffiffiffiffiffi

ûr
p

sinð2ûÞ: (27)

Equation (27) is readily derived by transforming a uni-

formly filled unit disk to a uniformly filled ellipse with

major radii rj. With spatial coordinates set according to

Eq. (27), macroparticle angles x
0
? can be resolved into

coherent and incoherent components as

x
0
? ¼ x

0
?jc þ x

0
?jic; (28)

with the coherent (i.e., generally hx0
?jcix0

?
! 0) compo-

nents set consistently with Eq. (19) as

x0jc ¼ r0x
x

rx
; y0jc ¼ r0y

y

ry
; (29)

and the incoherent (i.e., hx0
?jicix0

?
¼ 0) components con-

strained [see Eq. (26)] to satisfy

%

rxx
0jic

"x

&

2

þ

%

ryy
0jic

"y

&

2

¼ 1!
x2

r2x
!

y2

r2y
: (30)

Incoherent angles can be generated consistent with this

constraint without introducing correlations by using an-

other independent, uniformly distributed random number

û’ 2 ½0; 1Þ for each macroparticle and taking

x0jic ¼
"x
rx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1!
x2

r2x
!

y2

r2y

v
u
u
t cosð2û’Þ;

y0jic ¼
"y

ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1!
x2

r2x
!

y2

r2y

v
u
u
t cosð2û’Þ:

(31)

The finite number of macroparticles loaded can never

exactly represent the distribution. There will always be

statistical errors resulting from finite statistics and the

shape of the macroparticles employed. Also, the discrete

spatial grid employed in the PIC method will generally

introduce errors in resolving the sharp edge of the KV

distribution. For cases where the KV distribution is un-

stable, these statistical and gridding errors will generally

project on unstable collective modes complicating appli-

cations of the KV distribution [31,38,39].
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Statistical noise associated with loads of a finite number

of macroparticles in PIC simulations can be substantially

reduced by replacing the pseudorandom numbers ûr, û,
and û’ with ordered sets of numbers (based on digit-

reversed numbers, Fibonacci numbers, etc.) in the interval

½0; 1Þ to obtain more uniform macroparticle spacing in

phase space [12]. Such techniques are especially useful

for high-resolution tests of equilibrium loads. However, as

simulations are advanced in s, noise will eventually grow

to levels consistent with the underlying statistics and dis-

cretizations associated with the numerical methods em-

ployed. Considerable care should be taken when using

ordered numbers to load both macroparticle coordinates

x? and angles x0
? that unphysical phase-space correlations

are not introduced via the systematic orderings. The pos-

sibility of introducing unwanted correlations can be miti-

gated (at the expense of more load noise) by using ordered

numbers only in the particle coordinate or angle loads, but

not both. Comments given here on the application of

ordered sets of numbers in generating KV distribution

loads are also applicable to loads developed for other

distributions in subsequent sections.

Numerous examples of KV beam Vlasov simulations

can be found in the literature [31,38,39,43,59] and will not

be repeated here. Intrinsic instabilities of the distribution

are generally seeded by noise and errors specific to the

loading method and numerical approximations employed.

This renders results difficult to interpret, particularly for

strong relative space-charge strength.

B. Continuous-focusing equilibrium distributions

The continuous-focusing model has been extensively

studied by Davidson and Qin [30,32], Reiser [31], and a

comprehensive review can be found in courses taught on

intense beams by Barnard and Lund [67,68]. An early

treatment of the model within the context of self-consistent

beam equilibria with space charge was presented by

Sacherer [86]. Here we parallel the formulation presented

by Barnard and Lund to review general properties of the

continuous-focusing model for later application in formu-

lating approximate Vlasov loads for focusing channels

with s-varying applied-focusing forces that improve on

the KV model. Details of specific choices of continuous-

focusing beam equilibria are presented in Appendices D,

E, and F. In a continuous-focusing channel, !x ¼ !y ¼

k20 ¼ const and the transverse particle Hamiltonian H?
given by Eq. (8) is a single-particle constant of the motion

with H? ¼ const. Therefore, any function

f?ðx?;x
0
?; sÞ ¼ f?ðH?Þ (32)

satisfying f? - 0 at s ¼ si will form a valid stationary

(@=@s ¼ 0) equilibrium solution to the Vlasov equation (7)

with continuous focusing. Moreover, functional bounds

can be employed to show that the monotonicity condition

@f?ðH?Þ=@H? . 0 is a sufficient condition for stability of

the continuous-focusing equilibrium f? to both small- and

large-amplitude perturbations [30,32,87–89]. Conversely,

any continuous-focusing equilibrium not satisfying

@f?ðH?Þ=@H? . 0meets a necessary condition for insta-

bility and intuitively one expects that such nonmonotonic

profiles to have ‘‘free energy’’ to drive instabilities.

It can be shown [90] that any valid choice of function

f?ðH?Þ with @f?ðH?Þ=@H? . 0 necessarily produces an

axisymmetric (@=@ ¼ 0) continuous-focusing equilib-

rium when the aperture is axisymmetric or sufficiently

large to have a negligible effect on the beam (as will be

assumed to hold in the remainder of this section). In this

case, the Poisson equation (9) can be expressed as

1

r

@

@r

%

r
@

@r

&

¼ !
qn

0
¼ !

q

0

Z

d2x0?f?ðH?Þ; (33)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

is the transverse radial coordinate. It

is convenient to define an effective potential [30–32,91]

c ðrÞ '
1

2
k20r

2 þ
qðrÞ

m3
b

2
bc

2
: (34)

Then,

H? ¼ 1
2
x
02
? þ c (35)

and system axisymmetry can be exploited to calculate the

beam density as

nðrÞ ¼
Z

d2x0?f?ðH?Þ ¼ 2
Z 1

c

dH?f?ðH?Þ; (36)

to recast the Poisson equation (33) as

1

r

@

@r

%

r
@c

@r

&

¼ 2k20 !
2q2

m0
3
b

2
bc

2

Z 1

c

dH?f?ðH?Þ:

(37)

An explicit solution of this equation for c [or equivalently

Eq. (33) for ] is necessary to calculate the continuous-

focusing equilibrium density profile n ¼
R
d2x0?f?ðH?Þ.

For most physically appealing, smooth choices of f?ðH?Þ
the equation is highly nonlinear and the solution must be

done numerically. Details on how the solution is best

carried out vary with the choice of f?ðH?Þ. In some cases

it can be advantageous to eliminate c in Eq. (37) in terms

of the density n using Eq. (36).

To better understand the continuous-focusing equilib-

rium structure, it can be useful to calculate the radial

kinetic temperature profile Tx ¼ hx02ix0
?
[see Eq. (14)] of

the axisymmetric equilibrium defined by f?ðH?Þ. By

symmetry, Tx ¼ Ty. Using Eq. (35), explicit calculation

of TxðrÞ can be simplified as

LUND, KIKUCHI, AND DAVIDSON Phys. Rev. ST Accel. Beams 12, 114801 (2009)

114801-10



TxðrÞnðrÞ ¼
1

2

Z

d2x0?x
02
?f?ðH?Þ

¼ 2
Z 1

c

dH?ðH? ! c Þf?ðH?Þ: (38)

The axisymmetric continuous-focusing equilibrium

beam formed by f?ðH?Þ will be envelope matched to the

continuous-focusing channel with rj ' rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hr2i?
p

¼

const satisfying the rms-envelope equation

k20rb !
Q

rb
!

"2b
r3b

¼ 0: (39)

Here, f?ðH?Þ can be employed to consistently calculate

the statistical beam envelope radius rb [see Eq. (23)] as

r2b ¼ 2hr2i? ¼

R1
0 drr3

R1
c dH?f?ðH?Þ

R1
0 drr

R1
c dH?f?ðH?Þ

; (40)

the line-charge density  ¼ const [see Eq. (10)], or per-

veance Q ¼ q=ð20mc23
b

2
bÞ [see Eq. (22)] as

 ¼ ð2Þ2q
Z 1

0

drr
Z 1

c

dH?f?ðH?Þ; (41)

and the rms-edge emittance "j ' "b ¼ const [see Eq. (24)]

as

"2b ¼ 2r2bhx02
?i?

¼ 2r2b

R1
0 drr

R1
c dH?ðH? ! c Þf?ðH?Þ

R1
0 drr

R1
c dH?f?ðH?Þ

: (42)

Comparing Eqs. (38) and (42) and employing previous

results, note that the beam emittance "b is related to the

spatially averaged radial temperature profile of the beam

by

"2b ¼ 2r2b

R1
0 drrTxðrÞnðrÞ
R1
0 drrnðrÞ

: (43)

Although the self-field potential specified by Eq. (37) is

generally difficult to solve for physically appealing,

smooth choices of f?ðH?Þ, some general comments can

be made on the solution structure. For f?ðH?Þ without

singularities, one expects a radial density profile nðrÞ ¼
R
d2x0?f?ðH?Þ that, for strong space charge, becomes very

flat in the core due to Debye screening [30] before falling

off near the beam edge with a radial shape characteristic of

the form of f?ðH?Þ. For weak space charge the character-

istic radial edge shape will reach more deeply into the core

of the beam. Screening effects associated with strong space

charge will also influence the kinetic temperature profile

TxðrÞ of the continuous-focusing distribution. For very

strong space charge, screening can cause the equilibrium

density profile to become flat enough where special nu-

merical methods prove necessary to solve the equilibrium

Poisson equation for . Also, as a practical matter, pa-

rameters used in the definition of f?ðH?Þ [e.g., thermal

equilibrium: f?ðH?Þ ¼ C1 expð!C2H?Þ, where C1 ¼
const and C2 ¼ const are positive parameters; see

Appendix F] should be identified in terms of parameters

customarily employed in beam physics to facilitate appli-

cation of results. Parameters should be related to particle

properties (i.e., the charge q, mass m, and relativistic

factors b and b), the applied-focusing strength (k20),

the perveance (Q), and the rms-edge emittance ("b). This
typically requires analysis of highly nonlinear integral

constraint equations that must be solved consistently with

changes in the equilibrium potential  as parameters used

in the definition of f?ðH?Þ vary. Concrete examples of

such procedures are given in Appendices D, E, and F for

unit-step (‘‘waterbag’’ distribution), linear (‘‘parabolic’’

distribution), and Gaussian (‘‘thermal’’ distribution)

choices of f?ðH?Þ. These three radically different choices
of f?ðH?Þ functions serve to illustrate the commonality

and differences involved with a wide range of choice in

equilibrium distributions. All three of these choices satisfy

@f?ðH?Þ=@H? . 0 and therefore correspond to stable

Vlasov equilibria.

It is instructive to examine the form of the KV equilib-

rium distribution presented in Sec. III A in the ideal,

continuous-focusing limit. In this case, rj ¼ rb ¼ const,

r0j ¼ 0, and "j ¼ "b ¼ const. Using the delta-function

property ðCxÞ ¼ ðxÞ=jCj with C ¼ const, the KV distri-

bution (16) can be expressed in the continuous limit as

f? ¼


q2r2b


%

1

2
x
02
? þ

"2b
2r4b

x
2
? !

"2b
2r2b

&

: (44)

For the uniform-density, axisymmetric beam core of the

continuous focused KV beam, the Poisson equation (33)

can be integrated to show that the single-particle Hamil-

tonian [see Eq. (8)] is expressible as

H? ¼
1

2
x
02
? þ

"2b
2r4b

x
2
? þ const: (45)

At the beam edge (r ¼ rb), all particles must turn, x0
? ¼ 0,

and H?jr¼rb ¼ "2b=ð2r
2
bÞ þ const ' Hb. Using these re-

sults, the continuous-focusing KV distribution (44) can

be equivalently expressed as

f? ¼


22qr2b
ðH? !HbÞ: (46)

Using  ¼ qn̂r2b with n̂ ¼ const the density within the

beam, Eq. (46) can be written as f? ¼ n̂
2

ðH? !HbÞ.

This alternative expression for the KV distribution function

in a continuous-focusing channel is commonly employed

in the literature [30–32,67,68]. The equivalence of

Eqs. (16) and (46) shows that for continuous focusing,

the Courant-Snyder invariant form of the KV distribution

reduces to the expected Hamiltonian invariant form. This

should not be interpreted as implying that the Courant-

Snyder invariant is equivalent toH? ¼ const for other than
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continuous focusing. In periodic-focusing channels the

Hamiltonian H? has explicit s dependence from the

applied-focusing terms. Unfortunately, this s dependence

renders H? inappropriate for constructing single-particle

invariants and equilibrium distribution functions for focus-

ing channels with s-varying focusing forces. It is also

interesting to point out that @f?ðH?Þ=@H? changes sign

aboutH? ¼ Hb, showing that the KV distribution does not

satisfy the sufficient condition for stability and therefore

satisfies a necessary condition for instability. Well-known

kinetic analyses show that the continuous-focusing KV

distribution is unstable for all space-charge strengths sat-

isfying =0 < 0:3985 [38,42].

The KV model can be applied in an rms-equivalent

beam sense to characterize relative space-charge strength

of a continuous-focusing equilibrium with nonuniform

nðrÞ. Taking the equivalent axial ‘‘lattice period’’ length

of phase accumulation to be Lp, we first set k0 ¼ 0=Lp,

where 0 is the undepressed particle phase advance over

Lp. Then the depressed phase-advance equation (25) for

j '  is applied over an axial length Lp with "j ¼ "b
and rj ¼ rb given by the matched-beam envelope equa-

tion (39). This yields



0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1!
Q

k20r
2
b

s

¼
"b

k0r
2
b

: (47)

In this context, =0 characterizes the relative space-

charge strength of an equilibrium with =0 ¼ 1 (Q ¼
0) corresponding to negligible space-charge strength, and

=0 ¼ 0 ("b ¼ 0) corresponding to an equilibrium with

maximum space-charge strength.

Some authors employ alternative dimensionless parame-

ters to =0 when characterizing relative space-charge

strength. One choice [32] is to define a normalized self-

field intensity parameter sb as the ratio of one-half of the

squared relativistic plasma frequency formed from the on-

axis (r ¼ 0) density n̂ ¼ nðr ¼ 0Þ of the distribution [i.e.,

!̂2
p=ð2bÞwith !̂

2
p ¼ q2n̂=ðm0Þ] to the squared frequency

of single-particle oscillations in the applied-focusing field

[2
b

2
bc

2k20], i.e.,

sb '
!̂2

p

23
b

2
bc

2k20
: (48)

For a KV continuously focused beam, sb and =0 are

simply related by

sb ¼ 1!

%



0

&

2

: (49)

The dimensionless self-field parameter sb defined in terms

of the on-axis density of the beam can be algebraically

convenient when specifying continuous-focusing equilib-

ria with monotonic radial density profiles nðrÞ satisfying
@nðrÞ=@r . 0. However, monotonic equilibrium specifica-

tions of f?ðH?Þ with @f?ðH?Þ=@H? . 0 (see examples

in Appendices D, E, and F) generally result in sb ’ 1 over a

relatively large range of high space-charge intensity (with

rms equivalent =0 & 1=2), rendering sb a relatively

insensitive measure in regimes where sb ! 1.

The form of an continuous-focusing equilibrium distri-

bution f?ðH?Þ and the corresponding density nðrÞ are

strongly linked. For monotonic density profiles with

@nðrÞ=@r . 0, n̂ ¼ nðr ¼ 0Þ is maximum value of nðrÞ
and the density inversion theorem [30,32,67,68,92] can

be employed to calculate the equilibrium function

f?ðH?Þ from a specified density profile as

f?ðH?Þ ¼ !
1

2

@n

@c

(

(

(

(

(

(

(

(c¼H?

: (50)

If f?ðH?Þ satisfies @f?ðH?Þ=@H? . 0, then the equilib-

rium specified by nðrÞ will be stable.
Although the structure of the continuous-focusing equi-

libria satisfying @f?ðH?Þ=@H? . 0 is physically appeal-

ing and stable, unfortunately the continuous-focusing

model cannot provide a direct guide for properties of

beam transport in realistic s-varying applied-focusing

channels. The continuous-focusing function !j ¼ k20 ¼

const is equivalent to a partially neutralizing, immobile

(m ! 1) background species with charge density  ¼

!2m0b
2
bc

2k20=q ¼ const and can only represent real-

istic, s-varying focusing forces in an average sense. While

this approximate continuous and s-varying focusing corre-
spondence can be useful in simplified estimates of trans-

port properties where the system is far from instability,

periodic-focusing channels have well-known instabilities

that are not present in the continuous-focusing limit

[16,33–35]. Continuous-focusing analogies to periodic-

focusing systems typically become progressively worse

as the strength of the applied-focusing field (as measured

by 0) increases—particularly for alternating-gradient

quadrupole focusing. The desire for radially compact

beams often requires applications with high focusing

strength, exacerbating this breakdown of approximate

analogies. Canonical transforms [30,45,67,68] and

Hamiltonian average theories [32,52–58] can improve ap-

plicability of the continuous-focusing model to systems

with nonconstant (especially periodic) focusing—particu-

larly as the focusing becomes weaker, e.g., for0 & 60( in

periodic lattices.

To load the continuous-focusing distributions (32) in

direct Vlasov or PIC simulations, parameters used in defin-

ing the function f?ðH?Þ should be determined in terms of

standard beam parameters (i.e., k20, Q, "b, etc.). Such

procedures are generally nontrivial, as evident from the

examples in Appendices D, E, and F. With equilibrium

parameters specified, the effective potential c must then

be calculated (generally numerically) within the beam to

determine H? ¼ x
02
?=2þ c and thereby fully specify

f?ðH?Þ. For direct Vlasov simulations f?ðx
02
?=2þ c Þ

can then be loaded on the 4D (or 3D=2D if axisymmetry
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is partially/fully taken into account) phase-space grid of

the simulation.

For PIC simulations, macroparticles can be loaded to

approximate the continuous-focusing distributions by

building on techniques discussed in Sec. III A for initializ-

ing macroparticles to model the KV distribution. First, the

radial beam density profile nðrÞ can be calculated from

Eq. (36) using the calculated radial effective potential

c ðrÞ. Then macroparticle spatial coordinates x? can be

loaded consistent with this density profile using a proba-

bility transform to map a uniform distribution within a unit

circle to a distribution consistent with the radial density

profile nðrÞ. This can be accomplished using two indepen-

dent, uniformly distributed random numbers ûr 2 ½0; 1Þ
and û 2 ½0; 1Þ for each macroparticle, carrying out a

probability transformation [12]
R
r
0 d~r ~r nð~rÞ

R1
0 drrnðrÞ

¼ ûr; (51)

and taking

x ¼ rðûrÞ cosð2ûÞ; y ¼ rðûrÞ sinð2ûÞ: (52)

Here, rðûrÞ is the smallest positive solution of Eq. (51), and

û generates a uniform distribution of azimuthal coordi-

nate angles in the axisymmetric beam. If a lower-

dimensional simulation is used (with ‘‘ring’’ macropar-

ticles) to more efficiently model the axisymmetric beam,

then only macroparticle radii rðûrÞ need be calculated. The
solution rðûrÞ must, in general, be solved numerically for

smooth nðrÞ. When a large number of macroparticles must

be loaded, the transform in Eq. (51) can be calculated for

gridded values of ûr 2 ½0; 1+ and the corresponding

gridded values of rðûrÞ stored to allow efficient calculation

of rðûrÞ for arbitrary values of ûr 2 ½0; 1Þ by calculating

the nearest grid indices and interpolating. For cases where

nðrÞ does not have a sharp edge, the grid will generally

need to be cutoff at a radius beyond which the density is

negligible. If a uniform grid is employed the cutoff should

not be chosen too large or the resolution in the core of the

distribution will be degraded (see, for example, the thermal

equilibrium analysis in Appendices F and G). Some simple

classes of density profiles allow analytical solution. For

example, if the density is uniform within radius r ¼ re,
then Eq. (51) yields rðûrÞ ¼ re

ffiffiffiffiffi

ûr
p

[compare this to

Eq. (27) with rx ¼ ry ¼ re].

With the macroparticle coordinates loaded and the radial

dependence of c ðrÞ thereby specified, the macroparticle

angles x
0
? can be generated consistently with f?ðH?Þ

using an analogous procedure to the one employed for

the coordinate loading. Taking H? ¼ Uþ c with U ¼

x
02
?=2, the probability transform

R
U
0 d ~Uf?ð ~Uþ c Þ

R1
0 dUf?ðUþ c Þ

¼ ûU (53)

is solved for UðûUÞ and then the angles are set consistent

with beam axisymmetry using

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2UðûUÞ
q

cosð2û’Þ;

y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2UðûUÞ
q

sinð2û’Þ:
(54)

Here, ûU 2 ½0; 1Þ and û’ 2 ½0; 1Þ are two independent,

uniformly distributed random numbers generated for

each macroparticle. In general, UðûUÞ must be calculated

numerically. Analogous to the case for the macroparticle

coordinates discussed above, values of the transform in

Eq. (53) can be precalculated on a grid and interpolation

applied to efficiently load a large number of macropar-

ticles. In simulations where beam axisymmetry is fully

exploited, only r0 may be necessary to initialize macro-

particles. In this case, using r0 ¼ ðxx0 þ yy0Þ=r and

Eqs. (52) and (54), it follows that r0 can be loaded as

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2UðûUÞ
q

cosð2ûr0Þ (55)

with ûr0 2 ½0; 1Þ a uniformly distributed random number

for each macroparticle.

Analogous to the situation discussed for the KV distri-

bution in Sec. III A, the random numbers employed to load

the continuous-focusing distribution fûr; ûg and/or

fûU; û’g can be replaced by ordered sets of numbers to

reduce initial statistical noise for simulations with a finite

number of macroparticles.

It is interesting to point out that the loading formalism

outlined above can be applied for a specified, stable mono-

tonic decreasing radial density profile nðrÞ without detailed
knowledge of the corresponding equilibrium function

f?ðH?Þ that specifies the continuous-focusing distribution.
First, macroparticle coordinates x? consistent with nðrÞ
can be calculated from Eqs. (51) and (54). The equilibrium

potential c can then be calculated from Eqs. (36) and (37),

and this result applied in the inversion theorem (50) to

implicitly specify fðH?Þ for use in Eqs. (53) and (54) to

load the macroparticle angles x?.
Because the continuous-focusing distributions are exact

Vlasov equilibria, any evolution in simulated distribution

from the loaded beam results from numerical approxima-

tions in the procedure used to load the distribution and/or

in the Vlasov simulations. This property, when employing

accurate loads, can render the continuous-focusing distri-

butions useful for checking the accuracy of simulations.

Two-dimensional PIC slice simulations illustrating this

point are shown in Fig. 2 for a waterbag (step-function)

choice of fðH?Þ. Properties of the waterbag equilibrium

are analyzed in detail in Appendix D. Codes and parameter

choices made in the simulations are described in Sec. II.

Simulations illustrated were carried out of strong relative

space-charge strength (=0 ¼ 0:2), so the equilibrium

radial density profile is flat in the core of the beam. The

waterbag equilibrium has a sharp edge in phase-space

projections, which can aid visualization of small evolutions
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induced by numerical approximations. Both an accurate

simulation and a less accurate simulation with poorer

resolution and statistics are shown. Details of the waterbag

equilibrium distribution are presented in Appendix D and

the simulations and parameter choices are described in

Sec. II. To precisely load the distribution in both the

accurate and less accurate cases, the radial density trans-

formation (51) is solved on a uniform mesh of 500 points

and the angle transform (53) is solved exactly (see discus-

sions in Appendix D). In the accurate simulation, ordered

digit-reversed numbers are used to generate a load with

reduced noise in phase space, whereas the less accurate

simulation uses pseudorandom numbers to generate the

load resulting enhanced initial statistical noise relative to

ordered numbers. Statistical beam envelope radii rj and

emittances "j are calculated using Eqs. (23) and (24) with

centroid measures subtracted [see Eq. (15) and the related

discussion]. Quantities associated with the x and y planes

are plotted in black and red, respectively. Profiles of the

beam density n are shown along the x and y axes (in black

and red, respectively) as calculated from the gridded

charge density in the simulation with no additional

smoothing. The density is normalized by the rms average

measure, =ðqrxryÞ, so values not equal to unity indicate

deviations from an rms-equivalent KV beam. Density pro-

file plots are superimposed with the density of an rms-

equivalent KV beam (in green, with unit density as nor-

malized). The x-x0 phase-space projections are generated

by plotting macroparticle markers that are color coded

based on the local phase-space density. All macroparticles

are shown in the projections of the less accurate simulation,

whereas a method is employed in the plots of the accurate

simulation that shows almost all particles in the low-

density regions and a sampling of macroparticles in the

high-density regions.

The accurate simulation shown in Fig. 2 shows very

small evolution in all distribution projections and mo-

ments, whereas the less accurate simulation shows a larger,
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FIG. 2. (Color) PIC simulations of an initial waterbag equilibrium distribution in a continuous-focusing channel with 0 ¼ 80( and

=0 ¼ 0:2 for a well-converged (two left columns; Nr ¼ 100, Nppg ¼ 500) and a less-converged simulation (two right columns:

Nr ¼ 20, Nppg ¼ 40). In row (a) the evolutions of rms-envelope radii [rj=rjðs ¼ 0Þ] and rms-edge emittances ["j="jðs ¼ 0Þ] are

shown as a function of lattice periods (s=Lp). In rows (b) and (c), the principal axis beam density profiles and x-x0 phase-space
projections are shown at zero (load) and 20 lattice periods. (WARP simulations with parameters: Np ¼ 3 and Ns ¼ 25.)
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but still relatively modest degree of evolution due primar-

ily to poor grid resolution and macroparticle statistics (note

the large change in scale between the plots). Fluctuations

and oscillations associated with the less accurate simula-

tion are still modest considering the coarse numerical

parameters employed. This surprisingly benign conse-

quence of errors likely results from both the stability of

the underlying steady equilibrium and that the numerical

errors seed a broad spectrum of oscillations that remain

bounded by initial conditions (system energy is conserved

in continuous focusing) and phase mix. Differences be-

tween the x- and y-plane envelope and emittance evolu-

tions as well as nonaxisymmetries in the distribution

projections that are clearly evident in the less accurate

simulation are related to finite statistics and discretizations

breaking ideal symmetries. The initial fluctuations in the

density profiles of the accurate simulation are suppressed

both by the use of large numbers of macroparticles and by

the use of ordered numbers in the load. By the end of the

evolution, the statistical noise of the accurate simulation

has increased to levels expected if pseudorandom numbers

had been employed in the load. It appears that the primary

error source in the accurate simulation is the discretization

associated with the radial mesh introducing a systematic

error in the location of the beam edge which primarily

translates into a small amplitude breathing mismatch as

evident from the regular, nearly in-phase oscillations of the

envelope radii rj.

C. Nonequilibrium semi-Gaussian distribution

The semi-Gaussian distribution [47,67,68] can be de-

fined by

f?ðx?;x
0Þ ¼

2

q2"x"y
x

$

1!

%

x2

r2x
þ
y2

r2y

&'

# exp

$

!2

%

rxx
0 ! r0xx

"x

&

2

! 2

%

ryy
0 ! r0yy

"y

&

2
'

:

(56)

Here,

xðxÞ ¼

"

1; x > 0;
0; x < 0

(57)

is a Heaviside unit-step function, rj and r0j (j ¼ x; y) are

the initial (s ¼ si) beam envelope radii and angles, and "j
are the initial rms-edge emittances. As for the KV distri-

bution, the density n ¼
R
d2x0?f? of the initial distribution

is uniform within an ellipse of radii rj as given by Eq. (17).

Likewise, the coherent flows hx0ix0
?
and hy0ix0

?
are identical

to the KV expression in Eq. (19). In contrast to the KV

distribution, the incoherent angular spreads in x0 and y0 are
spatially uniform and Gaussian distributed. Direct calcu-

lation with Eqs. (14) and (56) shows that the kinetic

temperatures corresponding to the Gaussian-distributed

spreads are

Tj ¼

" "2j
4r2j

; if ðx=rxÞ
2 þ ðy=ryÞ

2 < 1;

0; otherwise:
(58)

The semi-Gaussian distribution is not an equilibrium of the

Vlasov equation (7) for a linear-focusing channel with

finite beam space charge. The distribution will evolve

from the initial condition, resulting in a change in form

associated with the launching of a transient, nonlinear

wave [48,91]. This wave evolution will result in rms-

edge emittances evolving from the initial conditions ("j !

const) and the subsequent envelope evolution rjðsÞ will

only approximately follow that of the KV envelope equa-

tion (21).

The strength of the transient evolution of the semi-

Gaussian distribution depends primarily on the relative

intensity of the applied-focusing and space-charge forces.

The initially uniform space charge within an elliptical

beam envelope gives linear electrostatic defocusing

space-charge forces when image-charge effects are negli-

gible. But the initially uniform temperature within the

beam results in an unbalanced thermal force inconsistent

with the sharp beam edge. The collective wave launched is

a manifestation of this inconsistency. Despite this nonequi-

librium structure, the semi-Gaussian distribution is com-

monly employed to model space-charge-dominated beams

where Debye screening is expected to lead to a flat density

profile for a relaxed distribution. The semi-Gaussian dis-

tribution has manifest rms equivalency with the KV distri-

bution which simplifies interpretation, and the distribution

structure corresponds roughly to a beam that would be

produced by an ideal injector (uniform current density

within the beam emitted from a diode with Child-

Langmuir emission [31,93] and spatially uniform tempera-

ture due to a heated source at local thermodynamic equi-

librium). Waves launched by the nonequilibrium form of

the semi-Gaussian distribution generally lead to small,

space-charge intensity dependent reductions in the rms-

edge emittance where the beam is stable [31,83,91].

Stability is considered in the sense of having limited

wave growth from the initial transient evolution. In the

case of stability, transient-wave perturbations launched

from the initial semi-Gaussian distribution rapidly wash

out due to phase mixing and nonlinear collective effects

present for finite space charge [15,48,49,91]. Semi-

Gaussian distributions with "x ! "y (i.e., Tx ! Ty) suffi-

ciently anisotropic can lead to evolutions with character-

istics of space-charge driven instabilities in situations

where the system drives to a more thermally isotropic state

[94].

Loading of the initial semi-Gaussian distribution (56)

can be carried out using similar steps to those described for

the KV distribution in Sec. III A. For direct Vlasov simu-

lations, loading f? on the phase-space grid is generally less
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challenging than for a KV distribution because the semi-

Gaussian distribution is not singular in 4D phase space.

The most significant issue is the need to adequately repre-

sent the sharp elliptical beam edge in x? on the phase-

space grid and to have sufficient resolution in the phase-

space mesh to model the nonlinear transient wave launched

from the lack of detailed equilibrium force balance

[22,48,49,94]. For PIC simulations, macroparticle spatial

coordinates x? can be loaded exactly as discussed for the

KV distribution [see Eq. (27)]. Macroparticle angles x
0
?

can be loaded in terms of coherent and incoherent compo-

nents terms as x0
? ¼ x

0
?jc þ x

0
?jic [see Eq. (28)] with the

coherent term x
0
?jc set exactly as for the KV distribution

using Eq. (29), and the incoherent term x
0
?jic simply set

with

x0jic ¼
"x
2rx

ĝx; y0jic ¼
"y

2ry
ĝy; (59)

rather than Eq. (31). Here, ĝx and ĝy are two independent,

Gaussian-distributed random numbers with unit variance

generated for each macroparticle. If bounded particle

phase space is necessary, the ĝj can be replaced with

truncated, Gaussian-distributed values with minimal error

if the unit variance Gaussian is truncated for values beyond

a few units. Note the similarity of the incoherent load

angles specified by Eq. (59) with the formula used to

specify the macroparticle angles for the continuous-

focusing thermal equilibrium distribution [see

Appendix F, Eq. (F23)].

Analogously to the situation discussed for the KV dis-

tribution in Sec. III A, the random numbers employed to

load the semi-Gaussian distribution can be replaced by

ordered sets of numbers to reduce initial statistical noise

for a finite number of macroparticles. Appropriate sets of

ordered Gaussian numbers fĝjg can be generated employ-

ing the same transforms used to map a uniformly distrib-

uted random number û 2 ½0; 1Þ to a Gaussian-distributed

random number ĝ with unit variance [95] to ordered sets

of fûjg.
Examples of Vlasov simulations of initial semi-

Gaussian distributions can be found in the literature

[22,48,49] and will not be repeated here. The ease of

loading the semi-Gaussian distribution together with the

relative faithfulness of the distribution to the form expected

for a cold beam with strong relative space-charge forces

has resulted in the semi-Gaussian distribution being the

load of choice in many intense-beam simulation studies.

The main disadvantage of the semi-Gaussian load is that

the lack of approximate force balance near the edge of the

beam launches a strong transient wave that can complicate

interpretations of other effects of interest.

D. Nonequilibrium distributions of linear-field

Courant-Snyder invariants

An alternative nonequilibrium distribution that is a

specified function of linear-field single-particle Courant-

Snyder invariants of an rms-equivalent beam has been

formulated by Batygin [50,51] building on earlier work

[31,39]. Here we review results under a common notation

to aid comparisons to other classes of initial distribution

functions. As with the KV (see Sec. III A) and semi-

Gaussian (see Sec. III C) distributions, these distributions

have elliptical symmetry and consequently can employed

in a linear-focusing channel with s variation in the focusing
functions !j (j ¼ x; y).

The linear-field Courant-Snyder invariant (LCS) distri-

bution is specified as

f?ðx?;x
0
?; sÞ ¼



q
fðA2Þ; (60)

where fðA2Þ is any function of the single-particle ampli-

tude

A 2 '

%

x

rx

&

2

þ

%

rxx
0 ! r0xx

"x

&

2

þ

%

y

ry

&

2

þ

%

ryy
0 ! r0yy

"y

&

2

;

(61)

with f - 0 that satisfies the normalization constraint

Z

d2x?
Z

d2x0?fðA
2Þ ¼ 1; (62)

and the moment constraint

R1
0 dUUGðUÞ
R1
0 dUGðUÞ

¼
1

2
; (63)

with

GðUÞ '
Z 1

U
d ~Ufð ~UÞ: (64)

The quantities rj and "j employed inA2 are the statistical

envelope radii and emittances of the distribution as defined

by Eqs. (23) and (24) in an rms-equivalent beam sense (see

Sec. III A). The form of A2 and the normalization and

moment constraints are sufficient to ensure that the LCS

distribution defined by Eqs. (60)–(64) satisfies rms equiv-

alency for arbitrary (physical) values of rj, r
0
j, and "j. This

rms equivalency is demonstrated in Appendix C through

the use of canonical transformations.

The amplitude A2 can be resolved as

A 2 ¼ A2
x þA2

y; (65)

where
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A2
x '

%

x

rx

&

2

þ

%

rxx
0 ! r0xx

"x

&

2

;

A2
y '

%

y

ry

&

2

þ

%

ryy
0 ! r0yy

"y

&

2

:

(66)

The amplitudes A2
j are single-particle j-plane Courant-

Snyder invariants of a particle evolving within the linear

fields (including applied and space charge) of an rms-

equivalent beam (see Appendix B). Consequently, the

LCS distribution f? / fðA2Þ ¼ fðA2
x þA2

yÞ is con-

stant on two-dimensional elliptical surfaces in x-x0 and
y-y0 phase space where A2

j ¼ const as well as a four-

dimensional ellipsoidal hypersurfaces in x?-x
0
? phase

space where A2 ¼ const.

Characteristics of some simple choices of functions

fðA2Þ satisfying the normalization constraint (62) and

the moment constraint (63) are given in Table II. For the

KV case listed, the LCS distribution reduces to the KV

equilibrium discussed in Sec. III A and is an exact equilib-

rium distribution. For any choice of fðA2Þ other than the

delta-function KV form, the LCS distribution is not a

consistent equilibrium for finite space-charge intensity

because the argument A2 is a single-particle invariant

only for linear space-charge fields within the beam.

General choices of fðA2Þ result in density profiles n ¼

ð=qÞ
R
d2x0?f with nonuniform, elliptic-symmetry den-

sity profiles (see Table II). The nonuniform elliptic-

symmetry space charge will generate nonlinear self-field

forces within the beam and the A2
j will evolve, changing

the form of the LCS distribution. However, in the limit of

vanishing space-charge intensity (i.e., Q ! 0), the LCS

distributions are exact equilibria for general choices of

fðA2Þ satisfying Eqs. (62) and (63). In this warm-beam

limit the A2
j are invariants of a single particle evolving in

linear applied-focusing fields. The warm-beam limit of the

LCS distribution with a Gaussian choice of f listed in

Table II represents a standard initial particle distribution

in accelerator simulations of beams with weak space-

charge intensity. Original applications of the LCS distri-

butions appeared to be targeted for use in modeling beams

with weak relative space-charge forces by including

leading-order space-charge corrections by modeling

space-charge forces as linear as would arise in a uniform-

density rms-equivalent beam in spite of the actual density

distribution of the beam [50,51]. Discussions and tests

presented here cover this original context as well as strong

space-charge regimes.

Loading the LCS distribution specified by Eqs. (60)–

(64) in a direct Vlasov code is straightforward. The phase-

space grid should be chosen to adequately resolve the

distribution structure consistent with the choice of fðA2Þ
made and the ensuing evolution associated with the non-

equilibrium form. Distribution projections listed in Table II

provide a guide for characteristic resolutions needed for a

range of choices in fðA2Þ.
An elegant procedure to load the LCS distribution using

macroparticles in PIC simulations has been formulated by

Batygin [50,51]. This procedure can be summarized as

follows. First, canonical transformations analogous to

those employed in Appendix C can be applied to calculate

the distribution of A in terms of a probability transform.

The resulting equation

2"x"y
Z A2

0

dUUfðUÞ ¼ ûA (67)

is solved for the smallest positive real solutionAðûAÞ for
a uniformly distributed random number ûA 2 ½0; 1Þ. The
transformation (67) must be solved numerically for general

choices of f. If a large number of macroparticles are

loaded, analogously to the cases discussed in Sec. III B,

the transform can be presolved on a grid of values for

ûA 2 ½0; 1+ and interpolation employed for increased nu-

merical efficiency. For the choices of functions f in

Table II the transformation (67) can be simplified, and in

some cases analytically solved, as indicated. WithAðûAÞ

TABLE II. Characteristics of linear-field Courant-Snyder distributions generated for choices of fðA2Þ. Here, 2 ' ðx=rxÞ
2 þ

ðy=ryÞ
2.

Distribution name

KV Waterbag Parabolic Gaussian

Definition fðA2Þ 1
2"x"y

ðA2 ! 1Þ 8
92"x"y

xð1! 2
3
A2Þ 3

22"x"y
ð1! 1

2
A2Þxð1! 1

2
A2Þ 4

2"x"y
e!2A2

Projections:
R
d2x0?f

1
rxry

xð1! 2Þ 4
3rxry

ð1! 2
3
2Þxð1! 2

3
2Þ 3

2rxry
ð1! 1

2
2Þ2xð1! 1

2
2Þ 2

rxry
e!22

R
dy

R
dy0f 1

"x
xð1!A2

xÞ
4

3"x
ð1! 2

3
A2

xÞxð1! 2
3
A2

xÞ
3

2"x
ð1! 1

2
A2

xÞ
2xð1! 1

2
A2

xÞ
2

"x
e!2A2

x

R
dx

R
dx0f 1

"y
xð1!A2

yÞ
4

3"y
ð1! 2

3
A2

yÞxð1! 2
3
A2

yÞ
3

2"y
ð1! 1

2
A2

yÞ
2xð1! 1

2
A2

yÞ
2

"y
e!2A2

y

Probability xðA2 ! 1Þ ¼ ûA A4 ¼ 9
4
ûA A6 ! 3A4 þ 4ûA ¼ 0 ð1þ 2A2Þe!2A2

¼ 1! ûA

Transform ) A ¼ 1 ) A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
2

ffiffiffiffiffiffiffiffi

ûA
pq

) A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1! 2 cosð!2
3

Þ
q

Solve numerically

(for ûA ¼ 1)  ¼ cos!1ð1! 2ûAÞ
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specified, values of Ax - 0 and Ay - 0 consistent with

A2 ¼ A2
x þA2

y are set by taking

A x ¼ A

ffiffiffiffiffiffi

û’

q

; Ay ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1! û’

q

; (68)

with û’ 2 ½0; 1Þ an independent, uniformly distributed

random number. This form applies to all choices of f and

is taken to statistically represent the total oscillation am-

plitude A2 equally in the x and y planes [96]. Then,

macroparticle phase-space coordinates are set using a

phase-amplitude formulation [97] to uniformly populate

oscillations in the elliptical phase spaces represented by the

values of the Aj by taking

x ¼ Axrx cosx; x0 ¼ Ax

%

r0x cosx !
"x
rx

sinx

&

;

y ¼ Ayry cosy; y0 ¼ Ay

%

r0y cosy !
"y

ry
siny

&

:

(69)

Here, the j are betatron phases set as

j ¼ 2ûj; (70)

with independent, uniformly distributed random numbers

ûj 2 ½0; 1Þ to uniformly distribute the oscillations in phase

about the elliptical symmetry phase space.

It is worth pointing out that the Gaussian choice of f
indicated in Table II can be loaded using similar methods

to those presented in Sec. III C rather than solving the

probability transform in Eq. (67) (with the reduced form

in Table II). Employing the factorization properties of

Gaussian-distributed probability densities, it is straightfor-

ward to demonstrate that the Gaussian distribution can be

alternatively loaded as

x ¼
rx
2
ĝx; y ¼

ry

2
ĝy;

x0 ¼
r0x
rx
xþ

"x
2rx

ĝx0 ; y0 ¼
r0y
ry
yþ

"y

2ry
ĝy0 :

(71)

Here, ĝj and ĝj0 are Gaussian distributed (or truncated

Gaussian for bounded phase space as discussed in

Sec. III C) random numbers with unit variance.

Analogous to the cases discussed in Secs. III A, III B,

and III C, the random numbers employed above to load the

LCS distributions can be replaced by ordered sets of num-

bers to reduce initial statistical noise for a finite number of

macroparticles.

Transverse slice PIC simulations illustrating the initial

transient (few lattice period) evolution of the LCS distri-

butions in a periodic FODO quadrupole transport channel

are shown in Figs. 3–5. Evolutions associated with both

waterbag and Gaussian choices of the function f listed in

Table II are shown. The simulations and parameter choices

are described in Sec. II and the beam envelope is initially

rms-envelope matched to the FODO lattice [80]. Simu-

lations are shown for weaker (0 ¼ 45() and stronger

(0 ¼ 70() applied-focusing strengths, each case for

weak (=0 ¼ 0:9) and strong (=0 ¼ 0:2) relative

space-charge strength. These values are selected to be

parametrically removed from regions where beam trans-

port in periodic alternating-gradient focusing channels is

expected to become unstable due to the intrinsic structure

of orbits near the beam edge [16,35]. Loads are generated

for the waterbag f case using uniformly distributed pseu-

dorandom numbers [employing the analytic probability

transform in Table II and Eqs. (68)–(70)] and Gaussian-

distributed pseudorandom numbers in the Gaussian f case

[using Eq. (71)]. Initial distribution projections numeri-

cally calculated by binning macroparticles loaded were

checked against analytically calculated projections (see

Table II) to verify the validity of numerical procedures

employed. Also the Gaussian distribution loading method

based on Eq. (71) was carefully cross-checked against the

transform method using results in Table II and Eqs. (68)–

(70). High macroparticle statistics are employed so the

evolution of the beam density (shown every lattice period)

can be observed with minimal noise. Only modest statistics

are necessary for converged emittance evolutions.

The simulations clearly illustrate the expected result:

that for weak relative space-charge forces (=0 " 1)

the LCS distributions are fairly well adapted to the trans-

port channel and the subsequent evolutions of the distribu-

tions from the initial state are relatively small, whereas for

large relative space-charge forces (=0 small) the lack of

local force balance associated with the inconsistent use of

linear-field Courant-Snyder invariants to define the distri-

butions launches strong, transient-wave perturbations. This

effect is clearly seen in the density profile evolutions in

Fig. 3. In these plots, profiles of the beam density n along

the principal x and y axes are calculated from the gridded

charge density in the simulation with no additional

smoothing. The beam density is normalized by an rms

average measure, =ðqrxryÞ, so values not equal to unity

indicate deviations from an rms-equivalent KV beam.

Density profiles are shown at each lattice period of the

evolution (in separate colors) with variations indicating

deviations from periodic equilibrium conditions rather

than numerical errors. Profiles along the x and y axesare

shown separately, because the evolution introduces asym-

metries between the planes. Evolutions in the rms-edge

emittances "j corresponding to the density evolutions in

Fig. 3 are shown in Fig. 4. The emittances are calculated

from Eq. (24) with the x and y emittances shown in black

and red. Note that the x- and y-plane evolutions in both the
density profiles and emittances vary between the planes

due to both the phase of the launching condition of the load

within the lattice period (taken between quadrupoles) and

the lack of system axisymmetry (i.e., @=@ ! 0). The x
and y emittances tend to evolve out of phase and plane

average emittances [i.e., ð"x þ "yÞ=2 or
ffiffiffiffiffiffiffiffiffiffi

"x"y
p

) evolve less
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but are not conserved. System (beam kinetic plus total

field) energy need not be conserved because the applied-

focusing lattice can transfer energy into or out of the

system. However, if rms matching is maintained, system

energy is approximately conserved in an average sense

over multiple lattice periods. Phase-space projections at

h) Gaussian: σ
o
=70º, σ/σ

o
=0.2g) Gaussian: σ

o
=70º, σ/σ

o
=0.9

d) Waterbag: σ
o
=70º, σ/σ

o
=0.2c) Waterbag: σ

o
=70º, σ/σ

o
=0.9

a) Waterbag: σ
o
=45º, σ/σ

o
=0.9 b) Waterbag: σ

o
=45º, σ/σ

o
=0.2

e) Gaussian: σ
o
=45º, σ/σ

o
=0.9 f) Gaussian: σ

o
=45º, σ/σ

o
=0.2
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FIG. 3. (Color) Transient evolution of the beam density n of initial LCS distribution loads for: (a) waterbag f, 0 ¼ 45(, =0 ¼ 0:9;
(b) waterbag f, 0 ¼ 45(, =0 ¼ 0:2; (c) waterbag f, 0 ¼ 70(, =0 ¼ 0:9; (d) waterbag f, 0 ¼ 70(, =0 ¼ 0:2; (e) Gaussian
f, 0 ¼ 45(, =0 ¼ 0:9; (f) Gaussian f, 0 ¼ 45(, =0 ¼ 0:2; (g) Gaussian f, 0 ¼ 70(, =0 ¼ 0:9; and (h) Gaussian f,
0 ¼ 70(, =0 ¼ 0:2. Density profiles are shown along the principal x and y axes at lattice period intervals. (B-DYN: Nr ¼ 50,

Nppg ¼ 4k, Ns ¼ 100, Np ’ 3.)
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FIG. 4. (Color) Evolution of the beam rms-edge emittances "x and "y as a function of lattice periods (s=Lp) for the simulations shown

in Fig. 3.
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FIG. 5. (Color) Evolution of phase-space projections in x-y, x-x0, and y-y0 for the initial LCS waterbag distribution shown in Figs. 3

and 4 with 0 ¼ 70( and =0 ¼ 0:2. Projections (columns) are shown at lattice period intervals (rows).
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lattice period intervals for one evolution are shown in

Fig. 5. The x-y, x-x0, and y-y0 projections illustrate further
characteristics of the large waves launched due to the lack

of force balance in the beam distribution when space

charge is strong. In the x-x0 projections, x0 represents x0 !
r0xðx=rxÞ with rx and r

0
x calculated from Eq. (23) (i.e., in an

rms-equivalent beam sense). This transformation removes

the tilt angle of the ellipse associated with the coherent

flow while conserving local x-x0 phase-space area and

thereby better illustrate distribution distortions. An analo-

gous transformation is made in the y-y0 projections. A

random sampling of particles is plotted to represent the

distribution. Colors of the plotted particles represent rela-

tive densities of the projections as indicated (in arbitrary

units).

Despite the strength of the transient evolution for strong

space charge, the rms-envelope radii rj of the distributions

remain well matched to the focusing lattice and the emit-

tance evolutions are relatively modest. This is not surpris-

ing given that choices of initial distributions even further

out of local force balance are also observed to remain

relatively well matched with modest emittance growth

[15]. Waves launched by the lack of local consistency in

the initial distribution tend to drive the profile to a more

uniform-density beam through phase mixing, Landau

damping, and nonlinear interactions. Such relaxations

tend to result in increased beam emittance because the

more uniform profiles have lower field energy and the

energy difference between the initial and relaxed state (in

an approximate sense: x-varying focusing forces can also

transfer energy into and out of the beam during the period

and details of such processes can vary especially in the

initial transient evolution) is available to drive increases in

incoherent spreads [15,31,67,68]. Longer simulations sug-

gest that the distribution can relax to a state better adapted

to the transport channel with a significant, but reduced

spectrum of residual oscillations persisting. The relaxed

state tends to be more nearly plane equilibrated with "x "

"y. Propagation distances necessary for relaxation can be

significant and are difficult to determine because the re-

laxation distance varies with the strength of the applied

focusing (0) and the relative space-charge strength

(=0). Numerical approximations can also induce effec-

tive, nonphysical relaxations that are difficult to separate

from other processes. This can further complicate the

relaxation issue: very large simulations can be necessary

for proper, physical convergence. Batygin has explored

alternative techniques where nonlinear terms can be added

to the applied-focusing forces so that the total applied plus

space-charge force acting on the particles is linear, and

then adiabatically decreasing the applied nonlinear force

[63]. In any event, for strong relative space-charge forces it

is desirable to generate improved, but still relatively simple

loads with smooth distributions that are more equilibrium-

like with lesser transient-wave evolution to simplify appli-

cations and interpretation of results. This issue is addressed

in Sec. IV.

IV. PSEUDOEQUILIBRIUM DISTRIBUTIONS

We improve on the classes of specified kinetic distribu-

tions reviewed in Sec. III for Vlasov simulations of un-

bunched or weakly bunched beams with high space-charge

intensity in nonconstant linear-focusing lattices by formu-

lating ansatz distributions which retain desirable features

of the reviewed distributions while mitigating problematic

ones. Desirable features include a smooth, nonsingular

distribution structure, density projections that reflect

Debye screening for high space-charge intensity, and pres-

ervation of the low-order (envelope model) structure con-

sistent with the KV distribution. Specifically, we formulate

a class of ‘‘pseudoequilibrium’’ distributions [67,68] that

are straightforward to specify, and can have both smooth

core structure and more nearly equilibriumlike properties

that would be expected for an initial beam better adapted to

a linear transport channel. The procedure (Sec. IVA) is

conceptually simple to formulate through a series of trans-

formations motivated by results in Sec. III. Beam slices are

specified by rms-equivalent parameters, which are then

mapped to a local rms matched continuous-focusing equi-

librium distribution with self-consistent Debye screening.

The distribution is then transformed back to a form more

appropriate for nonconstant linear-focusing forces.

Following the description of the method, example pseu-

doequilibrium loads are self-consistently simulated

(Sec. IVB) in a periodic FODO quadrupole transport

channel to illustrate results. The simulations verify im-

proved, closer to equilibriumlike properties of the pseu-

doequilibrium distributions relative to the standard

distributions reviewed in Sec. III.

The pseudoequilibrium procedure is formulated for a

beam in an applied-focusing lattice with linear-focusing

functions !jðsÞ that can vary arbitrarily in s (!j ! const;

j ¼ x; y). Nonlinear (or skew coupled) applied-field com-

ponents can exist but are ignored in the specification of the

!j (a proper inclusion would greatly complicate the for-

mulation since it would require the application of more

complicated Courant-Snyder forms; see Ref. [98]). The

beam need not be rms matched to the linear-focusing

lattice and the procedure can be applied to generate trans-

verse or full 3D beam distributions when axial variations

are sufficiently slow where self-fields can be approximated

as 2D transverse fields. For either the 4D or 6D phase-

space cases, axial phase-space coordinates of the particles

are regarded as specified (in the s slice for transverse

loads). The pseudoequilibrium distribution is assumed to

have the form

f ¼ f?ðx?;x
0
?; sÞfzðz; pzÞ; (72)

where z and pz are the longitudinal particle coordinate

and momentum and fz - 0 is the longitudinal distribution.
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The connection between s and z must be specified and the

total number of particles within the beam N ¼
R
dz

R
dpz

R
d2x?

R
d2x0?f sets the normalization of fz.

A variety of longitudinal distributions fz, such as the

Neuffer distribution [99], can be applied to model the

beam ends.

A. Pseudoequilibrium procedure

In the pseudoequilibrium procedure, initial transverse

particle phase-space coordinates (x, y, x0, y0) are loaded as

follows.

Step 1.—For each particle at axial coordinate s, specify
the beam perveance

QðsÞ ¼
qðsÞ

20mc23
b

2
b

; (73)

statistical beam edge radii

rxðsÞ ¼ 2hx2i1=2? ; ryðsÞ ¼ 2hy2i1=2? ; (74)

envelope angles

r0xðsÞ ¼
2hxx0i?
hx2i1=2?

; r0yðsÞ ¼
2hyy0i?
hy2i1=2?

; (75)

and rms-edge emittances

"xðsÞ ¼ 4½hx2i?hx02i? ! hxx0i2?+1=2;
"yðsÞ ¼ 4½hy2i?hy02i? ! hyy0i2?+1=2:

(76)

For a given beam ion and slice energy, Eqs. (73)–(76) fix

the beam line charge  and the 2nd-order moments hx2i?,
hx02i?, hxx0i? (and corresponding y-plane moments) in

terms of Q, rj, r
0
j, and "j. In this specification, we have

not assumed that the linear focusing functions !jðsÞ are

periodic. If the !j are periodic, the envelope radii rj need

not be matched to the focusing lattice. The mean axial

factors b and b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1! 2
b

q

are set consistently with

the longitudinal distribution of particles being loaded with

b ¼

)

vz

c

*

vz

: (77)

Here, h, , ,ivz
denotes an average over the axial beam

velocity vz calculated at axial slice location s. The paraxial
approximation of small longitudinal velocity spread is

assumed to apply. In cases where a long beam is accelerat-

ing and/or longitudinally compressing/expanding, a pre-

scribed head-to-tail s variation in b is permitted over the

axial length of the beam insofar as the fractional change is

small. j

Step 2.—Define an rms-matched, continuously focused

beam for each particle with perveanceQðsÞ, statistical edge
envelope radius

rbðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rxðsÞryðsÞ
q

; (78)

rms-edge emittance

"bðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"xðsÞ"yðsÞ
q

; (79)

and focusing-field strength

k20ðsÞ ¼
QðsÞ

r2bðsÞ
þ

"2bðsÞ

r4bðsÞ
: (80)

The choices in Eqs. (78)–(80) are consistent with approx-

imating the KV envelope equations (21) as an average

force-balance equation with: rj ¼ rb, !j ¼ k20, and "j ¼

"b, where we treat rb as slowly varying (i.e., r00b negligible

in the envelope equation). Alternatively, the geometric-

mean definitions made in Eqs. (78) and (79) can be re-

placed with arithmetic-mean measures [e.g., rb ¼ ðrx þ

ryÞ=2 rather than rb ¼
ffiffiffiffiffiffiffiffiffi

rxry
p

] resulting in only small dif-

ferences in typical applications where beams are not highly

elliptical (i.e., rx " ry) and are nearly plane equilibrated

(i.e., "x ’ "y). However, the geometric-mean definitions

apply more logically in the general cases since they reflect

an equivalence of beam cross-sectional area and four-

dimensional phase-space volume. j

Step 3.—For the rms-matched, continuously focused

transverse distribution defined in step 2, specify an axi-

symmetric (i.e., @=@ ! 0) Vlasov equilibrium distribu-

tion

f?ðx; y; x
0; y0; sÞ ¼ f?½H?ðsÞ+ (81)

with a particular functional form f?ðH?Þ (e.g., waterbag,
parabolic, thermal, . . .). Here,

H?ðsÞ ¼
1

2
x
02
? þ

1

2
k20x

2
? þ

q

m3
b

2
bc

2
 (82)

is the transverse Hamiltonian of a beam particle and pa-

rameters employed in the definition of f?ðH?Þ are con-

strained by

ðsÞ ¼ q
Z

d2x?
Z

d2x0?f?ðH?Þ;

r2bðsÞ ¼
4
R
d2x?

R
d2x0?x

2f?ðH?Þ
R
d2x?

R
d2x0?f?ðH?Þ

;

"2bðsÞ

r2bðsÞ
¼

4
R
d2x?

R
d2x0?x

02f?ðH?Þ
R
d2x?

R
d2x0?f?ðH?Þ

:

(83)

Generally, a function f?ðH?Þ satisfying the monotonic-

ity condition @f?ðH?Þ=@H? . 0 is preferable to corre-

spond to a stable core distribution in the continuous limit

[30,32]. The procedure for implementing the constraints in

Eq. (83) will generally be complex because  occurring in

H? must be calculated self-consistently with the transverse

Poisson equation [see Eq. (33)]

1

r

@

@r
r
@

@r
 ¼ !

q

0

Z

d2x0?f?ðH?Þ (84)

for each beam slice for 3D beams. Careful analysis and

scaling can reduce the number of free parameters and
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numerical work necessary to calculate  and implement

the constraints associated with particular choices of equi-

librium functions f?ðH?Þ. Formulating efficient proce-

dures is especially important in 3D applications because

constraints may need to be applied to each particle inde-

pendently (each particle can be in a different transverse

slice of the beam). Gridded transforms can be generated

(see Sec. III B) for the needed range of equilibrium pa-

rameters to reduce numerical work. For the case of trans-

verse applications, the constraints need only be solved

once rendering efficiency issues much less important.

Special numerical methods can prove necessary in analyz-

ing the constraints for strong space charge. When space

charge becomes sufficiently strong, Debye screening re-

sults in the radial density profile interior to the beam

becoming very flat and the beam edge sharp (see

Appendices D, E, and F). j

Step 4.—Load the transverse particle phase-space coor-

dinates x, y, x0, y0 consistent with the continuous distribu-

tion calculated in step 3 (see discussions in Sec. III B). j

Step 5.—Transform the axisymmetric distribution parti-

cle coordinates loaded in step 4 to local rms equivalency in

the slice of the beam. This can be accomplished with a two-

step procedure by first transforming the particle coordi-

nates as

x ! x ¼
rx
rb

x; y ! y ¼
ry

rb
y; (85)

and then (with the first step carried out) transforming the

particle angles as

x0 ! x0 ¼
"x
rx

r2b
"2b

x0 þ
r0x
rx
x; y0 ! y0 ¼

"y

ry

r2b
"2b

y0 þ
r0y
ry
y:

(86)

Denoting initial/final particle coordinates with a subscript/

superscript i=f, this transform can be carried out in a single

step as (y-plane expressions analogous):

xf ¼
rx
rb

xi; x0f ¼
"x
"b

rb
rx

x0i þ
r0x
rb

xi: (87)

These transforms preserve linear-force Courant-Snyder

invariants of the particle distribution (see Appendix B). j

The transverse beam density n ¼
R
d2x0?f? of the ini-

tial pseudoequilibrium distribution generated by this pro-

cedure will have n ¼ const on elliptical surfaces with

ðx=rxÞ
2 þ ðy=ryÞ

2 ¼ const within the beam. However, in

contrast to the KV distribution, the density profile of the

pseudoequilibrium distribution will have radial structure in

ðx=rxÞ
2 þ ðy=ryÞ

2 with an edge profile that reflects the

choice of f?ðH?Þ made. For monotonic f?ðH?Þ and

strong space charge, Debye screening will lead to a flat

charge profile within the core of the beam that falls off in a

few characteristic Debye lengths near the edge where

ðx=rxÞ
2 þ ðy=ryÞ

2 " 1. The specific structure of the edge

(the rapidity of the falloff, whether it reduces to zero or

exponentially small values, etc.), will depend on the func-

tional form of f?ðH?Þ chosen. The pseudoequilibrium

distribution is exact for the case of an ideal, continuous-

focusing system (see Sec. III B). For s-varying focusing

lattices the initial pseudoequilibrium distribution will not

be an exact equilibrium [except when f?ðH?Þ is chosen to
correspond to a continuous-focusing KV distribution] and

some initial transient evolution is expected. For stronger

focusing (larger 0j), this transient is expected to become

more pronounced because stronger focusing will generally

be more poorly approximated by the continuous limit. For

sufficiently large 0j the beam is expected to become

destabilized for any choice of f?ðH?Þ [16]. It should again
be stressed that, although the underlying continuous

distribution f?ðH?Þ used in the construction of the

pseudoequilibrium distribution are rms matched, the re-

sulting pseudoequilibrium distribution applies to arbitrary

s-varying focusing lattices. If the lattice focusing functions
are periodic, the initial pseudoequilibrium distribution can

be envelope matched or envelope mismatched, depending

on the choice of rj made.

B. Illustrative simulations

The pseudoequilibrium loading procedure outlined in

Sec. IVA is implemented in theWARP and B-DYN PIC codes

for underlying continuous waterbag, and thermal equilib-

rium distributions. Example transverse slice PIC simula-

tions illustrating the initial transient evolution of the

pseudoequilibrium distributions in a periodic FODO quad-

rupole transport channel are presented in Figs. 6–9 for

distributions with underlying waterbag and thermal equi-

librium form. Codes and parameter choices are described

in Sec. II, and data are presented using analogous proce-

dures and formats as presented in Secs. III B and III D.

Exceptions to this correspondence are explicitly noted.

Simulations are shown for weaker (0 ¼ 45() and stronger

(0 ¼ 70() applied-focusing strengths, each for weak

(=0 ¼ 0:9) and strong (=0 ¼ 0:2) relative space-

charge strength. These values are selected to be parametri-

cally removed from regions where alternating-gradient

transport is expected to become unstable resulting from

the intrinsic structure of orbits near the beam edge in

periodic systems with strong space charge [16,35].

Beams are initially rms-envelope matched to the transport

channel [80]. In all simulations digit-reversed numbers are

used to generate macroparticle loads with lower statistical

noise to allow better visualization of collective wave evo-

lution. Also, large numbers of macroparticles are simulated

to allow clear visualization of density profile evolutions

with limited noise—only relatively modest numbers of

macroparticles are necessary for converged emittance evo-

lutions. The radial probability transform (see discussion in

Sec. III B) needed to load the macroparticle coordinates are

solved on a uniform mesh of 500 points with a cutoff set at

the beam edge in the waterbag case and where the density
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becomes exponentially small in the thermal case. Short

(few-lattice-period) evolutions are simulated to display

initial transient evolutions characteristic of nonequilibrium

behavior. We generally find that longer evolutions have

negligible emittance growth with particles remaining well

confined in the beam core without large changes in distri-

bution structure if parameters are chosen sufficiently far

from regions where the system is expected to be unstable

[16,35].

Comparing the results in Figs. 6–9 for the pseudoequili-

brium distributions to the results presented in Sec. III D for

analogous linear-field Courant-Snyder invariant distribu-

a) Waterbag: 

c) Waterbag: 

e) Thermal: 

g) Thermal: 

b) Waterbag: 

d) Waterbag: 

f) Thermal:

h) Thermal:

FIG. 6. (Color) Transient evolution of the beam density n of initial pseudoequilibrium distribution loads for: (a) waterbag form:

0 ¼ 45(, =0 ¼ 0:9; (b) waterbag form: 0 ¼ 45(, =0 ¼ 0:2; (c) waterbag form: 0 ¼ 70(, =0 ¼ 0:9; (d) waterbag form:

0 ¼ 70(, =0 ¼ 0:2; (e) thermal form: 0 ¼ 45(, =0 ¼ 0:9; (f) thermal form: 0 ¼ 45(, =0 ¼ 0:2; (g) thermal form: 0 ¼
70(, =0 ¼ 0:9; (h) thermal form: 0 ¼ 70(, =0 ¼ 0:2. Density profiles are shown along the principal x and y axes at lattice

period intervals. (WARP: Nr ¼ 50, Nppg ¼ 40 k, Ns ¼ 100, Np ’ 3.)
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a) Waterbag:

c) Waterbag:

b) Waterbag:

d) Waterbag:

e) Thermal: f) Thermal:

g) Thermal: h) Thermal:

,

,

,

,

,

,

,

,

FIG. 7. (Color) Evolution of the beam rms-edge emittances "x and "y as a function of lattice periods (s=Lp) for the simulations shown

in Fig. 6.
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FIG. 9. (Color) Evolution in phase-space projections in x-y, x-x0, and y-y0 for the initial pseudoequilibrium waterbag distribution

simulation shown in Figs. 6 and 7 with 0 ¼ 70( and =0 ¼ 0:2. Projections (columns) are shown at lattice period intervals (rows).
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tions, it is clear that the pseudoequilibrium distributions are

much better adapted to the applied-focusing channel—

particularly for stronger relative space-charge intensity.

Although collective wave perturbations are still launched

from the initial pseudoequilibrium distributions, the

strength of residual waves launched from the lack of de-

tailed equilibrium form is significantly reduced indicating

an initial beam that is better adapted to the transport

channel. This improved adaptation is particularly apparent

for cases of high space-charge intensity when contrasting

the density profile evolutions in Figs. 3 and 6. Simulations

of initial pseudoequilibrium distributions with weaker ap-

plied focusing (i.e., smaller 0) and weaker relative space-

charge intensity (i.e., higher =0) have evolutions closer

to equilibrium form with the distribution projections nearly

periodically repeating with each lattice period. Evolutions

in the rms-edge emittances "j are relatively small in all

cases of the pseudoequilibrium distributions because the

evolutions in the charge-density profile are modest.

Simulation cases in Figs. 6 and 7 that are not shown in

the phase-space projections in Figs. 8 and 9 have smaller

deviations. In these projection plots a numerical method is

employed which shows almost all macroparticles in the

low-density regions and a sampling of macroparticles in

the high-density regions. This enhances visualization of

perturbations near the edge of the beam relative to the

sampling method employed in the corresponding phase-

space projection plots in Sec. III D. Phase-space projec-

tions of the waterbag form pseudoequilibrium distribution

are shown rather than projections of the thermal form

pseudoequilibrium distribution because the sharp phase-

space boundary of the waterbag distribution (along with

plotting essentially all macroparticles near the edge) makes

it easier to visualize waves associated with the lack of

equilibrium form which manifest most strongly near the

beam edge. In all cases, waves are launched due to lack of

exact force balance near the radial edge of the beam

distribution as the beam evolves in the alternating-gradient

focusing structure. Note in Figs. 8 and 9 that wave pertur-

bations are primarily launched near the edge of the distri-

bution and only weakly perturb the core while distorting

the low-density region near the beam edge most. Emittance

evolutions shown in Fig. 7 are small in all cases exam-

ined—as should be expected because charge redistribu-

tions are modest and the beam envelope remains rms-

envelope matched to high accuracy [15,31].

Although the pseudoequilibrium distributions are not

exact equilibria, the underlying smooth continuous-

focusing distributions reflect self-consistent space-charge

screening and stable functional forms in the continuous

limit that are expected to have less free energy relative to

the KV distribution to drive wavelike instabilities. In terms

of waves launched from the lack of detailed equilibrium

form, the pseudoequilibrium distributions also exhibit im-

proved performance relative to other nonequilibrium

ansatz-type initial distributions such as the semi-

Gaussian (see Sec. III C) and linear-field Courant-Snyder

invariant (see Sec. III D) distributions that are commonly in

use. These properties render the pseudoequilibrium distri-

butions useful in probing intrinsic space-charge-related

transport limits of periodic-focusing channels. Parametric

simulation studies carried out with the pseudoequilibrium

loads have already been applied as part of a study to better

understand space-charge related transport limits in quad-

rupole focusing channels [16]. Finally, it should be stressed

that the pseudoequilibrium distribution loads are not only

applicable to periodic alternating-gradient focusing chan-

nels. The procedure applies to any lattice with s-varying or
constant applied-focusing forces described by the focusing

functions !jðsÞ. A simple periodic FODO lattice is em-

ployed here only for simplicity of illustration and for

demanding test cases. One might expect the procedure

for constructing the pseudoequilibrium distributions to

work even better in the sense of approximating equilibrium

properties because particle orbits in high-occupancy sole-

noidal transport systems are generally better approximated

by particle orbits in the continuous-focusing model relative

to orbits in strong (quadrupole) focusing systems. The

pseudoequilibrium distributions can also be applied to

simulate beam transition and matching sections, or other

aperiodic transport lattices. As with the case of periodic

systems, better performance can be expected for aperiodic

lattices with the pseudoequilibrium distributions relative to

other conventional choices of ansatz distributions when

space-charge intensity is high.

V. CONCLUSIONS

Standard classes of distributions commonly in use for

initializing transverse Vlasov simulations of charged par-

ticle beams with intense space-charge were reviewed in

this paper, including the following: the KV equilibrium

distribution; continuous-focusing equilibria, with detailed

examples for ‘‘waterbag,’’ ‘‘parabolic,’’ and ‘‘thermal’’

forms; the nonequilibrium semi-Gaussian distribution;

and nonequilibrium distributions of linear-field Courant-

Snyder invariants. All distributions were presented within a

common notation and prescriptions were given to generate

macroparticle distributions for loading PIC simulations.

Care was taken to formulate the presentation in terms of

standard accelerator variables (perveances, rms emittan-

ces, etc.) rather than special theoretical parameters not in

common use, to render methods directly applicable to

standard accelerator problems. Procedures were developed

to specify loads over the full range of space-charge

strength—even for continuous-focusing equilibria where

high space-charge intensity can present practical difficul-

ties. Deficiencies of the various distributions used in mod-

eling linear-focusing channels with noncontinuous

focusing forces were discussed and illustrative Vlasov
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PIC simulations were presented for initial distributions not

already detailed in the literature.

Following this review, a new class of pseudoequilibrium

distribution functions was derived, building on the standard

classes of distributions reviewed. The pseudoequilibrium

distributions were formulated to satisfy the need for a more

equilibriumlike, yet simple, smooth distribution to apply in

simulations of intense beams in focusing channels with

linear applied forces that vary arbitrarily (other than ex-

cluding skew couplings) in the axial coordinate s. The
pseudoequilibrium distributions are not exact equilibria

of a linear-focusing channel with nonconstant applied-

focusing forces, but they are relatively simple to formulate,

and have appealing physical properties expected for a

relaxed beam evolving in a linear-focusing channel with

space-charge driven Debye screening. The cores of the

pseudoequilibrium distributions are specified by any,

stable continuous-focusing equilibrium beam. Trans-

formations that preserve linear-field Courant-Snyder invar-

iants are then applied to map these continuous distributions

to a form more appropriate for focusing channels with

s-varying applied-focusing forces. Details are presented

to generate pseudoequilibrium distributions with underly-

ing waterbag, parabolic, and thermal equilibrium

continuous-focusing forms—which cover a wide range of

phase-space structure. Illustrative Vlasov PIC simulations

were carried out to evolve transverse pseudoequilibrium

loads in a periodic FODO quadrupole focusing channel to

explicitly demonstrate the advantages of the smooth core

structure in terms of diminished transient waves relative to

more standard initial distributions. This more quiescent

behavior can aid understanding of detailed transport phys-

ics. The pseudoequilibrium procedure can be applied to

load both 2D transverse slices (4D phase space) as well as

full 6D phase space (with specified longitudinal structure)

distributions. Also, relaxation methods can be applied to

initial pseudoequilibrium loads to further improve the

adaptation of the beam in the sense of being more equili-

briumlike in cases where the distributions should be stable.

Considerable opportunities still exist for future research in

equilibriumlike loads in linear-focusing channels with

nonconstant focusing forces—both in terms of the intrinsic

existence or nonexistence of smooth Vlasov equilibrium

distribution functions and in construction of better approxi-

mate loads through improved physical insight or system-

atic perturbation theory.
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APPENDIX A: ACCELERATION EFFECTS

In the absence of axial beam acceleration, bb ¼ const

and the particle equation of motion in the x direction that is
produced by the Hamiltonian (8) is

x00 þ !xx ¼ !
q

m3
b

2
bc

2

@

@x
: (A1)

If bb is allowed to vary slowly in s consistent with axial
acceleration forces acting on the beam, then the equation of

motion (A1) is modified as [31,67,68]

x00 þ
ðbbÞ

0

ðbbÞ
x0 þ !xx ¼ !

q

m3
b

2
bc

2

@

@x
: (A2)

For ðbbÞ
0 > 0, one may deduce from Eq. (A2) and

analysis of damped harmonic oscillators [100] that the

acceleration will tend to damp particle oscillations.

Analogous equations hold in the y plane both here and in

subsequent equations.

A transformation to tilde variables is defined by taking

[67,68,101]

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

bb

p

x: (A3)

Then

~x 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

bb

p

x0 þ
1

2

ðbbÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffi

bb

p x; (A4)

and the particle x-x0 phase-space coordinates are related to

the ~x-~x0 coordinates by

x ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffi

bb

p ~x; x0 ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi

bb

p ~x0 !
1

2

ðbbÞ
0

ðbbÞ
3=2

~x:

(A5)

Some straightforward manipulation then shows that the

equation of motion (A2) can be expressed as

~x 00 þ
$

!x þ
1

4

ðbbÞ
02

ðbbÞ
2
!

1

2

ðbbÞ
00

ðbbÞ

'

~x

¼ !
q

m2
bbc

2

@

@~x
: (A6)

A transformed potential ~ is defined as
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~ ¼ bb: (A7)

Then the equation of motion (A6) becomes

~x 00 þ ~!x~x ¼ !
q

m3
b

2
bc

2

@ ~

@~x
; (A8)

where

~! x ' !x þ
1

4

ðbbÞ
02

ðbbÞ
2
!

1

2

ðbbÞ
00

ðbbÞ
(A9)

is a linear-focusing function that incorporates acceleration

effects.

The equivalence of form between the equations of mo-

tion (A2) and (A8) shows that the formulation with

bb ¼ const can be applied to accelerating beams if the

particle phase-space coordinates are interpreted consis-

tently with the transformations in Eqs. (A3) and (A4).

Note that in a periodic applied-focusing lattice, if the

beam is to remain envelope matched in the usual sense,

Eq. (A9) shows that the focusing functions !j (j ¼ x; y)

must, in general, be adjusted such that the ~!j maintain

proper periodicity with ~!jðsþ LpÞ ¼ ~!jðsÞ. For a lattice

with discrete acceleration gaps and separated function

magnets for beam focusing, this can be done approxi-

mately when the fractional gain in particle energy through

each acceleration gap is small.

The transformation defined by Eqs. (A3) and (A4) is

straightforward to interpret. The Jacobian of the transfor-

mation shows that phase-space area elements are related as

d~x / d~x0 ¼ bbdx / dx0: (A10)

The bb factor compensates for acceleration induced

damping in x-x0 phase space. If the transformed equations

of motion are linear, then single-particle Courant-Snyder

invariants exist in ~x-~x0 phase space (see Appendix B), but

the phase-space area associated with the Courant-Snyder

invariant will be damped by the factor 1=ðbbÞ in x-x0

phase space. This is the reason for the conventional appli-

cation of normalized emittances that incorporate the bb

factor when measuring the phase-space area in accelerating

beams [31,67,68,102].

Finally, it should be pointed out that if a transformed

distribution ~f? is defined such that

~f ?d
2~x?d

2~x0? ¼ f?d
2x?d

2x0?; (A11)

then the Jacobian of the transformation (A5) d2~x?d
2~x0? ¼

ðbbÞ
2d2x?d

2x0?, and consequently ~f? is simply related

to the beam distribution f? by

~f ? ¼
1

ðbbÞ
2
f?: (A12)

If one naturally defines a charge density for the trans-

formed distribution as

~ ¼ q
Z

d2~x0?
~f?; (A13)

then the regular charge distribution  ¼ q
R
d2x0?f? is

related to ~ by

~ ¼
1

bb

; (A14)

and the transformation of the Poisson equation (9) is

%

@2

@~x2
þ

@2

@~y2

&

~ ¼ !


0
¼ !



bb0
: (A15)

The additional factor of 1=ðbbÞ is an expression of the

weakening of transverse space-charge effects with accel-

eration and must be treated with care to establish the proper

correspondences.

APPENDIX B: LINEAR-FORCE COURANT-

SNYDER INVARIANTS

An x-plane particle orbit within a KV beam is described

by the Hill’s equation [30–32,36,67,68]

x00ðsÞ þ !xðsÞxðsÞ !
2QxðsÞ

½rxðsÞ þ ryðsÞ+rxðsÞ
¼ 0: (B1)

ForQ ¼ 0 this equation also describes an x-plane orbit of a
single-particle moving in the linear applied-focusing fields

of a lattice. In a phase-amplitude resolution of the particle

orbit we take

x ¼ Ax cosc x; (B2)

where Ax and c x denote s-varying amplitude and phase

functions. Without loss of generality, Ax and c x can be

taken to satisfy 2A0
xc

0
x þ Axc

00
x ¼ 0, or equivalently,

c 0
x ¼

const

A2
x

: (B3)

The amplitude is set to be Ax ¼ Axrx, where Ax is a

positive dimensionless constant. We can then take const ¼
A2

x"x in Eq. (B3) without restrictions on the generality of

the solution. Then the equation of motion (B1) becomes

Ax

$

r00x þ !xrx !
2Q

rx þ ry
!

"2x
r3x

'

¼ 0;

c 0
x ¼

"x
r2x

:
(B4)

The amplitude equation is satisfied for Ax ! 0 if the rj
(j ¼ x; y) satisfy the KVenvelope equation (21). Note that

the rate of phase advance, c 0
x ¼ "x=r

2
x, is independent of

relative particle oscillation amplitude Ax. This phase-

advance equation can be integrated to express the total

phase advance x through an axial distance from s ¼ si
to s ¼ si þ Lp (lattice period) as
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x ¼ c xðsi þ LpÞ ! c xðsiÞ ¼ "x
Z siþLp

si

ds

r2x
: (B5)

If the focusing lattice is periodic with period Lp, and the

envelope rj is matched, then the ‘‘depressed’’ phase ad-

vance x [see Eq. (25)] is independent of si. Using Ax ¼
Axrx and c 0

x ¼ "x=r
2
x, we have

x

rx
¼ Ax cosc x;

rxx
0 ! r0xx

"x
¼ Ax sinc x: (B6)

Adding the square of these equations, we obtain the

Courant-Snyder invariant

%

x

rx

&

2

þ

%

rxx
0 ! r0xx

"x

&

2

¼ A2
x ¼ const: (B7)

An analogous invariant holds in the y plane.

The x-x0 phase-space area enclosed by the ellipse de-

fined by the Courant-Snyder invariant (B7) is "xAx. A

particle at the edge of the beam in phase space will have

amplitude Ax ¼ 1, showing that "x is the maximum

phase-space area enclosed by particles in the coasting

beam. A statistical average of Eq. (B7) shows that

hA2
xi? ¼ 1=2 for consistency with the requirement that

the statistical emittance of a KV beam satisfy "2x ¼
16½hx2i?hx02i? ! hxx0i2?+. For the KV distribution, "x can
be interpreted as the maximum single-particle emittance

and a statistical edge measure of the rms-edge emittance

(i.e., "x ¼ 4"x;rms). Note that the KV distribution (16) is a

delta function of x- and the y-plane Courant-Snyder invar-
iants that generates the required uniform-density elliptical

beam required for self-consistency. The initial particle

distributions defined in Sec. III D are based on linear-field

Courant-Snyder invariants.

In the limit of zero space charge (Q ¼ 0), the Courant-

Snyder invariant (B7) reduces to a form familiar from

conventional accelerator physics of a single-particle

oscillating in linear applied fields [97]. In this case it is

conventional to employ alternative, positive-definite am-

plitude functions 0jðsÞ (or alternatively, w0j ¼ 2
0j) that

are related to the Q ¼ 0 envelope functions rj ' r0j by

r0j ¼
ffiffiffiffiffi

"j
p

w0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

"j0j

q

: (B8)

The function 0j is called the betatron function, and for

periodic lattices, is employed analogously to a defined

special function that characterizes the applied-focusing

properties of the lattice.

The Courant-Snyder invariant can be applied to improve

the understanding of the pseudoequilibrium initial distri-

butions defined in Sec. IV. Using the transformation (87) in

the Courant-Snyder invariant (B7), we obtain

%

x

rb

&

2

þ

%

rbx
0

"b

&

2

¼ const; (B9)

where rb and "b are the envelope radius and emittance of

an rms-equivalent, matched KV beam in a continuous-

focusing channel. Adding the analogous y-plane invariant

then shows that

2
r2b
"2b

$

1

2
x
02
? þ

"2b
2r4b

x
2
?

'

¼ A2
x þA2

y ¼ const: (B10)

For a matched KV equilibrium beam in a continuous-

focusing channel, it is straightforward to show that the

transverse beam Hamiltonian H? ¼ 1
2
x
02
? þ

k2
0

2
x
2
? þ

q=ðm2
b

2
bc

2Þ can be expressed as H? ¼ 1
2
x
02
? þ

"2
b

2r4
b

x
2
?

[see Eq. (45)], giving

2
r2b
"2b

H? ¼ A2
x þA2

y ¼ const: (B11)

This shows that the composite Courant-Snyder invariant

A2
x þA2

y is proportional to H? for the equivalent

continuous-focusing channel. Therefore, the transforms

applied to generate the pseudoequilibrium distributions

from a continuous-focusing equilibrium distribution pre-

serve linear-field Courant-Snyder invariants appropriate

for the noncontinuous lattice. The transformations fail to

produce an exact equilibrium because the self-fields are not

linear for general (non-KV) continuous equilibrium distri-

butions employed. For high space-charge intensity, the

approximation of replacing the actual nonlinear space-

charge field with an rms-equivalent beam linear-field is

expected to be worse for particles near the edge of the

beam.

APPENDIX C: RMS EQUIVALENCYAND

PROJECTIONS OF THE DISTRIBUTIONS IN

SEC. III D

For a distribution to be rms equivalent with a KV dis-

tribution described by the envelope radii rj (j ¼ x; y), the

envelope angles r0j, and the rms-edge emittances "j, it

follows from Eqs. (23) and (24) that the nonzero second-

order moments of the distribution must satisfy

hx2i? ¼
r2x
4
; hxx0i? ¼

rxr
0
x

4
;

hx02i? ¼
r02x
4
þ

"2x
4r2x

:

(C1)

Here, we have expressed the x-plane equations and

h, , ,i? ¼
R
d2x

R
d2x0 , , , f?=

R
d2x

R
d2x0f?. Analogous

equations hold in the y plane both here and in subsequent

equations. All second-order cross moments must vanish

(e.g., hxyi? ¼ 0).

To analyze constraints that rms equivalency places on

the class of linear-field Courant-Snyder invariant (LCS)

distributions defined by Eqs. (60)–(64), it is convenient to

employ canonical transformations [30] by taking
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X '
ffiffiffiffiffi

"x
p x

rx
; _X '

ffiffiffiffiffi

"x
p %

rxx
0 ! r0xx

"x

&

; (C2)

with inverse transform

x ¼
rx
ffiffiffiffiffi

"x
p X; x0 ¼

ffiffiffiffiffi

"x
p

rx
_X þ

r0x
ffiffiffiffiffi

"x
p X: (C3)

Phase-space area elements transform as

d2x? ¼ dx / dy ¼
rxry
ffiffiffiffiffiffiffiffiffiffi

"x"y
p dX / dY;

d2x0? ¼ dx0 / dy0 ¼
ffiffiffiffiffiffiffiffiffiffi

"x"y
p

rxry
d _X / d _Y;

(C4)

with

d2x?d
2x0? ¼ dx / dy / dx0 / dy0

¼ dX / dY / d _X / d _Y; (C5)

reflecting the local phase-space invariance of a canonical

transform [103]. Using these canonical transforms it is

straightforward to show that the rms-equivalency require-

ments in Eq. (C1) can be expressed as

hX2i? ¼ h _X2i? ¼
"x
2
; hX _Xi? ¼ 0; (C6)

and the linear-field Courant-Snyder invariant A2 in

Eq. (61) becomes

A 2 ¼
1

"x
ðX2 þ _X2Þ þ

1

"y
ðY2 þ _Y2Þ; (C7)

thereby simplifying the expression of the LCS distribution

(60) to

f?ðA
2Þ ¼



q
f

%

X2 þ _X2

"x
þ

Y2 þ _Y2

"y

&

: (C8)

Employing Eqs. (C5) and (C8), it follows by symmetry that

hX _Xi? ¼ 0 is satisfied independent of the form of the

function f used in the distribution definition (C8). Some

straightforward manipulation using these equations then

shows that hX2i? ¼ h _X2i? ¼ "x=2 is satisfied if the func-

tion f satisfies
R1
0 dU

R1
0 d _UUfðUþ _UÞ

R1
0 dU

R1
0 d _UfðUþ _UÞ

¼
1

2
: (C9)

Here, U ' X2="x þ Y2="y and _U ' _X2="x þ _Y2="y.

Denoting

GðUÞ '
Z 1

U
d ~Ufð ~UÞ; (C10)

the constraint in Eq. (C9) can be equivalently expressed as
R1
0 dUUGðUÞ
R1
0 dUGðUÞ

¼
1

2
: (C11)

This shows that the moment constraints (C1) required for

rms equivalency are automatically satisfied for LCS dis-

tributions defined by Eqs. (60) and (61) regardless of the

(physical) values of rj, r
0
j, and "j and the specific form of

the choice of function f.
Projections of the LCS distributions can be more easily

calculated using the canonical transforms in Eqs. (C2)–

(C5). For example, the x-y density projection reduces to

n ¼
Z

d2x0?f?

¼


q

ffiffiffiffiffiffiffiffiffiffi

"x"y
p

rxry

Z

d _X
Z

d _Yf

%

X2 þ _X2

"x
þ

Y2 þ _Y2

"y

&

¼


q

"x"y

rxry

Z 1

2
dUfðUÞ; (C12)

where 2 ' x2=r2x þ y2=r2y. Similarly, using

dy / dy0 ¼ dY / d _Y; (C13)

the canonical transforms can be applied to calculate the

x-x0 phase-space projection as

Z

dy
Z

dy0f? ¼


q

Z

dY
Z

d _Yf

%

X2 þ _X2

"x
þ

Y2 þ _Y2

"y

&

¼
"y

q

Z 1

A2
x

dUfðUÞ; (C14)

where A2
x ' ðx=rxÞ

2 þ ðrxx
0 ! r0xxÞ

2="2x. Further simpli-

fications to Eqs. (C12) and (C14) can be made for specific

choices of f (see Table II).

APPENDIX D: CONTINUOUS-FOCUSING

WATERBAG EQUILIBRIUM DISTRIBUTION

A thorough treatment of the waterbag equilibrium has

been presented by Reiser [31] and others [32,59,67–

69,104]. Sheet beam models of the waterbag distribution

have also been extensively studied in continuous and

periodic-focusing channels both in terms of equilibrium

[105,106] and stability properties [106,107]. Here we re-

view and extend analysis of the waterbag equilibrium

within the present framework to facilitate generation of

Vlasov simulation loads formulated with standard inputs

for accelerator simulations. For a waterbag equilibrium

distribution in continuous focusing, we take

f?ðH?Þ ¼ f0xðHb !H?Þ: (D1)

Here, xðxÞ is a unit-step function [see Eq. (57)], f0 ¼
const> 0 is the distribution normalization factor, and

Hb ¼ const is the value of the Hamiltonian H? at the

physical beam edge at radius r ¼ re, i.e.,

H?jr¼re ¼ Hb: (D2)

The waterbag distribution expresses that all transverse

particle energies out to the beam edge have uniform proba-

bility, which gives rise to the name ‘‘waterbag’’ motivated
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by analogy to an incompressible fluid confined within a

membrane boundary. The sharp beam edge in phase space

associated with the step-function definition of the distribu-

tion generates a simple, highly idealized model conducive

to analytical calculations. Because @f?ðH?Þ=@H? ¼
!f0ðHb !H?Þ . 0, the waterbag distribution is stable

to all perturbations within the Vlasov model [30,32].

Using the formulation developed in Sec. III B, we take

H? ¼ x
02
?=2þ c with c ¼ k20r

2=2þ q=ðm3
b

2
bc

2Þ,

and calculate the radial beam density n ¼
R
d2x0?f? using

Eqs. (36) and (D1) to be

nðrÞ ¼ 2f0

"

Hb ! c ðrÞ; c <Hb;
0; c >Hb:

(D3)

Note that the density falls smoothly to zero at the physical

beam edge [i.e., nðr ¼ reÞ ¼ 0]. The physical edge radius

re is generally distinct from the rms-edge radius rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hr2i?
p

with re > rb. Using Eq. (D3), the transformed

Poisson equation (37) for c can be expressed within the

beam (r < re) as

1

r

@

@r

%

r
@c

@r

&

! k20c ¼ 2k20 ! k20Hb; (D4)

where

k20 '
2q2f0

0m3
b

2
bc

2
¼ const: (D5)

Equation (D4) is a modified Bessel function equation of

order zero [108]. The solution c of this equation that is

regular as r ! 0 and satisfies c ðr ¼ reÞ ¼ Hb is given

within the beam by

c ðrÞ ¼ Hb ! 2
k20

k20

$

1!
I0ðk0rÞ

I0ðk0reÞ

'

; (D6)

where I‘ðxÞ is the modified Bessel function of order ‘.
Using this result, Eq. (D3) for the density becomes

nðrÞ ¼ 4f0
k20

k20

$

1!
I0ðk0rÞ

I0ðk0reÞ

'

¼
20m2

b
2
bc

2k20

q2

$

1!
I0ðk0rÞ

I0ðk0reÞ

'

(D7)

within the beam. Similarly, the x-plane kinetic temperature

Tx ¼ hx02ix0
?
is calculated, using Eq. (38) and previous

results, to be

TxðrÞ ¼
k20

k20

$

1!
I0ðk0rÞ

I0ðk0reÞ

'

(D8)

within the beam. Comparing Eqs. (D7) and (D8), note that

TxðrÞ / nðrÞ. This proportionality between Tx and n is a

consequence of the waterbag equilibrium choice for

f?ðH?Þ, and is not a general result for continuous-focusing
equilibria.

In Fig. 10 the normalized waterbag density profile is

plotted as a function of k0r for characteristic values of k0re.
Note that as k0re increases, the density profile (and the

temperature profile with Tx / n) becomes increasingly flat

within the core of the beam, with r 0 re.
It can be useful to employ H? ¼ 1

2
x
02
? þ c [see

Eq. (35)] and Eq. (D6) for c to explicitly calculate the

waterbag distribution as

f?ðx?;x
0
?Þ ¼ f0x

%

2
k20

k20

$

1!
I0ðk0rÞ

I0ðk0reÞ

'

!
1

2
x
02
?

&

: (D9)

Note that Hb has been eliminated in Eq. (D9), and the

distribution is expressed in terms of normalization factor

f0, the scaled edge radius k0re, and k0=k0.

To use the formulation above effectively, distribution

parameters should be cast in terms of standard quantities

associated with accelerator physics as discussed in

Sec. III B. First, the beam line charge can be calculated

using  ¼ 2q
Rre
0 drrnðrÞ and Eq. (D7) to show that

 ¼ 42qf0
k20

k20
r2e

$

1!
2

k0re

I1ðk0reÞ

I0ðk0reÞ

'

¼ 42qf0
k20

k20
r2e

I2ðk0reÞ

I0ðk0reÞ
: (D10)

Here we have employed the modified Bessel function

identities [108]

d

dx
½x‘I‘ðxÞ+ ¼ x‘I‘!1ðxÞ;

!
2‘

x
I‘ðxÞ ¼ I‘þ1ðxÞ ! I‘!1ðxÞ;

with ‘ an integer, to simplify the integrals in the calculation

of . Similarly, the statistical rms-beam envelope given by

rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hr2i?
p

with hr2i? ¼
Rre
0 drr3nðrÞ=

Rre
0 drrnðrÞ can

Radius,

D
en

si
ty

,

FIG. 10. For a waterbag equilibrium, the scaled density profile

nðrÞ=f4f0ðk20=k20Þ½1! 1=I0ðk0reÞ+g is plotted versus the scaled
radial coordinate k0r, calculated from Eq. (D7) for the indicated

values of k0re.
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be explicitly calculated using Eq. (D7) [or equivalently,

using Eq. (40)] to be

%

rb
re

&

2

¼
I0ðk0reÞ

I2ðk0reÞ
!

4

ðk0reÞ
2

$

2þ ðk0reÞ
I3ðk0reÞ

I2ðk0reÞ

'

: (D11)

From Eqs. (D5) and (D10), the perveance Q ¼

q=ð20m3
b

2
bc

2Þ is conveniently expressed as

Q ¼ ðk0reÞ
2
I2ðk0reÞ

I0ðk0reÞ
: (D12)

Then Eqs. (D11) and (D12) can be combined to obtain the

constraint equation

k20r
2
b

Q
¼

I20ðk0reÞ

I22ðk0reÞ

!
4

ðk0reÞ
2

$

2
I0ðk0reÞ

I2ðk0reÞ
þ ðk0reÞ

I0ðk0reÞI3ðk0reÞ

I22ðk0reÞ

'

;

(D13)

which relates the dimensionless factor k0re in terms of the

dimensionless ratio of beam physics parameters k20r
2
b=Q.

Using Eq. (47), k20r
2
b=Q [or k0re using Eq. (D13)] can be

directly related to the rms-equivalent beam measure of

relative space-charge strength =0 as

k20r
2
b

Q
¼

1

1! ð=0Þ
2
: (D14)

Alternatively, the dimensionless self-field parameter sb
defined in Eq. (48) can be related to k0re from

sb '
!̂2

p

23
b

2
bc

2k20
¼ 1!

1

I0ðk0reÞ
: (D15)

Here, !̂p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2n̂=ð0mÞ
p

is the plasma frequency defined

from the peak, on-axis beam density n̂ ¼ nðr ¼ 0Þ. For
specified Q the ratio of k0=k0 can be calculated from

Eq. (D12) and k0re as

k0

k0
¼

1

ðk0reÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q
I0ðk0reÞ

I2ðk0reÞ

s

: (D16)

The matched-beam envelope constraint [see Eq. (39)]

k20rb !
Q

rb
!

"2b
r3b

¼ 0 (D17)

can be employed in the constraint equation (D13) to elimi-

nate either k20, rb, or Q occurring in k20r
2
b=Q in terms of

the emittance "b to affect various parametrization choices.

The nonlinear constraint equation (D13) must, in gen-

eral, be solved numerically to specify the needed value of

k0re. Using Eqs. (D13) and (D14), k0re can be regarded as
a function of the rms-equivalent beam tune depression

=0. These equations are solved numerically to plot

k0re as a function of =0 in Fig. 11. Because k0re is a

one-to-one function of =0, the relative space-charge

strength can be regarded as uniquely determining k0re.
Figure 11 illustrates the wide range of characteristic values

of k0re obtainable as the relative space-charge strength is

varied. From the envelope equation, note that k20r
2
b=Q ¼

1þ "2b=ðQr2bÞ> 1. Analysis of Eq. (D13) shows that

k20r
2
b=Q is a monotonic decreasing function of k0re with

limk0re!0k
2
0r

2
b=Q ! 1 and limk0re!1k

2
0r

2
b=Q ¼ 1.

Therefore, a unique value of k0re 2 ð0;1Þ exists for any
equilibrium with finite space charge (Q ! 0). Analytical

solution of the constraint equation (D13) is possible in the

limit of small and large values of k0re. Using the expansion
[108]

I‘ðxÞ ¼
X1

k¼0

ðx=2Þ‘þ2k

k!ð‘þ kÞ!

for jxj 0 1, we obtain to leading order

k0re ’
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðk20r
2
b=Q! 17=18Þ

q (D18)

for values of k20r
2
b=Q sufficiently large to produce small

k0re. This limit of small k20r
2
b=Q corresponds to weak

space-charge forces relative to applied-focusing forces

(=0 " 1) and Eqs. (D6) and (D7) for nðrÞ can be ap-

proximated in this regime as

nðrÞ ’ f0k
2
0ðr

2
e ! r2Þ (D19)

within the beam. Similar parabolic approximations follow

immediately for c and Tx in this limit. Using the expan-

sion [108]

I‘ðxÞ ¼
ex
ffiffiffiffiffiffiffiffiffi

2x
p

$

1þ
ð!1Þ1ð4‘2 ! 12Þ

1!ð8xÞ1

þ
ð!1Þ2ð4‘2 ! 12Þð4‘2 ! 32Þ

2!ð8xÞ2
, , ,

'

FIG. 11. Waterbag equilibrium parameter k0re versus rms-

equivalent beam tune depression =0 as calculated from

Eqs. (D13) and (D14).
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for x 1 ‘, the constraint equation (D13) can be approxi-

mated to leading order as

k0re ’
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20r
2
b=Q! 1

q (D20)

for values of k20r
2
b=Q > 1 sufficiently close to unity to

produce large k0re. The large-k0re regime corresponds to

strong space-charge depression with =0 small.

Simplified expressions for the density profile valid within

the full radial range of the beam core are more difficult to

derive in this case. For general space-charge strength, the

limiting solutions in Eqs. (D18) and (D20) can be em-

ployed to seed numerical solutions of the constraint equa-

tion (D13) using conventional root-finding techniques [95].

Although the envelope equation (39) can be applied to

calculate the beam rms-edge emittance "b in terms of k20,

rb, and Q, it can be useful in some circumstances to

calculate "b ¼ "j explicitly for the waterbag distribution

function (D1). From Eqs. (42) and (D1), "2b ¼ 2r2bhx02
?i?

can be calculated to be

"2b ¼
162qf0r

2
b



$

H2
br

2
e

4
!Hb

Z re

0
drrc þ

1

2

Z re

0
drrc 2

'

:

Use of Eqs. (D6) and (D10) in this result leads to

"2b ¼ 4r2b
k20

k20

$

2
I0ðk0reÞ

I2ðk0reÞ
!

4

ðk0reÞ

I1ðk0reÞ

I2ðk0reÞ

!
I21ðk0reÞ

I0ðk0reÞI2ðk0reÞ

'

: (D21)

To better understand properties of the waterbag equilib-

rium, we employ Eqs. (D11)–(D17) to plot the radial

density profile and the phase-space boundary of the distri-

bution in Fig. 12 for fixed applied-focusing strength (k20 ¼

const) and fixed beam perveance (Q ¼ const) as the rela-

tive space-charge strength (=0) is varied. In Fig. 12(a)

the scaled radial density profile is plotted. For the waterbag

equilibrium the temperature profile is proportional to the

density profile [i.e., Tx / n, see Eqs. (D7) and (D8)], and

therefore Fig. 12(a) also serves to illustrate the beam radial

temperature profile. The boundary edge of the waterbag

equilibrium distribution in x?-x
0
? phase-space is shown in

Fig. 12(b). This f? ¼ 0 boundary is calculated as the

maximum value of x0
? as a function of r from Eq. (D9)

to be

Max ðx0
?Þ ¼ 2

k0

k0

$

1!
I0ðk0rÞ

I0ðk0reÞ

'

1=2
(D22)

within the beam. The distribution f? is uniformly filled

within the outer edge. Various dimensionless parameters

for the equilibria in Fig. 12 are given in Table III. Note that

for high space-charge intensity (small =0) the waterbag

equilibrium density profile becomes very flat deep within

in the core (r 0 re) due to Debye screening effects asso-

ciated with the interaction of the applied-focusing and

space-charge forces [30,109]. Near the edge (r & re) the
applied-focusing forces start to dominate the self-field

forces and the density decreases rapidly to zero with a

characteristic (modified Bessel function) falloff associated

with the waterbag equilibrium choice. For weak relative

space-charge forces (=0 " 1), the density profile

approaches the parabolic limiting form in Eq. (D19),

and the phase-space boundary becomes elliptical [i.e.,

Eq. (D22) is approximated by ½Maxðx0
?Þ+

2 þ k20r
2
e ¼

k20r
2
e]. For large relative space-charge intensity (=0 0

1), the phase-space boundary of the uniform core distribu-

tion becomes more rectangular, indicating nearly force-

free motion deep within the beam core until a particle

enters the edge region where a strong nonlinear force

transition effectively reflects the particle. From Table III,

note that small values of =0 correspond to values of the

self-field parameter sb that are extremely close to sb ¼ 1.

Radius,

Radius,

FIG. 12. Waterbag equilibrium distribution in continuous-

focusing channel for fixed focusing-field strength (k20 ¼

const) and perveance Q ¼ 10!4 with (rms-equivalent beam

measure) relative space-charge strengths =0 ¼ 0:9; 0:8; . . . ;
0:1. In (a) the scaled density profile ½q2=ð2m0

3
b

2
bc

2k20Þ+nðrÞ

is plotted versus the dimensionless radial coordinate k0r, and in

(b) the distribution edge (f? ¼ 0 curve) in x?-x
0
? phase space is

plotted as a function of k0r and jx0
?j. Values of =0 corre-

spond to the dimensionless equilibrium parameters in Table III.
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Thus, the self-field parameter is insensitive relative to k0re
to employ to specify scaled intense-beam waterbag equi-

libria with high space-charge intensity.

To load the waterbag equilibrium distribution in either

direct-Vlasov or PIC simulations, the general framework

presented in Sec. III B can be applied. For PIC loading of

the waterbag distribution, the radial probability transform

(51) for loading macroparticle coordinates x? can be ex-

pressed in the reduced form

r

re

$

r

re

I0ðk0reÞ

I2ðk0reÞ
!

1

k0re

I1ðk0rÞ

I2ðk0reÞ

'

¼ ûr: (D23)

Here, ûr 2 ½0; 1Þ is an independent, uniformly distributed

random number generated for each macroparticle. This

equation must, in general, be solved numerically for

rðûrÞ to specify macroparticle coordinates using Eq. (52).

Values can be saved on a radial grid in r 2 ½0; re+, and
interpolation applied to efficiently load many macropar-

ticles. For loading the macroparticle angles x0
?, the proba-

bility transform (53) can be greatly simplified by exploiting

the structure of the waterbag distribution. With particle

radii r ¼ jx?j specified, the macroparticle angles jx0
?j

are uniformly distributed in U ¼ 1
2
x
02
? from U ¼ 0 to a

maximum value consistent with Eq. (D22) leading to

UðûUÞ ¼ 2
k20

k20

$

1!
I0ðk0rÞ

I0ðk0reÞ

'

ûU: (D24)

Here, ûU 2 ½0; 1Þ is an independent, uniformly distributed

random number generated for each macroparticle.

Macroparticle angles are set using this value of UðûUÞ in
Eq. (54).

APPENDIX E: CONTINUOUS-FOCUSING

PARABOLIC EQUILIBRIUM DISTRIBUTION

For a parabolic equilibrium distribution in continuous

focusing, we take

f?ðH?Þ ¼ f0ðHb !H?ÞxðHb !H?Þ; (E1)

where xðxÞ is a unit-step function [see Eq. (57)], f0 ¼
const> 0 is the distribution normalization factor, and

Hb ¼ const is the value of the Hamiltonian H? at the

physical beam edge at radius r ¼ re, i.e.,

H?jr¼re
¼ Hb: (E2)

The parabolic distribution has linearly decreasing particle

probabilities with increasing transverse particle energy out

to a sharp beam edge where the probability is zero. This

distribution is named ‘‘parabolic’’ because at fixed x?, the
probability decreases parabolically with increasing x0

? due

to the 1
2
x
02 dependence of H? on x

0
?. The parabolic dis-

tribution coarsely reflects what one might expect on physi-

cal grounds—that probabilities fall off towards the edge of

the beam in a continuous manner, and may in this sense

represent a lesser degree of idealization than the waterbag

distribution [see Sec. D].

Using the formulation developed in Sec. III B, we take

H? ¼ x
02
?=2þ c with c ¼ k20r

2=2þ q=ðm3
b

2
bc

2Þ

and calculate the radial beam density profile nðrÞ ¼
R
d2x0?f? from Eqs. (E1) and (36). This gives

nðrÞ ¼ f0

"

½Hb ! c ðrÞ+2; c <Hb;
0; c >Hb:

(E3)

Using Eq. (E3), the transformed Poisson equation (37) can

be conveniently expressed within the beam (r < re) as

1

r

@

@r

%

r
@c

@r

&

þ
K

2
ðHb ! c Þ2 ¼ 2k20r

2
e: (E4)

Here,

K '
2q2f0Hbr

2
e

0m3
b

2
bc

2
¼ const (E5)

is a dimensionless constant. Equation (E4) can be inte-

grated subject to

TABLE III. Dimensionless waterbag equilibrium parameters in Fig. 12 calculated for specified

=0. The values of k0=k0 and k0"b are evaluated for Q ¼ 10!4, and all other quantities are

independent of Q.

Q ¼ 10!4

=0 k0re sb
k2
0
r2
b

Q
re
rb

k0
k0

103 # k0rb 103 # k0"b

0.9 1.112 0.2502 0.19 1.217 39.81 22.94 0.4737

0.8 1.709 0.4666 0.36 1.208 84.87 16.67 0.2222

0.7 2.304 0.6477 0.51 1.197 137.5 14.00 0.1373

0.6 2.979 0.7916 0.64 1.183 201.5 12.50 0.093 75

0.5 3.821 0.8968 0.75 1.166 283.8 11.55 0.066 67

0.4 4.978 0.9626 0.84 1.144 398.7 10.91 0.047 62

0.3 6.789 0.9928 0.91 1.118 579.3 10.48 0.032 97

0.2 10.25 0.9997 0.96 1.085 925.6 10.21 0.020 83

0.1 20.38 0.999 999 98 0.99 1.046 1938.0 10.05 0.010 10
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c ðr ¼ reÞ ¼ Hb;
@c

@r

(

(

(

(

(

(

(

(r¼0

¼ 0;

@c

@r

(

(

(

(

(

(

(

(r¼re

¼ k20re !
Q

re
:

(E6)

Here, c ðr ¼ reÞ ¼ Hb follows from Eq. (E2), the deriva-

tive condition on c at r ¼ 0 follows from the structure of

Eq. (E4), and the derivative condition on c at r ¼ re is

readily derived from a direct integration on the equilibrium

Poisson equation (33) to show that @=@rjr¼re ¼

!=ð20reÞ and employing the definition of the per-

veance Q ¼ q=ð20m3
b

2
bc

2Þ ¼ const.

Equation (E4) for c is highly nonlinear and must be

numerically integrated subject to the conditions in

Eq. (E6). The integration can be carried out inward from

r ¼ re and subject to the two ‘‘initial’’ conditions in

Eq. (E6) at r ¼ re, i.e., c ðr ¼ reÞ ¼ Hb and

½@c =@r+r¼re
¼ k20re !Q=re. Only specific parameters

will be consistent with the derivative condition

½@c =@r+r¼0 ¼ 0 in Eq. (E6) necessary for a physical so-

lution. This boundary condition can in this sense be em-

ployed as a constraint to eliminate one free parameter.

Careful analysis of Eqs. (E4) and (E6) shows that simple

rescalings result in a final system with three free parame-

ters, one of which can be regarded as eliminated in enforc-

ing boundary conditions. Ultimate specification of the

solution in terms of standard quantities associated with

accelerator physics as discussed in Sec. III B will, in gen-

eral, become complicated to enforce even in numerical

solution.

Fortunately, a more convenient alternative formulation

can be derived as follows. Within the beam (r < re),
Eq. (E3) can used to relate c to n by

c ¼ Hb

%

1!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

f0H
2
b

s
&

: (E7)

This result, together with a simple variable rescaling

r ' rs; n ' n̂N; (E8)

where rs > 0 is a scale radius to be determined, and n̂ ¼
nðr ¼ 0Þ> 0 is the on-axis density [Nð ¼ 0Þ ¼ 1], can

then be applied to express Eq. (E4) to give

N
@2N

@2
þ

N



@N

@
!

1

2

%

@N

@

&

2

¼ !C1N
3=2 þ C2N

5=2: (E9)

Here,

C1 ¼ 4k20r
2
s

ffiffiffiffiffiffiffiffiffi

f0
n̂

s

> 0;

C2 ¼
1

2

q2n̂

m0

C1

3
b

2
bc

2k20
> 0:

(E10)

The freedom of scale choice in rs allows us to take C1 ¼ 1.

Then we identify

C2 ¼
!̂2

p

23
b

2
bc

2k20
' sb; (E11)

where !̂p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2n̂=ðm0Þ
p

is the on-axis plasma frequency,

and sb is the dimensionless self-field parameter defined in

Eq. (48).

With this rescaling, the normalized density N within the

beam is given by

N
@2N

@2
þ

N



@N

@
!

1

2

%

@N

@

&

2

¼ !N3=2 þ sbN
5=2; (E12)

subject to

Nð ¼ 0Þ ¼ 1;
@N

@

(

(

(

(

(

(

(

(¼0

¼ 0: (E13)

Equation (E12) can be simply integrated outward from the

initial conditions at  ¼ 0 in Eq. (E13) until the beam edge

is reached at  ¼ e, where

Nð ¼ eÞ ¼ 0: (E14)

It also follows directly from Eq. (E12) that

@N

@

(

(

(

(

(

(

(

(¼e

¼ 0: (E15)

Note that in this formulation only one dimensionless pa-

rameter sb > 0 is necessary to specify the normalized

density N of the parabolic equilibrium distribution.

As a practical matter, the numerical integration for N
needs to be started from a small value of  ! 0. A power-

series analysis of Eq. (E12) shows that the first few terms of

the solution for small  are given by

N ¼ 1!
1! sb

4
2 þ

ð1! sbÞð1! 2sbÞ

64
4

þ
sbð1! sbÞð11! 13sbÞ

4608
6 þ , , , : (E16)

For consistency with @N=@< 0 for small , this expan-

sion shows that the physical range of the self-field parame-

ter sb for the parabolic equilibrium is sb 2 ½0; 1Þ. The limit

sb ¼ 0 corresponds to zero space-charge intensity with a

shaped density profile reaching into the core of the beam

(the analysis below shows that the density expansion trun-

cates at the first two terms), and sb ! 1 corresponds to the

limit of maximum space-charge intensity with a flat den-

sity profile in the core of the beam.

Numerical solutions of Eqs. (E12) and (E13) for N
versus  are plotted in Fig. 13 for values of sb 2 ½0; 1Þ.
Because of an extreme sensitivity of the solution in sb near
sb ¼ 1, we employ an alternative parameter,

p ' ! logð1! sbÞ (E17)

to characterize the solutions. The solutions are plotted out

to the beam edge  ¼ e whereN ¼ 0. In generating these

solutions, it is convenient to integrate through N ¼ 0 to
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allow calculation of e by numerical root finding. This can

be accomplished by replacing N3=2 ! NjNj1=2 and

N5=2 ! jNj5=2 on the right-hand side of Eq. (E12) without

influencing the needed core solution of NðÞ for < e.

The extended solution for N with > e has N - 0 and

generally oscillates in  between zero and a value at some

fraction of the core. Because e occurs where @N=@ ¼ 0,

e can be calculated by bracketed numerical root finding

for @NðÞ=@ ¼ 0 near the first radial location where

N ’ 0.

Note from the solutions in Fig. 13 that the core beam

density profile becomes flat as sb ! 1 (i.e., p ! 1) out

until  increases towards e where N drops to zero with a

radial profile characteristic of the parabolic equilibrium

choice of f?ðH?Þ. This edge shape extends deeper into

the core of the beam as sb (or p) decreases. In the limit

sb ¼ p ¼ 0, the exact solution to Eqs. (E12) satisfying

Eq. (E13) is

N ¼

%

1!
2

8

&

2

; (E18)

with a corresponding beam edge (i.e., where N ¼ 0) at

 ¼ e ¼ 2
ffiffiffi

2
p

’ 2:8284. This result, consistent with the

sb ¼ 0 numerical solution in Fig. 13, can be shown directly

from the nonlinear equation (E12). However, the solu-

tion (E18) is most readily derived by solving the linear

equation (E4) for c with K ¼ 0 and employing Eqs. (E3)

and (E8). Note that Eq. (E18) is consistent with the first

two terms of the expansion in Eq. (E16) with sb ¼ 0,

showing that the series expansion truncates in this limit.

The x-plane kinetic temperature Tx ¼ hx02ix0
?

of the

parabolic equilibrium can be calculated from Eq. (38)

and previous results. This gives

TxðrÞ ¼

"

1
3
½Hb ! c ðrÞ+; c <Hb;

0; c >Hb:
(E19)

Equation (E7) can be applied to express this result in terms

of the beam density n (in normalized and unnormalized

form) as

Tx ¼
1

3

ffiffiffiffiffiffiffiffiffi

n

f0

s

¼
1

3

ffiffiffiffiffiffiffiffiffi

n̂

f0

s
ffiffiffiffi

N
p

: (E20)

This result, illustrating that Tx /
ffiffiffi

n
p

, is a consequence

of the parabolic equilibrium choice for f?ðH?Þ. Equa-
tion (E20) can then be applied in Eq. (43) to explicitly

calculate the parabolic distribution rms-edge emittance

"b ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx2i?hx02i?
p

in terms of the density (in normalized

and unnormalized form) as

"2b ¼
2

3

r2b
ffiffiffiffiffiffiffiffiffi

f0
p

R1
0 drrn3=2
R1
0 drrn

¼
2

3

ffiffiffiffiffiffiffiffiffi

n̂

f0

s

r2b

Re

0 dN3=2

Re

0 dN
:

(E21)

Alternatively, the emittance "b can be calculated from

other equilibrium parameters using the matched envelope

equation (39).

It is useful to employH? ¼ 1
2
x
02
? þ c [see Eq. (35)] and

Eq. (E7) to express the parabolic equilibrium distribution

(E1) in the form

f?ðx?;x
0
?Þ ¼ f0

%

!
1

2
x
02
? þ

ffiffiffiffiffiffiffiffiffi

n

f0

s
&

x

%

!
1

2
x
02
? þ

ffiffiffiffiffiffiffiffiffi

n

f0

s
&

:

(E22)

Note that Hb has been eliminated in Eq. (E22). The maxi-

mum of the parabolic distribution occurs at f?ðx? ¼

0;x0
? ¼ 0Þ, where

f?ðx? ¼ 0;x0
? ¼ 0Þ ' f̂ ¼

ffiffiffiffiffiffiffiffi

f0n̂



s

: (E23)

Analogous to the waterbag equilibrium case discussed in

Appendix D, parameters introduced in the formulation

need to be related to standard parameters employed in

accelerator physics. To do this, we first calculate the

beam perveance Q in terms of the normalized density

NðÞ to be

Q ¼
q

20m3
b

2
bc

2
¼ 2sbk

2
0r

2
s

Z e

0

dN: (E24)

Here, we have employed Eq. (E8) to scale the radial

coordinate and density and Eq. (E11) to simplify the

coefficient. Next, the definition of the statistical beam

edge radius rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hr2i?
p

can be similarly applied to

obtain

%

rb
rs

&

2

¼ 2

Re

0 d3N
Re

0 dN
: (E25)

Equations (E24) and (E25) then show that

2
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FIG. 13. For a parabolic equilibrium, the scaled density N ¼
n=n̂ is plotted versus the scaled radial coordinate  ¼ r=rs
numerically calculated from Eqs. (E12) and (E13) for p ¼
0; 2; . . . ; 10.
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Q

k20r
2
b

¼ sb
ð
Re

0 dNÞ2
Re

0 d3N
: (E26)

The matched-beam envelope equation (39) shows that

ðk20"bÞ
2 ¼ ðk0rbÞ

4 !Qðk0rbÞ
2; (E27)

and Eq. (E26) can be rearranged to give

ðk0rbÞ
2 ¼

Q

sb

Re

0 d3N

ð
Re

0 dNÞ2
: (E28)

Equations (E27) and (E28) then show that

%

"b
rb

&

2

¼ Q

%

1

sb

Re

0 d3N

ð
Re

0 dNÞ2
! 1

&

; (E29)

which can be employed with Eq. (E21) to identify
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂=ðf0Þ
p

, a factor useful in setting the distribution scale

[see Eq. (E23)], as

ffiffiffiffiffiffiffiffiffi

n̂

f0

s

¼ Q

%

1

sb

Re

0 d3N

ð
Re

0 dNÞ2
! 1

&
Re

0 dN
Re

0 dN3=2
: (E30)

Note that the integrals in Eqs. (E24)–(E30) are pure func-

tions of the dimensionless self-field parameter sb. Because
Q=ðk20r

2
bÞ is a dimensionless function of accelerator pa-

rameters, Eq. (E26) can be applied to numerically solve for

sb, or alternatively p ¼ ! logð1! sbÞ, in terms of accel-

erator parameters.

The rms-equivalent beam measure of relative space-

charge strength =0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1!Q=ðk20r
2
bÞ

q

[see Eq. (47)]

can be applied with Eq. (E26) to numerically calculate the

parameters p and/or sb ¼ 1! e!p as a function of =0.

This result is shown in Fig. 14 over a broad range of

relative space-charge strength. Note that small values of

=0 correspond to values of self-field parameter sb ex-

tremely close of sb ¼ 1, demonstrating that sb is incon-

venient to describe parabolic equilibria with high space-

charge intensity. As expected, p ¼ 0 (sb ¼ 0) corresponds

to =0 ¼ 1 and a warm equilibrium with the applied-

focusing force dominating, whereas p ! 1 (sb ! 1) cor-

responds to =0 ! 0 and a cold, fully space-charge de-

pressed equilibrium.

To better understand properties of the parabolic equilib-

rium, we employ Eqs. (E25) and (E26) to plot the radial

density and temperature profiles and the phase-space dis-

tribution in Figs. 15 and 16 for fixed applied-focusing

strength (k20 ¼ const) and fixed beam perveance (Q ¼

const) as the relative space-charge strength (=0) is

varied. In Fig. 15(a) the scaled radial density profiles

illustrate the sharpening of the parabolic equilibrium den-

sity profile with increasing relative space-charge strength

(i.e., small =0 or sb close to unity) and bell shaped for

weak relative space-charge strength [i.e., =0 " 1, or

equivalently, small sb, with the density profile approxi-

mated by Eq. (E18)]. Similarly, the radial temperature

0.2 0.4 0.6 0.80.0 1.0

15

10

5

20

0

Tune Depression,

FIG. 14. Parabolic equilibrium parameter p ¼ ! logð1! sbÞ
versus rms-equivalent beam tune depression =0 as calculated

from Eqs. (E26) and (47).
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D
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FIG. 15. Continuous-focusing parabolic equilibrium radial

density and temperature profiles for fixed focusing-field strength

(k20 ¼ const) and perveance Q ¼ 10!4 with (rms-equivalent

beam measure) relative space-charge strengths =0 ¼
0:9; 0:8; . . . ; 0:1. In (a) and (b), the scaled density

½q2=ð20m3
b

2
bc

2k20Þ+nðrÞ and temperature TxðrÞ profiles are

plotted versus the dimensionless radial coordinate k0r. Values

of =0 correspond to the dimensionless equilibrium parameters

in Table IV.
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profile in Fig. 15(b) indicates for strong relative space-

charge forces that the temperature strongly decreases and

flattens in the core of the beam before rapidly dropping to

zero at the beam edge. Contours of the scaled distribution

f?ðH?Þ=f̂? are shown in Figs. 16(a)–16(d) for values of

=0 corresponding to weak, intermediate, and strong

relative space-charge strengths. The contours are generated

by scaling Eq. (E22) to obtain

f?ðH?Þ

f̂?
¼

%

!
x
02
?

2
ffiffiffiffiffiffi

n̂
f0

q þ
ffiffiffiffi

N
p &

x

%

!
x
02
?

2
ffiffiffiffiffiffi

n̂
f0

q þ
ffiffiffiffi

N
p &

;

(E31)

and employing Eq. (E30) to calculate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂=ðf0Þ
p

. Specific

contours with f?=f̂? ' f 2 ½0; 1+ are then generated by

plotting

jx0
?j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ffiffiffiffiffiffiffiffiffi

n̂

f0

s

ð
ffiffiffiffi

N
p

! fÞ

v
u
u
t

(E32)

as a function of  ¼ r=rs ¼ ðk0rÞðrb=rsÞ=ðk0rbÞ for  2
½0;f+, where f is the numerical solution of NðfÞ ¼ f2.

For large relative space-charge intensity (=0 0 1), the

flatness of the contours deep within the core of the distri-

bution indicates nearly force-free motion until the particle

enters the nonlinear edge region. Various parameters for

the equilibria presented in Figs. 15 and 16 are given in

Table IV.

To load the parabolic equilibrium distribution in either

direct-Vlasov or PIC simulations, the general framework

Radius,

A
n

g
le

,

, ,

,,

A
n

g
le

,

A
n

g
le

,
A

n
g

le
,

Radius,

Radius, Radius,

FIG. 16. Parabolic equilibrium distribution contours f?ðH?Þ=f̂? are plotted as a function of k0r and jx0
?j for the profiles shown in

Fig. 15 with =0 ¼ 0:9, 0.5, 0.3, and 0.1 in (a)–(d). Contours are labeled with the value of f?ðH?Þ=f̂?, and the edge contour

(f? ¼ 0) is represented by the dashed curve.

TABLE IV. Dimensionless parabolic equilibrium parameters in Figs. 15 and 19 calculated for

specified =0. The values of k0"b are evaluated for Q ¼ 10!4, and all other quantities are

independent of Q.

Q ¼ 10!4

=0 p sb
Q

k2
0
r2
b

e
rs
rb

103 # k0rb 103 # k0"b

0.9 0.3254 0.2778 0.19 3.115 0.4471 22.94 0.4737

0.8 0.7137 0.5102 0.36 3.471 0.3942 16.67 0.2222

0.7 1.191 0.6960 0.51 3.925 0.3415 14.00 0.1373

0.6 1.800 0.8347 0.64 4.526 0.2891 12.50 0.093 75

0.5 2.619 0.9271 0.75 5.360 0.2373 11.55 0.066 67

0.4 3.805 0.9778 0.84 6.598 0.1864 10.91 0.047 62

0.3 5.730 0.9968 0.91 8.626 0.1370 10.48 0.032 97

0.2 9.520 0.999 93 0.96 12.59 0.089 55 10.21 0.020 83

0.1 21.87 0.999 999 999 7 0.99 24.27 0.043 98 10.05 0.010 10
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presented in Sec. III B can be applied. For PIC loading of

the parabolic distribution, the radial probability transform

(51) for loading macroparticle coordinates x? can be ex-

pressed in scaled form as
R
0 d~ ~Nð~Þ

Re

0 dNðÞ
¼ û; (E33)

where û 2 ½0; 1Þ is an independent, uniformly distributed

random number generated for each macroparticle.

Equation (E33) is solved for ðûÞ 2 ½0;eÞ, and macro-

particle coordinates x? are set using r ¼ rs in Eq. (52).

Values can be saved on a radial grid to efficiently load

many particles with the same equilibrium parameters. To

load the macroparticle angles x
0
? with the macroparticle

coordinates x? already loaded, the probability transform

(53) is applied with Eq. (E31). Carrying out the integrals

leads to a quadratic equation that can be solved for the

smallest physical solution as

UðûUÞ ¼

ffiffiffiffiffiffiffiffiffi

n̂

f0

s
ffiffiffiffi

N
p

½1!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1! ûU
p

+: (E34)

Here, ûU 2 ½0; 1Þ is an independent, uniformly distributed

random number generated for each macroparticle,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂=ðf0Þ
p

is calculated (once) for the equilibrium parame-

ters using Eq. (E30), and N ¼ NðÞ is the density at the

loaded radial macroparticle coordinate  ¼
ffiffiffiffiffiffiffi

x
2
?

q

=rs.

Macroparticle angles are set using this value of UðûUÞ in
Eq. (54). To efficiently carry out this angle loading proce-

dure using Eq. (E34),N should be calculated once on a grid

for  2 ½0;e+ and gridded values can then be interpolated
for more accuracy.

APPENDIX F: CONTINUOUS-FOCUSING

THERMAL EQUILIBRIUM DISTRIBUTION

The thermal equilibrium distribution has been studied

extensively in nonneutral plasma physics [30,110] and in

accelerator physics by Reiser [31,111] and others

[32,67,68,112,113]. Here we review previous results in a

format that allows easy contrast to other continuous-

focusing distributions (see Appendices D and E) while

presenting extensions needed for practical implementation

of Vlasov simulation loads using standard inputs for ac-

celerator physics. For a thermal equilibrium distribution in

continuous focusing, we take

f?ðH?Þ ¼
mb

2
bc

2n̂

2T
exp

%

!
mb

2
bc

2H?
T

&

; (F1)

where n̂ ¼ const is a constant density scale, and T ¼ const

is the thermodynamic temperature (expressed in energy

units) in the laboratory frame. The thermal equilibrium

distribution is a special class of stable Vlasov equilibria

with @f?=@H? . 0 [30]. Within the weak coupling ap-

proximation (q2=n̂!2=3 0 T), any initial distribution func-

tion f?ðx?;x
0
?; s ¼ siÞ, however complex, relaxes

through collisions to the thermal equilibrium form in

Eq. (F1). This is true regardless of the details of the

intervening evolution due to both collective and collisional

processes. Even stable Vlasov equilibria must ultimately

relax to thermal equilibrium form due to collisional effects

outside the Vlasov model. Although the time scales for

collisional relaxation are usually long relative to beam

residence times in a machine, couplings to external error

sources together with collective effects can result in en-

hanced rates of effective thermalization. In this regard,

thermal equilibrium can be regarded as a preferred equi-

librium state of the system.

The thermal equilibrium distribution is characterized by

a radial kinetic temperature profile that is uniform. Direct

calculation with Eqs. (14) and (F1) shows that

Tx ¼ Ty ¼

R
d2x0?x

02f?
R
d2x0?f?

¼
T

mb
2
bc

2
' T2 ¼ const: (F2)

This constant temperature results in a diffuse beam edge

since the spread in particle transverse energy will prevent

an abrupt turning point of all particles. For analysis of the

radial density profile and the Poisson equation of the

equilibrium, we employ the formulation developed in

Sec. III B. For the thermal equilibrium distribution it is

convenient to define a dimensionless potential

~c ðrÞ ¼
c ðrÞ

T2
¼

1

T

$mb
2
bc

2k20r
2

2
þ

qðrÞ

2
b

'

; (F3)

and make, without loss of generality, the choice of poten-

tial reference ðr ¼ 0Þ ¼ 0. Then Eqs. (36) and (F1) can

be employed to calculate the equilibrium radial density

profile in terms of ~c . This gives

nðrÞ ¼
Z

d2x0?f?ðH?Þ ¼ n̂e!
~c ðrÞ: (F4)

Because ~c ðr ¼ 0Þ ¼ 0, n̂ is identified as the on-axis den-

sity of the equilibrium. Using Eq. (F4), the transformed

Poisson equation (37) can be recast in scaled form as

1



@

@

%


@ ~c

@

&

¼ 1þ x! e!
~c ; (F5)

and solved subject to the boundary conditions ~c ð ¼ 0Þ ¼

0 and @ ~c
@

j¼0 ¼ 0. Here,  ' r=ðbDÞ is a scaled radial

coordinate with D ' ½T=ðm!̂2
pÞ+

1=2 and !̂p '

½q2n̂=ð0mÞ+1=2 denoting the Debye length and plasma

frequency formed from the (on-axis) density scale n̂, and
x is defined by

x '
23

b
2
bc

2k20

!̂2
p

! 1: (F6)

LUND, KIKUCHI, AND DAVIDSON Phys. Rev. ST Accel. Beams 12, 114801 (2009)

114801-42



Here, x 2 ð0;1Þ is a positive, dimensionless parameter

relating the ratio of applied to space-charge defocusing

forces. Note that x is simply a convenient rescaling of

the self-field parameter sb ' !̂2
p=ð2

3
b

2
bc

2k20Þ defined in

Eq. (48) with

x ¼
1

sb
! 1: (F7)

Strictly speaking, from the form of the thermal equilibrium

density profile in Eq. (F4), it follows that the radial density

profile nðrÞ is nonzero for any finite radius r <1 and the

thermal equilibrium distribution is only consistent with a

free-space model with no conducting beam pipe (rp ! 1).

However, since the density becomes exponentially small at

large radii, this nonzero density inconsistency can be

ignored if the cylindrical pipe radius rp is chosen suffi-

ciently large in comparison with the rms-envelope radius

rb. Here we analyze properties of thermal equilibrium

beams in the formally correct, infinite-system limit.

Modified thermal-equilibrium-like distributions have also

been presented that modify Eq. (F1) to introduce a sharp

cutoff [114]. In some applications, this can improve the

model at the expense of introducing another parameter to

identify.

It is useful to employH? ¼ 1
2
x
02
? þ c [see Eq. (35)] and

Eqs. (F3) and (F4) to express the thermal equilibrium

distribution (F1) as

f?ðx?;x
0
?Þ ¼ n̂e!½x02

?=ð2T
2Þ+e!

~c ¼ nðrÞe!½x02
?=ð2T

2Þ+: (F8)

The maximum of the thermal distribution occurs at x? ¼ 0

and x
0
? ¼ 0, where f?ðx? ¼ 0;x0

? ¼ 0Þ ¼ n̂.
The thermal equilibrium distribution parameters corre-

sponding to the on-axis density n̂, the thermodynamic

temperature T, and the parameter x must be related to

standard quantities associated with accelerator physics as

discussed in Sec. III B. To carry out this procedure, the

transformed Poisson equation (F5) is first solved for ~c to

obtain the thermal equilibrium density profile from

Eq. (F4) and calculate the needed parametric constraints.

This equation is highly nonlinear and must, in general, be

solved numerically [91,115]. However, closed-form ap-

proximate analytical solutions have recently been con-

structed for both large and small values of x that are

highly accurate [116]. The numerical solution is illustrated

in Fig. 17, where the normalized density nðÞ=n̂ ¼

expð! ~c Þ is plotted versus  ¼ r=ðbDÞ for values of x
covering several decades. Note that for small values of x,

the scaled density nðrÞ=n̂ varies little from unity from  ¼
0 until intermediate-to-large values of  [corresponding to

a large number of Debye lengths, since  ¼ r=ðbDÞ],
where the density profile rapidly falls to exponentially

small values as  increases by 4–5 units (i.e., Debye

lengths). Note that the width in  of the radial falloff varies

little with x, whereas the width of the flat, central region is

a strong function of x. It will be shown that this highly

nonlinear regime of small x, with x" 10!6 and smaller

can correspond to beam parameters of practical interest

when the space-charge intensity is strong and the beam can

be many Debye lengths in radial extent. In this regime,

conventional numerical methods to integrate Eq. (F5) for
~c as a function of  from the on-axis values ~c ð ¼ 0Þ ¼ 0

and @ ~c =@j¼0 ¼ 0 can fail. This parametric sensitivity is

evident from the extreme flatness of nðÞ for  0 1 and

small x. Small, high-order derivative values of ~c at  ¼ 0

sensitively determine the value of  where the rapid edge

falloff begins for x small, complicating numerical solu-

tions. We address this issue in Appendix G, where an

analytical series solution of the scaled Poisson equa-

tion (F5) is developed that is valid within the core of the

beam. Use of this series solution allows the integration to

be initiated at a value of > 0 where there is sufficient

variation that standard numerical methods can be applied

to generate solutions for ~c ðÞ for arbitrarily small values

of x. In the emittance-dominated regime, x 1 1, and the

solution to the scaled Poisson equation becomes ~c ’ ð1þ

xÞ2=4, and the scaled density profile n ¼ n̂ expð! ~c Þ
becomes Gaussian in r with

nðrÞ ’ n̂ exp

$

!
ð1þxÞ

4

%

r

bD

&

2
'

: (F9)

Note from Fig. 17 that nðrÞ is well approximated by

Eq. (F9) even when x" 1, showing that even modest

values of x correspond to weak space-charge intensity.

For x 0 1 and arbitrarily small but nonzero, a nonlinear

analysis presented in Ref. [116] shows that nðrÞ is well

approximated by

nðrÞ ’ n̂
ð1þ 1

2
xþ 1

24
x2Þ2

f1þ 1
2
xI0ð

r
bD

Þ þ 1
24
½xI0ð

r
bD

Þ+2g2 ; (F10)

where I0ðxÞ denotes an order zero modified Bessel function

FIG. 17. For a thermal equilibrium, the scaled density

nðÞ=n̂ ¼ expð! ~c Þ is plotted versus the scaled radial coordinate
 ¼ r=ðbDÞ calculated from the solution of the scaled thermal

equilibrium Poisson equation (F5) for x ¼ 10!‘ with ‘ ¼ 0, 2,

4, 6, and, 8.
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[108]. The closed-form solution given by Eq. (F10) is

highly accurate outside of the far tail where N < 0:001
when x< 10!2.

Specification of the line-charge density  [see Eq. (10)]

and the transverse energy of the beam macrostate fixes the

values of the constants n̂ and T. Alternatively, we derive

constraints to relate the thermal equilibrium parameters n̂,
T, and x, or equivalently, the effective Debye length

bD ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0T=ðq
2n̂Þ

p

, the scaled temperature T2 ¼
T=ðmb

2
bc

2Þ, and x, in terms of the focusing strength

k0, the perveance Q [see Eq. (22)], and the emittance "b
[see Eq. (42)] using the formulation developed in

Sec. III B. First, the beam line-charge density  ¼

2q
R1
0 drrnðrÞ and the beam rms-edge radius rb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hr2i?
p

are expressed in terms of the thermal equilibrium

density in Eq. (F4) as

 ¼
2
bT

2q

Z 1

0

de!
~c ;

r2b ¼ 22
b

2
D

R1
0 d3e!

~c

R1
0 de!

~c
:

(F11)

Note that the integrals occurring in Eq. (F11) depend only

on the parameter x with the solution ~c ðÞ formally given

by the scaled Poisson equation (F5). Next, the rms-edge

emittance "b is simply calculated directly from "2b ¼

2r2bhx02
?i? and the thermal equilibrium distribution func-

tion (F1) to show that

"2b ¼ 4T2r2b: (F12)

The matched-beam envelope equation (39) and "2b in

Eq. (F12) can be used to express equivalently the rms-

envelope radius rb as

r2b ¼
1

k20
ð4T2 þQÞ: (F13)

Equation (F11) and the definition of the perveance Q ¼

2q=ð20m3
b

2
bc

2Þ obtains the constraint

Q ¼ T2
Z 1

0

de!
~c (F14)

and Eqs. (F11) and (F12) can be combined to yield the

constraint

k20"
2
b ¼ 4T2ð4T2 þQÞ: (F15)

Then Eq. (F6) and the Debye length definition D ¼

ðT=!̂pÞ
1=2 yield

k20 ¼ T2
ð1þ xÞ

22
b

2
D

: (F16)

Equation (F15) can be solved analytically for T2, and the

constraints in Eqs. (F14)–(F16) expressed as

T2 ¼
Q

8
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4k20"
2
b=Q

2
q

! 1Þ;

8 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4k20"
2
b=Q

2
q

! 1Þ
Z 1

0

de!
~c

ðk0bDÞ
2 ¼

Q

16
ð1þxÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4k20"
2
b=Q

2
q

! 1Þ: (F17)

The constraint equations (F17) provide relations fixing

bD, T
2 ¼ T=ðmb

2
bc

2Þ, and x in terms of Q, "b, and

k0. Note that the integral
R1
0 d expð! ~c Þ is an implicit

function of x and must, in general, be calculated numeri-

cally to fully solve the constraints. In some applications it

is useful to explicitly identify the on-axis density scale

nðr ¼ 0Þ ¼ n̂ in terms of accelerator parameters. This

can be done by rewriting Eq. (F16) as

n̂ ¼
20m3

b
2
bc

2k20

ð1þxÞq2
: (F18)

We first employ Eqs. (F11) and (F17) to reinforce the

interpretation that the x can be regarded as a parameter

related to the relative space-charge strength. Using these

constraints, the rms-equivalent beam tune depression

=0 '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1!Q=ðk20r
2
bÞ

q

[see Eq. (47)] and x can be

related by



0
¼

"

1!
½
R1
0 de!

~c +2

ð1þ xÞ
R1
0 d3e!

~c

#

1=2
: (F19)

This equation is solved numerically to plot x as a function

of =0 in Fig. 18. Note that strong tune depressions with

=0 < 0:2 correspond to extremely small values of

x. Because x is a single-valued function of =0, the

relative space-charge strength uniquely determines x. Al-

Tune Depression,

lo
g

FIG. 18. Thermal equilibrium parameter x plotted versus rms-

equivalent beam tune depression =0 as calculated from

Eq. (F19).
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ternatively, the on-axis self-field parameter sb '

!̂2
p=ð2

3
b

2
bc

2k20Þ ¼ 1=ð1þ xÞ [see Eq. (F7)] can be em-

ployed in place of =0 to specify the scaled equilibrium.

The physical range ofx> 0 implies that sb 2 ½0; 1Þ for the
thermal equilibrium distribution. Note that sb will be ex-

tremely close to unity for small =0 corresponding to

beams with high space-charge intensity intensity, render-

ing sb a less convenient parameter to describe thermal

equilibria in the space-charge-dominated regime.

Generally, when numerically solving for needed values

ofx for thermal equilibria with high space-charge intensity

(=0 small), it can be more convenient to usex ¼ ep and
solve for p due to the sensitivity of the equilibrium speci-

fication in x [or sb ¼ 1=ð1þxÞ].

To better understand properties of the thermal equilib-

rium, we employ Eqs. (F17) and (F18) to plot the radial

density profile and the phase-space distribution in Fig. 19

for fixed applied-focusing strength (k20 ¼ const) and fixed

beam perveance (Q ¼ const) as the relative space-charge

strength (=0) is varied. In Fig. 19(a) the scaled radial

density is plotted. For thermal equilibrium, the tempera-

ture profile is spatially uniform with Tx ¼ Ty ¼

T=ðmb
2
bc

2Þ ¼ T2 ¼ const [see Eq. (F2)]. Contours of

the scaled distribution f?ðH?Þ=f?ð0Þ are shown in

Figs. 19(b)–19(d) for values of =0 corresponding to

weak, intermediate, and strong relative space-charge inten-

sity. Various parameters for the equilibria presented in

Fig. 19 are given in Table V. Figure 19(a) illustrates how

Radius, Radius,

A
n
g
le

,

A
n
g
le

,

A
n
g
le

,

Radius,

Contours, Contours,

Contours,

Radius,

FIG. 19. Thermal equilibrium distribution in continuous-focusing field for fixed focusing strength (k20 ¼ const) and perveance Q ¼
10!4 (rms-equivalent beam measure). In (a) the scaled density ½q2=ð20m3

b
2
bc

2k20Þ+nðrÞ is plotted versus the dimensionless radial

coordinate k0r for relative space-charge strengths =0 ¼ 0:9; 0:8; . . . ; 0:1, and in (b), (c), and (d), the normalized distribution

f?ðH?Þ=f?ð0Þ ¼ const contours are plotted as a function of k0r and jx0
?j for =0 ¼ 0:9, 0.5, and 0.1. Contours are labeled by the

value of f?ðH?Þ=f̂?. Values of =0 correspond to the dimensionless equilibrium parameters in Table V.

TABLE V. Dimensionless thermal equilibrium parameters in Fig. 19 calculated for specified =0. The values of k0bD, T
2 ¼

T=ðmb
2
bc

2Þ, and k0"b are evaluated for Q ¼ 10!4, and all other quantities are independent of Q.

Q ¼ 10!4

=0 x sb
Q

k2
0
r2
b

k2
0
"2
b

Q2 k0bD
T

mb
2
b
c2

103 # k0rb 103 # k0"b

0.9 1.851 0.3508 0.19 22.44 12.33 1:065# 10!4 22.94 0.4737

0.8 6:382# 10!1 0.6104 0.36 4.938 6.034 4:444# 10!5 16.67 0.2222

0.7 2:649# 10!1 0.7906 0.51 1.884 3.898 2:402# 10!5 14.00 0.1373

0.6 1:059# 10!1 0.9043 0.64 0.8789 2.788 1:406# 10!5 12.50 0.093 75

0.5 3:501# 10!2 0.9662 0.75 0.4444 2.077 8:333# 10!6 11.55 0.066 67

0.4 7:684# 10!3 0.9924 0.84 0.2268 1.549 4:762# 10!6 10.91 0.047 62

0.3 6:950# 10!4 0.9993 0.91 0.1087 1.112 2:473# 10!6 10.48 0.032 97

0.2 6:389# 10!6 0.999 994 0.96 0.043 40 0.7217 1:042# 10!6 10.21 0.020 83

0.1 4:975# 10!12 0.999 999 999 995 0.99 0.010 20 0.3553 2:525# 10!7 10.05 0.010 10
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the thermal equilibrium density profile sharpens and be-

comes more step-function-like with increasing relative

space-charge strength (i.e., small =0, or equivalently

small T2) and Gaussian-like for weak relative space-charge

strength [i.e., =0 " 1, or equivalently large T2, with the

density profile approximated by Eq. (F9)]. Note that the

peak density n̂ of the beam increases with increasing

space-charge strength, whereas the rms-envelope radius

rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hr2i?
p

decreases with increasing space-charge

strength.

To load the thermal equilibrium distribution in either

direct-Vlasov or PIC simulations, the general framework

presented in Sec. III B can be applied. For PIC loading, the

radial probability transform (51) for loading macroparticle

coordinates x? is straightforward to apply using the nor-

malized coordinates defined by

R
0 d~e

! ~c ð~Þ

R1
0 de!

~c ðÞ
¼ û; (F20)

where û 2 ½0; 1Þ is a uniformly distributed random num-

ber generated for each macroparticle. Equation (F20) is

solved for ðûÞ and macroparticle coordinates x? are set

using r ¼ bDðûÞ in Eq. (52). Values can be saved on a

radial grid in r out to a maximum cutoff value, where the

beam density is negligible, to efficiently load many macro-

particles with the same equilibrium parameters. For load-

ing the macroparticle angles x0
?, the probability transform

(53) can be greatly simplified for the thermal equilibrium

distribution. Independent of macroparticle position, we

have

UðûUÞ ¼ !T2 logð1! ûUÞ; (F21)

where ûU 2 ½0; 1Þ is a uniformly distributed random num-

ber generated for each macroparticle. Using the constraint

equation (F12) and this result shows that the angle loading

given by Eq. (54) can be expressed as

x0 ¼
"b
2rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 logð1! ûUÞ
q

cosð2û’Þ;

y0 ¼
"b
2rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 logð1! ûUÞ
q

sinð2û’Þ;

(F22)

where û’ 2 ½0; 1Þ is a uniformly distributed random num-

ber generated for each macroparticle. Using two-

dimensional probability transforms [95], this result can

be shown to be equivalent to

x0 ¼
"b
2rb

ĝx; y0 ¼
"b
2rb

ĝy; (F23)

where ĝx and ĝy are independent, Gaussian-distributed

random numbers with unit variance.

APPENDIX G: SERIES SOLUTION OF POISSON’S

EQUATION FOR THE CONTINUOUS-FOCUSING

THERMAL EQUILIBRIUM DISTRIBUTION

The scaled thermal equilibrium Poisson equation (F5),

ð1=Þð@=@Þð@ ~c =@Þ ¼ 1þ x! expð! ~c Þ is most

naturally numerically integrated for ~c as a function of 

from the on-axis values ~c ð ¼ 0Þ ¼ 0 and @ ~c =@j¼0 ¼

0. In regimes of practical interest corresponding to very

cold beams (T small), the parameter x can be "10!6 and

smaller. For such small values of x, the scaled density

profile nðÞ=n̂ ¼ expð! ~c Þ (see Fig. 17) is very flat for

small , and falls abruptly to zero at intermediate-to-large

values of . This highly sensitive parametric dependence

on x renders the direct numerical integration difficult (i.e.,

the system is very stiff) using conventional numerical

methods. For this reason, most work on thermal equilib-

rium beams has focused on values of x sufficiently high

that numerical issues are easily avoided. Here, we outline a

series solution for the thermal equilibrium density profile

[115] valid for intermediate values of  that can be em-

ployed to construct accurate numerical solutions over the

entire range of  for arbitrarily small values of x, thereby

enabling the analysis of arbitrarily low-temperature ther-

mal equilibrium beams. The methods described are em-

ployed to generate the solutions needed for the explicit

calculation of thermal equilibrium quantities illustrated in

Appendix F.

Operating on the scaled Poisson equation (F5) with
R
0 d~ ~ , we obtain


@ ~c

@
¼

1þ x

2
2 !

Z 

0

d~ ~ e!
~c ð~Þ:

This equation can be interpreted as the radial force-balance

equation for a thermal equilibrium beam [115].

Introducing the scaled radial coordinate R and density

N defined by

R ¼
1þ x

4
2 ¼

1þ x

4

%

r

bD

&

2

;

N ¼
e!

~c

1þ x
¼

nðrÞ=n̂

ð1þ xÞ
;

(G1)

this radial force-balance equation can be expressed in an

equivalent form, with no free parameters, as

R
@

@R
N ðRÞ ¼ !RN ðRÞ þN ðRÞ

Z R

0
d ~RN ð ~RÞ:

(G2)

The solution to Eq. (G2) can be expressed as a power series

of the form

N ðRÞ ¼
X1

i¼0

iR
i; (G3)

subject toN ðR ¼ 0Þ ¼ ð1þ xÞ!1. Substituting Eq. (G3)
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into Eq. (G2) and equating like powers of R gives the

recursion relations

0 ¼ ð1þ xÞ!1;

1 ¼ !ð0 ! 2
0Þ;

2 ¼ !
1

2
1 þ

3

4

%

1

2
01 þ

1

2
10

&

¼
1

2
ð0 ! 2

0Þ !
3

4
0ð0 ! 2

0Þ;

..

.

iþ1 ¼ !
i

iþ 1
þ

iþ 2

2ðiþ 1Þ

Xi

j¼0

ji!j

ðjþ 1Þði! jþ 1Þ
:

(G4)

Note that all i with i - 1 can be calculated in terms of

0 ¼ ð1þ xÞ!1, and thus the coefficients i can be re-

garded as known functions of x. From Eqs. (G1) and (G3)

the thermal equilibrium density profile nðrÞ can be ex-

pressed as

nðrÞ ¼ n̂þ n̂ð1þ xÞ
X1

i¼1

i

$

1þx

4

%

r

bD

&

2
'

i
; (G5)

and the solution for ~c ðÞ ¼ ! log½nðÞ=n̂+ is given by

~c ðrÞ ¼ ! log

"

1þ ð1þ xÞ
X1

i¼1

i

$

1þx

4

%

r

bD

&

2
'

i
#

:

(G6)

Note from Eq. (G5) that ½@n=@r+r¼0 ¼ 0 and

½@2n=@r2+r¼0 ¼ !xn̂=ð22
b

2
DÞ, corresponding to weak

downward concavity in the density profile for x 0 1.

The power-series solutions for nðrÞ and ~c ðrÞ given by

Eqs. (G5) and (G6) rapidly converge for large values of x

(weak space-charge, see Appendix F) for all  ¼
r=ðbDÞ 2 ½0;1Þ. Conversely, for small x 0 1 (strong

space-charge, see Appendix F), numerical studies show

that the solutions rapidly converge for  ranging from

the beam center ( ¼ 0 ¼ r) to near the outer radial

edge of the beam where the density profile begins falling

rapidly. The convergence failure is rapid. For x & 0:1, an
accurate approximate formula for the value of  where

N ¼ 1=2 (denoted by  ¼ 1=2) is derived in Ref. [116] as

1=2 ’ log

$

C

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log

%

C

x

&

s
'

; (G7)

where C ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 6
ffiffiffi

2
pp

! 6 ’ 0:777 99. The power-series

solutions are expected to fail for small x when  is near

 ¼ 1=2.

To circumvent the small x difficulty with direct numeri-

cal integration of the thermal equilibrium Poisson equa-

tion (F5) and the lack of convergence of the power-series

solutions given by Eqs. (G5) and (G6) near the radial edge

of the beam (i.e., " 1=2), we construct numerical solu-

tions as follows. The power-series solutions are employed

out to some sufficiently large value of the radial coordi-

nates  ¼ c, where the series solution is still reliable and

highly accurate, but the local variation of the density

profile N in  is large enough to allow reliable initializa-

tion of numerical integration for  - c with standard

methods. Applying the series in small radial steps in 

out to  ¼ c < 1=2 where NðcÞ ’ 0:98 appears to be an

adequate, simple to implement, criterion. Note from

Fig. 17 that the radial edge of the beam is always 3–5 units

in  for x 0 1, regardless of the specific value of x, so

this choice of cutoff is always safely removed from  ¼

1=2.

Rather than numerically integrating the scaled Poisson

equation (F5) from  ¼ c, it is convenient to recast the

equation in terms of N ¼ expð! ~c Þ instead of ~c , and

integrate

@2N

@2
þ

1

N

%

@N

@

&

2

!
1



@N

@
¼ N2 ! ð1þ xÞN (G8)

from the ‘‘initial’’ conditionsNðcÞ and
@N
@

j¼c
calculated

from Eq. (G5). In integrating this equation, ð@N=@Þ2

vanishes much faster than 1=N diverges in the low-density

tail, so 1=N can be replaced by 1=ðN þ Þ with  suffi-

ciently small to avoid challenges with the numerical evalu-

ation of the equations.

The procedure given above can be applied to calculate

highly accurate numerical solutions for N or c ¼ ! logN
for arbitrary values of x—however large or small. This

method was employed in Ref. [116] to verify approximate

solutions constructed for N [see Eq. (F10)].
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